Advanced High Level Control Structures

Advanced High Level Control Structures Chapter One

11

Chapter Overview

Volume One introduced some basic HLA control structurestlie IF andVHILE statements (see
“Some Basic HLA Control Structuresn page29.). This section elaborates on some of those control-struc
tures (discussing features that were a little tocaaded to present iolume One) and it introduces the
remaining high leel language control structures that HLA yides.

This includes a full discussion of HEsAboolean xpressions, th&RY..ENDTRY statement, the RAISE
statement, the BEGIN..END/EXIT/EXITIF statements, and the SWITCH/CASE/ENDSWITCH statement
the HLA Standard Library prades.

1.2

Conjunction, Disjunction, and Negation in Boolean Expressions

One olvious omission in HLAs high lerel control structures is the ability to use conjunction (logical
AND), disjunction (logical OR), and gation (logical NQ) in run-time booleanxpressions.This omis
sion, havever, has been in thisxtg not in the HLA language. HLA does pide thesedcilities, this section
will describe their use.

HLA uses the “&&” operator to denote logicAND in a run-time booleanxpression.This is a dyadic
(two-operand) operator and theawperands must beda run-time booleanxpressions. This operator
evaluates true if both operandgadiate to true. Example:

if( eax >0 & ch =*a ) then

nov( eax, ebx );
nov( “ ‘, ch);

endi f;

The two MOV statements above execute only if EAX is greater thanaa@€H is equal to the character
‘a’. If either of these conditions is false, then program execution skips over the two MOV instructions.

a.

Note that the expressions on either side of the “&&” operator may be any expression that is legal in an
IF statement, these expressions don't have to be comparisons using one of the relational operators. For
example, the following are all legal expressions:

@ & al in 5..10

al in{'a..”z’} & ebx

bool Var && ! eax

Ifileio.eof( fileHandle ) & fileio.getc( fileHandle ) <> * *

HLA uses short circuitwvaluation when compiling the “&&” operatorlf the left-most operandvalu-
ates &lse, then the code that HLA generates does not bothlelating the second operand (since the whole
expression must bafse at that point)Therefore, in the lasixpression abee, the code will notecute the
call tofileio.getcif the file pointer is currently pointing at the end of the.fi

Note that anxgression lile “eax < 0 && ebx <> eax” is itself adal boolean xpression and, therefore,
may appear as the left or right operand of the “&&” operaldrerefore, gpressions lik the follaving are
perfectly leal:

eax <0 && ebx <>eax && lecx

The “&&” operator is left associate, so the code that HLA generates evaluates the expression above in a
left-to-right fashion. Note that if EAX is less than zero, the code will not test either of the remaining expres

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager27



Chapter One Volume Four

sions. Lilewise, if EAX is not less than zero but EBX is equal to EAX, this code will not evaluate the third
expression since the whole expression is false regardless of ECX’s value.

HLA uses the “||” operator to denote disjunction (logical OR) in a run-time boolean expression. Like
the “&&” operator, this operator expects two otherwise legal run-time boolean expressions as operands.
This operator evaluates true if either (or both) operands evaluate true. Like the “&&” operator, the disjunc-
tion operator uses short-circuit evaluation. If the left operand evaluates true, then the code that HLA gener-
ates doesn'’t bother to test the value of the second operand. Instead, the code will transfer to the location that
handles the situation when the boolean expression evaluates true. Examples of legal expressions using the

“||” operator:
@ || al =10
al in{'a..”z’} || ebx
I'bool Var || eax

As for the “&&” operator the disjunction operator is left assoaiatso multiple instances of the “||”
operator may appear within the sampression. Should this be the case, the code that HLA generates will
evaluate the xpressions from left to right, e.g.,

eax <0 || ebx <>eax || lecx

The code abee executes if either EAX is less than zero, EBX does not equal EAX, or ECX is zero. Note
that if the first comparison is true, the code doesn’t bother testing the other conditions. Likewise, if the first
comparison is false and the second is true, the code doesn’t bother checking to see if ECX is zero. The
check for ECX equal to zero only occurs if the first two comparisons are false.

If both the conjunction and disjunction operators appear in the same expression then the “&&” operator
takes precedence over the “||” operator. Consider the following expression:

eax <0 || ebx <> eax && lecx

The code HLA generates evaluates this as
eax <0 || (ebx <> eax && 'ecx)

If EAX is less than zero, then the code HLA generates does not bother to check the remainder of the expres
sion, the entire expression evaluates true. However, if EAX is not less than zero, then both of the following
conditions must evaluate true in order for the overall expression to evaluate true.

HLA allows you to use parentheses to surround subexpressions involving “&&” and “||” if you need to
adjust the precedence of the operators. Consider the following expression:

(eax <0 || ebx <> eax) && lecx

For this expression to evaluate true, ECX must contain zero and either EAX must be less than zero or EBX
must not equal EAX. Contrast this to the result obtained without the parentheses.

As you saw in Volume One, HLA uses the “!” operator to denote logical negation. However, the “!”
operator may only prefix a register or boolean variable; you may not use it as part of a larger expression
(e.g., “leax < 0”"). To achieve logical negative of an existing boolean expression you must surround that
expression with parentheses and prefix the parentheses with the “!” operator, e.g.,

I( eax <0)

This expression evaluates true if EAX is not less than zero.

The logical not operator is primarily useful for surrounding complex expressions involving the conjunc-
tion and disjunction operators. While it is occasionally useful for short expressions like the one above, it's
usually easier (and more readable) to simply state the logic directly rather than convolute it with the logical
not operator.

Note that HLAs “|” and “&” operators (compile-time address expressions) are distinct from “||” and
“&&" and have completely different meanings. See the chapter on the HLA Run-Time Language in this
volume or the chapter on constants in the previous volume for details.

Pager28 © 2001, By Randall Hyde Beta Draft - Do not distribute



Advanced High Level Control Structures

1.3 TRY..ENDTRY

Volume One discusses th&Y..ENDTRY statement, bt does not fully discuss all of the featureail
able. This section will complete the discussionT®RY..ENDTRY and discuss some problems that could
occur when you use this statement.

