Coroutines and Generators

Coroutines and Generators Chapter Three

3.1 Chapter Overview

This chapter discusses dwspecial types of program units ko as coroutines and generatorA.
coroutine is similar to a procedure and a generator is similar to a funttierprinciple diference between
these program units and procedures/functions is that the call/return mechanisenastdifCoroutines are
especially useful for multiplayeragnes and other progranovil where sections of code "mkurns" &ecut
ing. Generators, as their name implies, are useful for generating a sequealceegif '\n may respects
generators are quite similar to HlsAterators without all the restrictions of the iterators (i.e., you can only
use iterators within a FOREX loop).

3.2 Coroutines

A common programming paradigm is foradwgections of code to sp control of the CPU back and
forth while executing.There are tw ways to achige this: preemptie and cooperateé. In a preempte sys
tem, two or moreprocessesr threadstake turns gecuting with theask switb occurring independently of
the executing code A later wlume in this tgt will consider preempie multitasking, where the Operating
System taks responsibility for interrupting one task and transferring control to some other task. In this
chapter well take a look at coroutines thatmicitly transfer control to another section of the code

When discussing coroutines, it is instruetto review hov HLA's iterators wrk, since there is a strong
correspondence between iterators and coroutines itgkators, there are four types of entries and returns
associated with a coroutine:

» Initial entry. During the initial entry, the coroutine’s caller sets up the stack and otherwise ini
tializes the coroutine.

» Cocall to another coroutine / coreturn to the previous coroutine.

* Coreturn from another coroutine / cocall to the current coroutine.

» Final return from the coroutine (future calls require reinitialization).

A cocall operation transfers control betweerotaoroutinesA cocall is efectively a call and a return
instruction all rolled into one operation. From the point ofwi the processxecuting the cocall, the
cocall operation is equalent to a procedure call; from the point ofwief the processing being called, the
cocall operation is equalent to a return operatioVhen the second process cocalls thst,ficontrol
resumesot at the bginning of the fist process but immediately after the last cocall operation from that
coroutine (this is similar to returning from a FORBEA loop after ayield operation). If tvo processesxe-
cute a sequence of mutual cocalls, control will transfer between ehgrdwesses in the folkeng fashion:

1. The term "cooperative" in this chapter doesn’t not imply the use of that oxymoronic term "cooperative multitasking" that
Microsoft and Apple used before they got their operating system acts together. Cooperative in this chapter means that two
blocks of code explicitly pass control between one another. In a multiprogramming system (the proper technical term for
"cooperative multitasking" the operating system still decides which program unit executes after some other thread of execu-
tion voluntarily gives up the CPU.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel329

Chapter Three Volume Five

Process #1 Process #2

| 7

d

cocall pres2

[~ cocall presl

cocall pres2 =]

cocall pres2 ~

\((i(a CS
ll])
\

/4N

N v
cocall presl

v

Cocall Sequence Between Two Processes

Figure 3.1 Cocall Sequence

Cocalls are quite useful foragnes where the “players” takurns, folleving different stratgies. The
first player gecutes some code to naaits frst move, then cocalls the second player andnald to male a
move.After the second player me& its meoe, it cocalls the fst process and\ggs the fist player its second
move, picking up immediately after its cocallhis transfer of control bounces back and forth until one
player wins.

Note, by the \&y, that a program may contain more thao twroutines. If coroutine one cocalls corou
tine two, and coroutine tevcocalls coroutine three, and then coroutine three cocalls coroutine one, coroutine
one picks up immediately in coroutine one after the cocall it made to coroutine tw

Pagel330 © 2001, By Randall Hyde Version:9/9/02

Coroutines and Generators

Process #1 Process #2 Process #3

v Ly L

cocall pres2] cocall prcsﬁ/
o

\

~ cocall presl

Cocalls Between Three Processes

Figure 3.2 Cocalls Between Three Processes

Since a cocall &ctively returns to the taget coroutine, you might ender what happens on tfiest
cocall to ag processAfter all, if that process has notexuted ay code, there is no “return address” where
you can resumexecution.This is an easy problem to sejwe need only initialize the return address of
such a process to the address of tfst ifnstruction to xecute in that process.

