Arrays

Arrays Chapter Four

4.1 Chapter Overview

This chapter discusseswdo declare and use arrays in your assembly language progtass prob
ably the most important chapter on composite data structures indthigkten if you elect to skip the chap
ters on Strings, Character Sets, Records, and DatéSraad, be sure you read and understand the material
in this chapter Much of the rest of thexttdepends on your understanding of this material.

4.2 Arrays

Along with strings, arrays are probably the most commonly used composite datéetypest bgin-
ning programmers lva a \ery weak understanding of Wwoarrays operate and their associatditieho
trade-ofs. It's surprising he mary novice (and gen adanced!) programmers viearrays from a com
pletely diferent perspecte once thg learn hev to deal with arrays at the machinede

Abstractly an array is an aggyate data type whose members (elements) are all the same type. Selec
tion of a member from the array is by an gueindetl. Different indices select unique elements of the array
This text assumes that the iger indices are contiguous (though this is by no means requitet)is, if the
numberxis a\alid index into the array anglis also a glid index, with x <y, then alli such thak <i <y are
valid indices into the array

Whenever you apply the indéng operator to an arrathe result is the spedfarray element chosen by
that inde. For example,A[i] chooses thé" element from array\. Note that there is no formal requirement
that element be alywhere near element 1 in memoryAs long asA[i] always refers to the same memory
location andA[i+ 1] always refers to its corresponding location (and thee dave diferent), the deffiition of
an array is satisfd.

In this text, we will assume that array elements ogcapntiguous locations in memo#n array with
five elements will appear in memory aswhon Figure 4.1

A: array [0..4] ofsometype,
A[0] A[1] A[2] A[3] A4

Low memory \ High memory
addresses Base address of A addresses

Figure 4.1 Array Layout in Memory

Thebase address of an array is the address of thestfielement on the array anavals appears in the
lowest memory locatioriThe second array element directly falo the fist in memorythe third element
follows the second, etc. Note that there is no requirement that the indices start Btgenoay start with
ary number as long as there contiguous. Hwever, for the purposes of discussionsigasier to discuss
accessing array elements if thestfindex is zero.This text generally bgins most arrays at indeero unless

1. Or some value whose underlying representation is integer, such as character, enumerated, and boolean types.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page463

Chapter Four Volume Three

there is a good reason to do otherwisewel@r, this is for consisteryconly. There is no dicieng/ benefi
one way or another to starting the array iRdg zero.

To access an element of an ayyamyu need a function that translates an arrayxita¢he address of the
indexed element. &t a single dimension arrathis function is ery simple. It is

El enent _Address = Base_Address + ((Index - Initial_Index) * E enent_Size)

wherelnitial_Index is the value of the first index in the array (which you can ignore if zero) and the value
Element_Szeis the size, in bytes, of an individual element of the array.

4.3

Declaring Arrays in Your HLA Programs

Before you access elements of an gryay need to set aside storage for that afagtunately array
declarations bild on the declarations yoteé seen thusaf. To allocaten elements in an arrayou would use
a declaration lik the follaving in one of the ariable declaration sections:

ArrayNane: baset ype[n];
ArrayName is the name of the array varialsladbasetype is the type of an element of that array. This sets
aside storage for the array. To obtain the base address of the array, fusayidame.

The “[n]” suffix tells HLA to duplicate the objecttimes. Naov let’s look at some spedifiexamples:
static

Char Array: char[128]; /1 Character array with el enents 0..127.

IntArray: integer[8]; // “integer” array with elenents 0..7.

Byt eArray: byte[10]; /!l Array of bytes with elenents 0..9.
PtrArray: dword[4]; /1 Array of double words with elenents O..3.

The second>ample, of course, assumes that you have definddtdger data type in the TYPE section of
the program.

These examples all allocate storage for uninitialized arrays. You may also specify that the elements of
the arrays be initialized to a single value using declarations like the following in the STATIC and REA-
DONLY sections:

Real Array: real32[8 :=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];
IntegerAry: integer[8] :=[1, 1, 1 1, 1, 1, 117;

L

These defiitions both create arrays with eight elements. The first definition initializes each four-byte real
value to 1.0, the second declaration initializes each integer element to one. Note that the number of con
stants within the square brackets must match the size you declare for the array.

This initialization mechanism is fine if you want each element of the array to have the same value. What
if you want to initialize each element of the array with a (possibly) different value? No sweat, just specify a
different set of values in the list surrounded by the square brackets in the example above:

Real Array: real32[8 :=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
IntegerAry: integer[8] :=[1, 2, 3, 4, 5, 6, 7, 81];

4.4

HLA Array Constants

The last fev examples in the last section demonstrate the use of HLA array constamtsLA array
constant is nothing more than a list elues (all the same time) surrounded by a pair of ktackhe fol
lowing are all lgal array constants:

[1, 2, 3, 4]
[2.0, 3.14159, 1.0, 0.5]

Page464 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

[&, "b, ‘¢, *d]
[“HE||O", “V\Drld", uofu, uassenbl yu]

(note that this last array constant contains four double wointers to the four HLA strings appearing €lse
where in memory.)

As you saw in the previous section you can use array constants in the STATIC and READONLY sec-
tions to provide initial values for array variables. Of course, the number of comma separated items in an
array constant must exactly match the number of array elements in the variable declaration. Likewise, the
type of the array constant’s elements must match the type of the elements in the array variable.

