The String Instructions

The String Instructions Chapter Six

6.1

Chapter Overview

A string is a collection of objects stored in contiguous memory locations. Strings are usually arrays of
bytes, vords, or (on 80386 and later processors) doulbi@lsvThe 80x86 microprocessaarhily supports
several instructions specifally designed to cope with stringbhis chapter xplores some of the uses of
these string instructions.

The 80x86 CPUs can process three types of strings: byte stvingd strings and double wrd strings
They can mee strings compare stringssearch for a spedifivalue within a stringinitialize a string to a
fixed \alug and do other primite operations on stringghe 80x86s string instructions are also useful for
manipulating arrays, tables, and recoiisu can easily assign or compare such data structures using the
string instructions. Using string instructions may speed up your array manipulation code considerably

6.2

The 80x86 String Instructions

All members of the 80x8@afmily support fre different string instructions: MZBx, CMP&, SCA,
LODSX, and SDSXL. (x= B, W, or D for byte, word, or double wrd, respectiely. This text will generally
drop the x suifx when talking about these string instructions in a general sdiegy. pre the string primi
tivessince you canuild most other string operations from these finstructions. He you use thesewie
instructions is the topic of the xteseveral sections.

For MOVS:
nmovsb() ;

movsw() ;
novsd();

For QWS:
cnpsb(); /1 Note: repz is a synonymfor repe
cnpsw() ;
cnpsd() ;

cnpshb(); /1 Note: repnz is a synonymfor repne.
cnpsw() ;
cnpsd() ;

For SCAS:
scasb(); /1 Note: repz is a synonymfor repe

scasw();
scasd();

scash(); /1 Note: repnz is a synonymfor repne.

scasw();

scasd();

For STCE:
stosb();

stosw();
stosd();

1. The 80x86 processor support two additional string instructions, INS and OUTS which input strings of data from an input
port or output strings of data to an output port. We will not consider these instructions since they are privileged mstruction
and you cannot execute them in a standard 32-bit OS application.

Beta Draft - Do not distribute © 2001, By Randall Hyde Paged35

Chapter Six Volume Six

For LCDS:
| odsb();

|l odsw();
| odsd();

6.2.1 How the String Instructions Operate

The string instructions operate on blocks (contiguous linear arrays) of mdimoggample, the MO'S
instruction mees a sequence of bytes from one memory location to andtieiICMPS instruction com
pares tw blocks of memoryThe SCAS instruction scans a block of memory for a particallevThese
string instructions often require three operands, a destination block address, a source block address, and
(optionally) an element countoFexample, when using the M instruction to cop a string, you need a
source address, a destination address, and a count (the number of string elemessfs to mo

Unlike other instructions which operate on memthrg string instructions damave ary explicit oper
ands.The operands for the string instructions include

» the ESI (source index) register,

» the EDI (destination index) register,

* the ECX (count) register,

* the AL/AX/EAX register, and

» the direction flag in the FLAGS register.

For example, one variant of the MOVS (move string) instruction copies a string from the source address
specified by ESI to the destination address specified by EDI, of length ECX. Likewise, the CMPS instruction
compares the string pointed at by ESI, of length ECX, to the string pointed at by EDI.

Not all instructions have source and destination operands (only MOVS and CMPS support them). For
example, the SCAS instruction (scan a string) compares the value in the accumulator (AL, AX, or EAX) to
values in memory.

6.2.2 The REP/REPE/REPZ and REPNZ/REPNE Prefixes

The string instructions, by themses; do not operate on strings of dathe MOVS instruction, for
example, will mwve a single byte, ard, or double wrd. When eecuted by itself, the M@S instruction
ignores the &lue in the ECX rgister The repeat prefes tell the 80x86 to do a multi-byte string operation.
The syntax for the repeat prefs:

For MOVS:
rep. movsb();
rep. novsw() ;
rep. novsd() ;

For QWS
repe. cnpshb(); /1 Note: repz is a synonymfor repe.
repe. cnpsw() ;
repe. cnpsd() ;

repne.cnpsb(); // Note: repnz is a synonymfor repne.

repne. cnpsw() ;
repne. cnpsd() ;

For SCAS:
repe. scash(); /1 Note: repz is a synonymfor repe.
repe. scasw) ;
repe. scasd();

Paged36 © 2001, By Randall Hyde Beta Draft - Do not distribute

The String Instructions

repne. scash(); /1 Note: repnz is a synonymfor repne.
repne. scasw() ;
repne. scasd();

For STCS:
rep. stosb();

rep. stosw();
rep. stosd();

You dont normally use the repeat prads with the LODS instruction.