A similar problem gists for the stackiVhen a program lggns execution, the main program (coroutine
one) tales control and uses the stack associated with the entire program. Since each procesg litsist ha
own stack, where do the other coroutines get their stackis@re is also the question of thianuch space
should one reseevfor each stack?rhis, of course, aries with the application. If you @ a simple applica
tion that doesm’use recursion or allocateyalocal \ariables on the stack, you could get by with as little as
256 bytes of stack space for a coroutine. On the other hand, if yeudwrsie routines or allocate storage
on the stack, you will need considerably more space. But this is getting a little ahead oEesuhsshdo
we create and call coroutines in thstfplace?

HLA does not pruide a special syntax for coroutines. Instead, the HLA Standard Librarigdesoa
class with set of procedures and methods (in the coroutines library module) that lets yoy puotedure
(or set of procedures) into a coroutiriéne name of this class é®routineand wheneer you vant to create
a coroutine object, you need to declaregable of typecoroutineto maintain important state information
about that corouting’thread of xecution. Here are a couple of typical declarations that might appear within
theVAR section of your main program:

var
FirstPlayer: pointer to coroutine;
C her Pl ayer: corouti ne;

Note that a coroutineaviable is not the coroutine itself. Instead, the coroutim@ble leeps track of
the machine state when you switch between the declared coroutine and some other coroutine in the program
(including the main program, which is a special case of a coroufling) coroutines "body" is a procedure
that you write independently of the coroutirsgigable and associate with that coroutine object.

The coroutine class contains a constructor that uses thertmmal nameoroutinecreate This con
structor requires tavparameters and has the fallng prototype:

procedure coroutine. create(stacksize:dword; body: procedure);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel331

Chapter Three Volume Five

The first parameter speaf the size (in bytes) of the stack to allocate for this coroufihe.construe
tion will allocate storage for the wecoroutine in the systesheap using dynamic allocation (ix@allog).
As a general rule, you should allocate at least 256 bytes of storage for the stack, more if your coroutine
requires it (for local &riables and return addressees). Rementieisystem allocates all localnables in
the coroutine (and in the procedures that the coroutine calls) on this stack; so you neecdetsufsient
space to accommodate these neeklso note that if there are ymecursve procedures in the coroutise’
thread of gecution, you will need some additional stack space to handle the vectals.

The second parameter is the address of the procedure weetdi@en bgins on the fist cocall to this
coroutine. Ercution bgins with the fist executable statement of this procedure. If the procedure has some
local variables, the procedure mustild a stack frame (i.e., you shoultspecify the NOFRAME proce
dure option). Procedures yoxeeute via a cocall should vexr hare ary parameters (the calling code will
not properly set up those parameters and references to the parameter list may crash the machine).

This constructor is a cgantional HLA class constructo©On entryif ESI contains a non-nullalue, the
constructor assumes that it points at a coroutine class object and the constructor initializes that object. On
the other hand, if ESI contains NULL upon entry into the construttten the constructor allocatesane
storage for a coroutine object on the heap, initializes that object, and returns a pointer to the object in the ESI
register The examples in this chapter will\whys assume dynamic allocation of the coroutine object (i.e.,
we’ll use pointers).

To transfer control from one coroutine (including the main program) to angtheruse theorou-
tine.cocall method. This method, which has no parameters, switches the threx@aft®n from the cur
rent coroutine to the coroutine object associated with the method.ex&mple, if youfe in the main
program, the follawing two cocalls transfer control to tliér stPlayerand then th®©therPlayercoroutines:

FirstPlayer.cocall ();
QG her Pl ayer. cocal | ();

There are tw important things to note here. First, the syntax is not quite the same as a procedure call. You
don’t use cocall along with some operand that specifies which coroutine to transfer to (as you would if this
were a CALL instruction); instead, you specify the coroutine object and invoke the cocall method for that
object. The second thing to keep in mind is that these are coroutine transfers, not subroutine calls; there
fore, theFirstPlayercoroutine doesn’t necessarily return back to this code sequéticePlayercould

transfer control directly t@therPlayeror some other coroutine once it finishes whatever tasks it's working

on. Some coroutine has to explicitly transfer control to the thread of execution above in order for it to
(directly) transfer control t@therPlayer

