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Directives & Pseudo-Opcodes Lab Manual, Chapter Seven

 

To write assembly language programs you need to know just a little more than the language of the microprocessor.
The assembler has its own language above and beyond machine instructions. These additional statements, the assembler
directives and pseudo-opcodes, let you create symbolic names for objects, perform assembly time computations, and
help you write portable applications. This chapter discusses many of the advanced features provided by MASM 6.x and
how you can use them to ease the assembly language programming process.

Writing in pure assembly language isn’t much fun. Seemingly simple tasks, like writing the famous “Hello world”
program take considerable effort in assembly language. Far more than you would like if you’re used to high level lan-
guages like Pascal and C. A simple print statement in pure assembly language could take hundreds, or even thousands,
of lines of assembly code. Although DOS and BIOS simplify this somewhat, it’s still quite a bit more work than using the
WRITELN in Pascal. The UCR Standard Library for 80x86 Assembly Language Programmers was developed at the Univer-
sity of California, Riverside, to explicitly reduce the pain of transition from a HLL to assembly. The UCR StdLib provides
many high level functions comparable to those found in the C programming languages. Even if you are not familiar with
the C programming language, you will find the UCR Standard Library easy to learn and much easier to use than pure
assembly language for most programming tasks. Since this chapter presents the last of the tools necessary for you to start
writing full featured assembly language programs, it’s a great place to introduce you to the UCR Standard Library so you
won’t suffer too much frustration when writing your assembly language programs.

 

7.1 Assembly Language Statements

 

MASM generally expects one assembly language source statement per line of source code. Each assembly language
statement consists of one to four 

 

fields: 

 

the 

 

label

 

 field, the 

 

mnemonic

 

 field, the 

 

operand 

 

field, and the 

 

comment 

 

field.
Each field is optional. In fact, MASM allows completely blank lines when you leave out all four fields. How you organize
these fields in your source code is, perhaps, the primary factor controlling the readability of your code.

MASM is a 

 

free-form

 

 assembler. This means that you do not have to place the fields in a source statement in specific
columns

 

1

 

. In general, as long as the label field (if present) is the first field on the line, the mnemonic is the second, the
operand is third, and the comment field is last, MASM is happy. So a correct MASM statement takes the form:

 

Label mnemonic operand ;comment

 

The amount of white space before and after each field is insignificant to MASM. Consider the following examples:

 

7.1 What are the four fields of an assembly language statement? 

_______________________________ __________________________________

_______________________________ __________________________________

7.2 Which fields are optional in an assembly language statement?

___________________________________________________________________________

7.3 Why do we use a fixed format source statement when MASM allows free-format statements? 

___________________________________________________________________________

___________________________________________________________________________

 

1. Some older assemblers require each field to begin in a specific column. Very few modern assemblers require this.

 

Thi d t t d ith F M k 4 0 2
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7.2 The Location Counter

 

The assembler uses an internal variable, the 

 

location counter

 

 to keep track of the current offset into a segment. The
location counter corresponds to the 80x86’s 

 

instruction pointer 

 

(IP) register. For simple assembly language programs,
the location counter value MASM associates with a statement is the same value the IP register will contain when the CPU
executes that instruction. MASM uses the location counter to convert symbolic names into numeric offsets and to deter-
mine the position of code within your programs. Since understanding the effects of the location counter on your program
can make a difference in the performance and even the correctness of your programs, you should know what the loca-
tion counter is and how MASM uses it.

Whenever you begin a new segment within a program MASM automatically associates a location counter value with
that segment and initializes the location counter to zero. As the assembler emits instructions to the object code file it asso-
ciates the current location counter value with each instruction. Therefore, the first instruction in a new segment will have
the location counter value zero associated with it. As the assembler processes 80x86 machine instructions and MASM
pseudo-opcodes MASM increases the value of the location counter by the length of each instruction it processes. So if the
first instruction in a segment is two bytes long the location counter value associated with the next instruction is two.

 

7.4 What CPU register most closely corresponds to the location counter? 

___________________________________________________________________________

7.5 If the first instruction in a segment is two bytes long and the second instruction is three
bytes long, what is the value of the location counter at the beginning of the third instruc-
tion?

___________________________________________________________________________

 

If you use the “$” symbol within an expression, MASM substitutes the current location counter value 

 

at the begin-
ning of the instruction, before emitting any code,

 

 for the “$” symbol within the expression. For example, the following
MOV instruction loads AX with the offset of the MOV instruction:

 

mov ax, offset $

 

7.6 Given that a short JMP instruction is two bytes long, what will the instruction “JMP $+2” do
in your program? 

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

 

If you make an assembly listing (see Laboratory Exercise #1) you can see the value of the location counter for each
instruction in your program. ML created the following example listing file

 

2

 

:

 

; Demonstration of location counter values
; in an assembly listing. Assemble this
; code with the /Fl command line option.

0000 cseg segment
0000 MyProc proc
0000 50 push ax
0001 B0 00 mov al, 0
0003 B8 0000 mov ax, 0
0006 8B D8 mov bx, ax
0008 8B 87 1234 mov ax, 1234h[bx]

 

2. Most of the assembled listings appearing in this manual have been edited to remove unnecessary information and to format the listing so that it
fits properly on these pages. Actual assembly listings produced by the ML program may be slightly different.



 

MASM: Directives and Psuedo-Opcodes

Lab 6-249

 

000C EB 00 jmp $+2
000E 58 pop ax
000F C3 ret
0010 MyProc endp
0010 cseg ends

end

 

The first column is the location counter for the current segment. The next set of hexadecimal
numbers are the object code bytes emitted for that instruction. Individual bytes are output to the
code stream to successive addresses in memory. The “MOV AL, 0” instruction above, for exam-
ple, outputs the value B0h to location 0001 and 00h to location 0002. If a word value appears in
the output list (i.e., a four digit hexadecimal value) then MASM outputs the L.O. byte first and
H.O. byte second according to the 80x86’ little endian organization. For example, the
“MOV ax, 1234h[bx]” instruction above outputs 8Bh to location 0008, 87h to location 0009, 34h
to location 000Ah, and 12h to location 000Bh.

 

7.7 What is the opcode for the “PUSH AX” instruction above?

___________________________________________________________________________

7.8 How many bytes long is the “jmp $+2” instruction above? 

___________________________________________________________________________

 

The value of the location counter can make a difference in the execution time of your pro-
grams. The 80x86 CPUs, when fetching instruction opcodes from memory, always fetch one,
two, four, or eight bytes depending on the size of the processor. So, for example, if you are using
a 64-bit Pentium processor and you jump to an instruction whose location counter valueis one
less than an even multiple of eight, the CPU will spend one memory cycle fetching a single byte.
It will need to spend a second memory cycle fetching the second byte of that instruction. If your
code had jumped to an address that was an even multiple of eight bytes, the first memory cycle
would have fetched eight bytes. Therefore, executing the first instruction (assuming it is longer
than one byte) requires only one memory access rather than two. 

The 

 

even 

 

directive adjusts the location counter value so that it contains an even value. If
the location counter value is already even, the 

 

even 

 

directive leaves it alone. If the location
counter value is odd, 

 

even 

 

emits a zero byte to the current segment if it is a data segment, it
emits no-operation instructions if it is a code segment. The 

 

even 

 

directive is great for aligning
data on an even byte (word) boundary. As such, you can use it to align branch targets on 8086,
80186, 80286, and 80386sx processors (which are all 16-bit processors). The following listing
shows how the 

 

even 

 

directive operates:

 

; Example demonstrating the EVEN directive.

0000 dseg segment

; Force an odd location counter within
; this segment:

0000 00 i byte 0

; This word is at an odd address,
; which is bad!

0001 0000 j word 0

; Force the next word to align itself
; on an even address so we get faster
; access to it.

even
0004 0000 k word 0

; Note that even has no effect if we’re

 

6.258 Label, mnemonic, 
operand, comment

6.259 All fields are optional.

6.260 To make programs eas-
ier to read.
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;  already at an even address.

even
0006 0000 l word 0
0008 dseg ends

0000 cseg segment
assume ds:dseg

0000 procedure proc
0000 8B 07 mov ax, [bx]
0002 A2 0000 R mov i, al
0005 8B D8 mov bx, ax

; The following instruction would normally 
; lie on an odd address. The EVEN 
; directive inserts a NOP so that it falls
; on an even address.

even
0008 8B D9 mov bx, cx

; Since we’re already at an even address, 
; the following EVEN directive has no
; effect.

even
000A 8B D0 mov dx, ax
000C C3 ret
000D procedure endp
000D cseg ends

end

 

7.9 What value does MASM insert before the “k” variable in the data segment above?

___________________________________________________________________________

7.10 MASM will need to insert a byte before “MOV BX, CX” instruction above. What 80x86
instruction does this byte correspond to? 