When specifying the repeat prefiefore a string instruction, the string instruction repeats ECX fimes
Without the repeat predj the instruction operates only on a single bytadwor double wrd.

You can use repeat ppads to process entire strings with a single instrucon. can use the string
instructions, without the repeat prefias string primitie operations to synthesize morenmgoful string
operations.

6.2.3

The Direction Flag

Besides the ESI, EDI, ECX, add/AX/EAX registers, one other géster controls the 80x8&’string
instructions — the digs register Specifcally, thedirection fag in the flgs rgister controls hw the CPU pre
cesses strings.

If the direction fag is clearthe CPU increments ESI and EDI after operating upon each string element.
For example, if the directiondlg is clearthen eecuting MQ/S will move the byte, wrd, or double wrd at
ESI to EDI and will increment ESI and EDI by onepopwr four When specifying the REP prefbefore this
instruction, the CPU increments ESI and EDI for each element in the stricgmpletion, the ESI and EDI
registers will be pointing at ther§t item bgond the strings.

If the direction fag is set, then the 80x86 decrements ESI and EDI after processing each string element.
After a repeated string operation, the ESI and EBikters will be pointing at thert byte or vord before
the strings if the directiondt was set.

The direction thg may be set or cleared using the CLD (clear directgn) nd STD (set directiorafi)
instructions When using these instructions inside a procedwep kn mind that themodify the machine
state.Therefore, you may need tovsathe direction g during the xecution of that procedur&he followv-
ing example &hibits the kinds of problems you might encounter:

procedure Str2; nodispl ay;
begin Str2;

std();
<Do sone string operations>

end Str2;

cld();
<do sone operations>
Str2();
<do sone string operations requiring D=0>

2. Except for the cmps instruction which repedtsiost the number of times specified in the cx register.

Beta Draft - Do not distribute © 2001, By Randall Hyde Paged37

Chapter Six Volume Six

This code will not wrk properly The calling code assumes that the directiag & clear afte6tr2
returns. Havever, this isnt true.Therefore, the string operationseeuted after the call ®tr2will not func-
tion properly

There are a couple ofays to handle this problerhe frst, and probably the mostwbus, is alvays to
insert the CLD or STD instructions immediately befaxeariting a sequence of one or more string instruc
tions.The other alternate is to see and restore the directiomdl using the PUSHFD and POPFD instruc
tions. Using these twtechniques, the code aleonould look like this:

Always issuing CLD or STD before a string instruction:

procedure Str2; nodispl ay;
begin Str2;

std();
<Do sone string operations>

end Str2;

cld();
<do sone operations>
Str2();
cld();
<do some string operations requiring D=0>

Saving and restoring theds rgister:

procedure Str2; nodispl ay;
begin Str2;

pushfd();
std();
<Do some string operations>

popf d();
end Str2;

cld();
<do sone operations>
Str2();
<do sone string operations requiring D=0>

If you use the PUSHFD and POPFD instructions @ sand restore theafjs rgister keep in mind that
you're s&ing and restoring all thedts.Therefore, such subroutines cannot retury iaformation in the
flags. for example, you will not be able to return an error condition in the camyifilyou use PUSHFD and
POPFD.

6.2.4 The MOVS Instruction

The MOVS instruction uses the follang syntax:

novshb()

Paged38 © 2001, By Randall Hyde Beta Draft - Do not distribute

The String Instructions

novsw()
novsd()
rep. movsh()
rep. movsw)
rep. novsd()

The MOVSB (move string, bytes) instruction fetches the byte at address ESI, stores it at address EDI
and then increments or decrements the ESI and Ef¥tees by one. If the REP prefis present, the CPU
checks ECX to see if it contains zero. If not, then ivesothe byte from ESI to EDI and decrements the
ECX register This process repeats until ECX becomes zero.

The MOVSW (move string, vords) instruction fetches theowd at address ESI, stores it at address EDI
and then increments or decrements ESI and EDI by lfwhere is a REP prefithen the CPU repeats this
procedure as martimes as specéd in ECX.

The MOVSD instruction operates in a similashion on double ards. Incrementing or decrementing
ESI and EDI by four for each data weonent.