Although coroutines are more general than procedures and don’t have to use the call/return semantics, it
is perfectly possible to simulate and call and return exchange between two coroutines. If one coroutine calls
another and that second coroutine cocalls the first, you get semantics that are very similar to a call/return (of
course, on the next call to the second coroutine control resumes after the cocall, not at the start of the corou-
tine, but we will ignore that difference here). The only problem with this approach is that it is not general:
both coroutines have to be aware of the other. Consider a cooperating pair of conmatstesndslave
The mastercoroutine corresponds to the main program andldneecoroutine corresponds to a procedure
that the main program calls. Unfortunatshaveis not general purpose éka standard procedure because
it explicitly calls themastercoroutine (at least, using the techniquesveeseen thusaf). Therefore, you
cannot call it from an arbitrary coroutine angbect control to transfer back to that coroutineslafzecon
tains a cocall to theastercoroutine it will transfer control there rather than back to the "calling" coroutine.
Although these are the semantics wpeet of coroutines, it auld sometimes be nice if a coroutine could
return to whomeer invoked it without eplicitly knowing who irnvoked it. While it is possible to set up
some coroutineariables and pass this information between coroutines, the HLA Standard Library Corou
tines Module preides a better solution: tle®ret procedure.

On each call to a coroutine, the coroutine run-time support code remembers the last coroutine that made
a cocall. Thecoret procedure uses this information to transfer control back to the last coroutine that made a
cocall. Therefore, theslavecoroutine abwe can &ecute the coret procedure to transfer control back to
whomever called it without kne@ing who that vas.

Pagel332 © 2001, By Randall Hyde Version:9/9/02

Coroutines and Generators

Note that thecoret procedure is not a member of tt@outineclass. Therefore, you do not prate the
call with "coroutine."You invoke it directly:

coret();

Another important issue teekp in mind withcoretis that it only lkeeps track of the last cocall. It does
not maintain a stack of coroutine "return addresses"” (there\smakdiferent stacks in use by coroutines,
on which one does itdep this information?).Therefore, you cannot makwo cocalls in a ne and then
execute tvo corets to return control back to the original coroutine. If you needattilyf, you're going to
need to create and maintain yowrostack of coroutine calls. oRunately the need for something ékhis
is fairly rare. You generally don’use coroutines as though yheere procedures and in thevienstances
where this is corenient, a single el of return address is usually Baient.

By default, esery HLA main program is a coroutineVheneer you compile an HLA program (as
opposed to a UNIT), the HLA compiler automatically inserts pieces of etra code at the lggnning of the
main program.The fist piece of ktra code initializes the HLAxeeption handling system, the second sets
up a coroutine ariable for the main progrant.he purpose of thisariable is to all other coroutines to trans
fer control back to the main program; after all, if you transfer control from one coroutine to another using a
statement lik VarNamecocall, you're going to need a coroutinanable associated with the main program
in order to cocall the main program. HLA automatically creates and initializesatiable when xecution
of the main program lggns. So the only question is, halo you @in access to thisaviable?"

The answer is simplyreally Wheneer you include the "coroutines.hhf' headée for "stdlibhhf"
which automatically includes "coroutines.hhf") HLA declares a static coroudiiegle for you that is asso
ciated with the main programtoroutine objectThat declaration looks somethingdikhe follzwingz:

static Mai nPgm coroutine; external ("<<external nane for MinPgne>");

Therefore, to transfer control from one coroutine to the main progm@mutine, you'd use a cocall like the
following:

Mai nPgm cocal | () ;

The last method of interest to us in tb@outine class is thecoroutinecofree method. This is the
destructor for theoroutineclass. Calling this method frees up the stack storage associated with the corou
tine and cleans up other state information associated with that corottgipical call might look lile the
following:

C her Pl ayer. cofree();

Warning: do not call theofreemethod from within the coroutine you are freeing Wipere is no guar
antee that the stack and coroutine statéables remainalid for a gven coroutine after you catlofree
Generallyit is a good idea to call tteofreemethod in the same code that originally created the coroutine
via thecoroutinecreatecall. It goes without saying that you must not call a coroutine aftevgaestrged
it via thecofreemethod call.

Remember that theoret procedure call is really a special formaufcall Therefore, you need to be
careful about xeecutingcoret after calling thecofreemethod as you may wind up "returning” to the cerou
tine you just destraed.

After you call thecofree method, it is perfectly reasonable create w keroutine using that same
coroutine ariable by once an calling thecoroutinecreateprocedure. Hwever, you should alays ensure
that you call theeofreemethod prior to callingoroutinecreateor the stack space allocated in the original
call will be lost in the system (i.e., yditreate a memory leak).

