Dates and Times

Dates and Times Chapter Six

6.1 Chapter Overview

This chapter discusses dates and times as a data type. In patticulgrapter discusses the data/time
data structures the HLA Standard Library de§ and it also discusses date arithmetic and other operations
on dates and times.

6.2 Dates

For the frst 50 years, or so, of the compusexistence, programmers did novgimuch thought to date
calculations. They either used a date/time packagevied with their programming language, orythe
kludged together theimm date processing libraries. Iaant until theY2K? problem came along that pro
grammers bgan to gve dates serious consideration in their programbe purpose of this chapter is
two-fold. First, this chapter teaches that date manipulation is nowvia$ & most people ould like to
believe — it tales a lot of wrk to properly computearious date functions. Second, this chapter presents the
HLA date and time formats found in the “datetime.hhf” library module. Hopefully this chapter will con
vince you that considerable thought has gone into the HLA datetime.hhf module lsbsgclined to use
it rather than trying to create youwio date/time formats and routines.

Although date and time calculations may seera the should be txiial, they are, in &ct, quite com
plex. Just remember the2K problem to get a good idea of the kinds of problems your programs may create
if they don't calculate date and timablaes correctly Fortunately you dont have to deal with the comple
ties of date and time calculations, the HLA Standard Library does the hdrisidu.

The HLA Standard Library date routines produedid/results for dates between January 1, 1583 and
December 31, 9999 HLA represents dates using the fallng record defiition (in thedatenamespace):

type
dat erec:
record
day: unss;
nont h: uns8§;
year : unsie;
endr ecor d;

This format (latedateec) compactly represents allgal dates using only four bytes. Note that this is
the same date format that the chapter on Data Representation presentsdentterledata format (séBit
Fields and Bcked Data” on pag81). You should use th@atedateecdata type when declaring date objects
in your HLA programs, e.g.,

static
TodaysDat e: dat e. dat er ec;
Century2l: date.daterec := date.daterec:[1, 1, 2001]; // note: d, m,y

As the secondxample above demonstrates, the first field is the day field and the second field is the month
field if you use alate.datereconstant to initialize a statate.daterembject. Don't fall into the trap of
using the mm/dd/yy or yy/mm/dd organization common in most countries.

1. For those who missed it, the Y2K (or Year 2000) problem occurred when programmers used two digits for the date and
assumed that the H.O. two digits were “19”. Clearly this code malfunctioned when the year 2000 came along.

2. The Gregorial Calendar came into existence in Oct, 1582, so any dates earlier than this are meaningless as far-as date calcu
lations are concerned. The last legal date, 9999, was chosen arbitrarily as a trap for wild dates entering the cafislation. T
means, of course, that code calling the HLA Standard Library Date/Time package will suffer from the Y10K problem. How-
ewer, you'll probably not consider this a severe limitation!

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages01

Chapter Six Volume Three

The HLA datedateecformat has a couple of aahtages. First, it is awal matter to covert between
the internal and>aernal representations of a da#ll you have to do is rtract thed, m, andy fields and
manipulate them as irgers of the appropriate sizes. Second, this formaesniakery easy to compare ow
dates to see if one date falle another in time; all yové got to do is compare tliatedateec object as
though it were a 32-bit unsigned igex and youl get the correct resuliThe Standard Librargtata.dateec
format does ha a fev disadwantages. Speaifally, certain calculations l&kcomputing the number of days
between tw dates is a bit ditult. Fortunately the HLA Standard Library Date module piees most of
the functions youl ever need for date calculations, so thim prove to be much of a disadrtage.

A second disacntage to thelatedateecformat is that the resolution is only one de§ome calcula
tions need to maintain the time of dayvehoto some fraction of a second) as well as the calendar Tage.
HLA Standard Library also pwides aTIME data structure. By combining theseotatructures together you
should be able handleyproblem that comes along.

Before going on and discussing the functioveilable in the HLA Standard LibraiyDate module, i
probably vorthwhile to briefy discuss some other date formats thad tommon use. Perhaps the most
common date format is to use an gee\alue that speciis the number of days sinceepod, or starting,
date. The adwantage to this scheme is thas tery easy to do certain kinds of date arithmetic (e.g., toa com
pute the number of days betweerotdates you simply subtract them) and #lso ery easy to compare
these datesThe disadantages to this scheme include taetthat it is dificult to cowvert between the inter
nal representation and amternal representation Ek“xx/yy/zzzz: Another problem with this scheme,
which it shares with the HLA scheme, is that the granularity is oneYaaycannot represent time withyan
more precision than one day

Another popular format combines dates and times into the salone ier example, the representation
of time on most UNIX systems measures the number of seconds\bgidssed since Jan 1, 1970. Unfor
tunately mary UNIX systems only use a 32-bit signed gee therefore, those UNIX systems witperk
ence their wn “Y2.038K” problem in the year 2038 when these signedgear roll ower from
2,147,483,637 seconds to -2,147,483,638 secoalilough this format does maintain timevdo to see
onds, it does not handle fractions of a secaerg well. Most UNIX system include arxtea field in their
date/time format to handle millisecondst lthis etra field is a kludge. One could just as easily add a time
field to an gisting date format if yowé willing to kludge.