When you use theep prefix, the MO/SB instruction mees the number of bytes you specify in the
ECX rggister The folloving code sgment copies 384 bytes froBharArraylto CharArray2

Char Arrayl: byte[384];
Char Array2: byte[384];

cld();

lea(esi, CharArrayl);
lea(edi, CharArray2);
nov(384, ecx);

rep. movsh();

If you substitute MO'SW for MOVSB, then the code abe will move 384 vords (768 bytes) rather
than 384 bytes:

WrdArrayl: word[384];
VWrdArray2: word[384];

cld();

lea(esi, WrdArrayl);
lea(edi, WrdArray2);
nov(384, ecx);

rep. novsw() ;

Rememberthe ECX register contains the element count, not the byte count. When using the MOVSW
instruction, the CPU moves the number of words specified in the ECX register. Similarly, MOVSD moves
the number of double words you specify in the ECX register, not the number of bytes.

If you've set the direction flag before executing a MOVSB/MOVSW/MOVSD instruction, the CPU dec-
rements the ESI and EDI registers after moving each string element. This means that the ESI and EDI regis-
ters must point at the end of their respective strings before issuing a MOVSB, MOVSW, or MOVSD
instruction. For example,

CharArrayl: byte[384];
Char Array2: byte[384];

cld();
lea(esi, CharArrayl[383]);
lea(edi, CharArray2[383]);

Beta Draft - Do not distribute © 2001, By Randall Hyde Paged39

Chapter Six Volume Six

nov(384, ecx);
rep. movsh();

Although there are times when processing a string from tail to head is useful (see the CMPS description
in the net section), generally yoll'process strings in the foexd direction since & more straightforard
to do soThere is one class of string operations where being able to process strings in both directions is abso
lutely mandatory: processing strings when the source and destination bledkp @onsider what happens
in the following code:

Char Arrayl: byte;
Char Array2: byte[384];

cld();

lea(esi, CharArrayl);
lea(edi, CharArray2);
nov(384, ecx);

rep. movsh();

This sequence of instructions tre@isarArraylandCharArray2as a pair of 384 byte strings. Wever,
the last 383 bytes in ti@harArraylarray werlap the fist 383 bytes in th€harArray2array Let’s trace the
operation of this code byte by byte.

When the CPU xecutes the M@SB instruction, it copies the byte at E®lIharArrayl) to the byte
pointed at by EDICharArray2). Then it increments ESI and EDI, decrements ECX by one, and repeats this
process. No the ESI rgister points aCharArrayl1+1 (which is the address @harArray2) and the EDI
register points aCharArray2+1. The MOVSB instruction copies the byte pointed at by ESI to the byte
pointed at by EDI. Hwever, this is the byte originally copied from locati@harArrayl So the MOYSB
instruction copies the alue originally in locationCharArrayl to both locationsCharArray2 and
CharArray2+1. Again, the CPU increments ESI and EDI, decrements ECX, and repeats this operation. No
the masb instruction copies the byte from locatigBharArrayl+2 (CharArray2+1) to location
CharArray2+2. But once ajn, this is the alue that originally appeared in locatiGharArrayl Each repe
tition of the loop copies the reelement inCharArray1[0] to the na&t available location in th€harArray2
array Pictorially; it looks something lié& that shan in Figure 6.1

Paged40 © 2001, By Randall Hyde Beta Draft - Do not distribute

1St move operation:

The String Instructions

/
7/
X A B C L
/
r 7/
2" move operation:
//
7/
X X B C L
//
T //
3'd move operation:
/
/7
X X X C p L
r //
4th move operation:
//
/7
X X X X K L
//
T //
nth move operation:
/
7/
X X X X L
/
7/ r
Figure 6.1 Copying Data Between Two Overlapping Arrays (forward direction)

The end result is that the M3B instruction replicateX throughout the stringtlhe MOVSB instrue
tion copies the source operand into the memory location which will become the source operancefgr the v

next move operation, which causes the replication.