Thisisvery important: you neer "return" from a coroutine using a RET instruction (e.g., biifiy
off the end of the procedure) or via the HLA EXIT/EXITIF statemé8iite only Igal ways to "return” from
a coroutine are via theocall andcoret operations. If you REIrn or EXIT from a coroutine, that coroutine
enters a special mode that rejecty &rture cocalls and immediately returns control back to wleme

2. The external name doesn’t appear here because it is subject to change. See the coroutines.hhf header file if you need to
know the actual external name for some reason.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel333

Chapter Three Volume Five

cocalled it in the fist place. Most coroutines contain annité loop that transfers control back to the start
of the coroutine to repeat whege function thg perform once thecomplete all the code in the coroutine.
You will probably vant to implement this functionality in your coroutines as well.

3.3 Parameters and Register Values in Coroutine Calls

As youVe probably noticed, coroutine calls via cocall danipport generic parameters for transferring
data between tavcoroutines.There are a couple of reasons for this. First of all, passing parameters to a
coroutine is dificult because we typically use the stack to pass parameters and coroutines diénese dif
stacks. Therefore, the parameters one coroutine passes to anathéibe on the correct stack (and, there
fore, inaccessible) when the second coroutine continteesigon. Another problem with passing parame
ters between coroutines is that a typical coroutine hasaeentry points (immediately after each cocall in
that coroutine). Neertheless, it is often important to communicate information between coroutives.
will explore ways to do that in this section.

If we can pass parameters on the stack, that basicallgslegisters and global memory locatidns
Registers are the easy andvadus solution. Havever, keep in mind that you ka a limited set of igisters
available so you cahpass much data between coroutines in thisters. On the other hand, you can pass a
pointer to a block of data in agister (se€Passing Brameters via adPameter Block” on pagE353for
details).

Another place to pass parameters between coroutines is in global memory locagiepsn Kind that
coroutines each ka their avn stack. Therefore, one coroutine does novédaccess to another coroutse’
automatic ariables appearing in\AAR section (this is trueven if thoseVAR objects appear in the main
program). Always use SATIC, STORAGE, or READONL objects when communicating data between
coroutines using globalaviables. If you must communicate an automatic or dynamic object, pass the
address of that object in agister or some static globahnable.

A bigger problem than where we pass parameters to a coroutinensdtHoe deal with parameters we
pass to a coroutine?" aRameters wrk well in procedures because wavays enter the procedure at the
same point and the state of the procedure is usually the same upon entry (with the pasgplitneof
static \ariable \alues). This is not true for coroutines. Consider the follty code thatxecutes as a coreu
tine:

procedure | sACoroutine; nodisplay; nofrang;
begi n | sACorouti ne;

/1*
<< Do sorething upon initial entry >>

coret(); /1 1 nvoke previous coroutine
[]*

<< Do sone nore stuff upon return >>

f orever
G herCoroutine.cocall(); // Invoke a third coroutine.
<< Do sone nore stuff here >>

Mai nPgm cocal | (); /1 Transfer control back to the nmain program
/]*

<< do sone stuff >>

3. The chapter on low-level parameter implementation in this volume discusses different places you can pass parameters
between procedures. Check out that chapter for more details on this subject.

Pagel334 © 2001, By Randall Hyde Version:9/9/02

Coroutines and Generators

coret(); /1 Return to whonever cocalled us.
/]*

<< do sone nore stuff >>
endfor;
end | sACorouti ne;

In this code youl find seeral comments of the form "//*"These comments mark the point at which
some other coroutine can reenter this code. Note that, in general, the "calling" coroutine has no idea which
entry point it will invoke and, lilkewise, this coroutine has no idea whedked it at ag given point. Rssing
in meaningful parameters and properly processing them under these conditidisuis, @if best.The only
reasonable solution is to n@kvery invocation pass»actly the same type of data in the same location and
then write your coroutines to handle this data appropriately upon each Enény though this solution is
more reasonable than the other possibilities, maintaining cadthlgis ery difficult.