For those who ant to be able to accurately measure dates and times, a good solution is to use a 64-bit
unsigned intger to count the number of microseconds since some epochAl&:bit unsigned iniger
will provide microsecond accunafor a little better than 278,000 years. Probablficent for most needs.
If you need better than microsecond accyrgiou can get nanosecond accyrttat is good for about 275
years (bgond the epoch date) with a 64-bit igge Of course, if you ant to use such a date/time format,
you will have to write the routines that manipulate such dates yourself; the HLA Standard kibrary’
Date/Time module doeshuse that format.

6.3 A Brief History of the Calendar

Man has been interested iedping track of time since the time man became interestextpirlg track
of history To understand whwe need to performavious calculations, yol'need to knav a little bit about
the history of the calendafSo this section will digress a bit from computers and discuss that history

What eactly is time?Time is a concept that we are all intedliy familiar with, ut try and state a cen
crete defiition that does not defé time in terms of itself. Before you rurf ahd grab a dictionaryou
should note that marof the definitions of time in a typical dictionary contain a circular reference (that is,
they defne time in terms of itself).The American Heritge Dictionary of the English Langga provides
the follonving defnition:

A nonspatial continuum in which events occur in apparently irreversible succession
from the past through the present to the future.

As horrible as this defition sounds, it is one of the few that doesn’t define time by how we measure it or by
a sequence of observable events.

Pages02 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times

Why are we so obsessed witbdping track of time?This question is much more easily answerdg
need to kep track of time so we can predict certain futwentes. Historicallyimportant gents the human
race has needed to predict include thevalrof spring (for planting), the obseamce of religious annersa
ries (e.g., Christmas,aBsweer), or the gestation period fovdistock (or een humans). Of course, modern
life may seem much more compland tracking time more importanyttwe track time for the same reasons
the human race &hys has, to predict the futurdoday we predict bsiness meetings, when a department
store will open to the public, the start of a cgldecture, periods of high tfaf on the highways, and the
start of our &vorite television shavs by using time.The better we are able to measure time, the better we
will be able to predict when certain types eéets will occur (e.g., the start of spring so we cagirbplant
ing).

To measure time, we need some predictable, periogiot.e Since ancient times, therevddeen three
celestial gents that suit this purpose: thelarday, thelunarmonth and thesolaryear The solar day (or
tropical day) consists of one complete rotation of the Earth on its &t lunar month consists of one
complete set of moon phasekhe solar year is one complete orbit of the Earth around the Sun. Since these
periodic @ents are easy to measure (crudalyleast), the have become the primary basis by which we
measure time.

Since these three celestigkats were oldous &en in prehistoric times, it should come as no surprise
that one society muld base their measurement of time on gradic standard such as the lunar month while
another social groupauld base their time unit on a f@difent gcle such as the solar yeaClearly such fun
damentally diferent time keeping schemesauld complicate bsiness transactions between the seciet
ies efectively erecting an artifial barrier between them. Mertheless, until about the year 46 BC (by our
modern calendar), most countries used th&ir system for time éeping.

One major problem with reconciling thefdifent calendars is that the celestiatles are not inggal.
That is, there are not amem number of solar days in a lunar month, there are not gmahteimber of solar
days in a solar yeaand there are not an igtal number of lunar months in a solar yelrdeed, there are
approximately 365.2422 days in a solar year and approximately 29.5 days in a lunar Tmaaitle. lunar
months are 354 days, a littlgey a week short of a full yeafherefore, it is gry difficult to reconcile these
three periodiceents if you vant to use tw of them or all three of them in your calendar

In 46 BC (or BCE, foBefole Common Ex, as it is more modernly written) Julius Caesar introduced
the calendar upon which our modern calendar is based. He decreed that eaciulgebe wactly 3651/4
days long by haing three succesa years hang 365 days each andexy fourth year hang 366 days. He
also abolished reliance upon the lungele from the calendarHowever, 3651/4 is just a little bit more than
365.2422, so Julius Caesacalendar lost a dayery 128 years or so.

Around 700AD (or CE, forCommon Ea, as it is more modernly written) itas common to use the
birth of Jesus Christ as tligpod year Unfortunatelythe equinox &pt losing a full daywery 128 years
and by the year 1500 the equieexoccurred on March 12 and September 12 This was of increasing
concern to the Church since iagvusing the Calendar to predict Egstee most important Christian holi
da)ﬁ. In 1582 CE, Pope CGgery XllII dropped ten days from the Calendar so that the eqesnaould fall
on March 2% and September 84 as before, and as advised by ChristoplviG&a he dropped three leap
years gery 400 years. From that point fawd, century years weilleap years only if disible by 400.
Hence 1700, 1800, 1900 aret leap years, lt 2000 is a leap yearThis nev calendar is knan as the Gre
gorian Calendar (named after Pope garg XIIl) and with the gception of the change from BC/AD to
BCE/CE is, essentiallghe calendar in common use toflay

The Gregorian Calendar asnt accepted umersally until well into the twentieth centuryLarmgely
Roman Catholic countries (e.g., Spain and France) adopted theri@reCalendar the same year as Rome.
Other countries folwed later For example, portions of Germgrdid not adopt the Ggerian Calendar
until the year 1708D while England held out until 1750.0Fthis reason, magmof theAmerican founding
fathers hee two birthdates listedThe first date is the date in force at the time of their birth, the second date

3. Easter is especially important since the Church computed all other holidays relative to Easter. If the date
of Easter was off, then all holidays would be off.

