CPU Architecture Chapter Four

4.1 Chapter Overview

This chapter discusses history of the 80x86 CPU family and the major improvements occuring along the line.
The historical background will help you better understand the design compromises they made as well as under-
stand the legacy issues surrounding the CPU s design. This chapter also discusses the major advances in com-

puter architecture that Intel employed while improving the x86'.

4.2 The History of the 80x86 CPU Family

Intel developed and delivered the first commercially viable microprocessor way back in the early 1970 s: the
4004 and 4040 devices. These four-bit microprocessors, intended for use in calculators, had very little power.
Nevertheless, they demonstrated the future potential of the microprocessor — an entire CPU on a single piece of

silicon”. Intel rapidly followed their four-bit offerings with their 8008 and 8080 eight-bit CPUs. A small outfit
in Santa Fe, New Mexico, incorporated the 8080 CPU into a box they called the Altair 8800. Although this was
not the world s first "personal computer" (there were some limited distribution machines built around the 8008
prior to this), the Altair was the device that sparked the imaginations of hobbyists the world over and the personal
computer revolution was born.

Intel soon had competition from Motorola, MOS Technology, and an upstart company formed by disgrunt-
eled Intel employees, Zilog. To compete, Intel produced the 8085 microprocessor. To the software engineer, the
8085 was essentially the same as the 8080. However, the 8085 had lots of hardware improvements that made it
easier to design into a circuit. Unfortunately, from a software perspective the other manufacturer s offerings
were better. Motorola s 6800 series was easier to program, MOS Technologies 65xx family was easier to pro-
gram and very inexpensive, and Zilog s Z80 chip was upwards compatible with the 8080 with lots of additional
instructions and other features. By 1978 most personal computers were using the 6502 or Z80 chips, not the Intel
offerings.

Sometime between 1976 and 1978 Intel decided that they needed to leap-frog the competition and produce a
16-bit microprocessor that offered substantially more power than their competitor s eight-bit offerings. This ini-
tiative led to the design of the 8086 microprocessor. The 8086 microprocessor was not the world s first 16-bit
microprocessor (there were some oddball 16-bit microprocessors prior to this point) but it was certainly the high-
est performance single-chip 16-bit microprocessor when it was first introduced.

During the design timeframe of the 8086 memory was very expensive. Sixteen Kilobytes of RAM was sell-
ing above $200 at the time. One problem with a 16-bit CPU is that programs tend to consume more memory
than their counterparts on an eight-bit CPU. Intel, ever cogniscent of the fact that designers would reject their
CPU if the total system cost was too high, made a special effort to design an instruction set that had a high mem-
ory density (that is, packed as many instructions into as little RAM as possible). Intel achieved their design goal
and programs written for the 8086 were comparable in size to code running on eight-bit microprocessors. How-
ever, those design decisions still haunt us today as you Il soon see.

1. Note that Intel wasn t the inventor of most of these new technological advances. They simply duplicated research long
since commercially employed by mainframe designers.
2. Prior to this point, commerical computer systems used multiple semiconductor devices to implement the CPU.

Page 234

At the time Intel designed the 8086 CPU the average lifetime of a CPU was only a couple of years. Their
experiences with the 4004, 4040, 8008, 8080, and 8085 taught them that designers would quickly ditch the old
technology in favor of the new technology as long as the new stuff was radically better. So Intel designed the
8086 assuming that whatever compromises they made in order to achieve a high instruction density would be
fixed in newer chips. Based on their experience, this was a reasonable assumption.

Intel s competitors were not standing still. Zilog created their own 16-bit processor that they called the
78000, Motorola created the 68000, their own 16-bit processor, and National Semicondutor introduced the
16032 device (later to be renamed the 32016). The designers of these chips had different design goals than Intel.
Primarily, they were more interested in providing a reasonable instruction set for programmers even if their code
density wasn t anywhere near as high as the 8086. The Motorola and National offers even provided 32-bit inte-
ger registers, making programming the chips even easier. All in all, these chips were much better (from a soft-
ware development standpoint) than the Intel chip.

Intel wasn t resting on its laurels with the 8086. Immediately after the release of the 8086 they created an
eight-bit version, the 8088. The purpose of this chip was to reduce system cost (since a minimal system could
get by with half the memory chips and cheaper peripherals since the 8088 had an eight-bit data bus). In the very
early 1980 s, Intel also began work on their intended successor to the 8086 — tha APX432 CPU. Intel fully
expected the 8086 and 8088 to die away and that system designers who were creating general purpose computer
systems would choose the 432 chip instead.

Then a major event occurred that would forever change history: in 1980 a small group at IBM got the go-
ahead to create a "personal computer" along the likes of the Apple II and TRS-80 computers (the most popular
PCs at the time). IBM s engineers probably evaluated lots of different CPUs and system designs. Ultimately,
they settled on the 8088 chip. Most likely they chose this chip because they could create a minimal system with
only 16 Kilobytes of RAM and a set of cheap eight-bit peripheral devices. So Intel s design goals of creating
CPUs that worked well in low-cost systems landed them a very big "design win" from IBM.

Intel was still hard at work on the (ill-fated) iAPX432 project, but a funny thing happened — IBM PCs started
selling far better than anyone had ever dreamed. As the popularity of the IBM PCs increased (and as people
began "cloning" the PC), lots of software developers began writing software for the 8088 (and 8086) CPU,
mostly in assembly language. In the meantime, Intel was pushing their iAPX432 with the Ada programming lan-
guage (which was supposed to be the next big thing after Pascal, a popular language at the time). Unfortunately
for Intel, no one was interested in the 432. Their PC software, written mostly in assembly language wouldn t
run on the 432 and the 432 was notoriously slow. It took a while, but the iAPX432 project eventually died off
completely and remains a black spot on Intel s record to this day.

Intel wasn t sitting pretty on the 8086 and 8088 CPUs, however. In the late 1970 s and early 1980 s they
developed the 80186 and 80188 CPUs. These CPUs, unlike their previous CPU offerings, were fully upwards
compatible with the 8086 and 8088 CPUs. In the past, whenever Intel produced a new CPU it did not necessarily
run the programs written for the previous processors. For example, the 8086 did not run 8080 software and the
8080 did not run 4040 software. Intel, recognizing that there was a tremendous investment in 8086 software,
decided to create an upgrade to the 8086 that was superior (both in terms of hardware capability and with respect
to the software it would execute). Although the 80186 did not find its way into many PCs, it was a very popular
chip in embedded applications (i.e., non-computer devices that use a CPU to control their functions). Indeed,
variants of the 80186 are in common use even today.

The unexpected popularity of the IBM PC created a problem for Intel. This popularity obliterated the
assumption that designers would be willing to switch to a better chip when such a chip arrived, even if it meant
rewriting their software. Unfortunately, IBM and tens of thousands of software developers weren t willing to do
this to make life easy for Intel. They wanted to stick with the 8086 software they d written but they also wanted
something a little better than the 8086. If they were going to be forced into jumping ship to a new CPU, the
Motorola, Zilog, and National offerings were starting to look pretty good. So Intel did something that saved their

Page 235

bacon and has infuriated computer architects ever since: they started creating upwards compatible CPUs that
continued to execute programs written for previous members of their growing CPU family while adding new fea-
tures.

As noted earlier, memory was very expensive when Intel first designed the 8086 CPU. At that time, com-
puter systems with a megabyte of memory usually cost megabucks. Intel was expecting a typical computer sys-
tem employing the 8086 to have somewhere between 4 Kilobytes and 64 Kilobytes of memory. So when they
designed in a one megabyte limitation, they figured no one would ever install that much memory in a system.
Of course, by 1983 people were still using 8086 and 8088 CPUs in their systems and memory prices had dropped
to the point where it was very common to install 640 Kilobytes of memory on a PC (the IBM PC design effec-
tively limited the amount of RAM to 640 Kilobytes even though the 8086 was capable of addressing one mega-
byte). By this time software developers were starting to write more sophisticated programs and users were
starting to use these programs in more sophisticated ways. The bottom line was that everyone was bumping up
against the one megabyte limit of the 8086. Despite the investment in existing software, Intel was about to lose
their cash cow if they didn t do something about the memory addressing limitations of their 8086 family (the
68000 and 32016 CPUs could address up to 16 Megbytes at the time and many system designers [e.g., Apple]
were defecting to these other chips). So Intel introduced the 80286 which was a big improvement over the previ-
ous CPUs. The 80286 added lots of new instructions to make programming a whole lot easier and they added a
new "protected" mode of operation that allowed access to as much as 16 megabytes of memory. They also
improved the internal operation of the CPU and bumped up the clock frequency so that the 80286 ran about 10
times faster than the 8088 in IBM PC systems.

IBM introduced the 80286 in their IBM PC/AT (AT = "advanced technology"). This change proved enour-
mously popular. PC/AT clones based on the 80286 started appearing everywhere and Intel s financial future was
assured.

Realizing that the 80x86 (x ="", "1", or "2") family was a big money maker, Intel immediately began the pro-
cess of designing new chips that continued to execute the old code while improving performance and adding new
features. Intel was still playing catch-up with their competitors in the CPU arena with respect to features, but
they were definitely the king of the hill with respect to CPUs installed in PCs. One significant difference
between Intel s chips and many of their competitors was that their competitors (noteably Motorola and National)
had a 32-bit internal architecture while the 80x86 family was stuck at 16-bits. Again, concerned that people
would eventually switch to the 32-bit devices their competitors offered, Intel upgraded the 80x86 family to 32
bits by adding the 80386 to the product line.

The 80386 was truly a remarkable chip. It maintained almost complete compatibility with the previous 16-
bit CPUs while fixing most of the real complaints people had with those older chips. In addition to supporting
32-bit computing, the 80386 also bumped up the maximum addressablility to four gigabytes as well as solving
some problems with the "segmented" organization of the previous chips (a big complaint by software developers
at the time). The 80386 also represented the most radical change to ever occur in the 80x86 family. Intel more
than doubled the total number of instructions, added new memory management facilities, added hardware debug-
ging support for software, and introduced many other features. Continuing the trend they set with the 80286, the
80386 executed instructions faster than previous generation chips, even when running at the same clock speed
plus the new chip ran at a higher clock speed than the previous generation chips. Therefore, it ran existing 8088
and 80286 programs faster than on these older chips. Unfortunately, while people adopted the new chip for its
higher performance, they didn t write new software to take advantage of the chip s new features. But more on
that in a moment.

Although the 80386 represented the most radical change in the 80x86 architecture from the programmer s
view, Intel wasn t done wringing all the performance out of the x86 family. By the time the 80386 appeared,
computer architects were making a big noise about the so-called RISC (Reduced Instruction Set Computer)
CPUs. While there were several advantages to these new RISC chips, a important advantage of these chips is

Page 236

that they purported to execute one instruction every clock cycle. The 80386 instructions required a wildly vary-
ing number of cycles to execute ranging from a few cycles per instruction to well over a hundred. Although
comparing RISC processors directly with the 80386 was dangerous (because many 80386 instructions actually
did the work of two or more RISC instructions), there was a general perception that, at the same clock speed, the
80386 was slower since it executed fewer instructions in a given amount of time.

The 80486 CPU introduced two major advances in the x86 design. First, the 80486 integrated the floating
point unit (or FPU) directly onto the CPU die. Prior to this point Intel supplied a separate, external, chip to pro-
vide floating point calculations (these were the 8087, 80287, and 80387 devices). By incorporating the FPU with
the CPU, Intel was able to speed up floating point operations and provide this capability at a lower cost (at least
on systems that required floating point arithmetic). The second major architectural advance was the use of pipe-
lined instruction execution. This feature (which we will discuss in detail a little later in this chapter) allowed
Intel to overlap the execution of two or more instructions. The end result of pipelining is that they effectively
reduced the number of cycles each instruction required for execution. With pipelining, many of the simpler
instructions had an aggregate throughput of one instruction per clock cycle (under ideal conditions) so the 80486
was able to compete with RISC chips in terms of clocks per instruction cycle.

While Intel was busy adding pipelining to their x86 family, the companies building RISC CPUs weren t
standing still. To create ever faster and faster CPU offerings, RISC designers began creating superscalar CPUs
that could actually execute more than one instruction per clock cycle. Once again, Intel s CPUs were perceived
as following the leaders in terms of CPU performance. Another problem with Intel s CPU is that the integrated
FPU, though faster than the earlier models, was significantly slower than the FPUs on the RISC chips. As a
result, those designing high-end engineering workstations (that typically require good floating point hardware
support) began using the RISC chips because they were faster than Intel s offerings.

From the programmer s perspective, there was very little difference between an 80386 with an 80387 FPU
and an 80486 CPU. There were only a handful of new instructions (most of which had very little utility in stan-
dard applications) and not much in the way of other architectural features that software could use. The 80486,
from the software engineer s point of view, was just a really fast 80386/80387 combination.

So Intel went back to their CAD? tools and began work on their next CPU. This new CPU featured a super-
scalar design with vastly improved floating point performance. Finally, Intel was closing in on the performance
of the RISC chips. Like the 80486 before it, this new CPU added only a small number of new instructions and
most of those were intended for use by operating systems, not application software.

Intel did not designate this new chip the 80586. Instead, they called it the Pentium *“ Pr ocessor*. The reason
they discontinued referring to processors by number and started naming them was because of confusion in the
marketplace. Intel was not the only company producing x86 compatible CPUs. AMD, Cyrix, and a host of oth-
ers were also building and selling these chips in direct competition with Intel. Until the 80486 came along, the
internal design of the CPUs were relatively simple and even small companies could faithfully reproduce the
functionality of Intel s CPUs. The 80486 was a different story altogether. This chip was quite complex and
taxed the design capabilities of the smaller companies. Some companies, like AMD, actually licensed Intel s
design and they were able to produce chips that were compatible with Intel s (since they were, effectively, Intel s
chips). Other companies attempted to create their own version of the 80486 and fell short of the goal. Perhaps
they didn t integrate an FPU or the new instructions on the 80486. Many didn t support pipelining. Some chips
lacked other features found on the 80486. In fact, most of the (non-Intel) chips were really 80386 devices with
some very slight improvements. Nevertheless, they called these chips 80486 CPUs.

3. Computer aided design.
4. Pentium Processor is a registered trademark of Intel Corporation. For legal reasons Intel could not trademark the name
Pentium by itself, hence the full name of the CPU is the "Pentium Processor".