Using array constants to initialize small arrays is very convenient. Of course, if your array has several
thousand elements in it, typing them all in will not be very much fun. Most arrays initialized this way have
no more than a couple hundred entries, and generally far less than 100. It is reasonable to use an array con-
stant to initialize such variables. However, at some point it will become far too tedious and error-prone to
initialize arrays in this fashion. It is doubtful, for example, that you would want to manually initialize an
array with 1,000 different elements using an array corfstambwever, if you want to initialize all the ele
ments of an array with the samaie, HLA does pndde a special array constant syntax for doing so.- Con
sider the folleving declaration:

Bi gArray: uns32[1000] := 1000 dup [1];
This declaration creates a 1,000 elementgmtearray initializing each element of the array with the
value one.The “1000 dup [1]” #pression tells HLA to create an array constant by duplicating the single

value “[1]” one thousand time&/ou can gen use the DUP operator to duplicate a serieslokeg (rather
than a single alue) as the follwing example indicates:

Sixteenlnts: int32[16] := 4 dup [1,2,3,4];
This example initializesSxteenints with four copies of the sequence “1, 2, 3, 4” yielding a total of sixteen
different integers (i.e., 1,2, 3,4,1,2,3,4,1,2,3,4,1,2,3,4).

You will see some more possibilities with the DUP operator when looking at multidimensional arrays a
little later.

4.5

Accessing Elements of a Single Dimension Array

To access an element of a zero-based aymaycan use the simpéfil formula:
Element_Address = Base_Address + inti&lement_Size

For theBase Address entry you can use the name of the array (since HLA associates the address of the
first element of an array with the name of that arfEyg.Element_Sze entry is the number of bytes for each
array element. If the object is an array of bytesHlement_Szefield is one (resulting in aevy simple com
putation). If each element of the array is @rdv(or other tw-byte type) thertlement_Sze is two. And so
on.To access an element of tleteenints array in the pnaous section, you use the formula:

E enment _Address = Sixteenlnts + i ndex*4

The 80x86 code eqalent to the statement “EAX:=SixteenInts[index]” is

nov(index, ebx);
shl (2, ebx); /1 Sneaky way to conpute 4*ebx
mov(Sixteenlnts[ebx], eax);

There are tw important things to notice here. First of all, this code uses the SHL instruction rather than
the INTMUL instruction to computd*index. The main reason for choosing SHL is that &swmore df-
cient. It turns out that SHL islat faster than INTMUL on manprocessors.

2. In the chapter on Macros and the HLA Run-Time Language you will learn how to automate the initialization of large array
objects. So initializing large objects is not completely out of the question.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page465

Chapter Four Volume Three

The second thing to note about this instruction sequence is that it dogplinitlyecompute the sum of
the base address plus the ixdienes tw. Instead, it relies on the indel addressing mode to implicitly
compute this sumThe instruction “mu(Sixteenints[ebx], eax);” loads EAX from locati&@xteen-
IntstEBX which is the base address pilodex*4 (since EBX containgndex*4). Sure, you could he used

lea(eax, Sixteenlnts);

nov(index, ebx);

shl (2, ebx); /1 Sneaky way to conpute 4*ebx

add(eax, ebx); // Conput e base address plus index*4
nmov(Sixteenlnts[ebx], eax);

in place of the prdous sequence, but why use five instructions where three will do the same job? This is a
good example of why you should know your addressing modes inside and out. Choosing the proper address
ing mode can reduce the size of your program, thereby speeding it up.

Of course, as long as we're discussing efficiency improvements, it's worth pointing out that the 80x86
scaled indexed addressing modes let you automatically multiply an index by one, two, four, or eight. Since
this current example multiplies the index by four, we can simplify the code even farther by using the scaled
indexed addressing mode:

nov(index, ebx);
nov(Sixteenlnts[ebx*4], eax);

Note, havever, that if you need to multiply by some constant other than one, two, four, or eight, then you
cannot use the scaled indexed addressing modes. Similarly, if you need to multiply by some element size
that is not a power of two, you will not be able to use the SHL instruction to multiply the index by-the ele
ment size; instead, you will have to use INTMUL or some other instruction sequence to do the multiplica
tion.

The indexed addressing mode on the 80x86 is a natural for accessing elements of a single dimension
array. Indeed, it's syntax even suggests an array access. The only thing to keep in mind is that you must
remember to multiply the index by the size of an element. Failure to do so will produce incorrect results.

Before moving on to multidimensional arrays, a couple of additional points about addressing modes and
arrays are in order. The above sequences work great if you only access a single elemenSixtsentines
array However, if you access seral diferent elements from the array within a short section of code, and
you can dbrd to dedicate anothergister to the operation, you can certainly shorten your code and, per
haps, speed it up as well. Consider the falhy code sequence:

lea(ebx, Sixteenlints);
nov(index, esi);
nov([ebx+esi*4], eax);

Now EBX contains the base address and ESI contairisdbevalue. Of course, this hardly appears to
be a good trade-bfHowever, when accessing additional elementSixteenints you do not hee to reload
EBX with the base address S@ikteenints for the net accessThe following sequence is a little shorter than
the comparable sequence that dagsiald the base address into EBX:

lea(ebx, Sixteenlints);
nov(index, esi);
nov([ebx+esi*4], eax);

/1 Assunption: EBX is left al one
. /1 through this code.
nov(index2, esi);

nov([ebx+esi*4], eax);

This code is slightly shorter because the Vin@bx+esi*4], eax);” instruction is slightly shorter than
the “mov(SixteenInts[ebx*4], eax);” instruction. Of course the more access8stéenints you male
without reloading EBX, the greater younsays will be.Tricky little code sequences such as this one some
times pay df handsomelyHowever, the saings depend entirely on which processor yeuwising. Code

Page466 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

sequences that ruadter on one 80x86 CPU might actually dower on a diferent CPU. Unfortunatelyf
speed is what yore after there are no hard ardtfrules. Indct, it is \ery difficult to predict the speed of
most instructions on the 80x86 CPUs.