4. One can appreciate that non-Christian cultures might be offended at by the abbreviations BC (Before
Christ) and AD (Anno Domini [day of our Lord]).

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages03

Chapter Six Volume Three

is their birthdate using the Grerian Calendar For example, GeayeWashington \as actually born on Feb
ruary 140 by the English Calendabut after England adopted the @ogian Calendatrthis date changed to
February 294 Note that Gege Washingtons birthday didrt’ actually change, only the calendar used to
measure dates at the time changed.

The Grgorian Calendar still ish’correct, though the error iery small. After approximately 3323
years it will be of by a day Although there has been some proposalsathraround to adjust for this in the
year 4000, that is such a long timé thiat it's hardly vorth contemporary concern (withyaluck, mankind
will be a spacedring race by then and the concept of a yeanth, or daymay be a quaint anachronism).

There is one fial problem with the calendahe length of the solar day is constantly changing. Ocean
tidal forces, meteorsuioning up in our atmosphere, and othde&f are slwing dowvn the Eartls rotation
resulting in longer daysThe efect is small, bt compared to the length of a dayt it amounts to a loss of
one to three milliseconds (that is, about 1/500a second)\ery 100 years since the defig Epoch (Jan 1,
1900). That means that Jan 1, 2000 is about s&conds longer than Jan 1, 1900. Since there are 86,400
seconds in a dajt will probably tale on the order of 100,000 years before we lose a day due to thes Earth’
rotation sleving dovn. However, those who ant to measure especially small time ins&s\vhae a prob
lem: hours and secondsvesbeen defied as submultiples of a single dafjthe length of a day is constantly
changing, that means that the difon of a second is constantly changing as well. In otloedsy tvwo very
precise measurements of eguént eents takn 10 years apart may sihoneasurable diérences.

To sole this problem scientists Vedereloped theCesium-15%5tomic Clog, the most accurate timing
device ever invented. The Cesium atom, under special conditions, vibrategaatly 9,192,631,770ycles
per second, for the year 1900. Because the clock is so accurate, it has to be adjusted periodically (about
every 500 days, currently) so that its time (kmoas Urnversal Coordinatedime or UTC) matches that of
the Earth (UT1).A high-quality Cesium Clock (li& the one at the National Institute of StandardsTact
nology in BoulderColorado, USA) isery lage (about the size of a tgr truck) and candep accurate time
to about one second in a million and a half years. Commercial units (about the sizg@faitaase) are
available and thg keep time accurate to about one secomalye 5-10,000 years.

The wall calendar you purchase each year isvacdethat is ery similar to the Cesiumtomic Clock- it
lets you measure timeThe Cesium clock, clearlyets time two discrete eents that areery close to one
anothey but either deice will probably let you predict that you startatwweeks vacation in M&ico starting
next Monday (and the all calendar does it for a whole lot less mgneMost people domthink of a calen
dar as a timedeping deice, hut the only diference between it and aateh is thegranularity, that is, the
finest amount of time one can measure with thicde With a typical electronic atch, you can probably
measure (accurately) to as Iittlejaﬁ)o secondsWith a calendarthe minimum interal you can measure is
one day While the vatch is appropriate for measuring the 100 meter dash, it is inappropriate for measuring
the duration of the Secomdorld War; the calendahowever, is perfect for this latter task.

Time measurement diees, be thg a Cesium Clock, a wristtch, or a Calendado not measure time
in an absolute sense. Instead, thesecds measure time betweerotavents. Br the Grgorian Calendar
the (intended) Epochvent that marks year oneaw the birth of Christ. Unfortunately in 1582, the use of
negative numbers was not widespread andem the use of zeroag not commonTherefore, JAD was (sup
posed to be) therfit year of Chriss life. The year prior to that pointas considered 1BCThis unfortunate
choice created some mathematical problems that tend to bother people 2,000 yedrsrlatample, the
first decade @s the fist 10 years of Chrigt’life, that is, JAD through 10AD. Likewise, the fist century
was considered thedt 100 years after Christbirth, that is, AD through 100AD. Likewise, the fist mil
lennium was the fist 1,000 years after Christbirth, specifially 1AD through 100AD. Similarly, the see
ond millennium is the n& 1,000 years, spedifilly 1001AD through 2000AD. The third, millennium,
contrary to popular belief, gan on January 1, 2001 (Hence the title of Ckabdok: “2001A Space Odys
seg/”). It is an unfortunately accident of human psychology that people attach speciataigafto round
numbers; there were mampeople mistaénly celebrating the turn of the millennium on Decembét, 31
1999 when, indct, the actual dateas still a yearway.