___________________________________________________________________________

 

Unfortunately, 

 

even 

 

doesn’t solve the alignment problems on 32 and 64 bit processors. Fortunately, MASM pro-
vides a second directive, 

 

align

 

, that lets you adjust the location counter value so it is an even multiple of any power of
two. The 

 

align 

 

directive uses the syntax:

 

align

 

expression

 

The value of 

 

expression

 

 must be a power of two (e.g., 2, 4, 8, 16).

Like the 

 

even 

 

directive, 

 

align 

 

emits zeros or no-operation instructions to fill up any vacant space Since 

 

align 

 

lets
you choose values that correspond to processor sizes and cache line sizes, you can easily align your code no matter
which processor you’re using.

 

7.11 If you want your code to be aligned optimally to produce the fastest code for all members
of the 80x86 family, what operand would you use for the ALIGN directive? Why? 

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________
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Some of the best places to put align directives are just before a procedure, just before the
target of a 

 

jmp 

 

that is not part of a sequence, and at the beginning of a loop that will execute
many times.

 

7.12 Although the ALIGN directive will output NOPs to your code segment, it
is not a particularly good idea to insert ALIGNs between arbitrary
assembly instructions. Why? (Hint: what happens when the CPU exe-
cutes the code in this “empty” space?)

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

 

The following listing demonstrates the use of the align directive:

 

; Example demonstrating the align
; directive.

 0000 dseg segment

; Force an odd location counter
; within this segment:

 0000 00 i byte 0

; This word is at an odd address,
; which is bad!

 0001 0000 j word 0

; Force the next word to align itself
; on an even address so we get faster
; access to it.

align 2
 0004 0000 k word 0

; Force odd address again:

 0006 00 k_odd byte 0

; Align the next entry on a double
; word boundary.

align 4
 0008 00000000 l dword 0

; Align the next entry on a quad
; word boundary:

align 8
 0010 RealVar real8 3.14159
 400921F9F01B866E

; Start the following on a paragraph
; boundary:

align 16
 0020 00000001 00000002

Table dword 1,2,3,4,5
 00000003 00000004
 00000005
 0034 dseg ends

end

 

6.261 IP

6.262 5

6.263 Fall through to the fol-
lowing instruction.

6.264 50h

6.265 2
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The 

 

align 

 

directive has one important limitation: it cannot align data to a block any larger than the alignment spec-
ified in the 

 

segment 

 

directive. Since the 

 

segment 

 

directive supports 

 

byte, word, dword, para, 

 

and 

 

page 

 

align-
ment options, the maximum operand for 

 

align 

 

is going to be 256 (page alignment). The allowable operands, therefore,
are as follows:

•

 

Align 

 

and 

 

even 

 

are illegal if the segment alignment is byte,
•

 

Even

 

 and 

 

align 

 

2 is legal if the segment alignment is word,
•

 

Even, align 2,

 

and 

 

align 4

 

 are legal if the segment alignment is double word,
•

 

Even

 

,

 

 align 2, align4, align 8, 

 

and 

 

align 16

 

 are legal if the segment alignment is paragraph, and
•

 

Even 

 

and 

 

align

 

 with operands 2, 4, 8, 16, 32, 64, 128, and 256 are legal if the segment alignment is page.

 

7.13 Given that cache lines are 16 bytes on the 80486, what would be a good operand to use for
the ALIGN directive before each of the procedures in your program?

___________________________________________________________________________

 

7.3 Symbols

 

One of the primary benefits to an assembler like MASM is that it lets you use symbolic names in place of numeric
values. Although MASM allows symbolic names to take many different forms, your symbols should always take the fol-
lowing form:

• The symbol should begin with an alphabetic character. When interfacing with the C programming lan-
guage, you may need to begin certain symbols with an underscore as well. You should not begin symbols
with an underscore unless you need to make that symbol available to a C program.

• After the first character, a symbol may contain alphabetic characters, numeric characters, and underscore
characters.

• MASM allows any number of symbols in an identifier. Only the first 31 are significant, however. If two
unique symbols contain the same characters up to the 32

 

nd

 

 character, MASM thinks they are the same sym-
bol.

• In general, MASM symbols are not case sensitive. However, if you are interfacing your code to the C pro-
gramming language, you may need to use the 

 

option 

 

directive or a command line parameter to specify
case sensitivity. The following 

 

option 

 

operands let you specify case sensitivity:

 

option CASEMAP:NONE ;Symbols are case sensitive
option CASEMAP:NOTPUBLIC ;Public symbols are case

; sensitive, locals are not.
option CASEMAP:ALL ;Symbols are case insensitive.

 

Case sensitivity is a touchy issue with many programmers. Some (very) strongly believe that it’s a good idea to not
only have case sensitivity, but to use it wherever possible as well. Others feel that if you cannot tell the difference
between two identifiers when they are spoken, the programming language shouldn’t differentiate them either. This text
adopts the pragmatic approach of using totally unique symbols for different objects and making sure that the case is
proper for each usage. In general, this is a good policy to adopt since you will be able to interface with high level lan-
guages yet avoid the confusion that occurs when you have two symbols whose only difference is alphabetic case. The
“

 

option casemap:notpublic

 

” directive is probably the best choice for all around assembly language programs.

There are other restrictions on symbols in your assembly language programs. For example, you cannot use one of
MASM’s reserved words as a symbol. See the textbook or the MASM reference manual for a list of MASM’s reserved
words.

 

7.14 Taking advantage of case insensitivity in a program is generally a bad idea. Why does
MASM even need to support this? 

___________________________________________________________________________

___________________________________________________________________________
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Symbols in an assembly language program have two major attributes associated with them:
a 

 

value

 

 and a 

 

type

 

. The allowable types include byte, word, dword, qword, tbyte, real4, real8,
real10, near, far, text, segment, abs (absolute or constant), and other types. A symbol’s declara-
tion determines its type. Statement labels (those followed by one or two colors) are always 

 

near

 

symbols. Near procedure names are also near symbols. Likewise, far procedure names are
always far typed symbols. Variables you declare with the data definition directives (

 

db, byte,
sword, real4, dq,

 

 etc.) all take on their respective types. Symbols declared with 

 

textequ

 

are textual symbols, and other constants declared with 

 

equ 

 

or “=” and an literal constant oper-
and are of type absolute. Symbols appearing in a 

 

segment 

 

directive are symbols of type seg-
ment

 

3

 

 Whenever you create an assembly listing, MASM prints out a 

 

symbol table

 

 at the end of the
listing. This symbol table provides the type and value information for each symbol in the pro-
gram. The following example shows you what the symbol table looks like:

 

; Program with symbols of various types.

0000 dseg segment
0000 00 i byte 0
0001 0000 j word 0
0003 00000000 k dword 0
0007 l qword 0
0000000000000000
000F dseg ends

0000 cseg segment
0000 MyProc proc near
0000 90 nop
0001 90 MyLbl: nop
0002 90 MyLbl2:: nop
0003 C3 ret
0004 MyProc endp

0004 FarProc proc far
0004 90 nop
0005 CB ret
0006 FarProc endp
0006 cseg ends

= 0001 Value1 = 1
= 0002 Value2 = 2
= 0002 Value3 equ 2
= 2 Value4 equ <2>
= 2 Value5 textequ <2>

end

Segments and Groups:

N a m e Size   Length Align Combine Class

cseg . . . . 16 Bit 0006  Para  Private 
dseg . . . . 16 Bit 000F  Para  Private 

Procedures, parameters and locals:

N a m e Type Value Attr

FarProc . . . . . . . . . . . .P Far  0004  cseg
Length= 0002 Public

MyProc . . . . . . . . . . . . P Near  0000  cseg
Length= 0004 Public

MyLbl . . . . . . . . . . . . L Near  0001  cseg

Symbols:

 

3. Symbols appearing in a group directive are also symbols of type segment.

6.266 0

6.267 NOP

6.268 ALIGN 4 because align-
ing on double word bound-
aries is best for 80386 and 
later processors. Although 
not necessary for 80286 and 
before, you still get the best 
performance.

6.269 You have execute all 
those NOPs.



 

Lab Ch07

Lab 6-254

 

N a m e Type Value Attr

MyLbl2 . . . . . . . . . . . . .LNear  0002  cseg
Value1 . . . . . . . . . . . . .Number  0001h  
Value2 . . . . . . . . . . . . .Number  0002h  
Value3 . . . . . . . . . . . . .Number  0002h  
Value4 . . . . . . . . . . . . .Text  2
Value5 . . . . . . . . . . . . .Text  2
i . . . . . . . . . . . . . . . Byte  0000  dseg
j . . . . . . . . . . . . . . . Word  0001  dseg
k . . . . . . . . . . . . . . . DWord  0003  dseg
l . . . . . . . . . . . . . . . QWord  0007  dseg

 

(The “Attr” field above is just the segment address in this example.)