4.5.1 Sorting an Array of Values

Almost every textbook on this planet gés an rample of a sort when introducing arrays. Sincey®u’
probably seen Wato do a sort in high \el languages alreadiy’'s probably instructie to tale a quick look
at a sort in HLA. The xample code in this section will use ariant of the Bubble Sort which is great for
short lists of data and lists that are nearly sortethorrible for just aboutwerything elsd

const
Nuntl enent s: = 16;

static
Dat aToSort: uns32[NunkE erments | :=
[
16, 14,
4, 10,
15, 12,
11, 13

© Ul W
o N ©ON

I

NoSwap: bool ean;

// Bubble sort for the DataToSort array:
r epeat

mov(true, NoSwap);
for(nov(O, ebx); ebx <= NuntEl erments-2; inc(ebx)) do

nov(DataToSort[ebx*4], eax);
if(eax > DataToSort[ebx*4 + 4]) then

nov(DataToSort[ebx*4 + 4], ecx);

nov(ecx, DataToSort[ebx*4]);

nov(eax, DataToSort[ebx*4 + 4]); // Note: EAX contains
nov(fal se, NoSwap); /1 DataToSort[ebx*4]

endif;
endf or;
until (NoSwap);

The hubble sort works by comparing adjacent elements in an array. The interesting thing to note in this code
fragment is how it compares adjacent elements. You will note that the IF statement compares EAX (which
contains DataToSort[ebx*4]) against DataToSort[EBX*4 + 4]. Since each element of this array is four bytes

(uns32), the index [EBX*4 + 4] references the next element beyond [EBX*4].

3. Fear not, you'll see some better sorting algorithms in the chapter on procedures and recursion.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page467

Chapter Four Volume Three

As is typical for a bbble sort, this algorithm terminates if the innermost loop completes withapt sw
ping ary data. If the data is already presorted, then thble sort is gry eficient, making only one pass
over the data. Unfortunatelif the data is not sorted Qrst case, if the data is sorted inaese order), then
this algorithm is etremely ineficient. Indeed, although it is possible to modify the codeebo that, on
the arerage, it runs about twice aassf, such optimizations areagted on such a poor algorithm. wéwer,
the Bubble Sort isery easy to implement and understand (which ig introductory te&ts continue to use it
in examples). Brtunately you will learn about more adxced sorts later in thisxte so you van't be stuck
with it for very long.

4.6

Multidimensional Arrays

The 80x86 hardare can easily handle single dimension arrays. Unfortundtedye is no magic
addressing mode that lets you easily access elements of multidimensionalTdraiygoing to tak some
work and lots of instructions.

Before discussing woto declare or access multidimensional arrayspitldl be a good idea tagfire
out haw to implement them in memaryhe first problem is to §jure out har to store a multi-dimensional
object into a one-dimensional memory space.

Consider for a moment aaBcal array of the formAtarray[0..3,0..3] of char;"This array contains 16
bytes oganized as four mgs of four characters. Somehgou've got to drev a correspondence with each of
the 16 bytes in this array and 16 contiguous bytes in main meRiguye 4.2shavs one vay to do this:

Memory

01 2 3

WPNEFO

Figure 4.2 Mapping a 4x4 Array to Sequential Memory Locations

The actual mapping is not important as long as tfangs occur: (1) each element maps to a unique
memory location (that is, no twentries in the array occyphe same memory locations) and (2) the map
ping is consisteniThat is, a gien element in the arrayvedys maps to the same memory location. So what
you really need is a function with twnput parameters (woand column) that produces arfiset into a lin
ear array of sixteen memory locations.

Now ary function that satiséis the abee constraints will wrk fine. Indeed, you could randomly choose
a mapping as long as itas unique. Hwever, what you really \ant is a mapping that isfifient to compute
at run time and wrks for ay size array (not just 4x4 owen limited to tvo dimensions)While there are a

Page468 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

large number of possible functions thattfiis bill, there are tev functions in particular that most program
mers and most highvel languages useow major ordering andcolumn major ordering.

4.6.1 Row Major Ordering

Row major ordering assigns successelements, mang across the ms and then den the columns,
to successe memory locations'his mapping is demonstratedrigure 4.3

Memory

A:array [0..3,0..3] of char,

01 2 3

O|1]2(3
4 [5]6|7
8 |9 |10 |11
12113 |14 |15

[
o1
2
w
W

=y
n
=
w
N

[y
w
=
w
[N

[Eryre
=N

22

Nw [
NwoRNW

ey
o
=
N
N

WN O

OCFRPNWHMOGOON © O
=
Ke]

Figure 4.3 Row Major Array Element Ordering

Row major ordering is the method emyéal by most high kel programming languages includingsP
cal, C/C++, Jea,Ada, Modula-2, etc. It isery easy to implement and easy to use in machine langliage.
corversion from a tw-dimensional structure to a linear array éyvintuitive. You start with the fst rov
(row number zero) and then concatenate the secontbriis endYou then concatenate the thirdwto the
end of the list, then the fourthwopetc. (seé-igure 4.3.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page469

Chapter Four Volume Three

Low Addresses High Addresses

ol1]2 3||4 5| 6 7||8 9 |10 11||121314 15
* A J'y Iy

Of(1(2(3
4 |5]16]|7
8 [9 (10 |11
12113 |14 |15

Figure 4.4 Another View of Row-Major Ordering for a 4x4 Array

For those who lik to think in terms of program code, the faling nested Bscal loop also demen
strates hav row major ordering \@rks:
index := 0;
for colindex := 0 to 3 do

for romindex := 0 to 3 do

begi n
nmenory [index] := rowrgj or [colindex][row ndex];
index := index + 1;

end;