Now you're probably wndering what this has to do with computers and the representation of dates in
the computer. The reason for taking a close look at the history of the Calendar is so that ybmidoise
the date and time representations found in the HLA Standard Libtarparticulay note that the HLA date
format is based on the @mrian CalendarSince the Gigorian Calendar as “born” in October of 1582, it

Pages04 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times

makes absolutely no sense to represegtdate earlier than about Jan 1, 1583 using the HLA date format.
Granted, the data type can represent earlier dates numetinallyy date computationsauld be seerely

off if one or both of the dates in the computation are pre-1583 (remeRdyee Grgory droped 10 days
from the calendar; right bthe bat your “days betweendvdates” computationould be of by 10 real days

if the two dates crossed the date that Rome adopted tigo@ne Calendar).

In fact, you should be avy of ary dates prior to about January 1, 1800. Prior to this point there were a
couple of diferent (though similar) calendars in use @migus countries. Unless yoe’a historian and ke
the appropriate tables to a@mt between these dates, you should not use dates prior to this point in-calcula
tions. Fortunately by the year 1800, most countries that had a calendar based on JuilussCad=aafar
fell into line and adopted the Gyarian Calendar Some other calendars (most notabite Chinese Calen
dar) were in common use into the middle of thi 26ntury However, it is unlikely you would eser confuse
a Chinese date with a Gerian date.

6.4 HLA Date Functions
HLA provides a wide array of date functions you can use to manipulate date ofjaet$olloving
subsections describe myaof these functions and Wwoyou use them.
6.4.1 date.IsValid and date.validate

When storing data directly into thelfils of adatedateecobject, you must be careful to ensure that the
resulting date is correciThe HLA date procedures will raise enlnvalidDateexception if the datealues
are out of rangeThedatels\alid anddatevalidateprocedures prade some handy code to check tladids
ity of a date objectThese tw routines use either of the falling calling segeuences:

date.lsValid(dateVar); // dateVar is type date.daterec
date.lsValid(m d, y); // m d, y are uns8, uns8, unsl6, respectively

date.validate(dateVar); // See comments above.
date.validate(m d, y);

The datels\alid procedure checks the date to see if it imkdvdate. This procedure returns true or
false in theAL register to indicate whether the date &id. The datevalidate procedure also checks the
validity of the date; hwever, it raises thex.InvalidDateexception if the date is v@lid. The folloving sam
ple program demonstrates the use of theserbwtines:

pr ogr am Dat eTi neDenvo;
#include(“stdlib.hhf”);

static
m unss;
d: unss;
y: uns1i6;
t heDat e: dat e. dat er ec;

begi n Dat eTi neDenv;

try

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages05

Chapter Six Volume Three

stdout.put(“Enter the nonth (1-12):");
stdin.get(m);

stdin. flushlnput();

stdout.put(“Enter the day (1-31):”);

stdin.get(d);

stdin. flushlnput();

stdout. put(“Enter the year (1583-9999): “);

stdin.get(y);

if(date.isvValid(m d, y)) then
stdout.put(m “/", d, “/”, y, “ is avalid date.” nl);

endi f;

/1 Assign the fields to a date vari abl e.

mv(m al);

mov(al, theDate.nonth);

mov(d, al);

nmov(al, theDate.day);

mv(y, ax);

nov(ax, theDate.year);

/'l Force an exception if the date is illegal.

date.validate(theDate);

exception(ex. ConversionError)

st dout . put
(

“One of the input values contained illegal characters” nl
)

exception(ex.Val ueQut & Range)

st dout . put
(

)

“One of the input values was too large” nl

exception(ex.lnvalidDate)

st dout . put
(
“The input date (“, m “/”, d, “/”, y, “) was invalid’ nl
)
endtry;

end Dat eTi neDenv;

Program 6.1 Date Validation Example

Pages06 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times

6.4.2 Checking for Leap Years

Determining whether agen year is a leap year is somteat compl&. The eact algorithm is “apyear
that is @enly dvisible by four and is notvenly diisible by 100 or isenly dvisible by 400 is a leap
yeaP” The HLA “datetime.hhf’ module prades a cowenient functiondatelsLeap¥ar, that eficiently
determines whether avgin year is a leap yeaihere are tw different ways you can call this function;
either of the follaving will work:

dat e. | sLeapYear (dateVar); /1l dateVar is a date.dateRec variable.
date. | sLeapYear(y); /1y is aword val ue.