 

7.15 What is the type of symbol Value5 above? 

___________________________________________________________________________

7.16 Which type above corresponds to “absolute” 

___________________________________________________________________________

7.17 What is the offset of MyLbl2 in the above example? 

___________________________________________________________________________

 

The value of a symbol is usually the value of the location counter and segment address at the beginning of the state-
ment on which the symbol lies. Textual, macro, segment, and absolute typed symbols are the obvious exceptions. The
value of a textual symbol is simply the text in the operand field of the 

 

textequ 

 

statement. The value of a segment sym-
bol is the paragraph address of the corresponding segment. The value of an absolute symbol is whatever value appears
in the operand field of the 

 

equ 

 

directive.

If a symbol’s type is not segment, textual, or absolute, then the value associated with that symbol consists of the two
components of a segmented address: the offset and the segment portion. You can use the 

 

offset 

 

and 

 

seg 

 

operators to
extract these two values, e.g.,

 

mov di, seg MySymbol
mov es, di
mov di, offset MySymbol

 

Note that the 

 

seg 

 

and 

 

offset 

 

operators always return a constant (abs type). Therefore, the first and third instructions
above always use the immediate addressing mode.

 

7.18 Why can’t you execute an instruction of the form:

MOV ES, seg MySymbol

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

 

If a segment name appears in the operand field of an instruction, MASM automatically returns a constant corre-
sponding to the segment’s paragraph address. If 

 

cseg 

 

is a symbol of type segment, the following two statements are
legal and produce exactly the same results:

 

mov ax, seg cseg
mov ax, cseg
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MASM is a strongly typed assembler. That is, as much as possible it insists that the types of
operands to an instruction agree. For example, the following instruction is illegal because it
mixes eight and sixteen bit operands in the same instruction:

 

mov bl, ax

 

Similarly, if 

 

MyVar

 

 is of type word (perhaps you’ve declared it using the 

 

word 

 

directive), then
the following is also illegal because the operand sizes do not match:

 

mov bl, MyVar

 

Although it is never possible to move a sixteen bit register into an eight bit register

 

4

 

, moving
a memory location into an eight bit register is always possible. Even if a variable is 16 bits, you
could move at least eight of those bits into the eight bit register. Moving a portion of a variable
into a register is a very common operation. For example, it is often the case that you want to load
a 16 bit register from a double word variable (e.g., a pointer). Since the assembler checks the
types of the operands, it wouldn’t normally allow you to do this. Fortunately, MASM provides
several 

 

coercion

 

 operators to let you change the type of a symbol. The “

 

type 

 

ptr

 

” operator does
this, where 

 

type

 

 represents one of the keywords 

 

byte, word, dword, near, far,

 

 etc. If

 

MyVar

 

 above was a sixteen bit variable, the following statement would let you load the L.O.
byte of 

 

MyVar

 

 into 

 

bl

 

:

 

mov bl, byte ptr MyVar

7.19 If MyVar is a byte variable, what will “MOV AX, WORD PTR MyVar” do? 

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

The this operand is also useful when defining symbols. This returns the address of the
current byte in memory (i.e., the location counter value). If used within an instruction, this corre-
sponds to the first byte of that instruction. The this operand takes the form “this type” where
type is one of MASM’s data types (described above). Generally, you would use the this operand
with an equ directive as follows:

BSymbol equ this byte

This assigns the current location counter (and segment value) to BSymbol and sets its type to
byte. Note, by the way, that the statement above is identical to:

BSymbol equ byte ptr $

Remember, “$” returns the current value of the location counter.

Most programmers use the “THIS type” form in EQU directives and the “$” form as operands
to instructions. However, the two are mostly interchangeable. The following statement is per-
fectly legal:

mov ax, this word

7.20 What will the instruction above do? 

___________________________________________________________________________

___________________________________________________________________________

4. It is possible, using sign extension, to move an eight-bit register into a sixteen bit register.

6.270 6.15: ALIGN 16

6.271 To interface with case 
sensitive languages like C.
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More often than not, programmers use the “this type” with the equ directive to generate two symbols for the same
address, allowing them to easily access the data at that address as two separate types. Consider the following code
sequence:

WPtr equ this word
DPtr dword 0

 .
 .
 .
mov WPtr, di
mov WPtr+2, es
 .
 .
les di, DPtr

7.21 What would you add to the above if you needed to access DPtr as a sequence of bytes in
addition to words and dwords?

___________________________________________________________________________

___________________________________________________________________________

7.4 Literal Constants

MASM lets you specify five different types of literal (non-symbolic) constants: integers, reals, strings, text, and BCD
values. The first four types you will frequently use in a typical assembly language program. BCD operations do not occur
very often, we will not consider them in this laboratory manual.

MASM lets you specify integer constants in one of four different forms: binary, octal5, decimal, and hexadecimal. An
integer constant is one that begins with a decimal digit and is followed by a string of decimal digits or A…F (for hexadec-
imal constants). To specify the radix for an integer constant that is not the current default, MASM requires a suffix of “b”
or “B” for binary, “t”, “T”, “d” or “D” for decimal, or “h” or “H” for hexadecimal. Examples:

10110b 1234 1234d 1234h

7.22 Why isn’t “ABCDh” a valid hexadecimal constant? 

___________________________________________________________________________

You can change the default radix using the.radix directive. The single operand to this directive must contain a
value in the range 2…16. Until the next .radix directive, all integer constants in your program without a radix suffix
(“b”, “d”, “t”, or “h”) will use the specified base. You can restore decimal as the default base using the .radix 10 direc-
tive. 

7.23 If the current default radix is base 16 (hexadecimal) and you use a constant of the form
“12d” MASM treats this as the hex constant “12Dh”. How do you specify the decimal con-
stant 12?

___________________________________________________________________________

MASM lets you specify string constants by surrounding the desired text with either a pair of quotation marks or a
pair of apostrophes. If you need to include an apostrophe or quote within a string, the easiest solution is to use the other
character as the delimiter for the string, e.g.,

“It’s got an apostrophe in it.”
‘He said “How are you?”’

5. We will ignore the octal base throughout this text.
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MASM also allows you to double up an apostrophe or quote within a string delimited by
that same character, just like Pascal and some other high level languages:

“He said “How are you?”””

7.24 If you need to include both apostrophes and quotes within a string,
how could you do this?

___________________________________________________________________________

___________________________________________________________________________

Text equates let you perform textual substitutions during assembly. These involve the use of
the textequ and equ assembler directives6. You can use the textequ directive to define a
text constant as follows:

symbol textequ <textual data>

The angle brackets (“<“ and “>”, also know as the less than and greater than symbols) must sur-
round the textual data you wish to define. When MASM encounters symbol after processing the
textequ directive above, it simply substitutes the text between the angle brackets for that sym-
bol.

7.25 Suppose you have the text equate “Var textequ <[bx+6]>” within your
program. If you write the statement “mov ax, var” in your code, what
statement will this actually produce?

___________________________________________________________________________

___________________________________________________________________________

Please note that the following two equates are not equivalent:

item equ $+2
item2 textequ <$+2>

The first equate computes the value of the location counter plus two and assigns this value to
item. The textual equal, on the other hand, simply substitutes the string “$+2” everywhere it
sees the symbol item2. Since the value of the location counter will probably be different for
each usage of item2, it will not produce the same result at the item equate. Look at the object
code produced in the following listing:

0000 cseg segment
0000 = 0002 equ1 equ $+2
     = $+2 equ2 equ <$+2>
0000 MyProc proc
0000 B8 0000 mov ax, 0
0003 8D 1E 0002 R lea bx, equ1
0007 8D 1E 0009 R lea bx, equ2
000B 8D 1E 0002 R lea bx, equ1
000F 8D 1E 0011 R lea bx, equ2
0013 MyProc endp
0013 cseg ends

end

6. Microsoft supports the EQU directive for compatibility reasons. They suggest that, for compatibility with future ver-
sions of MASM, that you always use the TEXTEQU directive for textual equates.

6.272 Text

6.273 Number

6.274 2

6.275 You cannot move 
immediate values into a seg-
ment register.

6.276 It will load MyuVar into 
AL and the byte following 
MyVar into AH.

6.277 Load the opcode of 
the MOV AX, displacement 
into AX.
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7.26 In the listing above, why does “LEA BX, equ1” always produce the same opcode bytes
while “LEA BX, equ2” does not?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

Real constants take the same form as their HLL counterparts (see the textbook) and are required by certain MASM direc-
tives (.e.g, real4) and some 80x87 machine instructions. 

7.5 Procedures

MASM’s proc and endp directives let you define procedures in an assembly language program. Although the
proc and endp directives are not strictly necessary in an assembly language program, they do simplify assembly lan-
guage programs and you should always use them when creating procedures. The basic syntax for the proc directive is

ProcName proc operand(s)

Where ProcName is the name of the procedure you wish to define and the operand field is either blank or contains the
keyword near or far. If either keyword is present, then the procedure will be a near or far procedure, depending upon
the operand. If the operand field is blank, then the procedure usually defaults to a near procedure unless you’ve placed
a .model directive in the source file. If you have, then the default depends upon the operand of the .model directive.
See the MASM Programmer’s Guide for more information on .model.