As you may recall, th&RY..ENDTRY statement surrounds a block of statements in order to capture
ary exceptions that occur during thgezution of those statement¥he system raisexeeptions in one of
three vays: through a hardave fault (such as adide by zero error), through an operating system generated
exception, or through thexecution of the HLA RAISE statemen¥ou can write anxeption handler to
intercept specifi exceptions using the EXCEPTION claus&he follonving program preides a typical
example of the use of this statement:

program t est Badl nput ;
#include( “stdlib.hhf” );

static

u: unsl1e6;

begi n t estBadl nput ;

try
stdout. put ( “Enter an unsigned integer:” );
stdin.get( u);
stdout.put( “You entered: “, u, nl );
exception( ex. ConversionError )
stdout. put ( “Your input contained illegal characters” nl );
exception( ex.Val ueQut & Range )

stdout. put( “The value was too large” nl );

endtry;

end test Badl nput ;

Program 1.1  TRY..ENDTRY Example

HLA refers to the statements betweenTR clause and therBt EXCEPTION clause as tipeotected
statements. If arxeeption occurs within the protected statements, then the program will scan through each
of the ceptions and compare thalue of the currentxeeption aginst the alue in the parentheses after
each of the EXCEPTION clausesThis exception \alue is simply amns32value. The \alue in the paren
theses after each EXCEPTION clause, therefore, must be an unsigneda&gaebitThie HLA “excepts.hhf”
header fe predeifnes seeral exception constants. Other than ibuid be an incredibly bad style violation,

1. Note that HLA loads this value into the EAX register. So upon entry into an EXCEPTION clause, EAX contains the
exception number.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager29



Chapter One Volume Four

you could substitute the numerialues for the tae EXCEPTION clauses alie (see thexeepts.hhf header
file for the actual alues).

1.3.1 Nesting TRY..ENDTRY Statements

If the program scans through all theception clauses in @RY..ENDTRY statement and does match
the current eception alue, then the program searches through the EXCEPTION clausaydraically
nestedTRY..ENDTRY block in an attempt toriid an appropriatexeeption handler For example, consider
the folloving code:

program t est Badl nput 2;
#incl ude( “stdlib.hhf” );

static
u: uns16;

begi n t est Badl nput 2;
try
try
stdout. put ( “Enter an unsigned integer:” );
stdin.get( u);
stdout.put( “You entered: “, u, nl );
exception( ex.ConversionError )
stdout. put ( “Your input contained illegal characters” nl );

endtry;

stdout.put( “Input did not fail due to a value out of range” nl );

exception( ex.Val ueQut O Range )
stdout. put ( “The value was too large” nl );
endtry;

end test Badl nput 2;

Program 1.2  Nested TRY..ENDTRY Statements

In this kample onel'RY statement is nested inside anothBuring the gecution of thestdin.get state
ment, if the user enters alue greater than four billion and some change, skdin.getwill raise theex.\al-
ueOutOfRang exception. When the HLA run-time system reges this &ception, it fist searches through
all the EXCEPTION clauses in tieRY..ENDTRY statement immediately surrounding the statement that
raised the xeception (this vauld be the nestetRY..ENDTRY in the ekample abwe). If the HLA run-time
system &ils to locate anxeeption handler foex.\alueOutOfRang then it checks to see if the current
TRY..ENDTRY is nested inside anoth@RY..ENDTRY (as is the case iRrogram 1.2 If so, the HLA

Pager30 © 2001, By Randall Hyde Beta Draft - Do not distribute



Advanced High Level Control Structures

run-time system searches for the appropriate EXCEPTION clause iInRMaENDTRY statementWithin
this TRY..ENDTRY block the program fids an appropriatexeeption handlerso control transfers to the
statements after theXeeption( &.ValueOutOfRange )” clause.

After leaving aTRY..ENDTRY block, the HLA run-time system no longer considers that blockeacti
and will not search through its list ofe@eptions when the program raises ace@tior‘?. This allovs you to
handle the samexeeption diferently in other parts of the program.

If two nestedlRY..ENDTRY statements handle the samxeeption, and the program raises anep
tion while executing in the innermodtRY..ENDTRY seqeuence, then HLA transfers control directly to the
exception handler praded by thafTRY..ENDTRY block. HLA does not automatically transfer control to
the exception handler praded by the outeFRY..ENDTRY sequence.

If the program raises ax@eption for which there is no appropriate EXCEPTION clausgeaatontrol
transfers to the HLA run-time system. It will stop the program and print an appropriate error message.

In the preious xample Program 1.Pthe second TRY..ENDTRY statement \as statically nested
inside the enclosingRY..ENDTRY statement As mentioned without comment earliéithe most recently
activated TRY..ENDTRY statement does not handle a speaiiception, the program will search through
the EXCEPTION clauses of ardynamically nesting RY..ENDTRY blocks. Dynamic nesting does not
require the neste@RY..ENDTRY block to plysically appear within the enclosirigRY..ENDTRY state
ment. Instead, control could transfer from inside the encloBi®g.ENDTRY protected block to some
other point in the program. Egution of aTRY..ENDTRY statement at that other point dynamically nests
the two TRY statements.Although you will see lots of ays to dynamically nest code a little later in this
chapter there is one method you amafiliar with that will let you dynamically nest these statements: the
procedure call.The following program preides yet anotherxample of nestedRY..ENDTRY statements,
this example demonstrates dynamic nesting via a procedure call:

progr am t est Badl nput 3;
#include( “stdlib.hhf” );

procedur e get Uns;
static
u: uns1i6;
begi n get Uns;
try
stdout. put( “Enter an unsigned integer:” );
stdin.get( u);
stdout.put( “You entered: “, u, nl );
exception( ex.ConversionError )
stdout. put ( “Your input contained illegal characters” nl );

endtry;

end get Uns;

begi n t est Badl nput 3;

2. Unless, of course, the program re-enters the TRY..ENDTRY block via a loop or other control structure.
3. Statically nested means that one statement is physically nested within another in the source code. When we say one state-
ment is nested within another, this typically means that the statement is statically nested within the other statement.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager31



Chapter One Volume Four

try

get Uns();
stdout.put( “Input did not fail due to a value out of range” nl );

exception( ex.Val ueQut O Range )
stdout. put ( “The value was too large” nl );
endtry;

end t est Badl nput 3;

Program 1.3  Dynamic Nesting of TRY..ENDTRY Statements

In Program 1.3he main programx@cutes th&RY statement that astites a lue out of rangexeep
tion handlerthen it calls thgetUnsprocedure. Inside trgetUnsprocedure, the programxecutes a second
TRY statement. This dynamically nests thiSRY..ENDTRY block inside theTRY of the main program.
Because the main program has not yet encountered its EXIDA&IRY..ENDTRY block in the main pro
gram is still actre. Hawvever, upon &ecution of theTRY statement irgetUns the nested RY..ENDTRY
block tales precedence. If ameeption occurs inside thetdin.get procedure, control transfers to the most
recently actiated TRY..ENDTRY block of statements and the program scans through the EXCEPTION
clauses looking for a match to the currexteption \alue. In the program abe, if the eception is a con
version error xception, then thexeeption handler insidgetUnswill handle the error and print an apprepri
ate messageAfter the execution of the xception handletthe programdils through to the bottom gétUns
and it returns to the main program and prints the message “Input didilraié to a &lue out of range”.
Note that if a nestedxeeption handler processes aweption, the program does not automatically reraise
this exception in other acte TRY..ENDTRY blocks, &en if they handle that samexeeption éx.Corver
sionErmor, in this case).