Page 237

This created massive confusion in the marketplace. Prior to this, if you d purchased a computer with an
80386 chip you knew the capabilities of the CPU. All 80386 chips were equivalent. However, when the 80486
came along and you purchased a computer system with an 80486, you didn t know if you were getting an actual
80486 or a remarked 80386 CPU. To counter this, Intel began their enormously successful "Intel Inside" cam-
paign to let people know that there was a difference between Intel CPUs and CPUs from other vendors. This
marketing campaign was so successful that people began specifying Intel CPUs even though some other ven-
dor s chips (i.e., AMD) were completely compatible.

Not wanting to repeat this problem with the 80586 generation, Intel ditched the numeric designation of their
chips. They created the term "Pentium Processor" to describe their new CPU so they could trademark the name
and prevent other manufacturers from using the same designation for their chip. Initially, of course, savvy com-
puter users griped about Intel s strong-arm tactics but the average user benefited quite a bit from Intel s market-
ing strategy. Other manufacturers release their own 80586 chips (some even used the "586" designation), but
they couldn t use the Pentium Processor name on their parts so when someone purchased a system with a Pen-
tium in it, they knew it was going to have all the capabilities of Intel s chip since it had to be Intel s chip. This
was a good thing because most of the other 586 class chips that people produced at that time were not as power-
ful as the Pentium.

The Pentium cemented Intel s position as champ of the personal computer. It had near RISC performance
and ran tons of existing software. Only the Apple Macintosh and high-end UNIX workstations and servers went
the RISC route. Together, these other machines comprised less than 10% of the total desktop computer market.

Intel still was not satisfied. They wanted to control the server market as well. So they developed the Pentium
Pro CPU. The Pentium Pro had a couple of features that made it ideal for servers. Intel improved the 32-bit per-
formance of the CPU (at the expense of its 16-bit performance), they added better support for multiprocessing to
allow multiple CPUs in a system (high-end servers usually have two or more processors), and they added a hand-
ful of new instructions to improve the performance of certain instruction sequences on the pipelined architecture.
Unfortunately, most application software written at the time of the Pentium Pro s release was 16-bit software
which actually ran slower on the Pentium Pro than it did on a Pentium at equivalent clock frequencies. So
although the Pentium Pro did wind up in a few server machines, it was never as popular as the other chips in the
Intel line.

The Pentium Pro had another big strike against it: shortly after the introduction of the Pentium Pro, Intel s
engineers introduced an upgrade to the standard Pentium chip, the MMX (multimedia extension) instruction set.
These new instructions (nearly 60 in all) gave the Pentium additional power to handle computer video and audio
applications. These extensions became popular overnight, putting the last nail in the Pentium Pro s coffin. The
Pentium Pro was slower than the standard Pentium chip and slower than high-end RISC chips, so it didn t see
much use.

Intel corrected the 16-bit performance in the Pentium Pro, added the MMX extensions and called the result

the Pentium II°. The Pentium II demonstrated an interesting point. Computers had reached a point where they
were powerful enough for most people s everyday activities. Prior to the introduction of the Pentium II, Intel
(and most industry pundits) had assumed that people would always want more power out of their computer sys-
tems. Even if they didn t need the machines to run faster, surely the software developers would write larger (and
slower) systems requiring more and more CPU power. The Pentium II proved this idea wrong. The average user
needed email, word processing, Internet access, multimedia support, simple graphics editing capabilities, and a
spreadsheet now and then. Most of these applications, at least as home users employed them, were fast enough
on existing CPUs. The applications that were slow (e.g., Internet access) were generally beyond the control of
the CPU (i.e., the modem was the bottleneck not the CPU). As a result, when Intel introduced their pricey Pen-

5. Interestingly enough, by the time the Pentium II appeared, the 16-bit efficiency was no longer a facter since most software
was written as 32-bit code.

Page 238

tium II CPUs, they discovered that system manufacturers started buying other people s x86 chips because they
were far less expensive and quite suitable for their customer s applications. This nearly stunned Intel since it
contradicted their experience up to that point.

Realizing that the competition was capturing the low-end market and stealing sales away, Intel devised a low-

cost (lower performance) version of the Pentium II that they named Celeron®. The initial Celerons consisted of a
Pentium II CPU without the on-board level two cache. Without the cache, the chip ran only a little bit better than
half the speed of the Pentium II part. Nevertheless, the performance was comparable to other low-cost parts so
Intel s fortunes improved once more.

While designing the low-end Celeron, Intel had not lost sight of the fact that they wanted to capture a chunk
of the high-end workstation and server market as well. So they created a third version of the Pentium II, the
Xeon Processor with improved cache and the capability of multiprocessor more than two CPUs. The Pentium II
supports a two CPU multiprocessor system but it isn t easy to expand it beyond this number; the Xeon processor
corrected this limitation. With the introduction of the Xeon processor (plus special versions of Unix and Win-
dows NT), Intel finally started to make some serious inroads into the server and high-end workstation markets.

You can probably imagine what followed the Pentium II. Yep, the Pentium III. The Pentium III introduced
the SIMD (pronounced SIM-DEE) extensions to the instruction set. These new instructions provided high per-
formance floating point operations for certain types of computations that allow the Pentium III to compete with
high-end RISC CPUs. The Pentium III also introduced another handful of integer instructions to aid certain
applications.

With the introduction of the Pentium III, nearly all serious claims about RISC chips offering better perfor-
mance were fading away. In fact, for most applications, the Intel chips were actually faster than the RISC chips
available at the time. Next, of course, Intel introduced the Pentium IV chip (it was running at 2 GHz as this was
being written, a much higher clock frequency than its RISC contemporaries). An interesting issues concerning
the Pentium IV is that it does not execute code faster than the Pentium III when running at the same clock fre-
quency (it runs slower, in fact). The Pentium IV makes up for this problem by executing at a much higher clock
frequency than is possible with the Pentium III. One would think that Intel would soon own it all. Surely by the
time of the Pentium V, the RISC competition wouldn t be a factor anymore.

There is one problem with this theory: even Intel is admiting that they ve pushed the x86 architecture about
as far as they can. For nearly 20 years, computer architects have blasted Intel s architecture as being gross and
bloated having to support code written for the 8086 processor way back in 1978. Indeed, Intel s design decisions
(like high instruction density) that seemed so important in 1978 are holding back the CPU today. So-called
"clean" designs, that don t have to support legacy applications, allow CPU designers to create high-performance
CPUs with far less effort than Intel s. Worse, those decisions Intel made in the 1976-1978 time frame are begin-
ning to catch up with them and will eventually stall further development of the CPU. Computer architects have
been warning everyone about this problem for twenty years; it is a testament to Intel s design effort (and willing-
ness to put money into R&D) that they ve taken the CPU as far as they have.

The biggest problem on the horizon is that most RISC manufacturers are now extending their architectures to
64-bits. This has two important impacts on computer systems. First, arithmetic calculations will be somewhat
faster as will many internal operations and second, the CPUs will be able to directly address more than four
gigabytes of main memory. This last factor is probably the most important for server and workstation systems.
Already, high-end servers have more than four gigabytes installed. In the future, the ability to address more than
four gigabytes of physical RAM will become essential for servers and high-end workstations. As the price of a
gigabyte or more of memory drops below $100, you 1l see low-end personal computers with more than four
gigabytes installed. To effectively handle this kind of memory, Intel will need a 64-bit processor to compete with
the RISC chips.

6. The term "Celeron Processor" is also an Intel trademark.

Page 239

Perhaps Intel has seen the light and decided it s time to give up on the x86 architecture. Towards the middle
to end of the 1990 s Intel announced that they were going to create a partnership with Hewlet-Packard to create a
new 64-bit processor based around HP s PA-RISC architecture. This new 64-bit chip would execute x86 code in
a special "emulation" mode and run native 64-bit code using a new instruction set. It s too early to tell if Intel
will be successful with this strategy, but there are some major risks (pardon the pun) with this approach. The first
such CPUs (just becoming available as this is being written) run 32-bit code far slower than the Pentium III and
IV chips. Not only does the emulation of the x86 instruction set slow things down, but the clock speeds of the
early CPUs are half the speed of the Pentium IVs. This is roughly the same situation Intel had with the Pentium
Pro running 16-bit code slower than the Pentium. Second, the 64-bit CPUs (the IA64 family) rely heavily on
compiler technology and are using a commercially untested architecture. This is similar to the situation with the
1APX432 project that failed quite miserably. Hopefully Intel knows what they re doing and ten years from now
we 1l all be using [A64 processors and wondering why anyone ever stuck with the IA32. On the other hand,
hopefully Intel has a back-up plan in case the [A64 intiative fails.

Intel is betting that people will move to the IA64 when they need 64-bit computing capabilities. AMD, on
the other hand, is betting that people would rather have a 64-bit x86 processor. Although the details are sketchy,
AMD has announced that they will extend the x86 architecture to 64 bits in much the same way that Intel extend
the 8086 and 80286 to 32-bits with the introduction of the the 80386 microprocessor. Only time will tell if Intel
or AMD (or both) are successful with their visions.

Maximum
Date of Maxdmunm Clock On-chip | Maximum
' MIPS at | Frequen .
Processor| Introductio TranS|sFors - d y Cache Addressabl
on Chip Introductio at
n a Introductio | Memory | e Memory
nP

8086 1978 29K 0.8 8 MHz 1 MB
80286 1982 134K 2.7 12.5 MHz 16 MB
80386 1985 275K 6 20 MHz 4 GB
80486 1989 1.2M 20 25 MHZE 8K Level 4 GB

1
Pentium 1993 3.1M 100 60MHz 16K Level | 4 GB

1
Pentium 1995 5.5M 440 200 MHz | 16K Level | 64 GB
Pro 1, 256K/

512K

Level 2
Pentium Il | 1997 ™ 466 266 MHz | 32K Level | 64 GB

1, 256/

512K

Level 2
PentiumIll | 1999 8.2M 1,000 500 MHz | 32K Level | 64 GB

1, 512K

Level 2

Page 240

a. By the introduction of the next generation this value was usually higher.

b. Maximum clock frequency at introduction was very limited sampling. Usually, the chips were available
at the next lower clock frequency in Intel's scale. Also note that by the introduction of the next generation
this value was usually much higher.

c. Shortly after the introduction of the 25MHz 80486, Intel began using "Clock doubling” techniques to run
the CPU twice as fast internally as the external clock. Hence, a 50 MHz 80486 DX2 chip was really run-
ning at 25 MHz externally and 50 MHz internally. Most chips after the 80486 employ a different internal
clock frequency compared to the external (or "bus") frequency.

4.3 A History of Software Development for the x86

A section on the history of software development may seem unusual in a chapter on CPU Architecture.
However, the 80x86 s architecture is inexorably tied to the development of the software for this platform. Many
architectural design decisions were a direct result of ensuring compatibility with existing software. So to fully
understand the architecture, you must know a little bit about the history of the software that runs on the chip.

From the date of the very first working sample of the 8086 microprocessor to the latest and greatest IA-64
CPU, Intel has had an important goal: as much as possible, ensure compatibility with software written for previ-
ous generations of the processor. This mantra existed even on the first 8086, before there was a previous genera-
tion of the family. For the very first member of the family, Intel chose to include a modicum of compatibilty with
their previous eight-bit microprocessor, the 8085. The 8086 was not capable of running 8085 software, but Intel
designed the 8086 instruction set to provide almost a one for one mapping of 8085 instructions to 8086 instruc-
tions. This allowed 8085 software developers to easily translate their existing assembly language programs to
the 8086 with very little effort (in fact, software translaters were available that did about 85% of the work for
these developers).

Intel did not provide object code compatibilily7 with the 8085 instruction set because the design of the 8085
instruction set did not allow the expansion Intel needed for the 8086. Since there was very little software running
on the 8085 that needed to run on the 8086, Intel felt that making the software developers responsible for this
translation was a reasonable thing to do.

When Intel introduced the 8086 in 1978, the majority of the world s 8085 (and Z80) software was written in
Microsoft s BASIC running under Digital Research s CP/M operating system. Therefore, to "port" the majority
of business software (such that it existed at the time) to the 8086 really only required two things: porting the CP/
M operating system (which was less than eight kilobytes long) and Microsoft s BASIC (most versions were
around 16 kilobytes a the time). Porting such small programs may have seemed like a bit of work to developers
of that era, but such porting is trivial compared with the situation that exists today. Anyway, as Intel expected,
both Microsoft and Digital Research ported their products to the 8086 in short order so it was possible for a large
percentage of the 8085 software to run on 8086 within about a year of the 8086 s introduction.

Unfortunately, there was no great rush by computer hobbyists (the computer users of that era) to switch to the
8086. About this time the Radio Shack TRS-80 and the Apple II microcomputer systems were battling for
supremacy of the home computer market and no one was really making computer systems utilizing the 8086 that
appealed to the mass market. Intel wasn t doing poorly with the 8086; its market share, when you compared it
with the other microprocessors, was probably better than most. However, the situation certainly wasn t like it is
today (circa 2001) where the 80x86 CPU family owns 85% of the general purpose computer market.

7. That is, the ability to run 8085 machine code directly.

Page 241

The 8086 CPU, and it smaller sibling, the eight-bit 8088, was happily raking in its portion of the micropro-
cessor market and Intel naturally assumed that it was time to start working on a 32-bit processor to replace the
8086 in much the same way that the 8086 replaced the eight-bit 8085. As noted earlier, this new processor was
the ill-fated 1APX 432 system. The iAPX 432 was such a dismal failure that Intel might not have survived had it
not been for a big stroke of luck — IBM decided to use the 8088 microprocessor in their personal computer sys
tem.

To most computer historians, there were two watershed events in the history of the personal computer. The
first was the introduction of the Visicalc spreadsheet program on the Apple II personal computer system. This
single program demonstrated that there was a real reason for owning a computer beyond the nerdy "gee, I ve got
my own computer" excuse. Visicalc quickly (and, alas, briefly) made Apple Computer the largest PC company
around. The second big event in the history of personal computers was, of course, the introduction of the IBM
PC. The fact that IBM, a "real" computer company, would begin building PCs legitimized the market. Up to that
point, businesses tended to ignore PCs and treated them as toys that nerdy engineers liked to play with. The
introduction of the IBM PC caused a lot of businesses to take notice of these new devices. Not only did they take
notice, but they liked what they saw. Although IBM cannot make the claim that they started the PC revolution,
they certainly can take credit for giving it a big jumpstart early on in its life.