The following code demonstrates the use of this routine.

program Denol sLeapYear ;
#include(“stdlib.hhf”);

static
m uns8;
d: unss;
y: uns1i6;
t heDat e: dat e. dat er ec;

begi n Denol sLeapYear ;

try

stdout. put(“Enter the nonth (1-12):");
stdin.get(m);

stdin. flushlnput();
stdout.put(“Enter the day (1-31):");
stdin.get(d);

stdin.flushlnput();
stdout. put(“Enter the year (1583-9999): “);
stdin.get(y);

/1l Assign the fields to a date vari abl e.

mv(m al);

nov(al, theDate.nonth);
mov(d, al);

nmov(al, theDate.day);
mv(y, ax);

nmov(ax, theDate.year);

/1 Force an exception if the date is illegal.

date.validate(theDate);

5. The Gregorian Calendar does not account for the fact that sometime between the years 3,000 and 4,000 we will have to add
an extra leap day to keep the Calendar in sync with the Earth’s rotation around the Sun. The HLA date.IsLeapYear does not
handle this situation either. Keep this in mind if you are doing date calculations that involve dates after the yeahi8,000. T

is a defect in the current definition of the Gregorian Calendar, which HLA's routines faithfully reproduce.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages07

Chapter Six Volume Three

/1 Ckay, report whether this is a | eap year:

if(date.isLeapYear(theDate)) then

stdout.put(“The year “, y, “ is a leap year.” nl);
el se

stdout. put(“The year “, y, “ is not a leap year.” nl);
endi f;

/1 Technically, the leap day is Feb 25, but nost people don’t
Il realize this, so use the followi ng output to keep them happy:

if(date.isLeapYear(y)) then
if(m=2) then
if(d=29) then
stdout.put(m “/”, d, “/”, y, “ is the leap day.” nl);
endif;
endif;

endi f;

exception(ex. ConversionError)

st dout . put
(

)

exception(ex.Val ueQut 0 Range)

“One of the input values contained illegal characters” nl

st dout . put
(

)

“e of the input values was too |arge” nl

exception(ex.lnvalidDate)

st dout . put
(
“The input date (“, m “/”, d, “/”, y, “) was invalid” nl
)s
endtry;

end Denol sLeapYear ;

Program 6.2 Calling the date.IsLeapYear Function

Pages08 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times

6.4.3 Obtaining the System Date

Thedatetodayfunction returns the current system date indadateecvariable you pass as a param
etef. The folloving program demonstratesviago call this routine:

pr ogr am DenoToday;
#include(“stdlib.hhf”);

static
TodaysDat e: dat e. dat er ec;

begi n DenoToday;

dat e. t oday(TodaysDate);

st dout . put

(
“Today is “,
(type uns8 TodaysDate.nonth), “/”,
(type uns8 TodaysDate. day), “/”,

(type uns16 TodaysDate. year),
nl

)
/'l Ckay, report whether this is a | eap year:
if(date.isLeapYear(TodaysDate)) then
stdout.put(“This is a leap year.” nl);
el se
stdout.put(“This is not a leap year.” nl);
endi f;

end DenoToday;

Program 6.3 Reading the System Date

Linux users should benare thatdatetodayreturns the current date based onvérsgal Coordinated
Time (UTC). Depending upon your time zone, date.today may return yesseodagmorrav's date within
your particular timezone.

6. This function was not available in the Linux version of the HLA Standard Library as this was written. It may have been
added by the time you read this, however.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages09

Chapter Six Volume Three

6.4.4 Date to String Conversions and Date Output

The HLA date module prades a set of routines that will ogrt adatedateecobject to the string rep
resentation of that date. HLA ptides a mechanism that lets you select from onewafrakdiferent con
version formats when translating dates to string$ie date package deéis an enumerated data type,
dateOutputrmat that specis the diferent comersion mechanismsrhe possible corersions are (these
examples assume you are gerting the date January 2, 2033):

dat e. mdyy - Qutputs date as 1/2/33.

dat e. mdyyyy - Qutputs date as 1/2/2033.

dat e. mddyy - Qutputs date as 01/02/33.

dat e. mddyyyy - Qutputs date as 01/02/2033.
date. yynd - Qutputs date as 33/1/2.

dat e. yyyynmd - Qutputs date as 2033/1/2.

dat e. yynmud - Qutputs date as 33/01/02.

dat e. yyyymud - Qutputs date as 2033/01/02.
dat e. MONdyyyy - Qutputs date as Jan 1, 2033.
dat e. MONTHdyyyy - Qutputs date as January 1, 2033.

To set the corersion format, you must call tliate Setlermatprocedure and pass one of theabal-
ues as the single paraméteFor all but the last tw formats abee, the dedult month/day/year separator is
the slash (/") characteivou can call thelate SetSepaator procedure, passing it a single character parame
ter, to change the separator character

The datetoStringand datea_toStringprocedures carert a date to string data. leikhe other string
routines this chapter discusses, théediince between thdatetoStringanddatea_toStringprocedures is
thatdatea_toStringautomatically allocates storage for the string whereas you must supply a string with suf
ficient storage to theatetoStringprocedure. Note that a string containing 20 charactersfisisnf for all
the diferent date formats.The datetoString and datea_toStringprocedures use the folling calling
sequences:

date.toString(m d, y, s);
date.toString(dateVar, s);

date.a toString(m d, y);
date.a toString(datevVar);

Note thatm andd are byte valueg; is a word value,dateVaris adate.dateRewalue, andsis a string vari
able that must point at a string that holds at least 20 characters.