Suppose, hweever, thatstdin.get raises thex.\alueOutOfRang exception rather than thex.Corver
sionErmor exception. Since th&RY..ENDTRY statement insidgetUnsdoes not handle thixeeption, the
program will search through theaption list of the enclosingRY..ENDTRY statement. Since this state
ment is in the main program, theception will cause the program to automatically return frongétens
procedure. Since the program wilhdi the \alue out of rangexeeption handler in the main program, it
transfers control directly to thex@eption handler Note that the program will not print the string “Input did
not fail due to a &lue out of range” since control transfers directly figidin.getto the exception handler

1.3.2

The UNPROTECTED Clause in aTRY..ENDTRY Statement

Wheneer a programxecutes thadRY clause, it preseps the currenb@&eption emironment and sets
up the system to transfer control to the EXCEPTION clauses withiTBRYatENDTRY statement should
an «ception occur If the program successfully completes tlkeosition of aTRY..ENDTRY protected
block, the program restores the originateption emironment and control transfers to thesfiistatement
beyond the ENDTR clause. This last step, restoring th&ezution emironment, is ery important. If the
program skips this step, affuture exceptions will transfer control to thiBRY..ENDTRY statement wen
though the program has already left TRY..ENDTRY block. The folloving program demonstrates this
problem:

program t est Badl nput 4;
#include( “stdlib.hhf” );

Pager32 © 2001, By Randall Hyde Beta Draft - Do not distribute



Advanced High Level Control Structures

static
i nput: uns32;

begi n t est Badl nput 4;
/1l This forever |oop repeats until the user enters
/'l a good integer and the BREAK statenent bel ow
/'l exits the |oop.
f orever
try
stdout.put( “Enter an integer value: “ );
stdin.get( input );
stdout. put( “The first input value was: “, input, nl );
br eak;
exception( ex.Val ueQut G Range )
stdout. put ( “The value was too |arge, reenter.” nl );
exception( ex. ConversionError )
stdout. put( “The input contained illegal characters, reenter.” nl );
endtry;

endf or;

// Note that the follow ng code is outside the |oop and there
/1 is no TRY..ENDIRY statenent protecting this code.

stdout. put( “Enter another nunber: “ );
stdin.get( input );
stdout. put( “The new nunber is: “, input, nl );

end test Badl nput 4;

Program 1.4  Improperly Exiting a TRY..ENDTRY Statement

This example attempts to create a wsb input system by putting a loop around THRY..ENDTRY
statement and forcing the user to reenter the data $tdive get routine raises arxeeption (because of bad
input data). While this is a good idea, there is a big problem with this implementation: the BREAK state
ment immediately »xats the FOREVER..ENDFOR loop withoutdt restoring thexeeption emironment.
Therefore, when the programegutes the secorgtdin.get statement, at the bottom of the program, the
HLA exception handling code still thinks thatsiinside thefRY..ENDTRY block. If an e&ception occurs,
HLA transfers control back into tHERY..ENDTRY statement looking for an appropriateception handler
Assuming the xception vasex.\alueOutOfRang or ex.CorversionError, Program 1.4will print an appre
priate error messagad then foce the user toeenter the fist value This isnt desirable.

Transferring control to the wron@RY..ENDTRY exception handlers is only part of the problem.
Another big problem with the code Rrogram 1./as to do with the ay HLA preseres and restores the
exception emironment: specifially, HLA saves the old xecution emironment information on the stack. If
you it a TRY..ENDTRY without restoring thexeeption emironment, this leages grbage on the stack (the
old execution emironment information) and thisxea data on the stack could cause your program te mal
function.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager33



Chapter One Volume Four

Although it is quite clear that a program should ndt feom aTRY..ENDTRY statement in the manner
thatProgram 1.4ises, it would be nice if you could use a loop arountiRY..ENDTRY block to force the
re-entry of bad data as this program attempts toTaoallown for this, HLAs TRY..ENDTRY provides an
UNPROTECTED section. Consider the foling program code:

progr am t est Badl nput 5;
#include( “stdlib.hhf” );

static
i nput: uns32;

begi n t est Badl nput 5;
/1 This forever |oop repeats until the user enters
I/ a good integer and the BREAK statenent bel ow
I/l exits the loop. MNote that the BREAK st at enment
/1 appears in an UNPROTECTED section of the TRY..ENDTRY
/] statenent.
f orever
try
stdout.put( “Enter an integer value: “ );
stdin.get( input );
stdout. put( “The first input value was: “, input, nl );
unpr ot ect ed
br eak;
exception( ex.Val ueQut Cf Range )
stdout. put( “The value was too |arge, reenter.” nl );
exception( ex.ConversionError )
stdout. put( “The input contained illegal characters, reenter.” nl );
endtry;

endf or;

// Note that the follow ng code is outside the | oop and there
/1 is no TRY..ENDTRY statement protecting this code.

stdout. put( “Enter another nunber: “ );
stdin.get( input );
stdout. put ( “The new nunber is: “, input, nl );

end t est Badl nput 5;

Program 1.5 The TRY..ENDTRY UNPROTECTED Section

Wheneer theTRY..ENDTRY statement hits the UNRIRECTED clause, it immediate restores the
exception emironment from the stackAs the phrase suggests, theeution of statements in the UNGR

Pager34 © 2001, By Randall Hyde Beta Draft - Do not distribute



Advanced High Level Control Structures

TECTED section is no longer protected by the enclo3iRy..ENDTRY block (note, hwever, that ay
dynamically nestingrRY..ENDTRY statements will still be astt, UNPROTECTED only turns dfthe
exception handling of théefRY..ENDTRY statement that immediately contains the UKRECTED
clause). Since the BREAK statementHrogram 1.5appears inside the UNBRECTED section, it can
safely transfer control out of tH&RY..ENDTRY block without “executing” the ENDTR since the program
has already restored the form&ception emironment.

Note that the UNPBTECTED leyword must appear in thERY..ENDTRY statement immediately
after the protected block. I.e., it must precede all EXCEPTI&M&rds.