If you really want to mee one array into another whenyhwerlap, you should me each element of
the source string to the destination string starting at the end ofdhstrings as shen in Figure 6.2

Beta Draft - Do not distribute

© 2001, By Randall Hyde

Paged41

Chapter Six Volume Six

15t move operation:
| | |] | | | | |]]

X A B C D E F G H | J K L
2nd move operation:
I I I I I I I I I I]
X A B C D E F G H I J K K
3d move operation:
I I I I I I I I I I]
X A B C D E F G H | J J K
4t move operation:
I I I I I I I I I I]
X A B C D E F G H | I J K
nth move operation:
I I I I I I I I I I]
X A A B C D E F G H | J K
Figure 6.2 Using a Backwards Copy to Copy Data in Overlapping Arrays

Setting the directiondlg and pointing ESI and EDI at the end of the strings withajlou to (correctly)
move one string to another when theotatrings @erlap and the source stringgies at a laver address than
the destination string. If the twstrings werlap and the source stringgies at a higher address than the-des
tination string, then clear the directioadland point ESI and EDI at thegirening of the tw strings.

If the two strings do notwerlap, then you can use either technique teentbe strings around in mem
ory. Generallyoperating with the directionaft) clear is the easiest, so that amthe most sense in this case.

You shouldrt use the M@®'Sx instruction to fil an array with a single byte,oxd, or double wrd \alue.
Another string instruction, SIS, is much better for this purpose.wwer, for arrays whose elements are
larger than four bytes, you can use the WW8Jinstruction to initialize the entire array to the content of the
first element.

The MOVS instruction is generally morefient when coping double verds than it is coging bytes
or words. In &ct, it typically talkes the same amount of time to g@pbyte using MUSB as it does to cgp
a double wrd using MQ/SD®. Therefore, if you are nving a lage number of bytes from one array to
anothey the coy operation will be dister if you can use the MSD instruction rather than the NK3B

3. This is true for MOVSW, as well.

Paged42 © 2001, By Randall Hyde Beta Draft - Do not distribute

The String Instructions

instruction. Of course, if the number of bytes you wish tgens an een multiple of fourthis is a twial
change; just dide the number of bytes to gppy four, load this alue into ECX, and then use the MEB
instruction. If the number of bytes is netaly diisible by four then you can use the M@SD instruction
to copy all but the last one, ta; or three bytes of the array (that is, the remainder after yaedhe byte
count by four). Br example, if you vant to eficiently mave 4099 bytes, you can do so with the foilog
instruction sequence:

| ea(esi, Source);
lea(edi, Destination);

nov(1024, ecx); /1 Copy 1024 dwords = 4096 bytes
rep. movsd() ;

nmovsw() ; /1 Copy bytes 4097 and 4098.
novsh(); /1 Copy the last byte.

Using this technique to cgplata never requires more than three M®WStructions since you can copy

one, two, or three bytes with no more than two MOVSB and MOVSW instructions. The scheme above is
most efficient if the two arrays are aligned on double word boundaries. If not, you might want to move the
MOVSB or MOVSW instruction (or both) before the MOVSD so that the MOVSD instruction works with
dword-aligned data (see Chapter Three for an explanation of the performance benefits of double word
aligned data).

If you do not know the size of the block you are copying until the program executes, you can still use
code like the following to improve the performance of a block move of bytes:

lea(esi, Source);
lea(edi, Dest);
nov(Length, ecx);

shr(2, ecx); /1 divide by four.

if(@z) then Il Only execute MOVSD if four or nore bytes.
rep. movsd() ; /1 Copy the dwords.

endi f;

nov(Length, ecx);

and(%1, ecx); /1 Conpute (Length nmod 4).

if(@z) then /1 Only execute MOVSB if #bytes/4 <> 0.
rep. novsb(); /1 Copy the renaining one, two, or three bytes.

endif;

On most computer systems, the M&D instruction proides about thealstest \vay to coly bulk data
from one location to anotheWhile there are, guably faster vays to cop the data on certain CPUSs, ulti
mately the memoryus performance is the limitingdtor and the CPUs are generally muasidr than the
memory lus. Therefore, unless you Y a special system, writingrigy code to impree memory to mem
ory transfers is probably aaste of time.Also note that Intel has impred the performance of the MSx
instructions on later processors so that\KBB operates almost asfiefently as MYSW and MGO/SD
when coping the same number of byteEherefore, when wrking on a later x86 processdrmay be more
efficient to simply use M@SB to copy the specitd number of bytes rather than go through all the-com
plexity outlined abee.