The datePrint procedure uses thagatetoStringfunction to print a date to the standard outpwiake
This is a comenient function to use to display a date after some date calculation.

The following program demonstrates the use of the procedures this section discusses:

progr am DenoSt r Conv;
#include(“stdlib.hhf”);

static

TodaysDat e: dat e. dat er ec;
s: string;

begi n DenoSt r Conv;

7. thedate.SetFormatoutine raises thex.InvalidDateFormaexception if the parameter is not one of these values.

Pages10 © 2001, By Randall Hyde Beta Draft - Do not distribute

dat e. t oday(TodaysDate);
stdout.put(“Today’'s date is “);
date. print(TodaysDate);

stdout. new n();

// Convert the date using various fornats

/1 and display the results:

dat e. set Format (dat e. mdyy);
date.a toString(TodaysDate);
nov(eax, S);

stdout.put(“Date in ndyy format: ‘", s,

strfree(s);

dat e. set Format (dat e. mudyy);

date.a toString(TodaysDate);

nov(eax, S);

stdout. put(“Date in nmddyy format: ‘7,
strfree(s);

dat e. set Format (dat e. mdyyyy);

date.a toString(TodaysDate);

nov(eax, S);

stdout. put(“Date in ndyyyy format: ‘",
strfree(s);

dat e. set Format (dat e. mmddyyyy);
date.a toString(TodaysDate);

nov(eax, S);

stdout. put(“Date in nmddyyyy fornat:
strfree(s);

dat e. set Format (dat e. MONdyyyy);
date.a toString(TodaysDate);

nov(eax, S);

stdout.put(“Date in MONdyyyy fornmat:
strfree(s);

dat e. set For mat (dat e. MONTHdyyyy);
date.a toString(TodaysDate);

nov(eax, S);

stdout. put(“Date in MONTHdyyyy fornat:
strfree(s);

end DenoStr Conv;

",

",

«n

Dates and Times

" nl)

" nl)

"nl),

"l),

wen

nl);

Program 6.4

Date <-> String Conversion and Date Output Routines

6.4.5

Beta Draft - Do not distribute

date.unpack and data.pack

Thedatepadk anddateunpad functions pack and unpack date dafhe calling syntax for these func

tions is the follaving:

date.pack(y, m d, dr);

© 2001, By Randall Hyde

Pageb11

Chapter Six Volume Three
date.unpack(dr, y, m d);

Note:y, m, dmust be uns32 or dword variabled; must be alate.datereobject.

Thedatepad function tales they, m andd values and packs them intalatedateecformat and stores
the result intadr. The dateunpad function does just the opposite. Neither of these routines check their
parameters for proper range. It is the callegsposibility to ensure thdts value is in the range 1..31 (as
appropriate for the month and yeamjs value is in the range 1..12, ayid value is in the range 1583..9999.

6.4.6 date.Julian, date.fromJulian

These tw functions cowvert a Grgorian date to and from a Julian day nurfibelulian day numbers
specify January 1, 4713 BCE as day zero and number the days coededrdm that poirﬁ. One nice
thing about Julian day numbers is that date calculationseayesasy You can compute the number of days
between tw dates by simply subtracting them, you can computedates by adding an irger number of
days to a Julian day numbeitc. The biggest problem with Julian day numbers isveding them to and
from the Grgorian Calendar with which we familiar. Fortunately these tw functions handle that chore.
The syntax for calling these éwfunctions is:

date.fromJulian(julian, dateRecVar);
date.Julian(m d, y);
dat e. Jul i an(dateRecVar);

The first call aboe comwverts the Julian day number that you pass in tsegarameter to a Ggerian
date and stores the result into ttatedateecvariable you pass as the second paramédeep in mind that
Julian day numbers that correspond to dates before Jan 1, 1582, will not produce accurate calendar dates
since the Grgorian calendar did nokist prior to that point.

The second tw calls abwe compute the Julian day number and return #hgevin the EAX rgister
They differ only in the types of parameters yhexpect. The first call to date.Julian alse expects three
parametersm andb being byte alues and/ being a vord value. The second callxpects adatedateec
parameter; itxracts those threeelids and coverts them to the Julian day number

6.4.7 date.datePlusDays, date.datePlusMonths, and date.daysBetween

These tw functions preide some simple date arithmetic.operatiombe compute a nedate by add
ing some number of days or months to xisteng date.The calling syntax for these functions is

dat e. dat ePl usDays(nunDays, dateRecVar);
dat e. dat ePl ushMont hs(nunmibnt hs, dat eRecVar);

Note: numDaysandnumMonthsareuns32valuesdateRecVamust be alate.daterewariable.

ThedatedatePlusDay$unction computes a medate that inumDayslays bgond the date thatateR
ec\ar specifes. This function leges the resulting date @ateRecdtr. This function automatically compen
sates for the diéring number of days in each month as well as tHeriify number of days in leap years.
The datedatePlusMonth&unction does a similar calculatioraept it addsiumMonthsnonths, rather than
days todateRecut.