If an exception occurs during thexecution of aTRY..ENDTRY sequence, HLA automatically restores
the execution emironment. Therefore, you mayxecute a BREAK statement (oryaather instruction that
transfers control out of tHERY..ENDTRY block) within an EXCEPTION clause without\iag to do ag-
thing special.

Since the program restores theeption emironment upon encountering an UNERECTED block or
an EXCEPTION block, anxeeption that occurs within one of these areas immediately transfers control to
the preious (dynamically nesting) agé TRY..ENDTRY sequence. If there is no nestinBY..ENDTRY
sequence, the program aborts with an appropriate error message.

1.3.3

The ANYEXCEPTION Clause in aTRY..ENDTRY Statement

In a typical situation, you will use BRY..ENDTRY statement with a set of EXCEPTION clauses that
will handle all possiblexeeptions that can occur in the protected section oTE¥.ENDTRY sequence.
Often, it is important to ensure thaT®Y..ENDTRY statement handles all possibbeceptions to preent
the program from prematurely aborting due to an unhandiegpéon. If you hee written all the code in
the protected section, you will kwathe eceptions it can raise so you can handle all possiieptions.
However, if you are calling a library routine (especially a third-party library routine), making/&RD&all,
or otherwise xecuting code that you @ no control ger, it may not be possible for you to anticipate all
possible gceptions this code could raise (especially when considering past, present, andefisiores \of
the code). If that code raises atweption for which you do not tia an EXCEPTION clause, this could
cause your program taif. Fortunately HLA's TRY..ENDTRY statement pnades theANYEXCEPTION
clause that will automatically trap yaexception the eisting EXCEPTION clauses do not handle.

TheANYEXCEPTION clause is similar to the EXCEPTION claugeept it does not require areep
tion number parameter (since it handley arception). If theANYEXCEPTION clause appears in a
TRY..ENDTRY statement with other EXCEPTION sections, ANYEXCEPTION section must be the last
exception handler in th€éRY..ENDTRY statement.An ANYEXCEPTION section may be the onlyeep
tion handler in &RY..ENDTRY statement.

If an otherwise unhandleceeption transfers control to ANYEXCEPTION section, the EAX g#s-
ter will contain the xception numberYour code in th&NYEXCEPTION block can test thisalue to deter
mine the cause of thexaeption.

1.3.4

Raising User-Defined Exceptions

Although you typically use th€ERY..ENDTRY statement to catctxeeptions that the hardwe, the OS
or the HLA Standard Library raises, it is also possible to create youeaeptions and process them via
the TRY..ENDTRY statement. You accomplish this by assigning an unusgdeption number to your
exception and raising thixeeption with the HLARAISE statement.

The parameter you supply to the EXCEPTION statement is really nothing more than an unsigned inte
ger \alue. The HLA “excepts.hhf” headerl& provides defnitions for the standard HLA Standard Library
and hardwre/OS gception types. These names are nothing more tharodivconstants that fi@ been
given a descriptie name. HLA resees the alues zero through 1023 for HLA and HLA Standard Library
exceptions; it also resesg all eception alues greater than $FFFF (65,535) for use by the operating sys
tem. The walues in the range 1024 through 65,535 sedlable foruserdefined eceptions.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager35



Chapter One Volume Four

To create a useatefined exception, you wuld generally bgin by defhing a descriptie symbolic name
for the exceptiorf. Then within your code you can use the RAISE statement to raisetiegtien. The fok
lowing program preides a shortxample of some code that uses a dined &ception to trap empty
strings:

pr ogr am user Def i nedExcept i ons;
#include( “stdlib.hhf” );

/'l Provide a descriptive nanme for the
I/ user-defined exception.

const EnmptyString: dword : = 1024;
I/ readAString-
/1
I/l This procedure reads a string fromthe user
/1 and returns a pointer to that string in the
Il EAX register. It raises the “EnptyString”
Il exception if the string is enpty.

procedure readAStri ng;
begi n readAString;

stdin.a gets();
if( (type str.strRec [eax]).length == 0 ) then

strfree( eax );
rai se( EnptyString );

endi f;
end readAString;
begi n user Def i nedExcept i ons;
try
stdout.put( “Enter a non-enpty string: “ );

readAstring();
st dout . put

(

“You entered the string ‘",
(type string eax),

nl
sirfree( eax );
exception( EnptyString )
stdout. put( “You entered an enpty string”, nl );
endtry;

end user Def i nedExcept i ons;

4. Technically, you could use a literal numeric constant, e.g., EXCEPTION( 1024), but this is extremely poor programming

style.

Pager36 © 2001, By Randall Hyde Beta Draft - Do not distribute



Advanced High Level Control Structures

Program 1.6  User-Defined Exceptions and the RAISE Statement

One important thing to notice in thigample: theeadAStringorocedure frees the string storage before
raising the rception. It has to do this because the RAISE statement loads the gistéravith the ecep
tion number (1024 in this case)fesftively obliterating the pointer to the stringherefore, this code frees
the storage before th&aeption and assumes that EAX does not contaalid string pointer if anxeeption
occurs.

In addition to raising xceptions yowe defned, you can also use the RAISE statement to raige an
exception. Therefore, if your code encounters an errowveaiing some data, you could raise &ieCorver-
sionErmor exception to denote this conditiofhere is nothing sacred about the predefiception alues.
Feel free to use theimlues asxxeptions if thg are descriptie of the error you need to handle.

135

Reraising Exceptions in a TRY..ENDTRY Statement

Once a program transfers control to aeeption handling section, theaeption is dectively dead.
That is, after vecuting the associated EXCEPTION block, control transfers tordiestatement after the
ENDTRY and program»ecution continues as though aeption had not occurred. HLA assumes that the
exception handler has tak care of the problem and it is okay to continue progressution after the
ENDTRY statement. In some instances, thistiam' appropriate response.

Although falling through and»aecuting the statements after the ENDYT®Rhen an gception handler
finishes is probably the most common response, another possibility is to reraiseefit@e at the end of
the EXCEPTION sequencédhis lets the currentRY..ENDTRY block accommodate thexeeption as best
it can and then pass control to an enclogJiRY..ENDTRY statement to complete the&oeption handling
process.To reraise anxzeption all you need do ixecute a RAISE statement at the end of tkeeption
handler Although you vould typically reraise the same&oeption, there is nothing prenting you from
raising a diferent exception at the end of youreeption handler For example, after handling a useefined
exception yowe defned, you might wnt to raise a diérent exception (e.g.ex.MemoryAllocation&ilure)
and let an enclosingRY..ENDTRY statement fiish handling yourxeeption.