Once people began buying lots of PCs, it was only natural that people would start writing and selling soft-
ware for these machines. The introduction of the IBM PC greatly expanded the marketplace for computer sys-
tems. Keep in mind that at the time of the IBM PC s introduction, most computer systems had only sold tens of
thousands of units. The more popular models, like the TRS-80 and Apple II had only sold hundreds of thosands
of units. Indeed, it wasn t until a couple of years after the introduction of the IBM PC that the first computer
system sold one million units; and that was a Commodore 64 system, not the IBM PC.

For a brief period, the introduction of the IBM PC was a godsend to most of the other computer manufactur-
ers. The original IBM PC was underpowered and quite a bit more expensive than its counterparts. For example,
a dual-floppy disk drive PC with 64 Kilobytes of memory and a monochrome display sold for $3,000. A compa-
rable Apple II system with a color display sold for under $2,000. The original IBM PC with it s 4.77 MHz 8088
processor (that s four-point-seven-seven, not four hundred seventy-seven!) was only about two to three times as
fast as the Apple II with its paltry 1 MHz eight-bit 6502 processor. The fact that most Apple II software was
written by expert assembly language programmers while most (early) IBM software was written in a high level
language (often interpreted) or by inexperienced 8086 assembly language programmers narrowed the gap even
more.

Nonetheless, software development on PCs accelerated. The wide range of different (and incompatible) sys-
tems made software development somewhat risky. Those who did not have an emotional attachment to one par-
ticular company (and didn t have the resources to develop for more than one platform) generally decided to go
with IBM s PC when developing their software.

One problem with the 8086 s architecture was beginning to show through by 1983 (remember, this is five
years after Intel introduced the 8086). The segmented memory architecture that allowed them to extend their 16-
bit addressing scheme to 20 bits (allowing the 8086 to address a megabyte of memory) was being attacked on
two fronts. First, this segmented addressing scheme was difficult to use in a program, especially if that program
needed to access more than 64 kilobytes of data or, worse yet, needed to access a single data structure that was
larger than 64K long. By 1983 software had reached the level of sophistication that most programs were using
this much memory and many needed large data structures. The software community as a whole began to grum-
ble and complain about this segmented memory architecture and what a stupid thing it was.

The second problem with Intel s segmented architecture is that it only supported a maximum of a one mega-
byte address space. Worse, the design of the IBM PC effectively limited the amount of RAM the system could
have to 640 kilobytes. This limitation was also beginning to create problems for more sophisticated programs

Page 242

running on the PC. Once again, the software development community grumbled and complained about Intel s
segmented architecture and the limitations it imposed upon their software.

About the time people began complaining about Intel s architecture, Intel began running an ad campaign
bragging about how great their chip was. They quoted top executives at companies like Visicorp (the outfit sell-
ing Visicalc) who claimed that the segmented architecture was great. They also made a big deal about the fact
that over a billion dollars worth of software had been written for their chip. This was all marketing hype, of
course. Their chip was not particularly special. Indeed, the 8086 s contemporaries (Z8000, 68000, and 16032)
were archiecturally superior. However, Intel was quite right about one thing — people had written a lot of soft
ware for the 8086 and most of the really good stuff was written in 8086 assembly language and could not be eas-
ily ported to the other processors. Worse, the software that people were writing for the 8086 was starting to get
large; making it even more difficult to port it to the other chips. As a result, software developers were becoming
locked into using the 8086 CPU.

About this time, Intel undoubtedly realized that they were getting locked into the 80x86 architecture, as well.
The 1APX 432 project was on its death bed. People were no more interested in the iAPX 432 than they were the
other processors (in fact, they were less interested). So Intel decided to do the only reasonable thing — extend the
8086 family so they could continue to make more money off their cash cow.

The first real extension to the 8086 family that found its way into general purpose PCs was the 80286 that
appeared in 1982. This CPU answered the second complaint by adding the ability to address up to 16 MBytes of
RAM (a formidable amount in 1982). Unfortunately, it did not extend the segment size beyond 64 kilobytes. In
1985 Intel introduced the 80386 microprocessor. This chip answered most of the complaints about the x86 fam-

ily, and then some, but people still complained about these problems for nearly ten years after the introduction of
the 80386.

Intel was suffering at the hands of Microsoft and the installed base of existing PCs. When IBM introduced
the floppy disk drive for the IBM PC they didn t choose an operating system to ship with it. Instead, they offered
their customers a choice of the widely available operating systems at the time. Of course, Digital Research had
ported CP/M to the PC, UCSD/Softech had ported UCSD Pascal (a very popular language/operating system at
the time) to the PC, and Microsoft had quickly purchased a CP/M knock-off named QD DOS (for Quick and
Dirty DOS) from Seattle Microsystems, relabelled it "MS-DOS", and offered this as well. CP/M-86 cost some-
where in the vicenity of $595. UCSD Pascal was selling for something like $795. MS-DOS was selling for $50.
Guess which one sold more copies! Within a year, almost no one ran CP/M or UCSD Pascal on PCs. Microsoft
and MS-DOS (also called IBM DOS) ruled the PC.

MS-DOS v1.0 lived up to its "quick and dirty" heritage. Working furiously, Microsoft s engineers added lots
of new features (many taken from the UNIX operating system and shell program) and MS-DOS v2.0 appeared
shortly thereafter. Although still crude, MS-DOS v2.0 was a substantial improvement and people started writing
tons of software for it.

Unfortunately, MS-DOS, even in its final version, wasn t the best operating system design. In particular, it
left all but rudimentary control of the hardware to the application programmer. It provided a file system so appli-
cation writers didn t have to deal with the disk drive and it provided mediocre support for keyboard input and
character display. It provided nearly useless support for other devices. As a result, most application program-
mers (and most high level languages) bypassed MS-DOS device control and used MS-DOS primarily as a file
system module.

In addition to poor device management, MS-DOS provided nearly non-existant memory management. For
all intents and purposes, once MS-DOS started a program running, it was that program s responsibility to man-
age the system s resources. Not only did this create extra work for application programmers, but it was one of
the main reasons most software could not take advantage of the new features Intel was adding to their micropro-
CEesSOrs.

Page 243

When Intel introduced the 80286 and, later, the 80386, the only way to take advantage of their extra address-
ing capabilities and the larger segments of the 80386 was to operate in a so-called protected mode. Unfortu-
nately, neither MS-DOS nor most applications (that managed memory themselves) were capable of operating in
protected mode without substantial change (actually, it would have been easy to modify MS-DOS to use pro-
tected mode, but it would have broken all the existing software that ran under MS-DOS; Microsoft, like Intel,
couldn t afford to alienate the software developers in this manner).

Even if Microsoft could magically make MS-DOS run under protected mode, they couldn t afford to do so.
When Intel introduced the 80386 microprocessor it was a very expensive device (the chip itself cost over $1,000
at initial introduction). Although the 80286 had been out for three years, systems built around the 8088 were still
extremely popular (since they were much lower cost than systems using the 80386). Software developers had a
choice: they could solve their memory addressing problems and use the new features of the 80386 chip but limit
their market to the few who had 80386 systems, or they could continue to suffer with the 64K segment limitation
imposed by the 8088 and MS-DOS and be able to sell their software to millions of users who owned one of the
earlier machines. The marketing departments of these companies ruled the day, all software was written to run
on plain 8088 boxes so that it had a larger market. It wasn t until 1995, when Microsoft introduced Windows 95
that people finally felt they could abandon processors earlier than the 80386. The end result was the people were
still complaining about the Intel architecture and its 64K segment limitation ten years after Intel had corrected
the problem. The concept of upwards compatibility was clearly a double-edged sword in this case.

Segmentation had developed such a bad name over the years that Microsoft abandoned the use of segments
in their 32-bit versions of Windows (95, 98, NT, 2000, ME, etc.). In a couple of respects, this was a real shame
because Intel finally did segmentation right (or, at least, pretty good) in the 80386 and later processors. By not
allowing the use of segmentation in Win32 programs Microsoft limited the use of this powerful feature. They
also limited their users to a maximum address space of 4GB (the Pentium Pro and later processors were capable
of addressing 64GB of physical memory). Considering that many applications are starting to push the 4GB bar-
rier, this limitation on Microsoft s part was ill-considered. Nevertheless, the "flat" memory model that Microsoft
employs is easier to write software for, undoubtedly a big part of their decision not to use segmentation.

The introduction of Windows NT, that actually ran on CPUs other than Intel s, must have given Intel a major
scare. Fortunately for Intel, NT was an asbysmal failure on non-Intel architectures like the Alpha and the Pow-
erPC. On the other hand, the new Windows architecture does make it easier to move existing applications to 64-
bit processors like the IA-64; so maybe WinNT s flexibility will work to Intel s advantage after all.

The 8086 software legacy has both advanced and retarded the 80x86 architecture. On the one hand, had soft-
ware developers not written so much software for the 80x86, Intel would have abandoned the family in favor of
something better a long time ago (not an altogether bad thing, in many people s opinions). On the other hand,
however, the general acceptance of the 80386 and later processors was greatly delayed by the fact that software
developers were writing software for the installed base of processors.

Around 1996, two types of software actually accellerated the design and acceptance of Intel s newer proces-
sors: multimedia software and games. When Intel introduced the MMX extensions to the 80x86 instruction set,
software developers ignored the installed base and immediately began writing software to take advantage of
these new instructions. This change of heart took place because the MMX instructions allowed developers to do
things they hadn t been able to do before - not simply run faster, but run fast enough to display actual video and
quick render 3D images. Combined with a change in pricing policy by Intel on new processor technology, the
public quickly accepted these new systems.

Hard-core gamers, multimedia artists, and others quickly grabbed new machines and software as it became
available. More often than not, each new generation of software would only run on the latest hardware, forcing
these individuals to upgrade their equipment far more rapidly than ever before.

Intel, sensing an opportunity here, began developing CPUs with additional instruction targetted at specific
applications. For example, the Pentium III introduced the SIMD (pronounced SIM-DEE) instructions that did

Page 244

for floating point calculations what the MMX instructions did for integer calculations. Intel also hired lots of
software engineers and began funding research into topic areas like speech recognition and (visual) pattern rec-
ognition in order to drive the new technologies that would require the new instructions their Pentium IV and
later processors would offer. As this is being written, Intel is busy developing new uses for their specialized
instructions so that system designers and software developers continue to use the 80x86 (and, perhaps, 1A-64)
family chips.

However, this discussion of fancy instruction sets is getting way ahead of the game. Let s take a long step
back to the original 8086 chip and take a look at how system designers put a CPU together.

4.4 Basic CPU Design

A fair question to ask at this point is How exactly does a CPU perform assigned chores? This is accom-
plished by giving the CPU a fixed set of commands, or instructions, to work on. Keep in mind that CPU design-
ers construct these processors using logic gates to execute these instructions. To keep the number of logic gates
reasonably small, CPU designers must necessarily restrict the number and complexity of the commands the CPU
recognizes. This small set of commands is the CPU s instruction set.

Programs in early (pre-Von Neumann) computer systems were often hard-wired into the circuitry . That is,
the computer s wiring determined what problem the computer would solve. One had to rewire the circuitry in
order to change the program. A very difficult task. The next advance in computer design was the programmable
computer system, one that allowed a computer programmer to easily rewire the computer system using a
sequence of sockets and plug wires. A computer program consisted of a set of rows of holes (sockets), each row
representing one operation during the execution of the program. The programmer could select one of several
instructions by plugging a wire into the particular socket for the desired instruction (see Figure 4.1).

: 3 5 3 -,
it QO OO00000O0
sz QO O0O00000O0
s QO O0O00000O0
Figure 4.1 Patch Panel Programming

Of course, a major difficulty with this scheme is that the number of possible instructions is severely limited
by the number of sockets one could physically place on each row. However, CPU designers quickly discovered
that with a small amount of additional logic circuitry, they could reduce the number of sockets required from n
holes for n instructions to log,(n) holes for n instructions. They did this by assigning a numeric code to each

instruction and then encode that instruction as a binary number using log,(n) holes (see Figure 4.2).

Page 245

C B A CBA Instruction
000 move
Instr #1 O O O 001 add
010 subtract
Instr #2 O O O 011 multiply
100 divide
Instr #3 O O O 101 and
110 or
111 Xor
Figure 4.2 Encoding Instructions

This addition requires eight logic functions to decode the A, B, and C bits from the patch panel, but the extra
circuitry is well worth the cost because it reduces the number of sockets that must be repeated for each instruc-
tion (this circuitry, by the way, is nothing more than a single three-line to eight-line decoder).

Of course, many CPU instructions are not stand-alone. For example, the move instruction is a command that
moves data from one location in the computer to another (e.g., from one register to another). Therefore, the move
instruction requires two operands: a source operand and a destination operand. The CPU s designer usually
encodes these source and destination operands as part of the machine instruction, certain sockets correspond to
the source operand and certain sockets correspond to the destination operand. Figure 4.3 shows one possible
combination of sockets to handle this. The move instruction would move data from the source register to the des-
tination register, the add instruction would add the value of the source register to the destination register, etc.

B
Instr #1 O O
Instr #2 O O
Instr #3 O O

CBA Instruction

000 move DD -or- SS Register
001 add
010 subtract 00 AX
011 multiply 01 BX
100 divide 10 CX
101 and 11 DX
110 or
111 xor

Figure 4.3 Encoding Instructions with Source and Destination Fields

One of the primary advances in computer design that the VNA provides is the concept of a stored program.
One big problem with the patch panel programming method is that the number of program steps (machine
instructions) is limited by the number of rows of sockets available on the machine. John Von Neumann and oth-

Page 246

ers recognized a relationship between the sockets on the patch panel and bits in memory; they figured they could
store the binary equivalents of a machine program in main memory and fetch each program from memory, load it
into a special decoding register that connected directly to the instruction decoding circuitry of the CPU.

The trick, of course, was to add yet more circuitry to the CPU. This circuitry, the control unit (CU), fetches
instruction codes (also known as operation codes or opcodes) from memory and moves them to the instruction
decoding register. The control unit contains a special register, the instruction pointer that contains the address of
an executable instruction. The control unit fetches this instruction s opcode from memory and places it in the
decoding register for execution. After executing the instruction, the control unit increments the instruction
pointer and fetches the next instruction from memory for execution, and so on.