6.2.5

The CMPS Instruction

The CMPS instruction comparesawstrings.The CPU compares the string referenced by EDI to the
string pointed at by ESI. ECX contains the length of thee gtsings (when using the REPE or REPNE pre
fix). Like the MQY/S instruction, HLA allevs seeral diferent forms of this instruction:

cnpsb();
cnpsw() ;

Beta Draft - Do not distribute © 2001, By Randall Hyde Paged43

Chapter Six Volume Six
cnpsd() ;

repe. cnpsh();
repe. cnpsw() ;
repe. cnpsd() ;

repne. cnpsh() ;

repne. cnpsw() ;
repne. cnpsd() ;

Like the MQY/S instruction you specify the actual operand addresses in the ESI ancdyBERrse

Without a repeat prefj the CMPS instruction subtracts thedue at location EDI from thealue at ESI
and updates theaff)s. Other than updating thads, the CPU doegnise the dference produced by this
subtractionAfter comparing the tev locations, CMPS increments or decrements the ESI and Bidtees
by one, tvo, or four (for CMPSB/CMPSW/CMPSD, respeety). CMPS increments the ESI and EDg+e
isters if the direction 8lg is clear and decrements them otherwise.

Of course, you will not tap the realwer of the CMPS instruction using it to compare single bytes,
words, or double wrds in memoryThis instruction shines when you use it to compare whole sthivigs.
CMPS, you can compare conseeetelements in a string until yomndi a match or until consecui ele
ments do not match.

To compare tw strings to see if tlyeare equal or not equal, you must compare corresponding elements
in a string until thg don't match. Consider the follgng strings:

“Stringl”
“Stringl1”

The only vay to determine that thesedwstrings are equal is to compare each character irrshstfing
to the corresponding character in the secafigr all, the second string could yebeen “String2” which
definitely is not equal to “String1”. Of course, once you encounter a character in the destination string which
doesnt equal the corresponding character in the source string, the comparison caowstogedrt’ com
pare ay other characters in the dvetrings.

The REPE prefiaccomplishes this operation. It will compare sucwessliements in a string as long as
they are equal and ECX is greater than z&Ve.could compare the twstrings abee using the follaing
80x86 assembly language code:

cld();

nov(AdrsStringl, esi);
nov(AdrsString2, edi);
nmov(7, ecx);

repe. cnpsb();

After the execution of the CMPSB instruction, you can test the flags using the standard conditional jump
instructions. This lets you check for equality, inequality, less than, greater than, etc.

Character strings are usually compared ulrigographical odering In lexicographical ordering, the
least signiftant element of a string carries the most weibhis is in direct contrast to standard oege com
parisons where the most sigoént portion of the number carries the most weight. Furthermore, the length
of a string afects the comparison only if the avstrings are identical up to the length of the shorter string.
For example, “Zebra” is less than “Zebras”, because it is the shorter of thstiiwgs, hwever, “Zebra” is
greater thanAAAAAAAAAAH!" e ven though it is shortetexicographical comparisons compare cerre
sponding elements until encountering a character which damatch, or until encountering the end of the
shorter string. If a pair of corresponding characters do not match, then this algorithm compares the tw
strings based on that single charadfehe two strings match up to the length of the shorter string, we must
compare their lengtihe two strings are equal if and only if their lengths are equal and each corresponding
pair of characters in the twstrings is identical. bécographical ordering is the standard alphabetical erder
ing youVve gravn up with.

For character strings, use the CMPS instruction in theviolip manner:

Paged44 © 2001, By Randall Hyde Beta Draft - Do not distribute

The String Instructions

» The direction flag must be cleared before comparing the strings.

» Use the CMPSB instruction to compare the strings on a byte by byte basis. Even if the strings
contain an even number of characters, you cannot use the CMPSW or CMPSD instructions.
They do not compare strings in lexicographical order.

* You must load the ECX register with the length of the smaller string.

e Use the REPE prefix.

» The ESI and EDI registers must point at the very first character in the two strings you want to
compare.

After the execution of the CMPS instruction, if the two strings were equal, their lengths must be com-
pared in order to finish the comparison. The following code compares a couple of character strings:

nov(AdrsStrl, esi);
nmov(AdrsStr2, edi);
mov(LengthSrc, ecx);
if(ecx > LengthDest) then // Put the length of the shorter string in ECX

nov(LengthDest, ecx);

endi f;

repe. cnpsb();
if(@) then // If equal to the length of the shorter string, cnp |engths.

nov(LengthSrc, ecx);
cnp(ecx, LengthDest);

endi f;

If you're using bytes to hold the string lengths, you should adjust this code appropriately (i.e., use a MOVZX
instruction to load the lengths into ECX). Of course, HLA strings use a double word to hold the current
length value, so this isn’'t an issue when using HLA strings.