1.3.6

A List of the Predefined HLA Exceptions

Appendix G in this tet provides a listing of the HLA>»xeptions and the situations in which the hard
ware, the operating system, or the HLA Standard Library raises tkesptiens. The HLA Standard
Library reference il\ppendix F also lists thexeeptions that each HLA Standard Library routine raises.
You should skim eer these appendices t@ntiliarize yourself with the types okeeptions HLA raises and
refer to these sections when calling Standard Library routines to ensure that you handle all the possible
exceptions.

1.3.7

How to Handle Exceptions in Your Programs

When an gception occurs in a program there are four geneaglsvio handle thexeeption: (1) correct
the problem in thexeeption handler and restart théeofding instruction (if this is possible), (2) report an
error message and loop back to thfermding code and rexecute the entire sequence, preferably with better
input data that wn’t cause anmeeption, (3) report an error and reraise theeption (or raise a dérent
exception) and leze it up to a dynamically nestingaeption handler to deal with the problem, or (4) clean
up the prograng data as much as possible and abort progretugon. The HLA run-time system only
supports the last three options (i.e., it does notvajlou to restart the fénding instruction after some sort
of correction), so we will ignore thedi option in this tet.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager37



Chapter One Volume Four

Reporting an error and looping back to repeat tiiendfng code is anxeremely common solution
when then program raises atteption because of bad user inptihe folloving program preides a typical
example of this solution that forces a user to entealid wnsigned intger \alue:

progr am r epeat i ngBadCode;
#include( “stdlib.hhf” );

static
u: unsle;

begi n repeat i ngBadCode;
f orever

try

/1 Protected block. Read an unsigned integer
/1 fromthe user and display that value if
/1l there wasn't an error.
stdout. put ( “Enter an unsigned integer:” );
stdin.get( u);

// dean up the exception and break out of

// the forever loop if all went well.

unpr ot ect ed
br eak;

I/ 1f the user entered an illegal character,

// print an appropriate error nessage.

exception( ex.ConversionError )

stdout. put ( “Your input contained illegal characters” nl );

/1 1f the user entered a val ue outside the range
/1 0..65535 then print an error message.

exception( ex.Val ueQut Cf Range )
stdout. put ( “The value was too large” nl );
endtry;

/1 1f we get down here, it’'s because there was an exception.
/1 Loop back and make the user reenter the val ue.

endfor;

/1 Only by executed the BREAK statenent do we wi nd up down here.
/1 That occurs if the user entered a val ue unsigned integer val ue.

stdout. put( “You entered: “, u, nl );

end repeat i ngBadCode;

Pager38 © 2001, By Randall Hyde Beta Draft - Do not distribute



Advanced High Level Control Structures

Program 1.7  Repeating Code via a Loop to Handle an Exception

Another vay to handle anxeeption is to print an appropriate message (a taker correcte action)
and then re-raise thex@eption or raise a dérent exception. This allovs an enclosingxeeption handler to
handle the xception. The big adantage to this scheme is that it minimizes the code yoe toawrite to
handle a gien eception throughout your code (i.e., passing>aeption on to a diérent handler that cen
tains some compiecode is much easier than replicating that comptele gerywhere theeeption can
occur). Havever, this approach has itsva problems. Primary among the problems is ensuring that there is
some enclosinfRY..ENDTRY statement that will handle th&aeption for you. Of course, HLA automati
cally encloses your entire program in one BRY..ENDTRY statement, bt the defult handler simply
prints a short message and then stops your progfams.is unacceptable behar in a rolust program.At
the \ery least, you should supply youwie exception handler that surrounds the code in your main program
that attempts to clean up the system before shuttingwih dban otherwise unhandleckaeption comes
along. Generallyhavever, you would like to handle thexeeption without shutting daen the program.
Ensuring that this mlays occurs if you reraise arception can be ditcult.

The last alternate, and certainly the least desirable of the,f@ito clean up the system as much as
possible and terminate programeeution. Cleaning up the system includes writing transient data in mem
ory to fies, closing the lés, releasing system resources (i.e., periphevaekand memory), and, in gen
eral, preserving as much of the usexbrk as possible before quitting the prograiithough you vould
like to continue programxecution wheneer an &ception occurs, sometimes it is impossible to veco
from an irvalid operation (either on the part of the user or because of an error in your program) and continue
execution. In such a situation yowant to shut the program wa as gracefully as possible so the user can
restart the program and continue wherg tleé off.

Of course, the absoluteonst thing you can do is allothe program to terminate without attempting to
save user data or release system resourdége user of your application will not Ve kind things to say
about your program if thyeuse it for three or four hours and the program aborts and loses all the gata the
entered (requiring them to spend another three or four hours entering thatTedliap the user to “sa
your data often” is not a good substitute for automaticallingatheir data when arxeeption occurs.

The easiest ay to handle an arbitrary (and upected) gception is to place aRY..ANYEXCEP-
TION..ENDTRY statement around your main program. If the program raisescapt®n, you should se
the \alue in EAX upon entry into th&eNYEXCEPTION section (this contains th&aeption number) and
then sae ary important data and releaseyarsources your program is usingfter this, you can re-raise
the exception and let the dadilt handler print the error message and terminate your program.

1.3.8 Registers and the TRY..ENDTRY Statement

The TRY..ENDTRY statement preseeg about 16 bytes of data on the stack whemgou enter a
TRY..ENDTRY statement. Upon leing theTRY..ENDTRY block (or hitting the UNPRTECTED clause),
the program restores throeption emironment by popping this datafdhe stack.As long as noxaeption
occurs, theTRY..ENDTRY statement does notfatt the alues of ap registers upon entry to or uporie
from theTRY..ENDTRY statement. Heever, this claim is not true if arxeeption occurs during thexecu
tion of the protected statements.