The important thing to note from this code, that appligartdess of the number of dimensions, is that
the rightmost indeincreases thebtestThat is, as you allocate successmemory locations you increment
the rightmost inde until you reach the end of the currenivrdJpon reaching the end, you reset the xnde
back to the bginning of the rav and increment the Resuccessie inde by one (that is, me@ davn to the
next row.). This works equally well for anp number of dimensioflsThe following Pascal sgment demon
strates rav major oganization for a 4x4x4 array:
index := 0;
for depthindex := 0 to 3 do

for colindex := 0 to 3 do

for rowindex := 0 to 3 do begin

nenory [index] := rowraj or [depthindex][colindex][row ndex];
index := index + 1;
end;

The actual function that ceerts a list of inde values into an d$et doesn’involve loops or much in
the way of fang/ computations. Indeed, sta slight modifiation of the formula for computing the address of
an element of a single dimension arrélye formula to compute thefsét for a tvo-dimension rv major
ordered array declared iragtal asA:array[0..3,0..3]of integer” is

B ement _Address = Base_Address + (colindex * row size + rowi ndex) * H enent_ S ze
As usual,Base Address is the address of therdt element of the arrayA[0][0] in this case) and

Element_Szeis the size of an indidual element of the arrayn bytes Colindex is the leftmost inde rowin-
dexis the rightmost indeinto the arrayRow_sizeis the number of elements in onevrof the array (foyrin

4. By the way, the number of dimensions of an array eritg

Page470 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

this case, since eachwadnas four elementshssuming Element_Sze is one, this formula computes the-fol
lowing offsets from the base address:

Col umm Row O fset into Array
i ndex I ndex

0 0 0
0 1 1
0 2 2
0 3 3
1 0 4
1 1 5
1 2 6
1 3 7
2 0 8
2 1 9
2 2 10
2 3 11
3 0 12
3 1 13
3 2 14
3 3 15

For a three-dimensional arrahe formula to compute thefeét into memory is the foleing:

Address = Base + ((depthi ndex*col _size+col i ndex) * row size + row ndex) * E enent_Size

Col_sizeis the number of items in a colummow_size is the number of items in a row. In C/C++, if you've
declared the array asypeA[i] [j] [K];” then row_size is equal tk andcol_size is equal tg.

For a four dimensional array, declared in C/C++ as “type A[i] [j] [K] [m];” the formula for computing
the address of an array element is

Address =
Base + (((Leftlndex * depth_size + depthi ndex)*col _si ze+col i ndex) * row size +
row ndex) * Henent_Size

Depth_sizeis equal tg, col_size is equal tdk, androw_sizeis equal tan. Leftindex represents the value of
the leftmost index.

By now you're probably beginning to see a pattern. There is a generic formula that will compute the off-
set into memory for an array wigmy number of dimensions, haver, you'll rarely use more than four

Another corenient vay to think of rov major arrays is as arrays of arrays. Consider thenwwitpsin
gle dimension &scal array defition:

A array [0..3] of sonetype;
Assume thasometype is the type “sometype = array [0..3] of char;”.

Ais a single dimension arralys individual elements happen to be arrays,you can safely ignore that
for the time beingThe formula to compute the address of an element of a single dimension array is

B enent _Address = Base + Index * Henent_Size

In this caseElement_Sze happens to be four since each elemem isfan array of four characters. So
what does this formula compute? It computes the base address ofwanhhis 4x4 array of characters
(seeFigure 4.5:

Beta Draft - Do not distribute © 2001, By Randall Hyde Paged71

Chapter Four Volume Three

(A[0]) [0]
(A[0]) [1]

(A[0]) [2]
l{ (A[O]) [3]
—

Ao (O] 1] 2|3

AlL |4]|5]|6]|7

Each elemen

) of A is four
A2 |8 [9 (10 |11 bytes long.

Al3 | 12|13|14 |15

Figure 4.5 Viewing a 4x4 Array as an Array of Arrays

Of course, once you compute the base address wf &@a can reapply the single dimension formula to
get the address of a particular elem&¥hile this doesn’ affect the computation at all, conceptuallys it’
probably a little easier to deal withveeal single dimension computations rather than a compldtidi-
mensional array element address computation.

Consider a &scal array defied as A:array [0..3] [0..3] [0..3] [0..3] [0..3] of charYou can vig this
five-dimension array as a single dimension array of arrélys.follonving Pascal code demonstrates such a
definition:
type

eD = array [0..3] of char;

TwoD = array [0..3] of OneD

ThreeD = array [0..3] of TwoD,

FourD = array [0..3] of ThreeD
var

A array [0..3] of FourD,

The size ofOneD is four bytes. Sinc@woD contains foulOneD arrays, its size is 16 bytes. kikise,
ThreeD is fourTwoDs, so it is 64 bytes long. FinaJlifourD is four ThreeDs, so it is 256 bytes londo com
pute the address of'[b, c, d, e, f]” you could use the follong steps:

e Compute the address Afb] as “Base + * size”. Here size is 256 bytes. Use this result as the
new base address in the next computation.

* Compute the address éf[b, c] by the formula “Base <*size”, whereBase is the value
obtained immediately above and size is 64. Use the result as the new base in the next computa
tion.

* Compute the address Af[b, ¢, d] by “Base +d*size” with Base coming from the above cem
putation and size being 16.

» Compute the address Af[b, ¢, d, €] with the formula “Base €*size” with Base from above
and size being four. Use this value as the base for the next computation.

* Finally, compute the addressAfb, c, d, e, f] using the formula “Base f¢size” where base
comes from the above computation and size is one (obviously you can simply ignore this final
multiplication). The result you obtain at this point is the address of the desired element.