When designing an instruction set, the CPU s designers generally choose opcodes that are a multiple of eight
bits long so the CPU can easily fetch complete instructions from memory. The goal of the CPU s designer is to
assign an appropriate number of bits to the instruction class field (move, add, subtract, etc.) and to the operand
fields. Choosing more bits for the instruction field lets you have more instructions, choosing additional bits for
the operand fields lets you select a larger number of operands (e.g., memory locations or registers). There are
additional complications. Some instructions have only one operand or, perhaps, they don t have any operands at
all. Rather than waste the bits associated with these fields, the CPU designers often reuse these fields to encode
additional opcodes, once again with some additional circuitry. The Intel 80x86 CPU family takes this to an

extreme with instructions ranging from one to almost 15 bytes longg.

4.5 Decoding and Executing Instructions: Random Logic Versus Microcode

Once the control unit fetches an instruction from memory, you may wonder "exactly how does the CPU exe-
cute this instruction?" In traditional CPU design there have been two common approaches: hardwired logic and
emulation. The 80x86 family uses both of these techniques.

A hardwired, or random logicg, approach uses decoders, latches, counters, and other logic devices to move
data around and operate on that data. The microcode approach uses a very fast but simple internal processor that
uses the CPU s opcodes as an index into a table of operations (the microcode) and executes a sequence of micro-
instructions that do the work of the macroinstruction (i.e., the CPU instruction) they are emulating.

The random logic approach has the advantage that it is possible to devise faster CPUs if typical CPU speeds
are faster than typical memory speeds (a situation that has been true for quite some time). The drawback to ran-
dom logic is that it is difficult to design CPUs with large and complex instruction sets using a random logic
approach. The logic to execute the instructions winds up requiring large percentage of the chip s real estate and
it becomes difficult to properly lay out the logic so that related circuits are close to one another in the two-dimen-
sional space of the chip,

CPUs based on microcode contain a small, very fast, execution unit that fetches instructions from the micro-
code bank (which is really nothing more than fast ROM on the CPU chip). This microcode executes one micro-
instruction per clock cycle and a sequence of microinstructions decode the instruction, fetch its operands, move
the operands to appropriate functional units that do whatever calculations are necessary, store away necessary
results, and then update appropriate registers and flags in anticipation of the next instruction.

8. Though this is, by no means, the most complex instruction set. The VAX, for example, has instructions up to 150 bytes
long!

9. There is actually nothing random about this logic at all. This design technique gets its name from the fact that if you view
a photomicrograph of a CPU die that uses microcode, the microcode section looks very regular; the same photograph of a
CPU that utilizes random logic contains no such easily discernable patterns.

Page 247

The microcode approach may appear to be substantially slower than the random logic approach because of
all the steps involved. Actually, this isn t necessarily true. Keep in mind that with a random logic approach to
instruction execution, part of the random logic is often a sequencer that steps through several states (one state per
clock cycle). Whether you use your clock cycles executing microinstructions or stepping through a random logic
state machine, you re still burning up clock cycles.

One advantage of microcode is that it makes better reuse of existing silicon on the CPU. Many CPU instruc-
tions (macroinstructions) execute some of the same microinstructions as many other instructions. This allows
the CPU designer to use microcode subroutines to implement many common operations, thus saving silicon on
the CPU. While it is certainly possible to share circuitry in a random logic device, this is often difficult if two
circuits could otherwise share some logic but are across the chip from one another.

Another advantage of microcode is that it lets you create some very complex instructions that consist of sev-
eral different operations. This provides programmers (especially assembly language programmers) with the abil-
ity to do more work with fewer instructions in their programs. In theory, this lets them write faster programs
since they now execute half as many instructions, each doing twice the work of a simpler instruction set (the
80x86 MMX instruction set extension is a good example of this theory in action, although the MMX instructions
do not use a microcode implementation).

Microcode does suffer from one disadvantage compared to random logic: the speed of the processor is tied to
the speed of the internal microcode execution unit. Although the "microengine" itself is usually quite fast, the
microengine must fetch its instruction from the microcode ROM. Therefore, if memory technology is slower
than the execution logic, the microcode ROM will slow the microengine down because the system will have to
introduce wait states into the microcode ROM access. Actually, microengines generally don t support the use of
wait states, so this means that the microengine will have to run at the same speed as the microcode ROM. This
effectively limits the speed at which the microengine, and therefore the CPU, can run.

Which approach is better for CPU design? That depends entirely on the current state of memory technology.
If memory technology is faster than CPU technology, then the microcode approach tends to make more sense. If
memory technology is slower than CPU technology, then random logic tends to produce the faster CPUs.

When Intel first began designing the 8086 CPU sometime between 1976 and 1978, memory technology was
faster so they used microcode. Today, CPU technology is much faster than memory technology, so random logic
CPUs tend to be faster. Most modern (non-x86) processors use random logic. The 80x86 family uses a combi-
nation of these technologies to improve performance while maintaining compatibility with the complex instruc-
tion set that relied on microcode way back in 1978.

46 RISCvs. CISC vs.VLIW

In the 1970 s, CPU designers were busy extending their instruction sets to make their chips easier to pro-
gram. It was very common to find a CPU designer poring over the assembly output of some high level language
compiler searching for common two and three instruction sequences the compiler would emit. The designer
would then create a single instruction that did the work of this two or three instruction sequence, the compiler
writer would modify the compiler to use this new instruction, and a recompilation of the program would, pre-
sumably, produce a faster and shorter program than before.

Digital Equipment Corporation (now part of Compaq Computer who is looking at merging with Hewlett
Packard as this is being written) raised this process to a new level in their VAX minicomputer series. It is not
surprising, therefore, that many research papers appearing in the 1980 s would commonly use the VAX as an
example of what not to do.

The problem is, these designers lost track of what they were trying to do, or to use the old cliche, they
couldn t see the forest for the trees. They assumed that there were making their processors faster by executing a

Page 248

single instruction that previously required two or more. They also assumed that they were making the programs
smaller, for exactly the same reason. They also assumed that they were making the processors easier to program
because programmers (or compilers) could write a single instruction instead of using multiple instructions. In
many cases, they assumed wrong.

In the early 80 s, researchers at IBM and several institutions like Stanford and UC Berkeley challenged the
assumptions of these designers. They wrote several papers showing how complex instructions on the VAX mini-
computer could actually be done faster (and sometimes in less space) using a sequence of simpler instructions.
As a result, most compiler writers did not use the fancy new instructions on the VAX (nor did assembly language
programmers). Some might argue that having an unused instruction doesn t hurt anything, but these researchers
argued otherwise. They claimed that any unnecessary instructions required additional logic to implement and as
the complexity of the logic grows it becomes more and more difficult to produce a high clock speed CPU.

This research led to the development of the RISC, or Reduced Instruction Set Computer, CPU. The basic
idea behind RISC was to go in the opposite direction of the VAX. Decide what the smallest reasonable instruc-
tion set could be and implement that. By throwing out all the complex instructions, RISC CPU designers could
use random logic rather than microcode (by this time, CPU speeds were outpacing memory speeds). Rather than
making an individual instruction more complex, they could move the complexity to the system level and add
many on-chip features to improve the overall system performance (like caches, pipelines, and other advanced

mainframe features of the time). Thus, the great "RISC vs. CISC!?" debate was born.

Before commenting further on the result of this debate, you should realize that RISC actually means
"(Reduced Instruction) Set Computer," not "Reduced (Instruction Set) Computer." That is, the goal of RISC was
to reduce the complexity of individual instructions, not necessarily reduce the number of instructions a RISC
CPU supports. It was often the case that RISC CPUs had fewer instructions than their CISC counterparts, but
this was not a precondition for calling a CPU a RISC device. Many RISC CPUs had more instructions than some
of their CISC contemporaries, depending on how you count instructions.

First, there is no debate about one thing: if you have two CPUs, one RISC and one CISC and they both run at
the same clock frequency and they execute the same average number of instructions per clock cycle, CISC is the
clear winner. Since CISC processors do more work with each instruction, if the two CPUs execute the same
number of instructions in the same amount of time, the CISC processor usually gets more work done.

However, RISC performance claims were based on the fact that RISC s simpler design would allow the CPU
designers to reduce the overall complexity of the chip, thereby allowing it to run at a higher clock frequency.
Further, with a little added complexity, they could easily execute more instructions per clock cycle, on the aver-
age, than their CISC contemporaries.

One drawback to RISC CPUs is that their code density was much lower than CISC CPUs. Although memory
devices were dropping in price and the need to keep programs small was decreasing, low code density requires
larger caches to maintain the same number of instructions in the cache. Further, since memory speeds were not
keeping up with CPU speeds, the larger instruction sizes found on the RISC CPUs meant that the system spent
more time bringing in those instructions from memory to cache since they could transfer fewer instructions per
bus transaction. For many years, CPU architects argued to and fro about whether RISC or CISC was the better
approach. With one big footnote, the RISC approach has generally won the argument. Most of the popular CISC
systems, e.g., the VAX, the Z8000, the 16032/32016, and the 68000, have quitely faded away to be replaced by
the likes of the PowerPC, the MIPS CPUs, the Alpha, and the SPARC. The one footnote here is, of course, the
80x86 family. Intel has proven that if you really want to keep extending a CISC architecture, and you re willing
to throw a lot of money at it, you can extend it far beyond what anyone ever expected. As of late 2001/early 2002
the 80x86 is the raw performance leader. The CPU runs at a higher clock frequency than the competing RISC

10.CISC stands for Complex Instruction Set Computer and defines those CPUs that were popular at the time like the VAX and
the 80x86.

Page 249

chips; it executes fairly close to the same number of instructions per clock cycle as the competing RISC chips; it
has about the same "average instruction size to cache size" ratio as the RISC chips; and it is a CISC, so many of
the instructions do more work than their RISC equivalents. So overall, the 80x86 is, on the average, faster than

contemporary RISC chips1 L

To achieve this raw performance advantage, the 80x86 has borrowed heavily from RISC research. Intel has
divided the instruction set into a set of simple instructions that Intel calls the "RISC core" and the remaining,
complex instructions. The complex instructions do not execute as rapidly as the RISC core instructions. In fact,
it is often the case that the task of a complex instruction can be accomplished faster using multiple RISC core
instructions. Intel supports the complex instructions to provide full compatibility with older software, but com-
piler writers and assembly language programmers tend to avoid the use of these instructions. Note that Intel
moves instructions between these two sets over time. As Intel improves the processor they tend to speed up
some of the slower, complex, instructions. Therefore, it is not possible to give a static list of instructions you
should avoid; instead, you will have to refer to Intel s documentation for the specific processor you use.

Later Pentium processors do not use an interpretive engine and microcode like the earlier 80x86 processors.
Instead, the Pentium core processors execute a set of "micro-operations" (or "micro-ops"). The Pentium proces-
sors translate the 80x86 instruction set into a sequence of micro-ops on the fly. The RISC core instructions typi-
cally generate a single micro-op while the CISC instructions generate a sequence of two or more micro-ops. For
the purposes of determining the performance of a section of code, we can treat each micro-op as a single instruc-
tion. Therefore, the CISC instructions are really nothing more than "macro-instructions" that the CPU automati-
cally translates into a sequence of simpler instructions. This is the reason the complex instructions take longer to
execute.

Unfortunately, as the x86 nears its 25th birthday, it s clear (to Intel, at least) that it s been pushed to its limits.
This is why Intel 1s working with HP to base their IA-64 architecture on the PA-RISC instruction set. The 1A-64
architecture is an interesting blend. On the one hand, it (supposedly) supports object-code compatibility with the
previous generation x86 family (though at reduced performance levels). Obviously, it s a RISC architecture
since it was originally based on Hewlet-Packard s PA-RISC (PA=Precision Architecture) design. However, Intel
and HP have extended on the RISC design by using another technology: Very Long Instruction Word (VLIW)
computing. The idea behind VLIW computing is to use a very long opcode that handle multiple operations in
parallel. In some respects, this is similar to CISC computing since a single VLIW "instruction" can do some very
complex things. However, unlike CISC instructions, a VLIW instruction word can actually complete several
independent tasks simultaneously. Effectively, this allows the CPU to execute some number of instructions in
parallel.

Intel s VLIW approach is risky. To succeed, they are depending on compiler technology that doesn t yet
exist. They made this same mistake with the iIAPX 432. It remains to be seen whether history is about to repeat
itself or if Intel has a winner on their hands.

4.7 Instruction Execution, Step-By-Step

To understand the problems withvaioping an dfcient CPU, les consider four representai80x86 instructions: MQ
ADD, LOOR and JNZ (jump if not zero)These instructions will alle us to e&plore may of the issuesating the x86 CPU
designer

You've seen the M@ andADD instructions in preious chapters so there is no need tere them here.The LOOP and
JNZ instructions are me so it's probably a good idea tamain what thg do before proceeding. Both of these instructions

11.Note, by the way, that this doesn t imply that 80x86 systems are faster than computer systems built around RISC chips.
Many RISC systems gain additional speed by supporting multiple processors better than the x86 or by having faster bus
throughput. This is one reason, for example, why Internet companies select Sun equipment for their web servers.

Page 250

areconditional jumpinstructions.A conditional jump instruction tests some condition and jumps to some other instruction in
memory if the condition is true and th&all through to the né instruction if the condition isafse. This is basically the oppo

site of HLAs IF statement (whickafls through if the condition is true and jumps to the else section if the conditalae}k f
TheJNZ (jump if not zero) instruction tests the CRW@ero fag and transfers control to somegegtriocation if the zerodh
contains zero; JNZafls through to the ¢ instruction if the zero dlg contains oneThe program specés the taget instrue

tion to jump to by specifying the distance from the JNZ instruction to tgettarstruction as a small signed e (for our
purposes here, weassume that the distance is within the range £128 bytes so the instruction uses a single byte to specify t
distance to the tget location).