Upon entry into an EXCEPTION clause the EAXjister contains thexeeption number and the state
of all other general purposegisters is undefied. Since the operating system mayehaised thexeeption
in response to a hardwe error (and, therefore, has played around with tfistegs), you cah’even assume
that the general purposayisters contain whater values thg happened to contain at the point of tkReep
tion. The underlying code that HLA generates fecaptions is subject to change inféient \ersions of the
compiler and certainly it changes across operating systems, so weas agyood idea toxperimentally
determine whatalues rgisters contain in arxeeption handler and depend upon thasees in your code.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager39



Chapter One Volume Four

Since entry into anxeeption handler can scramble all thgiséer \alues, you must ensure that you
reload important @ggsters if the code folleing your ENDTR clause assumes that theyisters contain
valid values (i.e., &lues set in the protected section alues set prior toxecuting theTRY..ENDTRY state
ment). Rilure to do so will introduce some nasty defects into your program (and these defects ergy be v
intermittent and dffcult to detect sincexeeptions rarely occur and may nowvals destrg the \alue in a
particular rgister). The followving code fragment puades a typical xample of this problem and its selu
tion:
static

array: uns32[8];

for( nov( O, ebx ); ebx < 8; inc( ebx )) do

push( ebx ); // Mist preserve EBX in case there is an exception.
forever

try

stdin.geti32();
unpr ot ect ed br eak;

exception( ex.ConversionError )
stdout.put( “Illegal input, please reenter value: “ );

endtry;
endf or ;
pop( ebx ); // Restore EBX s val ue.
mov( eax, array[ ebx*4 ] );

endfor;

Because the HLAx@eption handling mechanism messes with tgesters, and becausroeption han
dling is a relatiely ineficient process, you shouldves use th&RY..ENDTRY statement as a generic eon
trol structure (e.g., using it to simulate a SWITCH/CASE statement by raising garieteeption \alue
and using the EXCEPTION clauses as the cases to process). Doing seevdl\rey ngative impact on
the performance of your program and may introduce subtle defects bexeggoas scramble thegis-
ters.

For proper operation, tHERY..ENDTRY statement assumes that you only use the EBtee to point
atactivation ecods(the chapter on intermediate procedures discusseatamti records). By dafilt, HLA
programs automatically use EBP for this purpose; as long as you do not moddjugnen\EBPyour pre
grams will automatically use EBP to maintain a pointer to the curremtitati record. If you attempt to
use the EBP gaster as a general purpos@ister to hold alues and compute arithmetic results, FHA
exception handling capabilities will no longer function properly (not to mention you will lose access to pro
cedure parameters andriables in th&/AR section). Therefore, you should wer use the EBP gister as a
general purpose gester Of course, this same discussion applies to the Efiflee

1.4

BEGIN..EXIT..EXITIF..END

HLA provides a structured GID via theEXIT andEXITIF statementsThe EXIT and EXITIF state
ments let you>dt a block of statements surrounded BBEBGIN..END pair These statements befeamuch
like the BREAK and BREAKIF statements (that let y&it #om an enclosing loop)xeept, of course, tlye
jump out of a BEGIN..END block rather than a lodghe EXIT and EXITIF statements asuctued gotos

Pager40 © 2001, By Randall Hyde Beta Draft - Do not distribute



Advanced High Level Control Structures

because thedo not let you jump to an arbitrary point in the codey tirdy let you &it from a block delim
ited by the BEGIN..END pair

The EXIT and EXITIF statements &lkhe follaving forms:

exit identifier;
exitif( bool ean_expression) identifier;

The identifier component at the end of theseotatatements must match the ideatiffollowing the
BEGIN and END kywords (e.g., a procedure or program namig)e EXIT statement immediately trans
fers control to the “end identdfi;” clause.The EXITIF statementvaluates the booleaxgression immedi
ately following the EXITIF resered word and transfers control to the spedfiEND clause only if the
expression ealuates true. If the boolearpession ealuates dlse, the control transfers to thesfistate
ment follaving the EXITIF statement.

If you specify the name of a procedure as the idenfifir an EXIT statement, the program will return
from the procedure upon encountering the EXIT statemeMote that the EXIT statement does not auto
matically restoe any egisters you pushed on the skagpon entry into the pcedue. If you need to pop
data of the stack, you must do this befoseeeuting the EXIT statement.

If you specify the name of your main program as the identidillowing the EXIT (or EXITIF) state
ment, your program will terminate upon encountering the EXIT staterétit. EXITIF, your program will
only terminate if the boolearxpression ealuates true. Note that your program will still terminateneif
you &ecute the “git MainPgmName;” statement within a procedure nested inside your main progoam.
do not hae to execute the EXIT statement in the main program to terminate the main program.

HLA lets you place arbitrary BEGIN..END blocks within your programytaee not limited to sur
rounding your procedures or main prograhie syntax for an arbitrary BEGIN..END block is

begin identifier;
<st at enent s>
end identifier;

The identifer following the END clause must match the identifier following the corresponding BEGIN state
ment. Naturally, you can nest BEGIN..END blocks, but the identifier following an END clause must match
the identifier following the previous unmatched BEGIN clause.

One interesting use of the BEGIN..END block is that it lets you easily escape a deeply nested control
structure without having to completely restructure the program. Typically, you would use this technique to
exit a block of code on some special condition and the TRY..ENDTRY statement would be inappropriate
(e.g., you might need to pass values in registers to the outside code, an EXCEPTION clause can't guarantee
register status). The following program demonstrates the use of the BEGIN..EXIT..END sequence to ball
out of some deeply nested code.

pr ogr am begi nEndDenv;
#include( “stdlib.hhf” );

static
m uns8;
d: uns8;
y: unsie;

readonl y
Daysl nhont h: uns8[ 13] : =
[

5. This is true for the EXITIF statement as well, though, of course, the program will only exit the procedure if the boolean
expression in the EXITIF statement evaluates true.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager41l



Chapter One Volume Four

0, // No nonth zero.

31, // Jan

28, I/l Feb is a special case, see the code.
31, /] MNar

30, // Apr

31, /1 May

30, // Jun

31, // Jul

31, /1 Aug

30, // Sep

31, /1 Cct

30, // Nov

31 // Dec

1
begi n begi nEndDenm;
forever
try

stdout.put( “Enter nmonth, day, year: * );
stdin.get( m d, y);

unpr ot ect ed
br eak;
exception( ex.Val ueQut Cf Range )
stdout. put ( “Value out of range, please reenter”, nl );
exception( ex.ConversionError )
stdout.put( “Illegal character in value, please reenter”, nl );
endtry;

endf or;
begi n goodDat €;

mov( y, bx );
nmovzx( m eax );
mov( d, dl );

/1 Verify that the year is |egal
/1 (this programal |l ows years 2000..2099.)

if( bx in 2000..2099 ) then
/1 Verify that the month is |egal
if( al in1..12 ) then

/1 Quick check to make sure the
/1 day is hal f-way reasonabl e.