The choice of near or far as an operand to the proc directive has two immediate effects on your program. First, any
call instruction that references such a procedure automatically becomes a near or far call depending on the type of the
procedure. Second, MASM automatically converts any ret instructions within the procedure to retn or retf as appro-
priate.

7.27 If you want to force a far return from a near procedure, what instruction could you use to
do this?

___________________________________________________________________________

7.28 If you wanted to create a near procedure named “MyProc”, what would the PROC statement
look like? 

___________________________________________________________________________

MASM uses the endp directive to mark the end of a procedure. Unlike HLLs, MASM will not automatically issue a
ret instruction immediately before an endp directive. It is your responsibility to put an instruction that changes the flow
of control before the endp if you do not want to execute whatever follows the procedure upon hitting the endp direc-
tive. The endp directive requires a label in the label field that must match the label in the corresponding proc directive.
The syntax is the following:

ProcName endp

All statement labels (those with a “:” suffix) within a procedure are local to that procedure. This means that you can-
not reference these labels from outside that procedure and any attempt to do so will produce an “undefined symbol”
error. If you need to reference a statement label from outside the procedure, use a double colon (“::”) after the label you
want to be global. E.g., 

ProcWGlbls proc
mov cx, 10

GlobalLbl:: loop GlobalLbl
ret

ProcWGlbls endp
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Please note that only statement labels are local to a procedure. Most other symbols includ-
ing those declared with equ, byte, word, etc., are global to the procedure and you may refer-
ence them from other parts of your program.

7.29 How would you rewrite ProcWGlbls if you did not want “GlobalLbl” to
be a global symbol?

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

7.6 Address Expressions

Anywhere MASM allows a symbol or numeric value (e.g., a displacement in an instruction),
it will allow an address expression. An address expression is an algebraic expression that MASM
computes at assembly time. If this expression appears in the displacement field of an instruction,
then MASM computes the result of that expression and places the result in the displacement field
of the instruction’s opcode.

Address expressions allow the following arithmetic, logical, and relational operators: 

 

Table 16: Arithmetic Operators

Operator Syntax Description

+ +expr Positive (unary)

- -expr Negation (unary)

+ expr + expr Addition

- expr - expr Subtraction

* expr  * expr Multiplication

/ expr  / expr Division

MOD expr  MOD expr Modulo (remainder)

[ ] expr [ expr ] Addition (index operator)

Table 17: Logical Operators

Operator Syntax Description

SHR expr SHR expr Shift right

SHL expr SHL expr Shift left

NOT NOT expr Logical (bit by bit) NOT

AND expr AND expr Logical AND

OR expr  OR expr Logical OR

XOR expr  XOR expr Logical XOR

6.278 BPtr equ this byte

6.279 It needs to begin with a 
decimal digit, e.g., “0”.

6.280 “12T”

6.281 Whichever delimiter 
you use to surround the char-
acters in the string, double 
that character up in the 
string.

6.282 mov ax, [bx+6]
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MASM generates zero for false and 0FFFFFFFFh for true.

7.30 What will the instruction “MOV AL, X+1” do? 

___________________________________________________________________________

___________________________________________________________________________

Although the addition and subtraction operators are the most often used operators, the others have their uses as
well. For example, suppose you have a word array containing 256 elements that you want to index using ASCII charac-
ters. If you wanted to initialize element “A” to 1250 you could use the following instruction:

mov Array[“A”*2], 1250

This is far more readable, and understandable, than the corresponding code that does not use an address expression:

mov Array[130], 1250

7.31 Suppose this array contained double word elements rather than word elements. How could
you initialize the element at index “A” to 1250 in this case (assume you are on an 80386
processor)? 

___________________________________________________________________________

___________________________________________________________________________

The logical and relational operators have some obvious uses with the conditional assembly statements, the follow-
ing example generates an error if the “ShortProc” procedure is longer than 16 bytes:

ShortProc proc near
 .
 .
 .

ShortProc endp
SPLen equ $-ShortProc

if SPLen GT 16
.err
endif

The ($-ShortProc)” operand computes the length of the procedure. Note that we could have placed the length computa-
tion directly into the IF directive as follows:

if ($ - ShortProc) GT 16

Some languages, like Pascal, use length prefixed strings where the first byte of a character array contains the length
of the string that follows. Counting up the characters in a string can be a real chore, especially if the string is long or if you

Table 18: Relational Operators

Operator Syntax Description

EQ expr EQ expr True if equal

NE expr NE expr True if not equal

LT expr LT expr True if less than

LE expr LE expr True if less than or equal

GT expr  GT expr True if greater than

GE expr  GE expr True if greater than or equal
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change it often. However, by using address expressions you can have MASM automatically com-
pute the length for you:

LenPrefixed byte EndStr-$-1
byte “This is my string of characters.”

EndStr equ this byte

7.32 What is the value assigned to the “EndStr” symbol above?

___________________________________________________________________________

The logical operators are useful on occasion as well. Suppose you have the following
equate which is a bit mask for converting upper case to lower case:

CaseBit equ 20h

You could convert upper to lower case with the single instruction:

or al, CaseBit

The opposite operation, converting lower to upper case requires ANDing with 5Fh rather than
20h. You can convert 20h to 5Fh by using the logical NOT operator. So you can still use the
CaseBit symbol with an AND instruction as follows:

and al, not CaseBit

As a final example, consider the DATE data type from Chapter Two:

 If you have three symbols Month, Day, and Year, equated to appropriate values, you can pack
them into a single word taking the above format with the statement:

ThisDate word (Month shl 12) + (Day shl 7) + Year

There are many restrictions on the operators you can use with certain symbol types. For
example, MASM will not allow you to compute “($ MOD 15)” because it doesn’t know the
final value of “$”7. On the other hand, it can compute the distance between two relocatable
objects like a statement label and “$”, which is why “EndStr-$” is acceptable to the assembler.
To sort out all the crazy details, please see the MASM Programmer’s Guide.

7.7 Type Operators

The MASM type operators let you coerce the type of one operand to another type or return
some intrinsically useful formation about that operand. The following table lists some of the
commonly used type operators MASM provides (see the textbook for a more complete list):

7. Only the linker will know this value.

15  14 13  12  11  10 9    8   7    6    5    4    3    2    1    0

M   M   M   M D    D   D   D    D Y   Y   Y   Y    Y    Y   Y

6.283 “$+2” is computed only 
once at the point of the equ 
directive. The textual 
equate, however, substitutes 
“$+2” at each occurrence of 
equ2, which causes a com-
putation of “$+2” at that 
point.

6.284 RETF

6.285 MyProc proc near

6.286 Remove the second 
colon from the GlobalLbl 
symbol.
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You’ve already see examples of the first four operators in this chapter. There is no need to discuss them further here.

The lengthof operator returns the total number of elements in an array, assuming you’ve defined the array with a
single statement using the dup operator. For example, if you’ve defined an array as follows:

MyArray word 64 dup (?)

then mov  cx, lengthof MyArray loads cx with 64. Note that the number of bytes in the array are irrelevant.
Lengthof would return 64 for MyArray even if it had been a byte or dword array.

One advantage to using the lengthof operator is that you can set up your code to automatically adjust to the size
of the array. If you wanted to initialize each element of MyArray to 0, you could use the following loop:

mov cx, lengthof MyArray
mov ax, 0
lea bx, MyArray

FillLp: mov [bx], ax
add bx, 2
loop FillLp

If you change the size of the array to 256 at some future date, you will not have to modify the code. It will automatically
adjust to the new size of the array and it would still work correctly.

The sizeof operator returns a constant that gives the number of bytes in an array or structure. This operator is quite
useful when computing indexes into arrays and performing other computations that depend on the size of some data
structure. For example, suppose you want to create an array of structures. You could use the following declarations to
easily accomplish this:

MyStruct struct
Field1 byte ?
Field2 word ?
Field3 dword ?
MyStruct ends

MyArray byte 64 * (sizeof MyStruct) dup (?)

Note that this code sequence uses the byte pseudo-opcode to reserve storage for the array since the sizeof operator
returns the size of an object in bytes. Please be aware that using the lengthof operator on MyArray returns the number

Table 19: Common Type Operators

Operator Syntax Description

PTR byte ptr expr
word ptr expr
dword ptr expr
qword ptr expr
tbyte ptr expr
near ptr expr
far ptr expr

Coerce expr to point at a byte.
Coerce expr to point at a word.
Coerce expr to point at a dword.
Coerce expr to point at a qword.
Coerce expr to point at a tbyte.
Coerce expr to a near value.
Coerce expr to a far value.

this this type Returns an expression of the specified type 
whose value is the current location counter.

seg seg label Returns the segment address portion of label.

offset offset label Returns the offset address portion of label.

lengthof lengthof variable Returns the number of items in variable.

sizeof sizeof variable Returns the size, in bytes, of variable.
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of elements in this byte array. The assembler thinks that you’ve created a byte array, not a
MyStruct array. 