The last instruction of interest to us here islt@®OP instruction.The LOOP instruction decrements ttadue of the ECX
register and transfers control to ager instruction within +128 bytes if ECX does not contain zero (after the decrembist).
is a good rample of a CISC instruction since it does multiple operations: (1) it subtracts one from ECX and then it (2) does
conditional jump if ECX does not contain zefBhat is, LOOP is equalent to the folling two 80x86 instructions:

| oop SoneLabel ;
-is roughly equival ent to-

dec(ecx);
j nz SonelLabel ;

Note thatSomelLabespecifies the address of the target instruction that must be within about +128 bytes of the LOOP or JN
instructions above. The LOOP instruction is a good example of a complex (vs. RISC core) instruction on the Pentium proc
sors. lItis actually faster to execute a DEC and a JNZ instrittieam it is to ecute a LOOP instruction. In this section we

will not concern ourselves with this issue; we will assume that the LOOP instruction operates as though it were a RISC ¢
instruction.

The 80x86 CPUs do not execute instructions in a single clock cycle. For example, the MOV instruction (which is rele
tively simple) could use the following execution stéps

* Fetch the instruction byte from memory.

» Update the EIP register to point at the next byte.

» Decode the instruction to see what it does.

» If required, fetch a 16-bit instruction operand from memory.

» If required, update EIP to point beyond the operand.

» If required, compute the address of the operand (e.g., EBX+disp) .
* Fetch the operand.

» Store the fetched value into the destination register

If we allocate one clock cycle for each of the above steps, an instruction could take as many as eight clock cycles to comp
(note that three of the steps above are optional, depending on the MOV instruction’s addressing mode, so a simple M
instruction could complete in as few as five clock cycles).

The ADD instruction is a little more complex. Here’s a typical set of operations the ADD(reg, reg) instruction must com
plete:

* Fetch the instruction byte from memory.

e Update EIP to point at the next byte.

* Decode the instruction.

* Get the value of the source operand and send it to the ALU.

* Fetch the value of the destination operand (a register) and send it to the ALU.
* Instruct the ALU to add the values.

e Store the result back into the first register operand.

* Update the flags register with the result of the addition operation.

If the source operand is a memory location, the operation is slightly more complicated:

12.This sequence is not exactly equivalent to LOOP since this sequence affects the flags while LOOP does not.

13.Actually, you 1l see a little later that there is a decrement instruction you can use to subtract one from ECX. The decrement
instruction is better because it is shorter.

14.1t is not possible to state exactly what steps each CPU requires since many CPUs are different from one another.

Page 251

* Fetch the instruction byte from memory.

e Update EIP to point at the next byte.

* Decode the instruction.

» If required, fetch a displacement for use in the effective address calculation

» If required, update EIP to point beyond the displacement value.

* Get the value of the source operand from memory and send it to the ALU.

» Fetch the value of the destination operand (a register) and send it to the ALU.
e Instruct the ALU to add the values.

e Store the result back into the register operand.

* Update the flags register with the result of the addition operation.

ADD(const, memory) is the messiest of all, this code sequence looks something like the following:

* Fetch the instruction byte from memory.

e Update EIP to point at the next byte.

* Decode the instruction.

» If required, fetch a displacement for use in the effective address calculation
» If required, update EIP to point beyond the displacement value.

* Fetch the constant value from memory and send it to the ALU.

e Update EIP to point beyond the constant’s value (at the next instruction in memory).
* Get the value of the source operand from memory and send it to the ALU.
* Instruct the ALU to add the values.

e Store the result back into the memory operand.

* Update the flags register with the result of the addition operation.

Note that there are other forms of the ADD instruction requiring their own special processing. These are just representa
examples. As you see in these examples, the ADD instruction could take as many as ten steps (or cycles) to complete. |
that this is one advantage of a RISC design. Most RISC design have only one or two forms of the ADD instruction (that a
registers together and, perhaps, that add constants to registers). Since register to register adds are often thecdastest (an
stant to register adds are probably the second fastest), the RISC CPUs force you to use the fastest forms of these instructi

The JNZ instruction might use the following sequence of steps:

e Fetch the instruction byte from memory.

e Update EIP to point at the next byte.

» Decode the instruction.

e Fetch a displacement byte to determine the jump distance send this to the ALU

e Update EIP to point at the next byte.

e Testthe zero flag to see if it is clear.

» If the zero flag was clear, copy the EIP register to the ALU.

« If the zero flag was clear, instruct the ALU to add the displacement and EIP register values.
» If the zero flag was clear, copy the result of the addition above back to the EIP register.

Notice how the JNZ instruction requires fewer steps if the jump is not taken. This is very typical for conditional juiip instru

tions. If each step above corresponds to one clock cycle, the JNZ instruction would take six or nine clock cycles, depending
whether the branch is taken. Because the 80x86 JNZ instruction does not allow different types of operands, there is only
sequence of steps needed for this application.

The 80x86 LOOP instruction might use an execution sequence like the following:

e Fetch the instruction byte from memory.

e Update EIP to point at the next byte.

» Decode the instruction.

e Fetch the value of the ECX register and send it to the ALU.

* Instruct the ALU to decrement the value.

e Send the result back to the ECX register. Set a special internal flag if this value is non-zero.
» Fetch a displacement byte to determine the jump distance send this to the ALU

e Update EIP to point at the next byte.

e Test the special flag to see if ECX was non-zero.

« If the flag was set, copy the EIP register to the ALU.

» If the flag was set, instruct the ALU to add the displacement and EIP register values.

Page 252

» If the flag was set, copy the result of the addition above back to the EIP register.

Although a given 80x86 CPU might not execute the steps for the instructions above, they all execute some sequenc
operations. Each operation requires a finite amount of time to execute (generally, one clock cycle per ofstegé@s ave
usually refer to each of the aleosteps). Oliously, the more steps needed for an instruction, theesldt will run. This is
why complec instructions generally run si@r than simple instructions, complastructions usually he lots of &ecution
stages.

4.8

Parallelism — the Key to Faster Processors

An early goal of the RISC processorasito @ecute one instruction per clockate, on the werage. Hwever, even if a
RISC instruction is simplifid, the actuab@cution of the instruction still requires multiple steps. Ss bould thg achiere
this goal?And how do later members the 80x&nfily with their complg instruction sets also ackithis goal?The answer
is parallelism.

Consider the folleing steps for a M¥(reg, reg) instruction:

* Fetch the instruction byte from memory.

» Update the EIP register to point at the next byte.

» Decode the instruction to see what it does.

» Fetch the source register.

» Store the fetched value into the destination register

There are five stages in the exection of this instruction with certain dependencies between each stage. For example
CPU must fetch the instruction byte from memory before it updates EIP to point at the next byte in memory. Likewise, tt
CPU must decode the instruction before it can fetch the source register (since it doesn’t know it needs to fetch a s&urce reg
until it decodes the instruction). As a final example, the CPU must fetch the source register before it can store the fetcl
value in the destination register.

Most of the stages in the execution of this MOV instructionsar@al. That is, the CPU musixecute one stage before
proceeding to the mé The one eception is the "Update EIP" ste@lthough this stage must follothe frst stage, none of
the folloving stages in the instruction depend upon this siéygrefore, this could be the third, forth, ditfistep in the calcu
lation and it vouldn't affect the outcome of the instruction. Furth&e could gecute this step concurrently withyaof the
other steps and itouldn't affect the operation of the MQinstruction, e.g.,

* Fetch the instruction byte from memory.

» Decode the instruction to see what it does.

» Fetch the source register and update the EIP register to point at the next byte.
» Store the fetched value into the destination register

By doing two of the stages in parallel, we can reduce the execution time of this instruction by one clock cycle. Althouc
the remaining stages in the "mov(reg, reg);" instruction must remain serialized (that is, they must take place in®xactly t
order), other forms of the MOV instruction offer similar opportunities to overlapped portions of their execution to save som
cycles. For example, consider the "mov([ebx+disp], eax);" instruction:

* Fetch the instruction byte from memory.

* Update the EIP register to point at the next byte.

» Decode the instruction to see what it does.

* Fetch a displacement operand from memory.

* Update EIP to point beyond the displacement.

* Compute the address of the operand (e.g., EBX+disp) .
* Fetch the operand.

» Store the fetched value into the destination register

Once again there is the opportunity to overlap the execution of several stages in this instruction, for example:

* Fetch the instruction byte from memory.

» Decode the instruction to see what it does and update the EIP register to point at the next byte.

* Fetch a displacement operand from memory.

e Compute the address of the operand (e.g., EBX+disp) and update EIP to point beyond the displacement..
* Fetch the operand.

Page 253

e Store the fetched value into the destination register

In this example, we reduced the number of execution steps from eight to six by overlapping the update of EIP with two ott
operations.

As a last example, consider the "add(const, [ebx+disp]);" instruction (the instruction with the largest number of stej
we've considered thus far). It's non-overlapped execution looks like this:

e Fetch the instruction byte from memory.

e Update EIP to point at the next byte.

» Decode the instruction.

e Fetch a displacement for use in the effective address calculation

e Update EIP to point beyond the displacement value.

e Fetch the constant value from memory and send it to the ALU.

e Compute the address of the memory operand (EBX+disp).

e Get the value of the source operand from memory and send it to the ALU.
* Instruct the ALU to add the values.

e Store the result back into the memory operand.

» Update the flags register with the result of the addition operation.

e Update EIP to point beyond the constant’s value (at the next instruction in memory).

We can overlap at least three steps in this instruction by noting that certain stages don’t depend on the result of tlagé immed
predecessor

e Fetch the instruction byte from memory.

e Decode the instruction and update EIP to point at the next byte.

e Fetch a displacement for use in the effective address calculation

e Update EIP to point beyond the displacement value.

e Fetch the constant value from memory and send it to the ALU.

e Compute the address of the memory operand (EBX+disp).

e Get the value of the source operand from memory and send it to the ALU.

* Instruct the ALU to add the values.

e Store the result back into the memory operand and update the flags register with the result of the addition opera
tion and update EIP to point beyond the constant’s value.

Note that we could not merge one of the "Update EIP" operations because the previous stage and following stages of
instruction both use the value of EIP before and after the update.

Unlike the MOV instruction, the steps in the ADD instruction above are not all dependent upon the previous stage in t
instruction’s execution. For example, the sequence above fetches the constant from memory and then computes the effe
address (EBX+disp) of the memory operand. Neither operation depends upon the other, so we could easily swap their p
tions above to yield the following:

e Fetch the instruction byte from memory.

» Decode the instruction and update EIP to point at the next byte.

» Fetch a displacement for use in the effective address calculation

e Update EIP to point beyond the displacement value.

e Compute the address of the memory operand (EBX+disp).

e Fetch the constant value from memory and send it to the ALU.

e Get the value of the source operand from memory and send it to the ALU.

* Instruct the ALU to add the values.

e Store the result back into the memory operand and update the flags register with the result of the addition opera
tion and update EIP to point beyond the constant’s value.

This doesn’t save any steps, but it does reduce some dependencies between certain stages and their immediate predec
allowing additional parallel operation. For example, we can now merge the "Update EIP" operation with the effective addre
calculation:

e Fetch the instruction byte from memory.
» Decode the instruction and update EIP to point at the next byte.
» Fetch a displacement for use in the effective address calculation

Page 254

* Compute the address of the memory operand (EBX+disp) and update EIP to point beyond the displacement
value.

* Fetch the constant value from memory and send it to the ALU.

* Get the value of the source operand from memory and send it to the ALU.

e Instruct the ALU to add the values.

e Store the result back into the memory operand and update the flags register with the result of the addition opera
tion and update EIP to point beyond the constant’s value.

Although it might seem possible to fetch the constant and the memory operand in the same step (since their values do
depend upon one another), the CPU can'’t actually do this (yet!) because it has only a single data bus. Since both of these
ues are coming from memory, we can'’t bring them into the CPU during the same step because the CPU uses the data b
fetch these two values. In the next section you'll see how we can overcome this problem.

By overlapping various stages in the execution of these instructions we've been able to substantially reduce the numbe
steps (i.e., clock cycles) that the instructions need to complete execution. This process of executing various steps of
instruction in parallel with other steps is a major key to improving CPU performance without cranking up the clock speed ¢
the chip. In this section we've seen how to speed up the execution of an instruction by doing many of the internal ofperation:
that instruction in parallel. However, there’s only so much to be gained from this approach. In this approach, thengstructic
themselves are still serialized (one instruction completes before the next instruction begins execution). Starting xtith the n
section we’ll start to see how to overlap the execution of adjacent instructions in order to save additional cycles.

48.1

The Prefetch Queue — Using Unused Bus Cycles

The key to improving the speed of a processor is to perform operations in parallel. If we were able toogetations on
each clock ycle, the CPU wuld eecute instructions twice aast when running at the same clock speedveder, simply
deciding to gecute tvo operations per clockscle is not so easary steps in thexecution of an instruction shafenctional
unitsin the CPU (functional units are groups of logic that perform a common operation, eAl.ltlad the CU)A func-
tional unit is only capable of one operation at a tifiterefore, you cannot do twoperations that use the same functional unit
concurrently (e.g., incrementing the Elgister and adding twvalues togetherfnother dificulty with doing certain opera
tions concurrently is that one operation may depend on the otieetilt. Br example, the tw steps of thé\DD instruction
that involve adding tw values and then storing their suviou cannot store the sum into gister until after yowe computed
the sumThere are also some other resources the CPU cannot share between steps in an instri&aomlE, there is only
one data bis; the CPU cannot fetch an instruction opcode at the same time it is trying to store some data toTime tnicky
in designing a CPU thakecutes seeral steps in parallel is to arrange those steps to reducetsooifladd additional logic so
the two (or more) operations can occur simultaneouslydegting in diferent functional units.

Consider agin the steps the M mem/re, reg) instruction requires:

* Fetch the instruction byte from memory.

* Update the EIP register to point at the next byte.

» Decode the instruction to see what it does.

* If required, fetch a displacement operand from memory.

» If required, update EIP to point beyond the displacement.

» Compute the address of the operand, if required (i.e., EBX+xxxx) .
* Fetch the operand.

» Store the fetched value into the destination register

The first operation uses the value of the EIP register (so we cannot overlap incrementing EIP with it) and it uses the bu.
fetch the instruction opcode from memory. Every step that follows this one depends upon the opcode it fetches from memc
so it is unlikely we will be able to overlap the execution of this step with any other.

The second and third operations do not share any functional units, nor does decoding an opcode depend upon the vall
the EIP register. Therefore, we can easily modify the control unit so that it increments the EIP register at the same time
decodes the instruction. This will shave one cycle off the execution of the MOV instruction.