Not only is this scheme easier to deal with than the fancy formulae given earlier, but it is easier to com-
pute (using a single loop) as well. Suppose you have two arrays initialized as follows

Al =[256, 64, 16,4, 1] and A2 =1b,c,d,ef]
then the Pascal code to perform the element address computation becomes:

Page472 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

for i :=0to 4 do
base : = base + Al[i] * A2[i];

Presumablyase contains the base address of the array before executing this loop. Note that you can easily
extend this code to any number of dimensions by simply initiali2ihgnd A2 appropriately and changing
the ending value of the for loop.

As it turns out, the computational overhead for a loop like this is too great to consider in practice. You
would only use an algorithm like this if you needed to be able to specify the number of dimensions at run
time. Indeed, one of the main reasons you won't find higher dimension arrays in assembly language is that
assembly language displays the inefficiencies associated with such access. It's easy to enter something like
“A[b,c,def]” into a Rascal program, not realizing what the compiler is doing with the ésdembly lan
guage programmers are not svaleger — thg see the mess you wind up with when you use higher dimen
sion arrays. Indeed, good assembly language programmers tgitbt@o dimension arrays and often
resort to tricks in order to access data in such an array when its use becomes absolutely nizutdatme/
on that a little later

4.6.2 Column Major Ordering

Column major ordering is the other function frequently used to compute the address of an array ele
ment. FORRAN and \arious dialects of BSIC (e.g., older ersions of Microsoft BSIC) use this method
to inde< arrays.

In row major ordering the rightmost inkléncreased theaktest as you med through consecug
memory locations. In column major ordering the leftmostxnidereases theabtest. Pictoriallya column
major ordered array is gainized as shvan in Figure 4.6

Memory
A:array [0..3,0..3] of char,

15 A[3,3]

14 A[2.,3]

0O 1 2 3 13 A[L3]

12 A[0,3]

O [0of1]2]3 11 Al32]
10 A[2,2]

1 |4|5]|6]|7 9 A2
8 A[0,2)

2 |8 |9]w0]11 7 AR
6 Al21]

3 |12[13 |14 |15 5 AL
4 A0,

3 A[3,0

2 A2,0

1 A1,0

0 A0,

Figure 4.6 Column Major Array Element Ordering

The formulae for computing the address of an array element when using column major ordering is v
similar to that for rav major orderingYou simply r@erse the indees and sizes in the computation:

For a two-dimension column major array:

E ement _Address = Base_Address + (row ndex * col _size + colindex) * Henent_S ze

For a three-dimension column major array:

Beta Draft - Do not distribute © 2001, By Randall Hyde Page473

Chapter Four Volume Three

Address = Base + ((row ndex*col _si ze+col i ndex) * depth_size + depthindex) *
E erment _Si ze

For a four-dimension column major array:

Address =
Base + (((row ndex * col _size + colindex)*depth_size + depthi ndex) *
Left_size + Leftindex) * H enent_S ze

The single Bscal loop preided for rov major access remains unchanged (to acsiic][d][e][f]):
for i :=0to 4 do
base := base + Al[i] * A2[i];

Likewise, the initial values of th&l array remain unchanged:

Al = {256, 64, 16, 4, 1}
The only thing that needs to change is the initau®s for theA2 array, and all you have to do here is
reverse the order of the indices:

A2 ={f, e, d, c, b}

4.7 Allocating Storage for Multidimensional Arrays

If you have anmx n array it will have m* n elements and require* n* Element_Sze bytes of storage.
To allocate storage for an array you must resénis amount of memaris usual, there areseral diferent
ways of accomplishing this taskofunately HLA's array declaration syntax igry similar to high leel
language array declaration syntax, so C/C+ASE, and Rscal programmers will feel right at hom&o
declare a multidimensional array in HLA, you use a declaratiertli& follaving:

ArrayNane:. el enent Type [conma_separated_| i st_of _di mensi on_bounds 1] ;

For example, here is a declaration for a 4x4 array of characters:
GaneGid: char[4, 41];

Here is anothen@mple that shows how to declare a three dimensional array of strings:
Nareltens: string[2, 3, 3 1];

Rememberstring objects are really pointers, so this array declaration reserves storage for 18 double word
pointers (2*3*3=18).

As was the case with single dimension arrays, you may initialize every element of the array to a specific
value by following the declaration with the assignment operator and an array constant. Array constants
ignore dimension information; all that matters is that the number of elements in the array constant corre-
spond to the number of elements in the actual array. The following example shavesnddarid declara
tion with an initializer:

GaneQid: char[4, 4] :=

Note that HLA ignores the indentation arxtra whitespace characters (e.g., newlines) appearing in this
declaration. It was laid out to enhance readability (which is always a good idea). HLA does not interpret the
four separate lines as representing rows of data in the array. Humans do, which is why it's good to lay out
the initial data in this manner, but HLA completely ignores the physical layout of the declaration. All that

Page474 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

matters is that there are 16 (4*4) characters in the array con¥tauitl probably agree that this is much
easier to read than
GareQ@id: char[4,4] :=
[tallhblllcvy ld!,lei,lfl’ lgl’hhllhillljiylki,l1,lm’

[C At ‘

n, ‘o, tp s

Of course, if you hee a lage arrayan array with really lge ravs, or an array with mgdimensions,
there is little hope for winding up with something reasonafitat’s when comments that carefulbgpdain
everything come in handy

As with single dimension arrays, you can use the DUP operator to initialize each element of a really
large array with the samealue. The folloving example initializes a 256x64 array of bytes so that each byte
contains the alue $FF:

StateVal ue: byte[256, 64] := 256*64 dup [$ff];

Note the use of a constampeession to compute the number of array elements rather than simply using the
constant 16,384 (256*64). The use of the constant expression more clearly suggests that this coéde is initial
izing each element of a 256x64 element array than does the simple literal constant 16,384.