ThedatedatePlusDayg$unction is not particularly &tient if thenumDaysparameter is lge. There is
a more dicient way to calculate a medate ifnumDaysexceeds 1,000: ceert the date to a Julian Day
Number add thenumDaysvalue directly to the Julian Numbemd then corert the result back to a date.

8. Note that a Julian date and a Julian day number are not the same thing. Julian dates are based on the Julian Calendar, com-
misioned by Julius Caesar, which is very similar to the Gregorian Calendar; Julian day numbers were invented in the 1800’s
and are primarily used by astronomers.

9.Jan 1, 4713 BCE was chosen as a date that predates recorded history.

Pages12 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times

The datedaysBetweefunction computes the number of days betweemdates. Lik datedatePlus
Days this function is not particularly #€ient if the two dates are more than about three years apart; it is
more eficient to compute the Julian day numbers of the dates and subtract thossues. Br spans of
less than three years, this function is probably mdreieit. The calling sequence for this function is the
following:

dat e. daysBetween(ni, di, yl1, n2, d2, y2);

dat e. daysBetween(ni, dl1, yl, dateRecVar2);
dat e. daysBet ween(dateRecVarl, n2, d2, y2);
dat e. daysBet ween(dateRecVarl, dateRecVar2);

The four diferent calls allar you to specify either date as a m/dajue or as aatedateecvalue. The
m and d parameters in these calls must be byikies and thg parameter must be aond \value. The
dateRec@rl anddateRecsr2 parameters must, vlously, bedatedateec values. These functions return
the number of days between thetdates in the EAX gister Note that the dates must kadid, but there is
no requirement that thedt date be less than the second date.

6.4.8

date.dayNumber, date.daysLeft, and date.dayOfWeek

The datedayNumbeifunction computes the day number into the current year (with Jan 1 being day
number one) and returns thialwe in EAX. This value is alays in the range 1..365 (or 1..366 for leap
years).A call to this function uses the follong syntax:

dat e. dayNunber(m d, y);

dat e. dayNunber (dat eRecVar);

The two forms differ only in the way you pass the date. The first call above expects two bytemaunds (
d) and a word valuey]. The second form above expectiate.daterewalue.

The datedaysLeffunction computes the number of days left in a y&énis function returns the num
ber of days left in a ye@ounting the date you pass as agraeter Therefore, this function returns one for
Dec 3f! Like datedayNumberthis function alays returns aalue in the range 1..365/366 dtdar/leap
year). The calling syntax for this function is similardatedayNumberit is

dat e. daysLeft(m d, y);
dat e. daysLeft (dat eRecVar);
The parameters kiathe same meaning as fate.dayNumber

ThedatedayOfVéekfunction accepts a date and returns a day of wakle\in the EAX rgister A call
to this function uses the follng syntax:

date. daycfWek(m d, y);
dat e. dayf Week(dat eRecVar);
The parameters kiatheir usual meanings.
These function calls return a value in the range 0..7 (in EAX) as follows:
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday

Saturday

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages13

Chapter Six Volume Three

6.5

Times

The HLA Standard Library pxades a simple time module that lets you manipulate times in an
HHMMSS (hours/minutes/seconds) formdthe time namespace in the date/time modulerdefithe time
data type as follos:

type
tinerec:
record
Secs: uns8;
m ns: unss§;
hour s: uns16
endr ecor d;

This format easily handles 60 seconds per minute and 60 minutes perlthalso handles up to 65,535
hours (just over 2730 days or abodt/;years).

The adwantages to this time format parallel the @abages of the date format: it is easy toveonthe
time format to/from gternal representation (i.e., HH:MM:SS) and the storage format lets you compare
times by treating them ams32objects. Another adantage to this format is that it supports more than 24
hours, so you can use it to maintain timings f@ngs that are not calendar based (up versgears).

There are a couple of disahtages to this formaf he primary disadantage is that the minimum gran
ularity is one second; if youamt to work with fractions of a second then you will need to usefardift
format and you will hee to write the functions for that formafnother disadantage is that time calcula
tions are somehat incowenient. It is dificult to addn seconds to a timeaviable.

Before discussing the HLA Standard Librdiiyne functions, a quick discussion of other possible time
formats is probably wiseThe only reasonable alternagito the HH:MM:SS format that the HLA Standard
Library Time module uses is to use an gee\alue to represent some number of time uniise only ques
tion is “what time units do youawnt to use?"Whatever time format you use, you should be able to represent
at least 86,400 seconds (24 hours) with the format. Furthermore, the granularity should be one second or
less. This efectively means you will need at least 32 bits since 16 bits onljiges for 65,536 seconds at
one second granularity (oka®4 bits vould work, kut it's much easier to avk with fourbyte objects than
three-byte objects).