The third and fourth operations above (decoding and optionally fetching the displacement operand) do not look like th
can be done in parallel since you must decode the instruction to determine if it the CPU needs to fetch an operand from m
ory. However, we could design the CPU to go ahead and fetch the operand anyway, so that it's available if we need it. Ther
one problem with this idea, though, we must have the address of the operand to fetch (the value in the EIP register) and if

Page 255

#1
#2
#3
#4

#1
#2
#3
#4

must vait until we are done incrementing the EIBister before fetching this operand. If we are incrementing EIP at the same
time wete decoding the instruction, we will\eto wait until the ne&t cycle to fetch this operand.

Since the ne three steps are optional, there angesa possible instruction sequences at this point:
(step 4, step 5, step 6, and step 7) — e.g., MOV([ebx+1000], eax)
(step 4, step 5, and step 7) — e.g., MOV(disp, eax) -- assume disp s address is 1000
(step 6 and step 7) — e.g., MOV([ebx], eax)
(step 7) — e.g., MOV(ebx, eax)
In the sequences alm step seen alvays relies on the prus steps in the sequendéerefore, step sen cannot -
cute in parallel with anof the other steps. Step six also relies upon step3oep fire cannot gecute in parallel with step four

since step four uses thelue in the EIP igister hovever, step fie can gecute in parallel with another stepTherefore, we
can shge one gcle of the first two sequences abe as follavs:

(step 4, step 5/6, and step 7)
(step 4, step 5/7)
(step 6 and step 7)

(step 7)
Of course, there is noay to oserlap the gecution of steps sen and eight in the M®Qinstruction since it must surely
fetch the alue before storing itveay. By combining these steps, we obtain the foile steps for the M@ instruction:

e Fetch the instruction byte from memory.

» Decode the instruction and update ip

e If required, fetch a displacement operand from memory.

e Compute the address of the operand, if required (i.e., ebx+xxxx) .
» Fetch the operand, if required update EIP to point beyond xxxx.

» Store the fetched value into the destination register

By adding a small amount of logic to the CPU, we've shaved one or two cycles off the execution of the MOV instructior
This simple optimization works with most of the other instructions as well.

Consider what happens with the MOV instruction above executes on a CPU with a 32-bit data bus. If the MOV instru
tion fetches an eight-bit displacement from memory, the CPU may actually wind up fetching the following three bytes after
displacement along with the displacement value (since the 32-bit data bus lets us fetch four bytes in a single bus cycle).
second byte on the data bus is actually the opcode of the next instruction. If we could save this opcode until the £xecutiol
the next instruction, we could shave a cycle of its execution time since it would not have to fetch the opcode byte. Eurthermc
since the instruction decoder is idle while the CPU is executing the MOV instruction, we can actually decode the next instrt
tion while the current instruction is executing, thereby shaving yet another cycle off the execution of the next in&histion.
effectively, overlaps a portion of the MOV instruction with the beginning of the execution of the next instruction, allowing
additional parallelism.

Can we improve on this? The answer is yes. Note that during the execution of the MOV instruction the CPU is not acce
ing memory on every clock cycle. For example, while storing the data into the destination register the bus is idle. During tir
periods when the bus is idle we can pre-fetch instruction opcodes and operands and save these values for executing the
instruction.

The hardware to do this is the prefetch queue. Figure 4.4 shows the internal organization of a CPU with a prefetch que
The Bus Interface Unit, as its name implies, is responsible for controlling access to the address and data busses. Wher
some component inside the CPU wishes to access main memory, it sends this request to the bus interface unit (or BIU)
acts as a "traffic cop" and handles simultaneous requests for bus access by different modules (e.g., the execution unit an
prefetch queue).

Page 256

Execution
Unit

Bus
Interfac
Unit
(BIU)

Address

Prefetd
Queue

Figure 4.4 CPU Design with a Prefetch Queue

Wheneer the &ecution unit is not using the Bus Intcé Unit, the BIU can fetch additional bytes from the instruction
streamWheneer the CPU needs an instruction or operand byte, it grabsxhavagable byte from the prefetch queue. Since
the BIU grabs four bytes at a time from memory (assuming a 32-bit aigltamd it generally consumesvir than four bytes
per clock gcle, ary bytes the CPU auld normally fetch from the instruction stream will already be sitting in the prefetch
queue.

Note, havever, that wete not guaranteed that all instructions and operands will be sitting in the prefetch queue when wi
need them. & example, consider the "JNZ Label;" instruction, if it transfers contraltwel will invalidate the contents of
the prefetch queue. If this instruction appears at locations 400 and 401 in memory (ibibydetinstruction), the prefetch
gueue will contain the bytes at addresses 402, 403, 404, 405, 406, 407, etc. ¢ethadidness of the JNZ instruction is 480,
the bytes at addresses 402, 403, 404, etm;twlo us ay good. So the system has to pause for a moment to fetch the double
word at address 480 before it can go on.

Another impreement we can makis to @erlap instruction decoding with the last step of theiptes instructionAfter
the CPU processes the operand, the ailable byte in the prefetch queue is an opcode, and the CPU can decode it in antic
ipation of its e&ecution. Of course, if the current instruction madifthe EIP mgister then aytime spent decoding the xte
instruction goes to aste, It since this occurs in parallel with other operations, it does netdgian the system (though it
does requirexdra circuitry to do this).

The instruction gecution sequence mwoassumes that the follang events occur in the background:
CPU Prefetch Eents:

« If the prefetch queue is not full (generally it can hold between eight and thirty-two bytes, depending on the pro
cessor) and the BIU is idle on the current clock cycle, fetch the next double word from memory at the address in

EIP at the beginning of the clock cytte

e If the instruction decoder is idle and the current instruction does not require an instruction operand, begin decod
ing the opcode at the front of the prefetch queue (if present), otherwise begin decoding the byte beyond the cur
rent operand in the prefetch queue (if present). If the desired byte is not in the prefetch queue, do not execute this
event.

15.This operation fetches only a byte if ip contains an odd value.

Page 257

Now let’s reconsider our "nvg reg, reg);" instruction from the pxéous section.With the addition of the prefetch queue
and the bis interfice unit, fetching and decoding opcode bytes, as well as updating thgiEi takes place in parallel with
the previous instruction.Without the BIU and the prefetch queue, the V(neyg, reg);" requires the follwing steps:

e Fetch the instruction byte from memory.

» Decode the instruction to see what it does.

e Fetch the source register and update the EIP register to point at the next byte.
e Store the fetched value into the destination register

However, now that we can overlap the instruction fetch and decode with the previous instruction, we now get the followir
steps:

e Fetch and Decode Instruction - overlapped with previous instruction
e Fetch the source register and update the EIP register to point at the next byte.
e Store the fetched value into the destination register

The instruction execution timings make a few optimistic assumptions, namely that the opcode is already present in f
prefetch queue and that the CPU has already decoded it. If either case is not true, additional cycles will be necesgary so the
tem can fetch the opcode from memory and/or decode the instruction.

Because they invalidate the prefetch queue, jump and conditional jump instructions (when actually taken) are mu
slower than other instructions. This is because the CPU cannot overlap fetching and decoding the opcode for the next inst
tion with the execution of the jump instruction since the opcode is (probably) not in the prefetch queue. Therefordet may te
several cycles after the execution of one of these instructions for the prefetch queue to recover and the CPU is decol
opcodes in parallel with the execution of previous instructions. The has one very important implication to your programs:
you want to write fast code, make sure to avoid jumping around in your program as much as possible.

Note that the conditional jump instructions only invalidate the prefetch queue if they actually make the jump. If the cond
tion is false, they fall through to the next instruction and continue to use the values in the prefetch queue as wedl-as any |
decoded instruction opcodes. Therefore, if you can determine, while writing the program, which condition is most likely (e.c
less than vs. not less than), you should arrange your program so that the most common case falls through and conditional |
rather than take the branch.

Instruction size (in bytes) can also affect the performance of the prefetch queue. The longer the instruction, the faster
CPU will empty the prefetch queue. Instructions involving constants and memory operands tend to be the largest. If you pl:
a string of these in a row, the CPU may wind up having to wait because it is removing instructions from the prefetch que
faster than the BIU is copying data to the prefetch queue. Therefore, you should attempt to use shorter instructions when
possible since they will improve the performance of the prefetch queue.

Usually, including the prefetch queue improves performance. That's why Intel provides the prefetch queue on many mc
els of the 80x86 family, from the 8088 on up. On these processors, the BIU is constantly fetching data for the prefetch que
whenever the program is not actively reading or writing data.

Prefetch queues work best when you have a wide data bus. The 8086 processor runs much faster than the 8088 beca
can keep the prefetch queue full with fewer bus accesses. Don't forget, the CPU needs to use the bus for other purposes
fetching opcodes, displacements, and immediate constants. Instructions that access memory compete with the prefetch g
for access to the bus (and, therefore, have priority). If you have a sequence of instructions that all access memetgh the pre
gueue may become empty if there are only a few bus cycles available for filling the prefetch queue during the execution
these instructions. Of course, once the prefetch queue is empty, the CPU must wait for the BIU to fetch new opcodes fr
memory, slowing the program.

A wider data bus allows the BIU to pull in more prefetch queue data in the few bus cycles available for this purpose, sc
is less likely the prefetch queue will ever empty out with a wider data bus. Executing shorter instructions also helps keep
prefetch queue full. The reason is that the prefetch queue has time to refill itself with the shorter instructions. Moral of t
story: when programming a processor with a prefetch queue, always use the shortest instructions possible to accompli:
given task.

Page 258

4.8.2 Pipelining — Overlapping the Execution of Multiple Instructions

Executing instructions in parallel using ashinterice unit and anxecution unit is a special case of pipelinimge 80x86

family, starting with the 80486, incorporates pipelining to imprperformanceWith just a fev exceptions, wdl see that
pipelining allavs us to gecute one instruction per clockate.

The adwantage of the prefetch queuasithat it let the CPUverlap instruction fetching and decoding with instruction

execution.That is, while one instruction isecuting, the BIU is fetching and decoding th&triestruction Assuming you'e
willing to add hardware, you canxecute almost all operations in paraliBhat is the idea behind pipelining.

48.2.1

A Typical Pipeline

Consider the steps necessary to do a generic operation:

» Fetch opcode.

» Decode opcode and (in parallel) prefetch a possible displacement or constant operand (or both)

* Compute complex addressing mode (e.g., [ebx+xxxx]), if applicable.

» Fetch the source value from memory (if a memory operand) and the destination register value (if applicable).
e Compute the result.

» Store result into destination register.

Assuming you're willing to pay for some extra silicon, you can build a little “mini-processor” to handle each of the above

steps. The organization would look something like Figure 4.5.

Figure 4.5

Stage 1 2 3 4 5 6

Fetch Decode Comput || Fetch Comput | | Store
Opcode || Opcode &| Effective || Source & | Result Resul
Prefetch [| Address|| Dest
Operand Values

A Pipelined Implementation of Instruction Execution

Note hav we've combined some stages from thevjmes section. &r example, in stage four dfigure 4.5the CPU

fetches the source and destination operands in the samerstepan do this by putting multiple data paths inside the CPU
(e.g., from the mgisters to thé\LU) and ensuring that no tvoperandswer compete for simultaneous use of the data(be.,
no memory-to-memory operations).

If you design a separate piece of haadevfor each stage in the pipeline adcalmost all these steps canegace in par

allel. Of course, you cannot fetch and decode the opcode for more than one instruction at the saute/dimeali fetch one
opcode while decoding the preus instruction. If you ha an n-stage pipeline, you will usuallyiean instructions»ecuting
concurrently

Page 259

T1 T2 T3 T4 T5 T6 T7 T8 T9...
Opcode| Decode| Addreqds Valuep Qde] Store Instruction #1

Opcode | Decode| Address Values fdm| Store Instruction #2
Opcode| Decode| Addreds Valuep Conjpute Strénstruction #3

Opcode| Decod Addregs Valuds Confpute St*re

Figure 4.6 Instruction Execution in a Pipeline

Figure 4.6shavs pipelining in operatoint1, T2, T3, etc., represent consewati‘ticks” of the system cloclat T=T1 the
CPU fetches the opcode byte for thstfinstruction.

At T=T2, the CPU bgins decoding the opcode for thesfiinstruction. In parallel, it fetches a block of bytes from the
prefetch queue in thesent the instruction has an operand. Since tiseifistruction no longer needs the opcode fetching cir
cuitry, the CPU instructs it to fetch the opcode of the second instruction in parallel with the decodingrsf it&rfiction.
Note there is a minor coidt here.The CPU is attempting to fetch thexhbyte from the prefetch queue for use as an operand,
at the same time it is fetching operand data from the prefetch queue for use as an opcad®. iHdo both at onc&du’ll
see the solution in aviemoments.

At T=T3 the CPU computes an operand address forrgtarfstruction, if ap. The CPU does nothing on thesfiinstrue
tion if it does not use an addressing mode requiring such computation. D8riteg CPU also decodes the opcode of the sec
ond instruction and fetchesyanecessary operand. Finally the CPU also fetches the opcode for the third instwitti@ach
adwancing tick of the clock, another step in tike@ution of each instruction in the pipeline completes, and the CPU fetches yet
another instruction from memory

This process continues until BtT6 the CPU completes th&ezution of the fist instruction, computes the result for the
second, etc., andhfilly, fetches the opcode for the sixth instruction in the pipelihe.important thing to see is that after
T=T5 the CPU completes an instruction @eny clock gcle. Once the CPUIIG the pipeline, it completes one instruction on
each gcle. Note that this is trueven if there are compteaddressing modes to be computed, memory operands to fetch, or
other operations which usgales on a non-pipelined procesdll you need to do is add more stages to the pipeline, and you
can still efectively process each instruction in one clogkle.

A bit earlier you sa& a small conftt in the pipeline aganization. At T=T2, for xkample, the CPU is attempting to
prefetch a block of bytes for an operand and at the same time it is trying to fetcktthpaoele byte. Until the CPU decodes
the frrst instruction it doeshknov howv mary operands the instruction requires nor does itkti®ir length. Hwever, the
CPU needs to kno this information to determine the length of the instruction so #knehat byte to fetch as the opcode of
the net instruction. So ho can the pipeline fetch an instruction opcode in parallel with an address operand?