7.33 How could you create a 16 x 16 two dimensional array of MyStruct
using the sizeof operator and the above technique?

___________________________________________________________________________

Keep in mind that this isn’t the best way to allocate an array of structures. The standard way,
of course, is to use the following declaration:

MyArray MyStruct 64 cup ({})

The sizeof operation is very useful for computing data structure size when using the UCR
Standard Library Malloc routine. For example, if you wanted to allocate storage for a single
instance of MyStruct on the heap, you could use the following code:

mov cx, sizeof MyStruct
malloc
jc InsufficientMemory

If you wanted to allocate an array of MyStruct, say 64 elements, you could use the following
code:

mov cx, 64 * sizeof MyStruct
malloc
jc InsufficientMemory

This provides a reasonable example of where you really can use the sizeof operator to allocate
an array of structures. Malloc always requires the size in bytes, so the sizeof operator is quite
useful for creating such arrays.

7.8 Conditional Assembly

Conditional assembly is a very powerful feature provided by MASM. Conditional assembly,
as its name implies, lets you choose whether or not to assemble certain statements into your
object module depending on some condition that exists at assembly time. Two common uses for
conditional assembly are to include special debugging statements in your program that you can
easily remove after debugging and providing a way of assembling different code depending on
the processor available.

The ifdef and ifndef directives are probably the most commonly used conditional
assembly directives. They use the following syntax:

ifdef label ifndef label
  .   .
  .   .
  .   .
endif endif

The operand to these two directives must be a single symbol.

If the symbol is defined in the current source file before encountering the ifdef statement,
MASM will effectively ignore the ifdef and endif statements and assemble all the code
between them. If the symbol has not been defined at that point, MASM will ignore all the state-
ments between the ifdef and the endif statements. Ifndef works in a similar fashion except
it assembles the instructions if the symbol is not defined at that point.

Consider the example mentioned earlier, that of including debug code in your source files.
Consider the following sequence:

6.287 Load AL with the byte 
following memory location 
X.

6.288 mov Array[“A”*4], 1250

6.289 if ($ mod 15) NE 0
byte (15 - ($ mod 15)) dup (?)
endif
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print
byte “Calling ‘MySub’ from ‘ThisProc’”,cr,lf,0
call MySub
print
byte “Returning from ‘MySub’ to ‘ThisProc’”,cr,lf,0

This debugging code traces the execution of the program. 

There is a major problem with inserting statements like this in your code. It’s quite possible that you never execute
this sequence of instructions during normal operations. So you might not ever see these messages and, therefore, you
could forget to remove them from your code. Later, when someone uses your program they might cause the program to
execute this sequence of instructions producing some embarrassing diagnostic messages on their screen.

Even if you always do remember to remove the debugging statements, there is a minor problem. What happens if at
a later date you want to see if the program calls MySub ? Then you’d have to put these diagnostic messages back into
your code. Now consider the following example:

ifdef debug
print
byte “Calling ‘MySub’ from ‘ThisProc’”,cr,lf,0
emdif

call MySub

ifdef debug
print
byte “Returning from ‘MySub’ to ‘ThisProc’”,cr,lf,0
endif

With these conditional assembly statements in your program you will get the diagnostics assembled only if there is a
symbol “debug” that appears earlier in your program. So by placing a single symbol, “debug”, at the beginning of your
program you can automatically turn on all debugging statements8. Likewise, by removing the debug statement, you can
automatically disable all the debugging statements. Note that MASM ignores any value debug might have. Ifdef/ifndef
only tests to see if the symbol is defined. You could use the following statement to define debug in your program:

debug equ 0

The following code sample shows how MASM handles the ifdef directive. In this example there are two symbols
that ifdef directives check: debug1 and debug2. In this instance debug1 has a definition but debug2 does not.
Note that MASM does not emit any code (check the location counter value!) for the statements surrounded by the
ifdef debug2 and corresponding endif statements.

; Demonstration of IFDEF to control
; debugging features. This code
; assumes there are two levels of
; debugging controlled by the two
; symbols DEBUG1 and DEBUG2. In
; this code example DEBUG1 is
; defined while DEBUG2 is not.

 = 0000 DEBUG1 = 0

 0000 cseg segment. 
0000 DummyProc proc

ifdef DEBUG2
print
byte “In DummyProc”
byte cr,lf,0
endif

0000 C3 ret
0001 DummyProc endp

8. ML also has a command line option, /Ddebug, that would let you define this symbol when you assemble the program. This is quite handy if you
only need to turn on debugging every now and then.
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 0001 Main proc
ifdef DEBUG1
print

 0006 43 61 6C 6C 69 6E byte “Calling DummyProc”
 67 20 44 75 6D 6D
 79 50 72 6F 63
 0017 0D 0A 00 byte cr,lf,0

endif

 001A E8 FFE3 call DummyProc

ifdef DEBUG1
print

 0022 byte “Return from “
 52 65 74 75 72 6E byte “DummyProc”
 20 66 72 6F 6D 20
 44 75 6D 6D 79 50
 72 6F 63
 0037 0D 0A 00 byte cr,lf,0

endif
 003A C3 ret
 003B Main endp
 003B cseg ends

end

Another common problem is developing assembly code that you can assemble for different
80x86 processors. If you write code using 80386 instructions, however, your programs will not
run on earlier processors. One alternative is to supply two executables. By conditionally assem-
bling one sequence of instructions for 80386 and later processors and another sequence for pre-
80386 processors, you can put all your code into a single source file.

MASM provides a predefined symbol, @CPU, that contains certain bits set depending on
the CPU type specified by the .8086, .186, .286, .386, .486, and .586 directives. The
return value for @CPU is the following (a set bit indicates that the corresponding CPU directive is
active):

7    6    5    4    3    2    1    0

@CPU Value

8086/8088

80186/80188

80286

80386

80486

Pentium

Protected Mode (.286P, .386P, .486P, .586P)

6.290 Ary byte 16 * 16 * sizeof 
MyStruct dup (?)
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7.34 If you’ve specified the .386 directive in your program (and no other processor selection
directives appear afterwards), what value will @CPU return? 

___________________________________________________________________________

So if you want to assemble code differently depending upon the availability of an 80386 processor, you could use
code like the following:

dseg segment
BigVar dword ?

 .
 .
 .

dseg ends

cseg segment
 .
 .
 .

if (@CPU and 1000b) NE 0

; Okay, we’ve got an 80386 or better, use 32-bit instrs.

mov BigVar, 0

else

; If it’s an 80286 or earlier, break the 32 bit operation
; up into two 16 bit operations.

mov word ptr BigVar, 0
mov word ptr BigVar+2, 0

endif

7.35 What IF directive would you use for the above if you wanted an 80486 or better processor?

___________________________________________________________________________

There are many conditional assembly directives beyond the ones presented here. See the textbook and the MASM
Programmer’s Guide for more details.

7.9 Macros

Macros are similar to textual equates; they let you replace a single identifier with some text during the assembly pro-
cess. Macros, however, are far more flexible than simple textual equates because macros support multi-line substitutions
and parameters.

A macro definition takes the following form:

MacroName macro optional parameters

< sequence of valid MASM statements>

endm

A macro invocation takes the form:

MacroName optional parameters

Usually, you do not want to use macros to create new “instructions” for the 80x86. However, there are some times
when creating new “instructions” with macros is perfectly reasonable. For example, the 80186 and later processors let
you push an immediate value onto the stack. The 8086 and 8088 do not. The following macro provides a “push immedi-
ate” instruction that works on all processors:
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PSHI macro value
if (@CPU and 10b) NE 0 ;80186 or later
push value
else
mov ax, value
push ax
endif
endm

7.36 One big problem with macros is that they often produce side effects. A
side effect is some computation or operation that takes place that is
incidental to the actual operation of the macro and is not obvious from
the invocation of the macro. The macro above suffers from a major
side effect. What is it? 

___________________________________________________________________________

___________________________________________________________________________

Here’s another example showing how to use macros to allow you to prepare optimized instruc-
tions for different processors in the 80x86 family. On the 80286 and later processors, the shl
instruction allows an immediate value other than one as the second operand. The following
shli (shift left immediate) macro generates a sequence of shl operand, 1 instructions for the
8086/8088 and a single instruction for the 80286 and later processors:

SHLI macro operand, count
if (@CPU and 100b) NE 0 ;80286 or later.
shl operand, count
else
repeat count
shl operand, 1
endm
endif
endm

The DATE data type provides a good example of how you could use macros to simplify
data entry into your program. The following macro requires three operands: a month, day, and a
year value. It checks these values to see if they are within a reasonable range and then packs
them into a single word as described in Chapter Two:

Date macro month, day, year
if (month eq 0) or (month gt 12)
echo Month value is out of range
.err
endif

if (day eq 0) or (day gt 31)
echo Day value is out of range
.err
endif

if (year ge 100)
echo Year value is out of range
.err
endif

word (month shl 12) + (day shl 7) + year
endm
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MASM also provides a directive similar to struct (record) that lets you create packed data types. However, it will
not let you provide the same level of error checking as this macro does9. See the MASM Programmer’s Guide or the
Quick Help on-line help system for more details.