If you're really dead set on passing parameters to a coroutine, the best solutiowvésasingle entry
point into the code so yotg only got the handle the parameter data in one spot. Consider thénfglpvo
cedure that other threadwvdrke as a coroutine:

procedure HasAParm nodi spl ay;
begi n HasAPar m

<< Initialization code goes here, assune no paraneter >>
f orever

coret(); [// O cocall some other coroutine.
<< deal with paraneter data passed into this coroutine >>
endfor;
end HasAPar m

Note that there are twentry points into this code: thesfi occurs on the initial entryThe other occurs
whenever thecoret() procedure returns viaacall to this coroutine. Immediately after theret statement,
the code abee can process whatr parameter data the calling code has seffiigr processing that data,
this code returns to thevioking coroutine and that coroutine (directly or indirectly) camke this code
again with more data.

3.4

Recursion, Reentrancy, and Variables

The fact that each coroutine has itsrostack impacts access tariables from within coroutines. In
particular the only automatic (A&R) objects you can normally access are those declared within the coroutine
itself and ag procedures it calls. In a later chapter of tlukimne well take a look at nested procedures and
how one could access locahnables outside of the current procedurer the most part, that discussion
does not apply to procedures that are coroutines.

If you wish to share information betweenoter more coroutines, the best place to put such information
is in a static object (NTIC, READONLY, and SDRAGE \ariables). Such data does not appear on a stack
and is accessible to multiple coroutines (and other procedures) simultaneously

Wheneer you eecute a cocall instruction, the system suspends the current thregecofien and
switches to a diérent coroutine, &ctively by returning to that other coroutine and picking up where it left
off (via acoretor cocall operation).This means that it ishieally possible to recursdly cocallsome corou
tine. Consider the follging (vain) attempt to achie this:

procedure | sACoroutine; nodi spl ay;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel335

Chapter Three Volume Five
begi n 1 sACorouti ne;
<< Do sone initial stuff >>
IAC cocall(); // Note: IACis initialized with the address of |sACoroutine.
<< Do some nore stuff >>
end | sACorouti ne;

This code assumes thi&C is a coroutine variable initialized with the address oflg#¢Coroutineproce

dure. ThdAC.cocallstatement, therefore, is an attempt to recursively call this coroutine. However, all that
happens is that this call leaves thACoroutinecode and then the coroutine system passes control to where
IAC last left off. That just happens to be tA€.cocallstatement that just left tHeACoroutineprocedure.
Therefore this code immediately returns back to itself.

Although the idea of a recursive coroutine doesn’t make sense, it is certainly possible to call procedures
from within a coroutine and those procedures can be recursive. You can even make cocalls from those
(recursive) procedures and the coroutine system will automatically return back into the recursive calls when
control transfers back to the coroutine.

Although coroutines are not recursive, it is quite possible for the coroutine run-time system to reenter a
procedure that is a coroutine. This situation can occur when you have two coroutine variables, initialize
them both with the address of the same procedure, and then execute a cocall to each of the coroutine objects.
consider the following simple example:

procedure Reentered; nodisplay;
begi n Reent ered;

<< do sone initialization or other work >>
coret();
<< do sone other stuff >>

end Reent er ed;

CVl.create(256, &Reentered); // Initialize two coroutine variables with
CV2.create(256, &Reentered); // the address of the sane procedure.
CVl.cocal | (); [/l Start the first coroutine.

Q2. cocal | (); /l Start the second coroutine.

<< At this point, both C/1 and CV2 are suspended within Reentered >>

Notice at the end of this code sequence, both the CV1 and CV2 coroutingsa@urting inside the Reen

tered procedure. That is, if you cocall either one of them, the cocalled routine will continue execution after
the coretstatement. This is not an example of a recursive coroutine call, but it certainly demonstrates that
you can reenter some procedure while some other coroutine is currently executing the code within that pro
cedure.

Reentering some code (whether you do this via a coroutine call or some other mechanism) is a perfectly
reasonable thing to do. Indeed, recursion is one example of reentrancy. However, there are some special
considerations you must be aware of when it is possible to reenter some code.

The principal issue is the use of variables in reentrant code. SuppdReettieed procedure abee
had the folleving declarations:

var
i: int32;
j i uns32;

Pagel336 © 2001, By Randall Hyde Version:9/9/02

Coroutines and Generators

One concern you might i@ is that the te different coroutinesx@cuting in the same procedurewid
share theseariables. Hwever, keep in mind that HLA allocates automat&riables on the stack. Since
each coroutine has itsva stack, thg're going to get theiren private copies of theariables. Therefore, if
CV1stores a alue intoi andj, CV2will not see thesealues. While this may seem to be a problem, this is
actually what you want. You generally dort’'want one corouting’thread of xecution afecting the calcula
tion in a diferent thread of»ecution.