With 32-bits, we can easily represent more than 24 haarsh of milliseconds (indct, you can repre
sent almost 50 days before the format rollsrp We could representvié days with é/lo,ooosecond granu
larity, but this is not a common timing to use (most peopéatwmicroseconds if tiyeneed better than
millisecond granularity), so millisecond granularity is probably the best choice for a 32-bit format. If you
need better than millisecond granulariggu should use a combined date/time 64-bit format that measures
microseconds since Julian Day Number zero (Jan 1, 4713 Bi@&)'s good for about a half million years.
If you need finer granularity than microseconds, well, yeuwwn your avn! You'll have to carefully weigh
the issues of granularity vs. yearveced vs. the size of your data.

6.5.1

time.curTime

This function returns the current time as read from the systimé of day clock.The calling syntax
for this function is the follwing:

time.curTime(timeRecVar);

This function call stores the current system time intitine.timerecvariable you pass as a parameter. On
Windows systems, the current time is the wall clock time for your particular time zone; under Linux, the
current time is always given in UTC (Universal Coordinated Time) and you must adjust according to your
particular time zone to get the local time. Keep this difference in mind when porting programs between
Windows and Linux.

Pageb14 © 2001, By Randall Hyde Beta Draft - Do not distribute

Dates and Times

6.5.2 time.hmsToSecs and time.secstoHMS
These tw functions cowvert between the HLA internal time format and a pure seconds format. -Gener
ally, when doing time arithmetic (e.g., time plus seconds, minutes, or howsagdiest to comrt your
times to seconds, do the calculations with seconds, and then translate the time back to the HLA internal for
mat. This lets you @oid the headaches of modulo-60 arithmetic.
The calling sequences for thmehms®dSecdunction are
time. hnsToSecs(timeRecVal ue);
time. hnsToSecs(h, m s);
Both functions return the number of seconds in the EAjster They differ only in the type of param
eters thg expect. The fist form aboe expects an HLAlimetimerecvalue. The second call abe lets you
directly specify the hours, minutes, and seconds as separate parambeggparameter must be aond
value, than ands parameters must be bytalwes.
Thetimesecs®dHMSfunction uses the folleing calling sequence:
tine. secsToHVS(seconds, tineRecVar);
The frst parameter must be an uns32 value specifying some number of seconds less than 235,939,600 sec
onds (which corresponds to 65,536 hours). The second parameter in this call mtistebtnzerecvari-
able. This function converts the seconds parameter to the HLA internal time format and stores the value into
thetimeRecVawvariable.
6.5.3 Time Input/Output

The HLA Standard Library doedmrovide ary specift I/O routines for time data. Mever, reading
and writing time data iASCII form is a &irly trivial process.This section will preide some gamples of
time 1/O using the HLA Standard Input and Standard Output modules.

To output time in a standard HH:MM:SS format, just use the stdout.putisize routines with aakiéth v
of two and a fi character of ‘Ofor the three Blds of the HLAtimetimerecdata type.The folloving code
demonstrates this:

static
t:tinme.tinerec;

stdout.putisize(t.h, 2, ‘0);

stdout.put(‘:’);
stdout.putisize(t.m 2, ‘0);
stdout.put(‘:’);

stdout. putisize(t.s, 2, ‘0);

If this seems lik too much typing, well fear not; in a later chapter you will learn how to create your own
functions and you can put this code into a function that will print the time with a single function call.

Time input is only a little more complicated. As it turns out, HLA accepts the colon (*:”) character as a
delimiter when reading numbers from the user. Therefore, reading a time value is no more difficult than
reading any other three integer values; you can do it with a single call like the following:

stdin.get(t.hours, t.mns, t.secs);

There is one remaining problem with the time input code: it doesatidate the input.To do this, you
must manually check the seconds and minugdssfito ensure tlgeare \alues in the range 0..59. If you wish
to enforce a limit on the hour®fi, you should check thaale as well.The folloving code dfers one pos
sible solution:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages15

Chapter Six Volume Three

stdin.get(t.hours, t.mns, t.secs);
if(t.m>=60) then

rai se(ex.Val ueQut & Range);

endif;
if(t.s >=60) then

rai se(ex.Val ueQut 0f Range);

endi f;

6.6 Putting It All Together

Date and time data types do not getveimere near the considerationyheesere in modern programs.
To help ensure that you calculate dates properly in your HLA programs, the HLA Standard Libratgspro
a set of date and time functions that ease the use of dates and times in your programs.

Pages16 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Dates and Times Chapter Six
	6.1 Chapter Overview
	6.2 Dates
	6.3 A Brief History of the Calendar
	6.4 HLA Date Functions
	6.4.1 date.IsValid and date.validate
	6.4.2 Checking for Leap Years
	6.4.3 Obtaining the System Date
	6.4.4 Date to String Conversions and Date Output
	6.4.5 date.unpack and data.pack
	6.4.6 date.Julian, date.fromJulian
	6.4.7 date.datePlusDays, date.datePlusMonths, and date.daysBetween
	6.4.8 date.dayNumber, date.daysLeft, and date.dayOfWeek

	6.5 Times
	6.5.1 time.curTime
	6.5.2 time.hmsToSecs and time.secstoHMS
	6.5.3 Time Input/Output

	6.6 Putting It All Together