7.10 Managing Large Programs

MASM provides five directives that let you break large programs into smaller pieces that are easier to manage. Of
these, you can easily get by with just two: include and externdef. Therefore, we will concentrate on those two direc-
tives here. If you wish to learn about the other three, see the textbook.

Although you probably think you’re not going to be writing large programs anytime soon, any time you use the UCR
Standard Library (over 23,000 lines of code at last count, and rising) you are working with a big program since you inherit
all the code from that project. Even if your own programs never exceed 1,000 lines, knowing how to use separate compi-
lation (or, in the case of MASM, separate assembly) can help you write your assembly language programs faster.

The include directive lets you insert a separate file into your source code whenever you run MASM. Although you
can use the include directive for a variety of purposes, we’re going to use it to include important information about
symbols that you need to share between modules. The “CONSTS.A” file in the UCR Standard Library is a good example of
a simple include file. This file contains various constants and macros that you will often use when writing assembly lan-
guage programs. Indeed, few of the statements in this include file have anything to do with the Standard Library at all. It
contains definitions for symbols like cr, lf, exitpgm, dos, and so on.

By including the “CONSTS.A” file in your programs, you save the effort of declaring these constants yourself. Fur-
thermore, by having this file available you are more likely to reuse the same symbols (like cr and lf) over and over
again in all your programs. This makes them more consistent and, therefore, easier to read and understand. Code reuse is
an important tool for those who want to write reliable programs as quickly as possible.

The include directive uses the syntax:

include filename

During assembly it copies the specified file into your source file at the point of the include directive.

The externdef directive is the primary tool you will need to implement separately compiled modules. EXTERN-
DEF allows you to import and export names across modules. This directive takes the form:

externdef symbol:type, symbol:type, ...

One or more symbols may appear in the operand field. The types are the standard MASM type identifiers: byte, word,
dword, near, far, abs, user defined types, etc.

7.37 What form would the EXTERNDEF statement take if you wanted to declare a single symbol
“MyExt” of type FAR? 

___________________________________________________________________________

To use separate assembly you must do three things. First, you need to create the two (or more) source files that con-
tain the separate modules you want to assemble. Next, you need to communicate the names of routines, variables, and
other symbols you wish to share amongst the modules. Finally, you need to merge the separately assembled modules
into a single executable file.

When creating your source modules you should attempt to organize your code with as few external dependencies
as possible. That is, when you take a big program and split it into separate modules, you should organize each module so
that it contains as few external references as possible. For example, if you have several procedures that all share a single
array, especially if no other procedures use that array, should all go into the same module. Ideally you should place any
set of logically related operations, especially if they share some common routines and data, in the same module. For
example, the UCR Standard Library places all the floating point routines in a single module because they share some
common data and some common (internal) routines. 

9. On the other hand, it does provide many additional features that the macro implementation does not.
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On the other hand, if you take this attitude to the extreme you wind up with one big pro-
gram again. Choosing a module size that is just right takes lots of experience. For example,
although the floating point package in the UCR Standard Library is rather large, most of the string
modules contain only one or two procedures.

7.38 If you have a string routine and an output routine, and both are called
from your main program, should you combine them into a single mod-
ule? 

___________________________________________________________________________

The externdef directive provides the mechanism whereby you can make one module
aware of certain names within another module. Remember, if you call a routine that is not in the
current module, MASM will generate an undefined symbol error unless you tell it about that sym-
bol. The externdef directive is the mechanism you use to tell MASM that a symbol can be
found somewhere else. 

Defining symbols that appear in other modules is only part of the equation. When you
assemble a module in MASM, it generally treats all symbols as local to that module. This prevents
“name space pollution” that would occur if all symbols in a module were publicly available to all
other modules. Were this to occur, you would not be able to reuse the same (local) symbol twice
in two separate modules. So usually symbols within one source module are private to that mod-
ule and unavailable to other modules. To export a name to other modules (make it public) you
use the same directive you use to import a name: externdef. The beauty of using the same
directive to import and export public names is that you can place the set of externdef direc-
tives in an include file and include this same file in the module that imports the name and the
module that exports the name. This simplifies program maintenance since any changes to the
name (such as its type) need only be made to a single include file rather than to several different
files.

The laboratory section of this manual contains a complete example of a program that uses
the externdef directive to share public information between modules.

7.11 Project Management with MAKE/NMAKE

Breaking up a project into separate modules will speed up the development process. Only
assembling those files that you change can dramatically reduce the time you spend compiling
and assembling your project. Unfortunately, breaking up your modules as described in the previ-
ous section introduces a problem you don’t have with the single source file module: dependen-
cies. Unless properly managed, file dependencies can introduce yet another source of bugs into
your programs.

To understand the problem with file dependencies, consider the following modularization
of a project: 

Header.aMaxCnt equ       5

File1.asm

File2.asm

File3.asm

File4.asm

File1.asm, File2.asm, File3.asm, and File4.asm
all include the same header file, Header.a

6.291 0Fh

6.292 if (@CPU and 10000b)

6.293 It modifies the value of 
the AX register.



Lab Ch07

Lab 6-270

If you assemble and link together these modules then decide to change some code in File3.asm, it’s obvious you
must reassemble File3.asm and then relink the object modules to get an updated .EXE file. What is less obvious is what
happens when you change a header file like Header.a. Since other modules include the header file only during assem-
bly, you must reassemble any module that includes a modified header file.

For example, suppose the four modules above all use the MaxCnt equate to control the number of iterations in
various loops. If you assemble those four modules, the value five is going to be embedded into various instructions in the
object modules File1.obj, File2.obj, File3.obj, and File4.obj. If you change MaxCnt in Header.a, you will have reassem-
ble all four modules in order to change that constant in each of the object modules.

In a large project it is quite rare than all modules include every header file. In the example above there might actu-
ally be ten different modules with only four of them including Header.a. So when you modify a header, it is very easy to
forget which files include that header and only reassemble those. Your program would obviously develop problems if
three of the modules used the constant MaxCnt equal to eight and one of them used MaxCnt equal to five.

One solution to this problem, of course, is to reassemble all files whenever you modify a header file. Unfortunately,
this eliminates the benefits of using MASM’s separate assembly and linking facilities. What you really need is a mecha-
nism that automatically assembles any files dependent upon Header.a should you make a change to Header.a. The make
program is the tool that does this for you.

Make is a program management tool. Microsoft provides a version of make, nmake, with MASM that allows you to
automatically process files that depend upon one another10. 

The make program requires a source input file containing a sequence of commands. Each command takes the fol-
lowing form:

target : <dependency list>
    <DOS commands to execute>

The target file is the output file you want to produce. This can be any kind of DOS filename, but for our purposes it will
generally be an .OBJ file or an .EXE file. The dependency list is a list of files on which the target file depends. The depen-
dency line (the first line above) for File1.asm is

file1.obj: file1.asm header.a

File1.obj is the target (output) file and it depends only on File1.asm and Header.a. Generally, if you make any changes to
the files in the dependency list, you will have to build a new target file.

Nmake.exe, Microsoft’s version of the make tool, uses the file date and time stamps from MS-DOS to determine
whether a file is out of date. In the example above nmake compares the date/time stamp of File1.obj against the date/
time stamps of file1.asm and header.a. If the date/time on File1.obj is earlier than either of these two files, this means that
there have been some changes made to files in the dependency list and something needs to be done about this.

The something that nmake does is execute the DOS command(s) that follow the dependency line. This can be any
valid DOS command but usually it is the command(s) necessary to bring file1.obj up to date. A typical nmake command
for file1.obj takes the form:

file1.obj: file1.asm header.a
    ml /c file1.asm

Note that the target file on the dependency list must begin in column one. The commands following the dependency line
must not begin in column one. When nmake determines that a file dependency requires some action, it will execute all
commands following the dependency line until it finds another dependency line beginning in column one.