The discussion alve applies only to automati@siables. HLA does not allocate static objects (those
you declare in the SNTIC, READONLY, and SDRAGE sections) on the stackherefore, suchariables
are not associated with a specifbroutine; instead, all coroutines that ateceting in the same procedure
share the sameaxiables. Therefore, you shouldhuse static ariables within a procedure that sesvas a
coroutine (especially reentrant coroutines) unless yplioly want to share that data among other cerou
tines or other procedures.

Coroutines hee their avn stack and maintain that stack between cocalls to other coroutinesefore,
like iterators, coroutines maintain their state (including &hgevof automaticariables) across cocall$his
is true @en if you leae a coroutine via some other procedure than the main procedure for the coroutine. F
example, suppose coroutiecalls some procedui&and then within proceduithere is a cocall to some
other coroutine€C. Wheneer coroutineC executescoret or some coroutine (including) cocallsA, control
transfers back into proceduBeand procedur®’s state is maintained (including thalues of all local ari-
ablesB initialize prior to the cocall)WhenB executes a return instruction, it will return back to procedure
who originally calledB.

In theory its even possible to call a procedure as well as cocall that procedsieafitl to imagine wh
you would want to do this and & probably quite difcult to pull it of correctly but it's certainly possible).
This is such a bizarre situation that weni consider it an farther here.

3.5

Generators

A generator is to a function what a coroutine is to a procedurat is, the whole purpose of a generator
is to return a alue like a function resultAs far as HLA and the Coroutines Library Module is concerned,
there is absolutely no d#rence between a generator and a coroutingr{are than there is a syntactical
difference between a function and a procedure to HLA). Clahdye are some semanticfeliences; this
section will describe the semantics of a generator and proposeemtion for generator implementation.

The best \ay to describe a generator is tagimewith the discussion of a special-purpose generator
object that HLA does support — the iteratan iterator is a special form of a generator that does not require
its ovn stack. Iterators share the same stack as the calling code (i.e., the code containing th e HFOREA
loop that ivokes the iterator). Because of the semantics of the FQREAop, iterators can lga their
activation records on the stack and, therefore, maintain their local state bekite¢n the FORELH loop
body The disadantage to this scheme is that the calling semantics of an iteratararegidly defned,;
you cannot call an iterator from an arbitrary point in a program and the iterstime is preseed only for
the eecution of the FOREBH loop.

By using its @vn stack, a generator renes these restriction¥ou can call a generator fromyapoint
in the program (ecept, of course, within the generator itself — rementeeursve coroutines are not possi
ble). Also, the state (i.e., the adiion record) of a generator is not tied to theceition of some syntactical
item like a FOREAH loop. The generator maintains its local state from the point of#isdall to the point
you callcofreeon that generator

One major difierence between iterators and generators isabetiat generators danise theyield
statement (thunk) to return results back to the calling cddesend a &lue back to whonwer invokes the
generatgrthe generator must cocall the original coroutine. Since one can call a generator fiecentdif
points in the code, and in particyldiom different coroutines, the typicalay to "return” a &lue back to the
"caller" is to use theoret procedure call after loading the return result intogéster

A typical generator does not use tieeall operation. The cocallmethod transfers control to some other
(explicitly defined) coroutine.As a general rule, generators @ikunctions) return control to whower

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel337

Chapter Three Volume Five

called them. They do not eplicitly pass control through to some other coroutineeefKin mind that the
coret procedure only returns control to the last coroutiii@erefore, if some generator passes control to
another coroutine, there is n@yto anogmously return back to whomer called the generator in thesfi
place. That information is lost at the point of the secondall operator Since the main purpose of a gener
ator is to return aalue to whomeer cocalled it, fiding cocalls in a generatoowld be unusual indeed.

One problem with generators is thatelithe coroutines upon which thare based, you cannot pass
parameters to a generator via the stack. In most cases this is perfectly accé&stahér name implies,
generators typically generate an independent stream of data onbegimesxecution. After initialization, a
generator generally doesirequire ag additional information in order to generate its data sequence.
Although this is the typical case, it is not the only case; sometimes you may need to write generators that
need parameter data on each call. So whia¢ best ay to handle this?