You can also use the CMPS instruction to compare multi-word integer values (that is, extended preci-
sion integer values). Because of the amount of setup required for a string comparison, this isn’t practical for
integer values less than six or eight double words in length, but for large integer values, it's an excellent way
to compare such values. Unlike character strings, we cannot compare integer strings using a lexicographical
ordering. When comparing strings, we compare the characters from the least significant byte to the most sig-
nificant byte. When comparing integers, we must compare the values from the most significant byte (or
word/double word) down to the least significant byte, word or double word. So, to compare two 32-byte
(256-bit) integer values, use the following code on the 80x86:

std();

lea(esi, Sourcelnteger[28]);
lea(edi, Destlnteger[28]);
nov(8, ecx);

rep. cnpsd() ;

This code compares the igers from their most significant word down to the least significant word. The
CMPSD instruction finishes when the two values are unequal or upon decrementing ECX to zero (implying
that the two values are equal). Once again, the flags provide the result of the comparison.

The REPNE prefix will instruct the CMPS instruction to compare successive string elements as long as
they do not match. The 80x86 flags are of little use after the execution of this instruction. Either the ECX
register is zero (in which case the two strings are totally different), or it contains the number of elements
compared in the two strings until a match. While this form of the CMPS instruction isn't particularly useful
for comparing strings, it is useful for locating the first pair of matching items in a couple of byte, word, or
double word arrays. In general, though, you'll rarely use the REPNE prefix with CMPS.

One last thing to keep in mind with using the CMPS instruction — the value in the ECX register deter-
mines the number of elements to process, not the number of bytes. Therefore, when using CMPSW, ECX

Beta Draft - Do not distribute © 2001, By Randall Hyde Paged45

Chapter Six Volume Six

specifes the number of evds to comparelhis, of course, is twice the number of bytes to comparee- Lik
wise, for CMPSD, ECX contains the number of doubbeds to process.

6.2.6

The SCAS Instruction

The CMPS instruction comparesawtrings aginst one anotheYou do not use it to search for a partic
ular element within a string.of example, you could not use the CMPS instruction to quickly scan for a zero
throughout some other strindou can use the SCAS (scan string) instruction for this task.

Unlike the MQ/S and CMPS instructions, the SCAS instruction only requires a destination string
(pointed at by EDI) rather than both a source and destination Sthirgsource operand is thalwe in the
AL (SCASB),AX (SCASW), or EAX (SCASD) rgister The SCAS instruction compares thaue in the
accumulator (ALAX, or EAX) against the alue pointed at by EDI and then increments (or decrements)
EDI by one, tvo, or four The CPU sets thedltys according to the result of the compari$@hile this might
be useful on occasion, SCAS is a lot more useful when using the REPE and REPRS. prefi

With the REPE prefi (repeat while equal), SCAS scans the string searching for an element which does
not match thealue in the accumulatdhen using the REPNE prefirepeat while not equal), SCAS scans
the string searching for thesdt string element which is equal to theue in the accumulator

You're probably vendering “wly do these prefes do gactly the opposite of what theught to do?”
The paragraphs abe haren't quite phrased the operation of the SCAS instruction propgHgn using the
REPE prefi with SCAS, the 80x86 scans through the string while #heevin the accumulator is equal to
the string operandlhis is equialent to searching through the string for thistfelement which does not
match the @lue in the accumulatofhe SCAS instruction with REPNE scans through the string while the
accumulator is not equal to the string operand. Of course, this form searches fst th&ué in the string
which matches thealue in the accumulatorgister The SCAS instructions takhe follaving forms:

scasbh()

scasw()

scasd()

repe. scasb()
repe. scasw()
repe. scasd()

repne. scash()
repne. scasw()
repne. scasd()

Like the CMPS and M5 instructions, thealue in the ECX rgister speciis the number of elements
to process, not bytes, when using a repeavgrefi

6.2.7

The STOS Instruction

The STOS instruction stores thale in the accumulator at the location spedifty EDI After storing
the \alue, the CPU increments or decrements EDI depending upon the state of the disggtédindugh
the STOS instruction has mgruses, its primary use is to initialize arrays and stiiogsconstantalue. for
example, if you hee a 256-byte array youamt to clear out with zeros, use the faliog code:

cld();

lea(edi, DestArray);

nov(64, ecx); /1 64 double words = 256 byt es.
xor(eax, eax); |l Zero out EAX

rep. stosd();

This code writes 64 doubleonds rather than 256 bytes because a single STOSD operation is faster than four
STOSB operations.