Another HLA trick you can use to improve the readability of your programs is tioested array con-
stants. The followving is an &le of an HLA nested array constant:

[[0, 1, 2], [3, 4], [10, 11, 12, 13]]

Wheneer HLA encounters an array constant nested inside another array constant, it simply removes the
brackets surrounding the nested array constant and treats the whole constant as a single array constant. For
example, HLA converts the nested array constant above to the following:

[0,1, 2 3, 4, 10, 11, 12, 13]

You can take advantage of this fact to help make your programs a little more readable. For multidimensional
array constants you can enclose each row of the constant in square brackets to denote that the data in each
row is grouped and separate from the other rows. As an example, consider the following declaration for the
GameGrid array that is identical (as far as HLA is concerned) to the previous declaration:

GareQid: char[4, 4] :=
[

[*a, ‘b, ‘¢, *d],
[‘e,"f,"g”‘h,]l
[i, 57, "k, 1]
[‘o]

1

This declaration mads it clearer that the array constant is a 4x4 array rather than just a 16-element
one-dimensional array whose elements wouldn't fit all on one line of source code. Little aesthetic-improve
ments like this are what separate mediocre programmers from good programmers.

4.8

Accessing Multidimensional Array Elements in Assembly Language

Well, youve seen the formulae for computing the address of an array el&oelt e/en looled at
some Rscal code you could use to access elements of a multidimensionaNawai's time to see hoto
access elements of those arrays using assembly language.

The MOV, SHL, and INTMUL instructions makshort vork of the \arious equations that computé-of
sets into multidimensional arrays. letonsider a terdimension array rft:

static

Beta Draft - Do not distribute © 2001, By Randall Hyde Page475

Chapter Four Volume Three

i: int32;
j: int32;
TwoD int32] 4, 8];

/1 To peformthe operation TwoD[i,j] :=5; you d use code |like the foll ow ng.

/1 Note that the array index conputation is (i*8 + j)*4.
nmov(i, ebx);
shl (3, ebx); /1 Miltiply by eight (shl by 3is amltiply by 8).
add(j, ebx);

mov(5, TwoD] ebx*4]);

Note that this code doe®t require the use of a twegister addressing mode on the 80x&Bhough
an addressing mode &KwoD[ebx][esi] looks like it should be a natural for accessing tdimensional
arrays, that ism’the purpose of this addressing mode.

Now consider a seconcample that uses a three dimension array:

static
i: int32;
j: int 32;
k: int32;
Thr eeD: int32] 3, 4, 5];
/1 To peformthe operation ThreeQi,j,k] := ESlI; you d use the follow ng code
// that conputes ((i*4 + j)*5 + k)*4 as the address of ThreeQi,j,k].
nov(i, ebx);
shl (2, ebx); /1 Four elenents per colum.
add(j, ebx);
intmul (5, ebx); /1 Five elenents per row
add(k, ebx);

mov(esi, Threed ebx*4]);

Note that this code uses the INTMUL instruction to multiply thiele in EBX by five. Remember, the SHL
instruction can only multiply a register by a power of two. While there are ways to multiply the value in a
register by a constant other than a power of two, the INTMUL instruction is more convenient

4.9

Large Arrays and MASM

There is a defect in laterersions of MASM v6.x that create some problems when you declaes lar
static arrays in your programs. Wgou may be wndering what this has to do with you sincergeising
HLA, but dont forget that HLA v1.x compiles to MASM assembly code and then runs MASM to assemble
this outputTherefore, ap defect in MASM is going to be a problem for HLA users.

The problem occurs when the total number of array elements you declare in a static se&fi¢@, (ST
READONLY, or STORAGE) starts to get lge. Lage in this case is CPU dependentt, ibfalls somehere
between 128,000 and one million elements for most systems. MASM, foivethegason, uses amy slav
algorithm to emit array code to the objet#;fiby the time you declare 64K array elements, MASM starts to
produce a noticeable delay while compiling your codéer that point, the delay gws linearly with the

5. A full discussion of multiplication by constants other than a power of two appears in the chapter on arithmetic.

Page476 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

number of array elements (i.e., as you double the number of array elements you double the assembly time)
until the data saturates MASMinternal biffers and the cachelhen there is a big jump irxecution time.

For example, on a 300 MHz Pentium Il processmmpiling a program with an array with 256,000 elements
takes about 30 seconds, compiling a program with an arrdgdh&12,000 element tak seeral minutes.
Compiling a program with a one-igebyte array seems to &korever.

There are a couple ofays to sole this problem. First, of course, you can limit the size of your arrays
in your program. Unfortunatelyhis isnt always an option\ailable to you.The second possibility is to use
MASM v6.11; the defect &s introduced in MASM after thisevsion. The problem with MASM v6.11 is
that it doesrt' support the MMX instruction set, so if yo&'going to compile MMX instructions (or other
instructions that MASM v6.11 doegrsupport) with HLA you will not be able to use this optiohthird
option is to put your arrays inVAR section rather than a static declaration section; HLA processes arrays
you declare in th®’AR section so MASM neer sees them. Hence, arrays you declare VAl section
don't suffer from this problem.

4.10

Dynamic Arrays in Assembly Language

One problem with arrays up to this point is that their size is stéiiat is, the number of elements in all
of the xkamples is chosen when writing the program, it is not set while the program is running (i.e.; dynami
cally). Alas, sometimes you simply darknow how big an array needs to be when yeuiriting the pre
gram; you can only determine the size of the array while the program is rufiiggsection describes
how to allocate storage for arrays dynamically so you can set their size at run time.