In a previous section (se€Parameters and ResterValues in Coroutine Callon pagel334) we dis
cussed a couple ofays to pass parameters to coroutindile those techniques apply here as wellythe
are not particularly carenient (certainly not as ceanient as passing parameters to a standard HLA proce
dure). Because of their function4ilnature, it is more common toveato pass parameters to a generator
(versus a generic coroutine) and ylbpiobably malke more calls to generators that require parameters (v
sus similar calls to coroutines)lherefore, it would be nice if there were a "highvtd" way of passing
parameters to generatoi/ell, with a couple of tricks we can easily accomplish“this

Remember that we cannot pass parameters to a coroutine (or generator) on thenstaost cove-
nient place to pass coroutine parameters isgisters or in static, global, memory locations. Unfortunately
writing a sequence of instructions to load ugisters with parameterlalues (orworse yet, copthe param
eter data to globalariables) prior to moking a generator is a real painortanately HLA's macros come to
the rescue here; we can easily write a macro that letsakeia generator using a higlvéd syntax and the
macro can ted care of the dirty wrk of loading registers (or global memory locations) with the necessary
values. As an ample, consider a genergtoMyGen that &pects tvo parameters in the EAX and EBX
registers. Here a macroMyGen that sets up the gesters and wokes this generator:

#macro MyGen(Par nfor EAX, Par nior EBX) ;

nov(Par nfFor EAX, eax);
nov(Parnfor EBX, ebx);

_M/Gen. cocal | ();
#endnacr o;
MGen(5, i);

You could, with just a tiny bit more effort, pass the parameters in global memory locations using this same
technique.

In a few situations, you'll really need to pass parameters to a generator on the stack. We’ll not go into
the reasons or details here, but there are some rare circumstances where this is necessary. In many other cir-
cumstances, it may not be necessary but it's certainly more convenient to pass the parameters on the stack
because you get to take advantage of HLA's high level parameter passing syntax when you use this scheme
(i.e., you get to choose the parameter passing mechanism and HLA will automatically handle a lot of the
gory details behind parameter passing for you when you use the stack). The best solution in this situation is
to write a wrapper procedure. A wrapper procedure is a short procedure that reorganizes a parameter list
before calling some other procedure. The macro above is a simple example of a wrapper — it takes two the
(text) parameters and moves their run-time data into EAX and EBX prior to cocaliy@en We could
have just as easily written a procedure to accomplish this same task:

procedure MyGen(Par nfor EAX: dwor d; Par nfFor EBX: dword); nodi spl ay;
begi n M/Gen;

4. By the way, generators are coroutines, so these tricks apply to generic coroutines as well.

Pagel338 © 2001, By Randall Hyde Version:9/9/02

Coroutines and Generators

nov(Par nfFor EAX, eax);
nov(Parnfor EBX, ebx);
_M/Gen. cocal | ();

end M/Gen;

Beyond the oliious time/space tradefefbetween macros and procedures, there is one otherfeig dif
ence between thesedwchemes: the procedurariation allavs you to specify a parameter passing mecha
nism like pass by reference, pass @alue/result, pass by name, ®tcOnce HLA knavs the parameter
passing mechanism, it can automatically emit code to process the actual parameters for you. Suppose, for
example, you needed pass lue/result semantics. Using the macrmaation, youd have to eplicitly
write a lot of code to pull this bf In the procedure alke, about the only change yduieed is to add some
code to store anreturned results back intearmForEAX or ParmForEBX (whichever uses the pass by
value/result mechanism).

Since coroutines and generators share the same memory address space as the calling coroutine, it is not
correct to say that a coroutine or generator does netdrress to the stack of the calling cotlee stack is
in the same address space as the coroutine/generator; the only problem is that the coroutik@aloesn’
exactly where ay parameters may be sitting in that memory spadéis is because procedures use the
value in ESP to indirectly reference the parameters passed on the stack and, unforfuhatedcall
method changes thale of the ESP gister upon entry into the coroutine/generatdonever, were we to
pass the originalalue of ESP (or some other pointer into anvation record) through to a generatiben it
would hae direct access to thosalwes on the stack. Consider the foilog modification to theMyGen
procedure abee:

procedure MyGen(Par nor EAX: dwor d; Par nFor EBX: dword); nodi spl ay;

begi n M/Gen;
nov(ebp, ebx);
_M/Gen. cocal | ();
end M/Gen;