The nmake commands for file2 and file3 are

10. Microsoft’s original program was called make. However, their original make was incompatible with most programs by that name so when they
released a compatible version they called it nmake, presumably for new make. Borland and many other vendors supply comparable programs that
are just called make. Keep in mind, however, that if you use a Microsoft product called make it is probably very old and a bit different than the stan-
dard definition of make presented here.
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file2.obj: file2.asm header.a
    ml /c file2.asm

file3.obj: file3.asm header.a
    ml /c file3.asm

7.39 What is the nmake command for file4? 

___________________________________________________________________________

___________________________________________________________________________

A complete make file describes how to build the final .EXE file and any .OBJ (or other) files
that the .EXE file depends on. The complete make file for the File1..File4 project is the following:

file1.exe: file1.obj file2.obj file3.obj file4.obj
    ml file1.obj file2.obj file3.obj file4.obj

file1.obj: file1.asm header.a
    ml /c file1.asm

file2.obj: file2.asm header.a
    ml /c file2.asm

file3.obj: file3.asm header.a
    ml /c file3.asm

file4.obj: file4.asm header.a
    ml /c file4.asm

Nmake only executes the first dependency line in a make source file11. So nmake would
compare the date/time of file1.exe against the date and times of the .OBJ files in the dependency
list. Now you might think that this would be insufficient. After all, if file1.exe is newer than any of
the .OBJ files but you’ve changed the header.a file, obviously you still need to reassemble and
link everything. Fortunately, nmake always performs the transitive closure on the dependency
list. This means that before comparing the date and time of file1.exe against all the .OBJ files, it
makes sure that all the .OBJ files in the dependency list are up to date as well. If there is a depen-
dency line for a given item, nmake executes that command to see if it changes the date/time. In
the example above, changing the date/time of the header.a file would cause all the .OBJ files to
be older than the header.a file, hence nmake would execute all the ML commands associated
with the .OBJ targets. This, in turn, would change all the dates and times on the .OBJ files that
would cause nmake to execute the “ML file1.obj ...” command to link the new .OBJ files together
and produce a new .EXE file.

7.40 Explain what would happen with the above if you just modified the
file4.asm file and all the other files were up to date: 

___________________________________________________________________________

___________________________________________________________________________

___________________________________________________________________________

The make “language” supports many other features such as macros, variables, and so on.
The simple rules presented above, however, are all that are really needed except for the most
sophisticated of projects.

11. Actually, you can specify from the nmake command line that it execute other dependency lines as well. However,
we’ll always use the default which is to execute only the first dependency line in the file.

6.294 externdef MyExt:far

6.295 No.
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7.12 The UCR Standard Library

The UCR Standard Library contains several hundred routines you can use to simplify writing assembly language pro-
grams. This section will not go into the specifics of any of them, instead it will concentrate on the philosophy of the UCR
StdLib and provide some examples of its use. For details on the routines themselves, see the textbook and the UCR StdLib
documentation that appears on the diskette accompanying this workbook.

The goal behind the design of the UCR Standard Library was simplicity. There are a few commercial assembly lan-
guage subroutine packages available in the marketplace. The goal behind those (if you believe their press releases) is
efficiency. Those packages were intended for professional assembly language programmers who want to save some
development time but are not willing to trade away the reasons for using assembly in the first place. The UCR library is
not for these people. The UCR Standard Library exists because students have a hard time learning assembly language.
The UCR Standard Library simplifies that learning process by making many operations in assembly language as easy as a
HLL like C (especially like C). 

Passing parameters between routines has always been a hassle in assembly language. As you’ll see in Chapter Nine
of the textbook, typical compilers generate a considerable amount of assembly code in order to pass a typical set of
parameters to a procedure or function. It’s not all that uncommon for there to be more statements setting up and passing
parameters than there are statements within the procedure or function itself.

The UCR Standard Library’s design goal was to simplify the “glue” code necessary to patch several calls together.
The StdLib routines generally expect their parameters in 80x86 registers and they generally return any results there as
well. Furthermore, a Standard Library routine that returns a value in the registers generally attempts to return that value in
a register which is an input to some other routine that could use that value. More often than not, you can make a long
sequence of calls to various StdLib routines without any interleaving 80x86 instructions. This tends to make programs
much short, easier to understand, and certainly easier to write. There is, of course, one catch: you’ve got to learn how to
use the UCR Standard Library before you can reap its benefits.

The following code sequence reads a string from the user and prints that string back to the display:

getsm ;Read string from user
puts ;Print that string
putcr ;Follow with a new line.

7.41 The GETSM routine reads a string from the user and returns a pointer to this string in the
ES:DI registers. The ATOI call converts the string pointed at by ES:DI to an integer and
returns this integer value in AX. The PUTI routine prints the value in AX as a signed integer. 

Write a code sequence that reads a string of text from the user (presumed to be decimal dig-
its, converts this to an integer value, and then prints that integer value back to the display. 

_______________________________ __________________________________

_______________________________ __________________________________

The memory management routines are the backbone of the library. Indeed, perhaps as many as a quarter of the rou-
tines in the library call the memory management routines directly. For many of the remaining routines, you’ll often call
the memory manager to allocate buffer space for them.

There are three memory management routines you must deal with: meminit, malloc, and free. Meminit ini-
tializes the memory management system. You should only call it once and you must call it before you call any other
memory management routine or any routine that winds up calling a memory manager routine. The SHELL.ASM file,
which you should use as a “starter” for all your programs using the standard library, already contains a call to meminit
at the beginning of the main program.

The other two routines, malloc and free, are the workhorses in the standard library. Malloc (Memory ALLOCa-
tion) allocates a block of memory in the free memory area called the heap. To call malloc you must pass the number of
bytes of data you want. If sufficient storage is available on the heap, malloc will return a pointer to the newly allocated
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block. On input, malloc expects the block size in the cx register, it returns the pointer to the
block in the es:di registers.

Generally, the only reason for using a memory allocator like malloc is because you do not
need to reserve the block of storage for the entire lifetime of your program. After all, if you
needed the storage throughout the execution of the program it would be easier to just declare a
suitable array in your data segment. In a typical program you will allocate storage for some
object, use that object, and when you are finished with that object return its storage to the free
space on the heap so you can reuse it The free routine returns storage back to the free list for
use by other objects. To free some storage, you simply pass the address returned by malloc to
free in es:di. 

; Example: The following code sequence reads a line of
; text from the user and prints that line. It MALLOCs
; storage for the string, reads the string, prints it,
; then frees the storage for it.

mov cx, 128 ;Need 128 bytes for GETS.
malloc ;Ignore any errors.
gets ;Read the input line.
puts ;Print it.
putcr ;Print a new line.
free ;Free up storage.

Allocating storage for gets is such a common operation that there is a separate call, getsm,
that allocates the necessary storage. This is a combination of the mov, malloc, and gets calls
above.

7.42 Rewrite the code above to use the GETSM routine. 

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

_______________________________ __________________________________

7.13 The MASM and UCR StdLib Laboratory

In this laboratory you will experiment with many of the assembler directives and some of
the UCR Standard Library routines. You will learn how to create separately compiled modules
and learn to link the results together. You will also control the loading order of various segments
and use CodeView to examine the results.

7.13.1 Before Coming to the Laboratory

Your pre-lab report should contain the following:

• A copy of this lab guide chapter with all the questions answered and corrected.
• A short write-up describing the UCR Standard Library routines you use.

See Chapter Two of this laboratory manual for an example pre-lab report.

Note: your Teaching Assistant or Lab Instructor may elect to give a quiz before the lab
begins on the material covered in the laboratory. You will do quite well on that quiz if you’ve
properly prepared for the lab and studied up on the stuff prior to attending the lab. If you simply

6.296 file4.obj: file4.asm 
header.a

6.297 nmake would assem-
ble file4.asm and then link 
the object files together.
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copy the material from someone else you will do poorly on the quiz and you will probably not finish the lab. Do not take
this pre-lab exercise lightly.

7.13.2 Laboratory Exercises

In this lab you will perform the following activities:

• You will learn how to make program listings so you can see the actual opcode bytes MASM emits.
• You will examine how MASM maintains the location counter.
• You will experiment with symbol types and extracting the value of a symbol.
• You will experiment with segment loading order and view the results in CodeView.
• You will use the proc and endp directives to create near and far procedures and see their effects on

call and ret instructions.
• You will assemble instructions with address expressions and examine the object code MASM produces.
• You will use macros, textual equates, and conditional assembly directives within your program.
• You will build a program consisting of several separately compiled modules, link them together, and pro-

duce a single executable file from them.
• You will use a make file to control the assembly of a multi-module project.
• You will call several routines in the UCR Standard Library and learn how to link the library with your pro-

gram.