if( d <>0) then
/1 To verify that the day is |egal,

/1 we have to handl e Feb specially

Pager42 © 2001, By Randall Hyde Beta Draft - Do not distribute



Advanced High Level Control Structures
/1 since this could be a | eap year.
if( al =2) then
/1 1f this is a |leap year, subtract
/1 one fromthe day value (to convert
/!l Feb 29 to Feb 28) so that the
/1 last day of Feb in a | eap year
/1 will pass nmuster. (This could
// set dl to zero if the date is
// Feb 1 in a leap year, but we've
/1 already handl ed dl =0 above, so
// we don’t have to worry about this
/1 anynore.)

date.isLeapYear( bx );
sub( al, d );

endi f;

/1 Verify that the nunber of days in the month
[l is valid.

exitif( dl <= DaysInMonth[ eax ] ) goodDate;
endi f;
endi f;

endi f;
stdout.put( “You did not enter a valid date!”, nl );

end goodDat e;

end begi nEndDenv;

Program 1.8  Demonstration of BEGIN..EXIT..END Sequence

In this program, the “lzgn goodDate;” statement surrounds a section of code that checks to see if the
date entered by a user isaig date in the 100 years from 2000..2099. If the user entersaididate, it
prints an appropriate error message, otherwise the program quits without further user intéi4gteogpou
could restructure this code twaad the use of the EXITIF statement, the resulting codeldvprobably be
more dificult to understandThe nice thing about the design of the code is that it usesmegnt to test for
a legal date. That is, it tests to see if one component gallethen tests to see if thexbeomponent of the
date is lgal, and vorks davnward in this &shion. In the middle of the tests, this code determines that the
date is lgal. To restructure this code toork without the EXITIF (or other GOD type instruction) wuld
require using rgative logic at each step (asking is this compoment@a legal date). That logic would be
quite a bit more compkeand much more ditult to read, understand, andrify. Hence, thisxample is
preferable een if it contains a structured form of the BO statement.

Because the BEGIN..END statement uses a label, that the EXIT and EXITIF statements \gpecify
can nest BEGIN..END blocks and break out aesal nested blocks with a single EXIT/EXITIF statement.
Figure 1.1provides a schematic of this capability

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager43



Chapter One Volume Four

begi n out er Bl ock;

<< Statenents >>

exit outerBl ock;

<< Statenents >>

begi n i nner Bl ock;

<< Statenents >>

@ exit outerBl ock;
<< Statenents >>

exit innerBl ock;

<< Statenents >>

end i nner Bl ock;

s
<< Statenents >>

= exit outerBl ock;
<< Statements >>

end out er Bl ock;

e

Figure 1.1 Nesting BEGIN..END Blocks

This ability to break out of nested BEGIN..END blocks & paverful. Contrast this with the
BREAK and BREAKIF statements that only let youtéhe loop that immediately contains the BREAK or
BREAKIF. Of course, if you need toxie out of multiple nested loops youow't be able to use the
BREAK/BREAKIF statement to achie this, lut you can surround your loops with a BEGIN..END
sequence and use the EXIT/EXITIF statement teddéhose loops.The follonving program demonstrates
how this could verk, using the EXITIF statement to break out of mested loops.

pr ogr am br kNest edLoops;
#incl ude( “stdlib.hhf” )

static
i:int32;

begi n br kNest edLoops;

Pager44 © 2001, By Randall Hyde Beta Draft - Do not distribute



Advanced High Level Control Structures
// DL contains the last value to print on each line.
for( nov(0, dl ); dl <=7; inc( d )) do
begi n m ddl eLoop;
// DH ranges over the values to print.
for( nov( 0, dh); dh <=7; inc( dh)) do
/1 “i” specifies the field width
/1 when printing DH it al so specifies
/1 the maxi num nunber of tines to print DH
for( mov( 2, i ); i <=4; inc( i )) do

/1 Break out of both inner | oops
/1 when DH becones equal to DL.

exitif( dh >=dl ) niddl eLoop;
/1 The follow ng statement prints
/1 a triangul ar shaped object conposed
/1 of the values that DH goes through.
stdout. puti 8Size( dh, i, ‘." );

endf or;

endf or;

end m ddl eLoop;
st dout . new n();

endf or;

end brkNest edLoops;

Program 1.9  Breaking Out of Nested Loops Using EXIT/EXITIF

1.5

CONTINUE..CONTINUEIF

The CONTINUE and CONTINUEIF statements arery similar to the BREAK and BREAKIF state
ments inscdr as thg affect control fow within a loop. The CONTINUE statement immediately transfers
control to the point in the loop where the current iteration completes andxh#enation bgins. The
CONTINUEIF statementtfst checks a booleaxgression and transfers control if thegeession ealuates
false.

The phrase “where the current iteration completes and #ét@mtion bgins” has a dierent meaning
for nearly @ery loop in HLA. Fer theWHILE..ENDWHILE loop, control transfers to the top of the loop at
the start of the test for loop terminationor fhe FOREVER..ENDFOR loop, control transfers to the top of
the loop (no test for loop termination).orithe FOR..ENDFOR loop, control transfers to the bottom of the
loop where the increment operation occurs (i.e.xez@te the third component of the FOR loophr the
REPEA..UNTIL loop, control transfers to the bottom of the loop, just before the test for loop termination.
The following diagrams she how the CONTINUE statement beles.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager45



Chapter One Volume Four

—whil e( expression ) do

<< Statements >>

conti nue;

<< Statements >>

endwhi | e;

Figure 1.2 Behavior of CONTINUE in a WHILE Loop

— obf orever

<< Statenents >>

conti nue;

<< Statenents >>

endf or;

Figure 1.3 Behavior of CONTINUE in a FOREVER Loop

for( mov(0, ecx); ecx<10; inc(ecx)) do

<< Statenents >>

conti nue;

<< Statenents >>

Tendf or;

// Note that CONTINUE will cause
/'l the execution of the inc(ecx)
[/ instruction.

Figure 1.4 Behavior of CONTINUE in a FOR Loop

Pager46 © 2001, By Randall Hyde Beta Draft - Do not distribute



Advanced High Level Control Structures

r epeat

<< Statements >>

conti nue;

<< Statements >>

Tunti | ( expression );

/ Note that CONTINUE will transfer
/| control to the test for |oop
/ term nation.

/
/
/

Figure 1.5 Behavior of CONTINUE in a REPEAT..UNTIL Loop

It turns out that CONTINUE is rarely needed in common programs. Most of the time EENDF-
statement pnddes the same functionality as CONTINUE (or CONTINUEIF) while being much more read
able. Neertheless, there are amMénstances you will encounter where the CONTINUE or CONTINUEIF
statements prade eactly what you need. Heever, if you find yourself using the CONTINUE or CON
TINUEIF statements on a frequent basis, you should probably reconsider the logic in your programs.