One solution is to disal this. If an instruction as an address or constant operand, we simply delay the startxdf the ne
instruction (this is kmen as éhazad as you shall soon see). Unfortunatehary instructions hee these additional operands,
so this approach will ve a substantial gative impact on thexecution speed of the CPU.

The second solution is to thwga lot) more hardare at the problem. Operand and constant sizes usually come in one,
two, and fowbyte lengths.Therefore, if we actually fetch three bytes from mematypfsets one, three, and/d, begond the
current opcode we are decoding, werthat one of these bytes will probably contain the opcode of tkteimstruction.

Once we are through decoding the current instruction we kroav long it will be and, therefore, we kwahe ofset of the
next opcode.We can use a simple data selector circuit to choose which of the three opcode byaes ioause.

In actual practice, we kia to select the mé opcode byte from more than three candidates because 80x86 instructons tak
mary different lengths. & example, an instruction that mes a 32-bit constant to a memory location can be ten or more
bytes long.And there are instruction lengths for neangry value between one andtéien bytes. Also, some opcodes on the
80x86 are longer than one byte, so the CPU mag t@fetch multiple bytes in order to properly decode the current instruc
tion. Nevertheless, by thming more hardware at the problem we can decode the current opcode at the same tenfetsle’
ing the nat.

Page 260

4.8.2.2

Stalls in a Pipeline

Unfortunately the scenario presented in theyioes section is a little too simplisti€here are tw dravbacks to that sim
ple pipeline: ns contention among instructions and non-sequential progacatéon. Both problems may increase thera
age eecution time of the instructions in the pipeline.

Bus contentioroccurs wheneer an instruction needs to access some item in merRoryexample, if a "meo(reg,
mem);" instruction needs to store data in memory and a&('mem, rg);" instruction is reading data from memocgnten
tion for the address and datastmay deelop since the CPU will be trying to simultaneously fetch data and write data in mem
ory.

One simplistic vay to handle s contention is throughpapeline stall The CPU, whendced with contention for thaub,
gives priority to the instruction furthest along in the pipelirtee CPU suspends fetching opcodes until the current instruction
fetches (or stores) its operafthis causes the neinstruction in the pipeline to takwo cycles to &ecute rather than one (see
Figure 4.7.

T1 T2 T3 T4 TS T6 T7 T8 T9...

Opcode | Decode| Addreds Valuep fida] Store Instruction #1

Opcode | Decode| Addresp Values fidge| Store Ilnstruction #2
Opcode | Decode| Addregs Valties Compute Jtore

/ Instruction #3 appears

L . . to take two clock cycles
Pipeline stall occurs here because instruction #1 to execute because of

is attempting to store a value to memory at the the pipeline stall.
same time instruction #2 is attempting to read
a value from memagr

Figure 4.7 A Pipeline Stall

This exkample is It one case ofus contentionThere are manothers. Br example, as noted earljdetching instruction
operands requires access to the prefetch queue at the same time the CPU needs to fetch anepctuesi@ple scheme
above, it's unlikely that most instructionsauld execute at one clock per instruction (CPI).

Fortunately the intelligent use of a cache system can eliminatey pgeline stalls like the ones discussed &boThe
next section on caching will describeviaghis is done. Hwever, it is not alvays possible,ven with a cache, tovaid stalling
the pipelineWhat you cannotXiin hardvare, you can takcare of with softare. If you &oid using memoryyou can reduce
bus contention and your programs wileeute &ster Likewise, using shorter instructions also reduags dontention and the
possibility of a pipeline stall.

What happens when an instructimodifiesthe EIP rgister?This, of course, implies that thexteset of instructions to
execute do not immediately follothe instruction that modés EIP By the time the instruction

INZ Label ;

completes xecution (assuming the zero flag is clear so the branch is taken), we've already started five other instructions &
we’re only one clock cycle away from the completion of the first of these. Obviously, the CPU must not execute thase instrt
tions or it will compute improper results.

The only reasonable solution isftoshthe entire pipeline and gim fetching opcodes aweHowever, doing so causes a
severe ecution time penaltylt will take six clock gcles (the length of the pipeline in owaenples) before the reinstruc
tion completesxecution. Clearlyyou should @oid the use of instructions which interrupt the sequerntiet@ion of a pro
gram.This also shas another problem — pipeline lengtiihe longer the pipeline is, the more you can accomplishypé m
the system. Hwever, lengthening a pipeline may sl@ program if it jumps around quite a bit. Unfortungtgbu cannot con
trol the number of stages in the pipefifi&fou can, haever, control the number of transfer instructions which appear in your
programs. Obiously you should &ep these to a minimum in a pipelined system.

Page 261

4.8.3 Instruction Caches — Providing Multiple Paths to Memory

System designers can resminaly problems with bs contention through the intelligent use of the prefetch queue and the
cache memory subsysteifhey can design the prefetch queue tdfér up data from the instruction stream, andytban
design the cache with separate data and code areas. Both techniques can sggteon performance by eliminating some
conflcts for the lns.

The prefetch queue simply acts asuéfdr between the instruction stream in memory and the opcode fetching circuitry
The prefetch queuearks well when the CPU ish¢onstantly accessing memovyhen the CPU isih'accessing memarthe
BIU can fetch additional instruction opcodes for the prefetch qédas. the pipelined 80x86 CPUs are constantly accessing
memory since thefetch an opcode byte owery clock gcle. Therefore, the prefetch queue cannotetakhantage of an
“dead” kus g/cles to fetch additional opcode bytes — there &y “dead” us g/cles. Havever, the prefetch queue is still
valuable for a gry simple reason: the BIU fetches multiple bytes on each memory access and most instructions are shor
Without the prefetch queue, the systeould have to eplicitly fetch each opcodeyen if the BIU had already “accidentally”
fetched the opcode along with the ypoeis instructionWith the prefetch queue, Wever, the system will not refetch an
opcodes. It fetches them once angesahem for use by the opcode fetch unit.

For example, if you ®ecute tvo one-byte instructions in awpthe BIU can fetch both opcodes in one memagugle;
freeing up the bs for other operation$he CPU can use theseadlable lus g/cles to fetch additional opcodes or to deal with
other memory accesses.

Of course, not all instructions are one byte Iofte 80x86 has a lge number of dierent instruction sizes. If yoe
cute sgeral lage instructions in a W you're going to run sleer. Once agin we return to that same rutée fastest -
grams ae the ones whituse the shortest instructiorifyou can use shorter instructions to accomplish some task, do so.

Suppose, for a moment, that the CPU has $eparate memory spaces, one for instructions and one for data, each with
their ovn bus.This is called thédarvard Architecture since the fist such machine as hiilt at Hanard On a Harard machine
there would be no contention for theud. The BIU could continue to fetch opcodes on the instructisnvishile accessing
memory on the data/memoryd(sed-igure 4.9,

I/O Subystem

Data Memoy
Data/Memory Bus

Instruction Memoy

Instruction Bus

Figure 4.8 A Typical Harvard Machine

In the real world, there are ery fav true Hanard machinesThe «tra pins needed on the processor to suppartptwsi-
cally separateusses increase the cost of the processor and introdugeathen engineering problems. Wever, micropre

16.Note, by the way, that the number of stages in an instruction pipeline varies among CPUs.

Page 262

cessor designers Vediscaoered that thg can obtain manbenefis of the Harard architecture with ¥ of the disadantages
by using separate on-chip caches for data and instructiduanced CPUs use an internal Hand/ architecture and amter-
nalVon Neumann architecturigure 4.9shavs the structure of the 80x86 with separate data and instruction caches.

j s Data/Address
Busses

N

Instructian
Cache

Prefetd
Queue

Figure 4.9 Using Separate Code and Data Caches

Each path inside the CPU represents an independsnData can éwv on all paths concurrentlifhis means that the
prefetch queue can be pulling instruction opcodes from the instruction cache whiedinoa unit is writing data to the data
cache. Nw the BIU only fetches opcodes from memory whemét cannot locate them in the instruction cacheeige, the
data cacheuffers memoryThe CPU uses the data/address bnly when reading alue which is not in the cache or when
flushing data back to main memory

Although you cannot control the presence, size, or type of cache on a CPU, as an assembly language programmer
must be ware of hav the cache operates to write the best programs. On-afgibdee instruction caches are generally quite
small (8,192 bytes on the 80486, fammple).Therefore, the shorter your instructions, the more of them wifl the cache
(getting tired of “shorter instructions” yetA)he more instructions you ¥ in the cache, the less oftemsbcontention will
occur Likewise, using rgisters to hold temporary results places less strain on the data cache so ité@ekto fish data to
memory or retriee data from memory quite so oftésse the egisters wheever possible!

4.8.4

Hazards

There is another problem with using a pipeline: the data hatatts look at the xeecution profie for the follaving
instruction sequence:

nov(Sonevar, ebx);
nmov([ebx], eax);

When these twinstructions eecute, the pipeline will look somethingdilshavn in Figure 4.10

Page 263

T1 T2 T3 T4 TS5 T6 T7 ..

Opcode Operand | Address Load Compute Store I mov(SomeVar, ebx);
&SomeVar — x* rom SomeVar into ebx
Opcode |Operand | Address I Load I Load Store mov([ebx], eax);
ebx [ebx] into eax

Figure 4.10 A Data Hazard

Note a major problem herghese tw instructions fetch the 32 biakue whose address appears at locatiSo@edr in
memory But this sequence of instructions wiowork pioperly! Unfortunately the second instruction has already used the
value in EBX before therft instruction loads the contents of memory locatiGofe¥r (T4 & T6 in the diagram ahe).

CISC processors, lkthe 80x86, handle hazards automaticalliiowever, they will stall the pipeline to synchronize the
two instructionsThe actual xecution wuld look something li& shevn in Figure 4.11

T3 T4 T5 T6 T7
Address Load Computel Store I mov(SomeVar, ebx);
*kk from i
SomeVar into ebx
Operand | Address Delay Delay I Lod I Load Store mov([ebx], eax);

ebx [ebj into eax

Figure 4.11 How the 80x86 Handles a Data Hazard

By delaying the second instructiondwlock gcles, the CPU guarantees that the load instruction will load EAX from the
proper address. Unfortunatetiie second load instructionwmaxecutes in three clockscles rather than one. ever, requir
ing two extra clock gcles is better than producing incorrect resultstihately you can reduce the impact of hazardsxm e
cution speed within your softwe.

Note that the data hazard occurs when the source operand of one instrastiandestination operand of a\poes
instruction.There is nothing wrong with loading EBX froBome¥r and then loading EAX frorfEBX], unless thg occur
one right after the otheBuppose the code sequence had been:

mov(2000, ecx);
nov(SoneVar, ebx);
nmov([ebx], eax);

We could reduce thefett of the hazard thakists in this code sequence by simparranging the instructiond.et’s do
that and obtain the folleing:

nov(SoneVar, ebx);
nov(2000, ecx);
mov([ebx], eax);

Now the "mov([ebx], eax);" instruction requires only one additional clock cycle rather than two. By inserting yet anothe
instruction between the "mov(SomeVar, ebx);" and the "mov([ebx], eax);" instructions you can eliminate the effects of tt
hazard altogeth&?.

17.Some RISC chips do not. If you tried this sequence on certain RISC chips you would get an incorrect answer.

Page 264

On a pipelined processdhe order of instructions in a program may dramaticafgcathe performance of that program.
Always look for possible hazards in your instruction sequences. Eliminate thervevlparssible by rearranging the instruc
tions.

In addition to data hazards, there are atmutol hazads We've actually discussed control hazards alreatifijough we
did not refer to them by that nam&.control hazard occurs wherex the CPU branches to somewlecation in memory and
the CPU has todkh the follaving instructions follaving the branch that are imrous stages ofxecution.

4.8.5 Superscalar Operation— Executing Instructions in Parallel

With the pipelined architecture we could askieat best,»ecution times of on€PI (clock per instruction). Is it possible
to execute instructionsaster than thisAt first glance you might think, “Of course not, we can do at most one operation per
clock g/cle. So there is noay we canxecute more than one instruction per clogkle” Keep in mind havever, that a single
instruction isnota single operation. In thex@mples presented earlier each instruction hantaktween six and eight opera
tions to complete. By adding\an or eight separate units to the CPU, we cod&t®fely execute these eight operations in
one clock gcle, yielding one CPI. If we add more haate and xecute, sayl6 operations at once, can we aechi@.5 CPI?
The answer is a quakiil “yes: A CPU including this additional hardwe is asupescalar CPUand can xecute more than
one instruction during a single clockate. The 80x86 &mily began supporting superscalateeution with the introduction of
the Pentium processor

A superscalar CPU has, essentiadligeral execution units (seBigure 4.12. If it encounters tw or more instructions in
the instruction stream (i.e., the prefetch queue) whichxacuée independentljt will do so.

Superscalar CPU

E u| |E U DC B
X n X n aa
e i e i t ﬁ . | Data/Address
c t c t a o U Busses
u u
t # t #
i 2 i 1
o} o} —— -
n n Instruction

Cache

||
Prefetch
Queue

Figure 4.12 A CPU that Supports Superscalar Operation

There are a couple of aavtages to going superscal@uppose you ka the follaving instructions in the instruction
stream:

nov(1000, eax);
mov(2000, ebx);

18.0f course, any instruction you insert at this point must nof modify the values in the eax and ebx registers. Also note that the
examples in this section are contrived to demonstrate pipeline stalls. Actual 80x86 CPUs have additional circuitry to help
reduce the effect of pipeline stalls on the execution time.

Page 265

If there are no other problems or hazards in the surrounding code, and all six bytes foradhestuetions are currently in
the prefetch queue, there is no reason why the CPU cannot fetch and execute both instructions in parallel. All it takes is e
silicon on the CPU chip to implement two execution units.

Besides speeding up independent instructions, a superscalar CPU can also speed up program sequences that have h:
One limitation of superscalar CPU is that once a hazard occurs, the offending instruction will completely stall the pipelin
Every instruction which follows will also have to wait for the CPU to synchronize the execution of the instructions. With ¢
superscalar CPU, however, instructions following the hazard may continue execution through the pipeline as long as they d
have hazards of their own. This alleviates (though does not eliminate) some of the need for careful instruction scheduling.