Notice that this code does not directly gdbe two parameters into some locations that are directly accessi

ble in the generator. Instead, this procedure simply copies the base addvg§seafsactivation record

(the value in EBP) into the EBX register for use in the generator. To gain access to those parameters, the
generator need only index off of EBX using appropriate offsets for the two parameters in the activation
record. Perhaps the easiest way to do this is by declaring an explicit record declaration that corresponds to
MyGen’sactivation record:

type
M/ GenAR
record
d dEBP: dwor d;
R nAdrs: dwor d;

Par nfFor EAX: dwor d;
Par nfFor EBX: dwor d;
endr ecor d;

Now, within the_MyGengenerator code, you can access the parameters on the stack usingedbae lik
following:

mov((type M/GenAR [ebx]). Par nfFor EAX, eax);
mov((type MyGenAR [ebx]). Parnfor EBX, edx);

5. For a discussion of pass by value/result and pass by name parameter passing mechanisms, see the chapter on low-level
parameter implementation in this volume.

6. Okay, a procedure typically uses the value in EBP, but that same procedure also loads EBP with the value of ESP in the
standard entry sequence.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel339

Chapter Three Volume Five

This scheme wrks great for pass byalue and pass by reference parameters (those weén up to this
point). There are other parameter passing mechanisms, this scheme doekras well for those other
parameter passing mechanismsrténately you won't use those other parameter passing methogs an
where near as often as pass bjue and pass by name.

3.6

Exceptions and Coroutines

Exceptions represent a special problem in coroutifdse HLA TRY..ENDTRY statement typically
surrounds a block of statements one wishes to protect from errantTdeel€éRY.. ENDTRY statement is a
dynamic control structure insaf as this statement also protecty procedures you call from within the
TRY..ENDTRY block. So the olious question is "does tleRY..ENDTRY statement protect a coroutine
you call from within such a block as wellThe short answer is "no, it does not."

Actually, in the frst implementation of the HLA coroutines module, tkeeption handling system did
pass control from one coroutine to another whienan &ception occurred. Hwever, it became immedi
ately olvious that this beha@or causes non-intuite results. Coroutines tend to be independent entities and
to have one coroutine transfer control to another withoutxqui@t cocall creates some problemshere
fore, the HLA compiler and the coroutines modulgvriceat each coroutine as a standalone entitaragsf
exceptions are concerned. If arception occurs within some coroutine and theret ian’ outstanding
TRY..ENDTRY block actie for that coroutine, then the system ha&lsaas though there were no eeti
TRY..ENDTRY at all, even if thee is an activfRY..ENDTRY blok in another caoutine in other vords,
the program abortsxecution. Keep this in mind when using@eption handling in your coroutines.or~
more details omeeption handling, see the chapter on Exception Handling indhisne.

3.7

Putting It All Together

This chapter discusses avebprogram unit — the coroutine. Coroutinesenenaly special properties
that male them especiallyaluable in certain situations. Coroutines are niit lmto the HLA language.
Rather HLA implements them via the HLA Coroutines Module in the HLA Standard LibrEnis chapter
began by discussing the methods found in that library modulext, gs chapter discusses the useani-v
ables, recursion, reentranand machine state in a coroutiféhis chapter also discussesahim create gen
erators using coroutines and pass parameters to a generator in a funetfashiign. Finallythis chapter
briefly discussed the use of th&Y..ENDTRY statement in coroutines.

Coroutines and generators arelikerators insafr as thg are control structures thatféhigh level lan
guages implementTherefore, most programmers are amfliar with the concept of a coroutinélhis,
unfortunately leads to the lack of consideration of coroutines in a prograen, where a coroutine is the
most suitable control structure to u&au should woid this trap and learn hoto use coroutines and gener
ators properly so that yduknow when to use them when the need arises.

Pagel340 © 2001, By Randall Hyde Version:9/9/02

	Coroutines and Generators Chapter Three
	3.1 Chapter Overview
	3.2 Coroutines
	3.3 Parameters and Register Values in Coroutine Calls
	3.4 Recursion, Reentrancy, and Variables
	3.5 Generators
	3.6 Exceptions and Coroutines
	3.7 Putting It All Together