1.6

SWITCH..CASE..DEFAULT..ENDSWITCH

The HLA language does not pide a selection statement similarS9VITCH in C/C++ orCASE in
Pascal/Delphi. This omission \&s intentional; by ledéng the SWITCH statement out of the language it is
possible to demonstratewido extend the HLA language by addingweontrol structures. In the chapters
on Macros and the HLA Compile-time Language, thig till demonstrate he@ you can add yourven
statements, li& SWITCH, to the HLA language. In the meantime, although HLA does nuidpra
SWITCH statement, the HLA Standard Library yides a macro that pvies this capability for you. If
you include the “hll.hhf” headerlé (which “stdlibhhf” automatically includes for you), then you can use
the SWITCH statemeniactly as though it were a part of the HLA language.

The HLA Standard Library SWITCH statement has the Wahg syntax:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager47



Chapter One Volume Four

switch( regz, ) |_— Atleast one CASE must be present.

—

case( constant _|ist )

<< stat ts S>> | Zero or more statements assodiate
statenents with the CASE constants.

case( constant_list ) Optional set of zero or more CASE

—1 1T sections to handle additional cases.
<< statenents >>

def aul t
~
R Optional DEFAULT section spec-
S SUEIEIERNS == T~ ifies statements to execute if none
endswi t ch: of the CASE constants match the

register's value.

Figure 1.6 Syntax for the SWITCH..CASE..DEFAULT..ENDSWITCH Statement

Like most HLA high lgel language statements, there akesa restrictions on the SWITCH statement.
First of all, the SWITCH clause does not alla general xpression as the selectioalwe. The SWITCH
clause will only allav a value in a 32-bit general purposaigter In general you should only use EAX,
EBX, ECX, EDX, ESI, and EDI since EBP and ESP are reskior special purposes.

The second restriction is that the HLA SWITCH statement supports a maximum of f2séndi€ase
values. Fe&r SWITCH statements useyamhere near this numheso this shouldn’prove to be a problem.
Note that each CASE fRigure 1.6allows a constant listThis could be a single unsigned igeée \alue or a
comma separated list oales, e.g.,

case( 10)
_Or_

case( 5, 6, 8)
Each walue in the list of constants counts as one case constant towards the maximum of 256 possible con

stants. So the second CASE clause above contributes three constants towards the total maximum of 256
constants.

Another restriction on the HLA SWITCH statement is that the difference between the largest and small-
est values in the case list must be 1,024. Therefore, you cannot have CASEs (in the same SWITCH state-
ment) with values like 1, 10, 100, 1,000, and 10,000 since the difference between the smallest and largest
values, 9999, exceeds 1,024.

The DEFAULT section, if it appears in a SWITCH statement, must be the last section in the SWITCH
statement. If no DEFAULT section is present and the value in the 32-bit register does not match one of the
CASE constants, then control transfers to the first statement following the ENDSWITCH clause.

Here is a typical example of a SWITCH..ENDSWITCH statement:

switch( eax )
case( 1)
stdout. put ( “Selection #1:” nl );

<< Code for case #1 >>

Pager48 © 2001, By Randall Hyde Beta Draft - Do not distribute



Advanced High Level Control Structures

case( 2, 3)

stdout. put ( “Selections (2) and (3):” nl );
<< code for cases 2 & 3 >>

case( 5,6,7,8,9)

stdout. put ( “Selections (5)..(9)" nl );
<< code for cases 5..9 >

def aul t

stdout. put ( “Sel ection outside range 1..9” nl );
<< defaul t case code >>

endswi t ch;

The SWITCH statement in a program lets your code choose oneeadlisgiferent code paths depend
ing upon the alue of the case selectioanable. Among other things, the SWITCH statement is ideal for
processing user input that selects a menu item>ewlites diierent code depending on the usesglection.

Later in this wlume you will see he to implement a SWITCH statement usingvi@vel machine
instructions. Once you see the implementation you will understand the reasons behind these limitations in
the SWITCH statementyou will also see winthe CASE constants must be constants andarabtes or
registers.

1.7

Putting It All Together

This chapter completes the discussion of the higdl leontrol structuresuilt into the HLA language or
provided by the HLA Standard Library (i.e., SWITCH). First, this chapdee @ complete discussion of the
TRY..ENDTRY and RAISE statementalthoughVolume One praided a brief discussion okeeption han
dling and theTRY..ENDTRY statement, this particular statement is too corpefully describe earlier in
this text. This chapter completes the discussions of this important statement and suggedts uge it in
your programs that will help makhem more ralst.

After discussinglTlRY..ENDTRY and RAISE, this chapter discusses the EXIT and EXITIF statements
and describes foto use them to prematurelyita procedure or the progranthis chapter also discusses
the BEGIN..END block and describesvhto use the EXIT and EXITIF statements ot esuch a block.
These statements ptide a structured GOD (JMP) in the HLA language.

Although you will not use them as frequently as the BREAK and BREAKIF statements, the CON
TINUE and CONTINUEIF statements are helpful once in a while for jumpieg the remainder of a loop
body and starting the reloop iteration. This chapter discusses the syntax of these statementsaansl w
against awverusing them.

This chapter concludes with a discussion of the SWITCH/CASEADEF/ENDCASE statement.
This statement ist’actually a part of the HLA language - instead it isvigted by the HLA Standard
Library as anxample of hav you can gtend the language. If youould like details onx@ending the HLA
language yourself, see the chapter on “Domain Spdafiguages.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager49



Chapter One Volume Four

Pager50 © 2001, By Randall Hyde Beta Draft - Do not distribute



	Advanced High Level Control Structures Chapter One
	1.1 Chapter Overview
	1.2 Conjunction, Disjunction, and Negation in Boolean Expressions
	1.3 TRY..ENDTRY
	1.3.1 Nesting TRY..ENDTRY Statements
	1.3.2 The UNPROTECTED Clause in a TRY..ENDTRY Statement
	1.3.3 The ANYEXCEPTION Clause in a TRY..ENDTRY Statement
	1.3.4 Raising User-Defined Exceptions
	1.3.5 Reraising Exceptions in a TRY..ENDTRY Statement
	1.3.6 A List of the Predefined HLA Exceptions
	1.3.7 How to Handle Exceptions in Your Programs
	1.3.8 Registers and the TRY..ENDTRY Statement

	1.4 BEGIN..EXIT..EXITIF..END
	1.5 CONTINUE..CONTINUEIF
	1.6 SWITCH..CASE..DEFAULT..ENDSWITCH
	1.7 Putting It All Together