As an assembly language programmer, the way you write software for a superscalar CPU can dramatically affect its
formance. First and foremost is that rule you're probably sick of by negvshort instructiong he shorter your instructions
are, the more instructions the CPU can fetch in a single operation and, therefore, theeafyateeli€PU will @ecute aster
than one CPI. Most superscalar CPUs do not completely duplicatesthigtion unit.There might be multipl&LUs, floating
point units, etcThis means that certain instruction sequences xecuee ery quickly while others wn't. You have to study
the exact composition of your CPU to decide which instruction sequences produce the best performance.

4.8.6

Out of Order Execution

In a standard superscalar CPU it is the progransnfer’compilers) responsibility to schedule (arrange) the instructions
to avoid hazards and pipeline stallsarfeier CPUs can actually resesome of thistrden and impnee performance by auto
matically rescheduling instructions while the programcetes. To understand o this is possible, consider the fallimg
instruction sequence:

nov(SoneVar, ebx);
mov([ebx], eax);
nov(2000, ecx);

A data hazard»asts between therfit and second instructions &eo The second instruction must delay until thrstfi
instruction completeskecution. This introduces a pipeline stall and increases the running time of the profypitally, the
stall afects &ery instruction that follws. Hawever, note that the third instructioniecution does not depend on the result
from either of the fst two instructions.Therefore, there is no reason to stall tkecation of the "me(2000, ecx);" instruc
tion. It may continuex@cuting while the second instructiomits for the fist to complete This technique, appearing in later
members of the Pentium line, is called "out of ordercation" because the CPU completes ttecation of some instruction
prior to the &ecution of preious instructions appearing in the code stream.

Clearly, the CPU may only>@cute instruction out of sequence if doing so produxastly the same results as in-order
execution. While there a lots of little technical issues that s#ks problem a little more dii€ult than it seems, with enough
engineering dort it is quite possible to implement this feature.

Although you might think that thisxea efort is not worth it (why not male it the programmes’or compilers responsi
bility to schedule the instructions) there are some situations where out of xedeti@n will improve performance that static
scheduling could not handle.

4.8.7

Register Renaming

One problem that hampers théeefiveness of superscalar operation on the 80x86 CPU is the 80xBied number of
general purpose gésters. Suppose, forample, that the CPU had four féifent pipelines and, thereforeasvcapable ofxe-
cuting four instructions simultaneoushctually achieing four instructions per clockycle would be \ery difiicult because
most instructions (that caxecute simultaneously with other instructions) operate orrdgister operands. df four instrue
tions to eecute concurrent)yyou'd need four separate destinatiogisters and four sourcegisters (and the twsets of rg-
isters must be disjoint, that is, a destinatiagister for one instruction cannot be the source of another). CPUs\kdbtsof
registers can handle this task quite eadilit the limited rgister set of the 80x86 me&k this dificult. Fortunately there is a
way to alleriate part of the problem: througégister enaming

Page 266

Register renaming is a sngakvay to give a CPU more ggsters than it actually has. Programmers will noehdirect
access to thesetea ragisters, it the CPU can use these additiongister to preent hazards in certain casesr Bxample,
consider the follwing short instruction sequence:

mov(0, eax);

nov(eax, i);
nov(50, eax);
nov(eax, |);

Clearly a data hazardists between thert and second instructions andglikse, a data hazardists between the third
and fourth instructions in this sequence. Out of orgecwion in a superscalar CPlWwd normally allev the frst and third
instructions to xecute concurrently and then the second and fourth instructions coulcedsieeconcurrently Hovever, a
data hazard, of sorts, alsgists between therft and third instructions since thase the same gester The programmer
could hae easily soled this problem by using a fifent rgister (say EBX) for the third and fourth instructions. weeer,
let's assume that the programmeaswunable to do this because the othgisters are all holding importanahues. Is this
sequence doomed tgexuting in four gcles on a superscalar CPU that should only requin@ tw

One adanced trick a CPU can empl@ to create a bank ofgisters for each of the general purpoggsters on the CPU.
That is, rather than kiang a single EAX rgister the CPU could support an array of EAXjisters; les call these gsters
EAX][0], EAX[1], EAX[2], etc. Similarly, you could hae an array of each of thegisters, so we could also J&a
EBX][0]..EBX[n], ECX|[0]..ECX]|n], etc. Nav the instruction set does notvgithe programmer the ability to select one of
these specifi rggister array elements for avgh instruction, bt the CPU can automatically choose dedént rgjister array
element if doing so auld not change theverall computation and doing so could speed upxkelgion of the program. oF
example, consider the folldng sequence (with gister array elements automatically chosen by the CPU):

mov(0, eax[0]);

nov(eax[0], i);
nov(50, eax[1]);
nov(eax[1], |);

Since EAX[0] and EAX[1] are diérent registers, the CPU can execute the first and third instructions concurrently. Likewise,
the CPU can execute the second and fourth instructions concurrently.

The code above provides an exampleegfster ienaming Dynamically the CPU automatically selects one ofesall
different elements from agister array in order to prent data hazardsAlthough this is a simplexample, and dferent
CPUs implement gister renaming in mandifferent ways, this gample does demonstratevhthe CPU can impre perfor
mance in certain instances through the use of this technique.

4.8.8

Very Long Instruction Word Architecture (VLIW)

Superscalar operation attempts to schedule, in eaejuthe recution of multiple instructions simultaneoushmnother
technique that Intel is using in their IA-64 architecture is the usergfleng instruction wrds, o?VLIW. In aVLIW com-
puter system, the CPU fetches ay&ablock of bytes (41 in the case of the IA-64 Itanium CPU) and decodegsemutes this
block all at once.This block of bytes usually containsdawer more instructions (three in the case of the IA-84)IW com-
puting requires the programmer or compiler to properly schedule the instructions in each block (so there are no hazard:
other conficts), tut if properly scheduled, the CPU cateeute three or more instructions per clogkle.

The Intel IA-64Architecture is not the only computer system to emalLIW architecture. Transmeta Crusoe pro
cessor &mily also uses "WLIW architecture. The Crusoe processor isfdifent than the IA-64 architecture inaofs it does
not support natie execution of 1A-32 instructions. Instead, the Crusoe processor dynamically translates 80x86 instructions t
Crusoes VLIW instructions. This "code morphing” technology results in code running about 50%eiskhan natie code,
though the Crusoe processor has otheaatdhges.

We will not consideWLIW computing ary further since the 1A-32 architecture does not support it. 8ep khis architec
tural adance in mind if you mee tovards the IA-64dmily or the Crusoeaimily.

Page 267

4.8.9 Parallel Processing

Most of the techniques for imprimg CPU performance via architectural adees imolve the parallel (eerlapped) re-
cution of instructions. Most of the techniques of this chapter are transparent to the progréinatnist the programmer does
not hare to do agthing special to tak minimal adantage of the parallel operation of pipelines and superscalar operations.
True, if programmers arevare of the underlying architecture yhean write code that runsen faster but these architectural
advances often impre performanceven if programmers do not write special code te tathantage of them.

The only problem with this approach (attempting to dynamically parallelize an inherently sequential program) is that the
is only so much you can do to parallelize a program that requires sequeattigi@n for proper operation (whichvars most
programs). To truly produce a parallel program, the programmer must sgahifivrite parallel code; of course, this does
require architectural support from the CPThis section and the retouches on the types of support a CPU caxigeo

Typical CPUs use what is kwo as theSISD modelSingle Instruction, Single Datal' his means that the CPWexutes
one instruction at a time that operates on a single piece oPdateo common parallel models are the so-caié®lD (Sin
gle Instruction, Multiple DataandMIMD (Multiple Instruction, Multiple Datamodels.As it turns out, x86 systems can sup
port both of these parallexecution models.

In the SIMD model, the CPWkecutes a single instruction stream, just like standard SISD model. \aver, the CPU
executes the sped#il operation on multiple pieces of data concurrently rather than a single data alnjexantple, consider
the 80x86ADD instruction. This is a SISD instruction that operates on (that is, produces) a single piece of data; true, th
instruction fetchesalues from tw source operands and stores a sum into a destination opatahd bnd result is that the
ADD instruction will only produce a single sumin SIMD version ofADD, on the other hand, auld compute the sum of
several \alues simultaneouslyrhe Pentium 1115 MMX and SIMD instructionxensions operate irxactly this aishion. With
an MMX instruction, for gample, you can add up to eight separate pairslakg with the xecution of a single instruction.
The aptly named SIMD instructioxtensions operate in a similashion.

Note that SIMD instructions are only useful in specialized situations. Unless yeoamalgorithm that can taladwan
tage of SIMD instructions, tlygre not that useful. drtunately high-speed 3-D graphics and multimedia applications lenefi
greatly from these SIMD (and MMX) instructions, so their inclusion in the 80x86 Cfets af huge performance boost for
these important applications.

The MIMD model uses multiple instructions, operating on multiple pieces of data (usually one instruction per data objec
though one of these instructions could also operate on multiple data ifE#mese multiple instructionxecute independently
of one anotherTherefore, it5 very rare that a single program ,(arore specitially, a single thread ofxecution) would use
the MIMD model. Havever, if you have a multiprogramming @ironment with multiple programs attempting teeeute con
currently in memorythe MIMD model does all® each of those programs tgegute their wn code stream concurrently
This type of parallel system is usually called a multiprocessor system. Multiprocessor systems are the subjext sé¢he ne
tion.

The common computation models are SISD, SIMD, and MIMD. Ifrgombndering if there is a MISD model (Multiple
Instruction, Single Data) the answer is no. Such an architecture taadly male sense.

4.8.10 Multiprocessing

Pipelining, superscalar operation, out of ordexceition, and/LIW design are techniques CPU designers use in order to
execute seeral operations in parallelThese techniques suppdirtie-grained palstllelism20 and are useful for speeding up
adjacent instructions in a computer system. If adding more functional units increases parallelism (and, therefore,lspeeds uy
system), you might ander what wuld happen if you added 6aCPUs to the systenT.his technique, knen asmultiprocess
ing, can impree system performance, though not as uniformly as other techniggsiemted in the préous section, a mukHi
processor system uses the MIMD parali@aition model.

The techniques weé considered to this point déméquire special programming to realize a performance increase,
if you do pay attention you will get better performancet o special programming is necessary tovatgithese features.
Multiprocessing, on the other hand, doé$®lp a program one bit unless that prograas wpecifially written to use muki

19.We will ignore the parallelism provided by pipelining and superscalar operation in this discussion.
20.For our purposes, fine-grained parallelism means that we are executing adjacent program instructions in parallel.

Page 268

processor (or runs under an O/S speadify written to support multiprocessing). If youilol a system with tew CPUs, those
CPUs cannot trade foéxecuting alternate instructions within a program. dctfit is \ery expensve (timavise) to switch the
execution of a program from one processor to anotfieerefore, multiprocessor systems are really orfgcébe in a system
that execute multiple programs concurrently (i.e., a multitasking sygﬂerﬁ)) differentiate this type of parallelism from that
afforded by pipelining and superscalar operation]iveall this kind of parallelisntoarse-gained paeallelism

Adding multiple processors to a system is not as simple as wiring the processor to the mothArb@apioblem with
multiple processors is tlmde coheencyproblem. To understand this problem, consideotseparate programs running on
separate processors in a multiprocessor system. Suppose also thatdhpgeedasor communicate with one another by writ
ing to a block of shared phical memory Unfortunatelywhen CPU #1 writes to this block of addresses the CPU caches the
data up and might not actually write the data tgspdal memory for some time. Simultaneous?U #2 might be attempting
to read this block of shared memomyt vinds up reading the data out of its local cache rather than the data that CPU #1 wrote
to the block of shared memory (assuming the data made it out of CRUb&dl cache). In order for theseotfunctions to
operate properjythe two CPUS must communicate writes to common memory addresses in cache between #sembislv
is a \ery comple and irvolved process.

Currently the Pentium 1ll and IV processors directly support cache updates betwe&@Ptys in a system. Intel also
builds a more xpensve processothe XEON, that supports more tharot@PUs in a system. Ma@ver, one area where the
RISC CPUs hee a big adantage wer Intel is in the support for multiple processors in a sysiathile Intel systems reach a
point of diminishing returns at about 16 processors, S&REPand other RISC processors easily support 64-CPU systems
(with more arwing, it seems,\&ery day). This is wly large databases and derweb sersr systems tend to usgpensve
UNIX-based RISC systems rather than x86 systems.

Putting It All Together

The performance of modern CPUs is intrinsically tied to the architecture of that CRi.th@\past half century there
have been manmajor adances in CPU design thatveadramatically impreed preformanceAlthough the clock frequegc
has impreed by wer four orders of magnitude during this time period, other irgnents hee added one or tworders of
magnitude impreement as well. Gar the 80x8& lifetime, performance has imwex 10,000-fold.

Unfortunately the 80x86d&mily has just about pushed the limits of what it can aehy etending the architecture. Per
haps another order of manitude is possiblg,libtel is reaching the point of diminishing returns.vidg realized this, Intel
has chosen to implement amnarchitecture usingLIW for their 1A-64 family. Only time will prove whether their approach
is the correct one,ub most people bele that the 1A-32 has reached the end of its lifetime. On the other hand, pe@ple ha
been announcing the death of the 1A-32 for the past decade, lseagaivhat happens wo

21.Technically, it only needs to execute multiple threads concurrently, but we 11 ignore this distinction here since the technical
distinction between threads and programs/processes is beyond the scope of this chapter.

Page 269

	CPU Architecture Chapter Four
	4.1 Chapter Overview
	4.2 The History of the 80x86 CPU Family
	4.3 A History of Software Development for the x86
	4.4 Basic CPU Design
	4.5 Decoding and Executing Instructions: Random Logic Versus Microcode
	4.6 RISC vs. CISC vs. VLIW
	4.7 Instruction Execution, Step-By-Step
	4.8 Parallelism - the Key to Faster Processors
	4.8.1 The Prefetch Queue - Using Unused Bus Cycles
	4.8.2 Pipelining - Overlapping the Execution of Multiple Instructions
	4.8.2.1 A Typical Pipeline
	4.8.2.2 Stalls in a Pipeline

	4.8.3 Instruction Caches - Providing Multiple Paths to Memory
	4.8.4 Hazards
	4.8.5 Superscalar Operation- Executing Instructions in Parallel
	4.8.6 Out of Order Execution
	4.8.7 Register Renaming
	4.8.8 Very Long Instruction Word Architecture (VLIW)
	4.8.9 Parallel Processing
	4.8.10 Multiprocessing

	4.9 Putting It All Together