Paged46 © 2001, By Randall Hyde Beta Draft - Do not distribute

The String Instructions

The STOS instructions takfour formsThey are

stosb();

stosw();
stosd();

rep. stosb();

rep. stosw();
rep. stosd();

The STOSB instruction stores theale in theAL register into the specdéd memory location(s), the
STOSW instruction stores theX register into the specéd memory location(s) and the @$D instruction
stores EAX into the spedd location(s).

Keep in mind that the &3S instruction is useful only for initializing a byteom, or double wrd array
to a constantalue. If you need to initialize an array tofdient \alues, you cannot use the@J instruction.
See the xercises for additional details.

6.2.8 The LODS Instruction

The LODS instruction is unique among the string instructiéos.will probably nger use a repeat pre
fix with this instructionThe LODS instruction copies the bytepnd, or double wrd pointed at by ESI into
theAL, AX, or EAX register after which it increments or decrements the E§ister by one, tw, or four
Repeating this instruction via the repeat prefould sere no purpose whatseer since the accumulator
register will be @erwritten each time the LODS instruction repeAtshe end of the repeat operation, the
accumulator will contain the lasale read from memory

Instead, use the LODS instruction to fetch bytes (LODSB)dw (LODSW), or double @rds
(LODSD) from memory for further processing. By using th®©STinstruction, you can synthesizengoful
string operations.

Like the SOS instruction, the LODS instructions &four forms:

| odsh();

| odsw();

| odsd();

rep. | odsb();

rep.l odsw();

rep. | odsd();

As mentioned earlielyou’ll rarely, if ever, use the REP prefis with these instructiohsThe 80x86
increments or decrements ESI by oney,tar four depending on the directioadland whether yorg using
the LODSB, LODSWor LODSD instruction.

6.2.9 Building Complex String Functions from LODS and STOS

The 80x86 supports onlyé different string instructions: MZ5, CMPS, SCAS, LODS, and P
These certainly arenthe only string operations yduéver want to use. Hoever, you can use the LODS
and SOS instructions to easily generatey grarticular string operation you &k For example, suppose you
wanted a string operation that eents all the upper case characters in a stringwterlcaseYou could use
the folloving code:

nov(StringAddress, esi); // Load string address into ESl.
nov(esi, edi); /1 Al'so point ED here.

4. They appear here simply because they are allowed. They're not veryuseful, but they are allowed.
5. Not counting INS and OUTS which we’re ignoring here.

Beta Draft - Do not distribute © 2001, By Randall Hyde Paged47

Chapter Six Volume Six
nov((type str.strrec [esi].length, ecx);
r epeat

| odsb(); [l Get the next character in the string
if(al in"A..”Z) then

or($20, al); /1 Convert upper case character to | ower case.
endi f;
stosb(); /1 Store converted character back into string
dec(ecx);

until(ecx == 0);

Since the LODS and $JS instructions use the accumulator as an intermedgiagycan use gnaccu
mulator operation to quickly manipulate string elements.

6.3 Putting It All Together

In this chapter we took a quick look at the 80%88ting instructionsWe studied their implementation
and s& how to use them.These instructions are quite useful for synthesizing character set functions (see
the source code for the HLA Standard Library string modulexameles). We also s& how to use these
instructions for non-character string purpose such asngdamge blocks of memory (i.e., assigning one
array to another) and comparingdarintgyer \alues. Br more information on the use of these instructions,
please see theolume onAdvanced String Handling.

Paged48 © 2001, By Randall Hyde Beta Draft - Do not distribute

	The String Instructions Chapter Six
	6.1 Chapter Overview
	6.2 The 80x86 String Instructions
	6.2.1 How the String Instructions Operate
	6.2.2 The REP/REPE/REPZ and REPNZ/REPNE Prefixes
	6.2.3 The Direction Flag
	6.2.4 The MOVS Instruction
	6.2.5 The CMPS Instruction
	6.2.6 The SCAS Instruction
	6.2.7 The STOS Instruction
	6.2.8 The LODS Instruction
	6.2.9 Building Complex String Functions from LODS and STOS

	6.3 Putting It All Together