Allocating storage for a single dimension arragd accessing elements of that ariswa nearly txiial
task at run time All you need to do is call the HLA Standard Libramglloc routine specifying the size of
the arrayin bytes. Malloc will return a pointer to the base address of the agay in the EAX rgister
Typically, you would sae this address in a pointeanable and use thatle as the base address of the
array in all future array accesses.

To access an element of a single dimensional dynamic soaywould generally load the base address
into a register and compute the inda a second gster Then you could use the based ixeld addressing
mode to access elements of that arr@his is not a whole lot moreawk than accessing elements of a stati
cally allocated arrayThe following code fragment demonstrateswhim allocate and access elements of a
single dimension dynamic array:

static
ArySi ze: uns32;
BaseAdrs: poi nter to uns32;

stdout. put (“How nmany el enents do you want in your array? “);
stdin. getu32();

nov(eax, ArySize; /1 Save away the upper bounds on this array.

shl (2, eax); /1 Miltiply eax by four to conpute the nunber of bytes.
mal | oc(eax); /1 Alocate storage for the array.

nov(eax, BaseAdrs); // Save away the base address of the new array.

/1l Zero out each el enent of the array:

nov(BaseAdrs, ebx);

nov(0, eax);

for(nov(0, esi); esi < ArySize; inc(esi)) do

mov(eax, [ebx + esi*4]);

Beta Draft - Do not distribute © 2001, By Randall Hyde Paged77

Chapter Four Volume Three

endfor;

Dynamically allocating storage for a multidimensional arrayigyf straight-forvard. The number of
elements in a multidimensional array is the product of all the dimenaioas; e.g., a 4x5 array has 20 ele
ments. So if you get the bounds for each dimension from theallsgyu need do is compute the product of
all of these boundalues and multiply therfal result by the size of a single elemeriis computes the total
number of bytes in the arrane \alue thaimalloc expects.

Accessing elements of multidimensional arrays is a little more problenigtie.problem is that you
need to kep the dimension information (that is, the bounds on each dimension) around becausduggese v
are needed when computing thevnmajor (or column major) inceinto the arra?a The cowentional solu
tion is to store these bounds into a static array (generally you teaarity, or number of dimensions, at
compile-time, so it is possible to statically allocate storage for this array of dimension bdumds)ray of
dynamic array bounds is kwa as adope vector. The folloving code fragment sk hav to allocate stor
age for a tw-dimensional dynamic array using a simple dopetar

var
ArrayPtr: poi nter to uns32;
ArrayD ns: uns32[2] ;

// Get the array bounds fromthe user:

stdout.put("Enter the bounds for dinension #1. ");
stdin.get(ArrayDins[0]);

stdout. put("Enter the bounds for dinension #2: ");
stdin.get(ArrayD ns[1*4]);

/Il Alocate storage for the array:

nmov(ArrayDins[0], eax);
intrmul (ArrayD ns[1*4], eax);

shl(2, eax); /1 Miltiply by four since each element is 4 bytes.
nal | oc(eax); /Il Alocate storage for the array and
nov(eax, ArrayPtr); |/l save away the pointer to the array.

/1l Initialize the array:

nov(0, edx);
nov(ArrayPtr, edi);
for(nov(O, ebx); ebx < ArrayD ns[0]; inc(ebx)) do

for(nov(O, ecx); ecx < ArrayDi ns[1*4]; inc(ecx)) do

/1 Conpute the index into the array

/l as esi := (ebx * ArrayD ns[1*4] + ecx) * 4

/1 (Note that the final multiplication by four is

/1 handl ed by the scal ed i ndexed addressi ng nmode bel ow)

mov(ebx, esi);
intmul (ArrayDi ns[1*4], esi);
add(ecx, esi);

/1 Initialize the current array el ement with edx.

6. Technically, you don't need the value of the left-most dimension bound to compute an index into the array, however, if you
want to check the index bounds using the BOUND instruction (or some other technique), you will need this value around at
run-time as well.

Page478 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays
mov(edx, [edi+esi*4]);
inc(edx);
endf or;

endfor;

4.11 HLA Standard Library Array Support

The HLA Standard Library pxides an array module that helps reduce tlfigrtefieeded to support
static and dynamic arrays in your prograithe “arrays.hhf” library module pvides code to declare and
allocate dynamic arrays, compute the ind@o an arraycopy arrays, perform mw reductions, transpose
arrays, and moreThis section will &plore some of the more useful features the arrays modul&pso

One of the more interesting features of the HLA Standard Library arrays module is that most of the
array manipulation procedures support both statically allocated and dynamically allocated arrags, In f
the HLA array procedures can automaticalyufe out if an array is static or dynamic and generate the
appropriate code for that arrayhere is one catch, haver. In order for HLA to be able to dérentiate
statically and dynamically allocated arrays, you must use the dynamic array declarations found in the arrays
package. This won't be a problem because HlsAdynamic arraydcilities are pwerful and ery easy to
use.

To declare a dynamic array with the HLA arrays package, you wsiasle declaration lithe follav-
ing:
vari abl eNane: array.dArray(el enent Type, Arity);

The elementType parameter is a gallar HLA data type identér (e.g.,int32 or some type identdr
you've defned in thelT YPE section).The Arity parameter is a constant that spesifihe number of dimen
sions for the arrayafity is the formal name for “number of dimensions”). Note that you do not specify the
bounds of each dimension in this declaration. Storage allocation occuratlater time.The following is
an xample of a declaration for a dynamically allocated-timensional matrix:

ScreenBuffer: array.dArray(char, 2);

Thearray.dArray data type is actually an HLA madrthat expands the ahe to the folloving:

ScreenBuffer: record

dataPtr: dwor d;
dopeVect or: uns32[2];
el enent Type: char;

endr ecor d;

ThedataPtr field will hold the base address of the array once the program allocates storage foddperhe
\ector array has one element for each array dimension (the macro uses the second parameter of the
array.dArray type as the number of dimensions for tlepeVector array). TheslementType field is a single

object that has the same type as an element of the dynamic array. HLA provides a couple of built-in func
tions that you can use on these fields to extract important information@Hleeents function returns the
number of elements in an array. Therefore, “@Elements(ScreenBuffer.dopeVector)” will return the number
of elements (two) in th&creenBuffer.dopeVector array. Since this array contains one element for each
dimension in the dynamic array, you can use@dftgements function with thedope\ector field to determine

the arity of the array. You can use the H@S ze function on theScreenBuffer.elementType field to deter

mine the size of an array element in the dynamic array. Most of the time you will know the arity and type of
your dynamic arrays (after all, you declared them), so you probably won't use these functions often until you
start writing macros that process dynamic arrays.

7. See the chapter on Macros and the HLA Compile-Time Language for details on macros.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page479

Chapter Four Volume Three

After you declare a dynamic arrgyou must initialize the dynamic array object before attempting to use
the array The HLA Standard Librargrray.daAlloc routine handles this task for yoirhis routine uses the
following syntax:

array. daAl | oc(arrayName, conma_separated |ist_of _array _bounds);

To allocate storage for tt8reenBuffer variable in the previous example you could use a call like the follow
ing:
array. daA |l oc(ScreenBuffer, 20, 40);

This call will allocate storage for a 20x40 array of characters. It will store the base address of the array into
the ScreenBuffer.dataPtr field. It will also initialize ScreenBuffer.dopeVector[0] with 20 andScreenBuf-
fer.dopeVector[1* 4] with 40. To access elements of BueeenBuffer array you can use the techniques of the
previous section, or you could use #neay.index function.

Thearray.index function automatically computes the address of an array element fof msufunction
uses the follwing call syntax:

array.index(regs, arrayNanme, comma_separated |ist_of_index_val ues);

The first parameter must be a 32-bijister Thearray.index function will store the address of the spec
ified array element in thisgister The secondrray.index parameter must be the name of an array; this can
be either a statically allocated array or an arraywodeclared wittarray.dArray and allocated dynami
cally with array.daAlloc. Following the array name parameter is a list of one or more array indites.
number of array indices must match the arity of the aifagse array indices can be constahigrd mem
ory variables, or rgisters (hwever, you must not specify the samegjister that appears in thesfi parameter
as one of the array indices). Upon return from this function, you may access thed@eciy element
using the rgister indirect addressing mode and thggster appearing as thedli parameter

One last routine yol'want to knav about when manipulating HLA dynamic arrays isahey.daFree
routine. This procedure>gects a single parameter that is the name of an HLA dynamic a@aling
array.daFree will free the storage associated with the dynamic arfHye folloving code fragment is a
rewrite of the @ample from the prdous section that uses HLA dynamic arrays:

var
da: array. dArray(uns32, 2);
Bnd1: uns32;
Bnd2: uns32;

/] Get the array bounds fromthe user:

stdout. put("Enter the bounds for dinension #1: ");
stdin.get(Bndl);

stdout. put("Enter the bounds for dinension #2: ");
stdin.get(Bnd2);

/1 Alocate storage for the array:

array.daA | oc(da, Bndl, Bnd2);

/1l Initialize the array:

nov(0, edx);
for(nov(O, ebx); ebx < Bndl; inc(ebx)) do

for(nov(O, ecx); ecx < Bnd2; inc(ecx)) do

Page480 © 2001, By Randall Hyde Beta Draft - Do not distribute

Arrays

// Initialize the current array el ement wth edx.
/1 Use array.index to conpute the address of the array el enent.

array.index(edi, da, ebx, ecx);
mov(edx, [edi]);
inc(edx);

endf or;

endf or;

Another etremely useful library module is treray.cpy routine. This procedure will copthe data
from one array to anothemhe calling syntax is:

array. cpy(sourceArrayNane, destArrayNane);

The source and destination arrays can be static or dynamic aftagarray.cpy automatically adjusts and

emits the proper code for each combination of parameters. With most of the array manipulation procedures
in the HLA Standard Library, you pay a small performance penalty for the convenience of these library mod
ules. Not so wittarray.cpy. This procedure is very, very fast; much faster than writing a loop to copy the
data element by element.

4.12 Putting It All Together

Accessing elements of an array isseyvcommon operation in assembly language progrdinis.chap
ter pravides the basic information you need thhaéntly access array elementster mastering the material
in this chapter you should kwohow to declare arrays in HLA and access elements of those arrays in your
programs.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page481

Chapter Four Volume Three

Page482 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Arrays Chapter Four
	4.1 Chapter Overview
	4.2 Arrays
	4.3 Declaring Arrays in Your HLA Programs
	4.4 HLA Array Constants
	4.5 Accessing Elements of a Single Dimension Array
	4.5.1 Sorting an Array of Values

	4.6 Multidimensional Arrays
	4.6.1 Row Major Ordering
	4.6.2 Column Major Ordering

	4.7 Allocating Storage for Multidimensional Arrays
	4.8 Accessing Multidimensional Array Elements in Assembly Language
	4.9 Large Arrays and MASM
	4.10 Dynamic Arrays in Assembly Language
	4.11 HLA Standard Library Array Support
	4.12 Putting It All Together