❏ Exercise 1: Creating a program listing. For many of the experiments in this laboratory you will need to look at
the object code emitted by MASM. For some of the exercises you will need to load the finished program into
CodeView and inspect the object code using the memory dump and disassemble commands. For many of the
exercises, however, you learn everything you need to know by simply looking at an assembly listing. To create
an assembly listing with MASM you use the /Fl command line option as follows:

ml /c /Fl Lab1_6.asm

This produces a file labelled “Lab1_6.lst” that contains your original source code annotated with the location
counter value and the opcode bytes for each instruction. Take the following short assembly language program
(LAB1_6.ASM on the diskette) and assemble it with the /Fl option then edit the resulting .LST file. Print this file
using the MS-DOS PRINT command and include this printout with your lab report. Comment on the listing. Be
sure to point out the different values of the location counter and the length of each instruction in the listing.
Also describe the meaning of the information in the symbol table.

cseg segment
Sample4Lst proc

push ax
mov bx, 0
add ax, bx
mov bx, ax
mov ds:[1000h], ax
pop ax
ret

Sample4Lst endp
cseg ends

end

❏ Exercise 2: The file “Lab2_6.asm” on the disk accompanying this lab manual contains two procedures. To
ensure maximum performance on an 80486 processor these procedures should be double word aligned.
Assemble this file and produce an assembly listing. Note the offsets of the procedures within the code segment.
Next, modify the segment directive and use the para alignment operand and then insert two align 4 direc-
tives as described in the program’s comments. Then create an assembly listing of the modified file.
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For your lab report: Compare the object code in the two listings. Describe what the
addition of the align directives does to the object code. Include the listings with your
lab report.
For additional credit: Devise an IBM/L program to test the execution time of these
two routines. Compare the timing with and without the align directives. (Hint: put the
procedures in the %init section and the calls int the %do section.)

❏ Exercise 3: Intel’s syntax for assembly language (of which MASM is mostly a superset)
is peculiar because it is strongly typed. The Lab3_6.asm file on your diskette contains
many different types of symbols. Assemble this file and create an assembly listing.
For your lab report: Create an assembly listing with a symbol table printout and
include this with your lab report. On the listing, identify the type of each symbol and
match it with the corresponding entry in the symbol table. Explain why each symbol
has it associated type.

❏ Exercise 4: Equates in an assembly language program are useful for many things. A pri-
mary use is to create symbolic constants to help make your program easier to read and
understand. The short assembly language program in file lab4_6.asm reads ten integers
from the user and then computes the average of those ten numbers. Unfortunately, the
literal constant “10” appears throughout this code which makes it difficult to modify
this program to work with a different number of input values. Modify this program so
that a single equate, NumItems, at the beginning of the program controls the number of
input values.
For your lab report: Include the “before and after” listings of this program. Modify
the NumItems equate and change the value to 15. Run the program to verify that your
change works. Modify the NumItems equate and change the value to five. Run the pro-
gram and verify that this change works. Include print-outs of three program executions
(10, 15, and five) in your lab report.

❏ Exercise 5: In the program above MASM and the linker will load the data segment into
memory before the code segment. In general, it’s much better to put the data segment
after the code segment in memory. If your program has a bug in it and it decides to
write 200 integers to the array rather than ten, having the data segment before the code
segment would be a disaster since the program would overwrite itself. First, assemble
the program as-is with the /Fi option (for CodeView information) and load the pro-
gram into CodeView. Single step through the first few instructions of the main program
(that set up the ds register) to verify that the data segment appears in memory before
the code segment. Then add the following two statements to your program immedi-
ately before dseg:

cseg segment para public ‘code’
cseg ends

By adding these two lines to the program (and without touching anything else), you
can instruct MASM and LINK to load the code segment before the data segment mem-
ory. Modify the program you produced in Exercise #4 to do just that. Reassemble the
modified version using the /Fi option and load the file into CodeView. Execute the first
few instruction in the main program to determine that dseg appears after cseg in
memory. 
For your lab report: Include a screen dump of the two programs in CodeView. Mark
up the screen dumps and explain how you know that dseg follows cseg in memory.
For additional credit: Another way to move dseg after cseg is to physical move dseg
below cseg in your source file. Do this and produce an assembly listing. What differ-
ences, if any, do you see in the object code that the assembler generates? Is there any
advantage to placing the data at the end of the file? At the beginning of the file?

6.298 getsm
atoi
puti

6.299 getsm
puts
putcr
free
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❏ Exercise 6: MASM’s proc and endp statements control the generation of code in a couple of different ways.
The program lab6_6.asm contains two near procedures. Assemble the code and produce an assembly listing.
Then change the procedures to far procedures and produce a second assembly listing. 
For your lab report: Identify all the opcodes that are different in the two listings. Explain their differences. 
For additional credit: Modify one of the return instructions to be retf and the other to be retn. Modify calls
to the procedures to be call near ptr proc1 and call far ptr proc2. Generate a second pair of listings,
one with both procedure definitions containing a near operand and the second listing with both procedure def-
initions containing a far operand. Again compare the opcode differences between the two assemblies. Explain
the result.

❏ Exercise 7: Remove the ret instruction from the (original) PROC1 procedure above. Run the program. 
For your lab report: Describe and explain the result in your lab report.
For additional credit: Explain what would happen if you removed the ret instruction from PROC2, as well.

❏ Exercise 8: The program in file lab8_6.asm contains several type conflicts. Assume the addresses and registers
are correct, all that’s missing are coercion operators (i.e., word ptr, byte ptr, etc.). 
For your lab report: Assemble the code and determine the lines that need the coercion operators. Supply the
necessary type coercion operators to remove all syntax errors. Run the program and explain the results.

❏ Exercise 9: The lab9_6.asm program uses the SHLI macro that appears earlier in this chapter. 
For your lab report: Assemble the code with and without the .286 directive present. Produce an assembly
listing in both cases. Describe the differences between the two programs.
For additional credit: Testing the @CPU assembler variable only tells you the processor directive currently
active in an assembly. It does not check to see if you are actually using the specified processor when you run
the program. Look up the CPUIDENT routine in the UCR Standard Library and discuss how you could use this
procedure to determine the actual CPU in use at run-time.

❏ Exercise 10: In this exercise you will learn how to link together separately assembled modules. There are three
source files associated with this exercise: Lab10a_6.asm, Lab10b_6.asm, and Lab10_6.a (these files are available
on the diskette). Lab10a_6.asm contains the main program and other assorted routines and data definitions.
Lab10b_6.asm contains a separately assembled module that the code in Lab10a_6.asm uses. Lab10_6.a is an
include file that contains the necessary externdef directives and other goodies to make everything work
together.

The ML command uses the syntax:
ML options filename filename filename ...

Until now you’ve only supplied one filename on the command line when using ML. Nonetheless, MASM will let
you specify several filenames and it will assemble each file and then link their object modules together if all
assemblies were successful. The following ML command will assemble and link the Lab6x10a.asm and
Lab6x10b.asm files12:

ML Lab10a_6.asm Lab10b_6.asm

ML produces an .EXE file whose name matches the first filename on the command line. So the command above
will produce “Lab10a_6.exe” as its final output.
Although the ML command above separately assembles the two source files and links them together, this par-
ticular example will always assemble both source files. This eliminates one of the major benefits of separate
compilation: saving time because you don’t have to reassemble all source files in a project. Fortunately, ML pro-
vides some options that allow you to assemble your source files at different times and link the result together.
The first such option is “/c” or “-c” that stands for compile only (no link). If you specify this command line
option then ML will assemble the specified source file(s) producing .OBJ output(s), but it will not run the linker

12. Since Lab6x10.a is an include file you do not specify its name on the command line. The other two files automati-
cally include the text of this file when MASM assembles them.



MASM: Directives and Psuedo-Opcodes

Lab 6-277

on the resulting output. The following command assembles the Lab6x10b.asm file but
does not link it to anything:

ML /c Lab10b_6.asm

Although we have always included the .ASM suffix on ML command line filenames,
they are not the only suffix ML allows. In particular, ML allows .OBJ suffixes as well. If
you supply an .OBJ file on the command line, ML does not assemble that file, it simply
links the object file in with the rest of the files you specify. So two commands that dem-
onstrate separate compilation are

ML /c Lab10b_6.asm
ML Lab10a_6.asm Lab10b_6.obj

These two commands produce exactly the same result as the ML command with two
.ASM files given earlier. The advantage here is that if you make changes to
Lab10a_6.asm but do not make any changes to Lab10b_6.asm, you need only execute
the second of the two above commands to get a new, correct, .EXE file. As long as you
do not change the Lab10b_6.asm file, there no need to reassemble it. While this may
not seem like a substantial savings, imagine what would happen if you have a project
with 10 .ASM files and you only change one of the source files. Reassembling one file
and then linking the 10 .OBJ files together is going to be faster than assembling and
linking all 10 source files.
The first filename on the ML command line need not be an .ASM file. For example, if
you make changes to Lab6x10b.asm but do not modify Lab10a_6.asm, you could cre-
ate a new executable using the ML command:

ML Lab10a_6.obj Lab10b_6.asm

This command will produce the Lab10a_6.exe executable file since Lab10a_6 is the first
filename on the command line.

❏ Exercise 11: Using a make file. Once you begin using separate assembly you will need
to use make files to automatically assemble dependent modules. An appropriate make
file for the above project is the following (see the Lab10_6.mak file on the diskette):

lab10a_6.exe: lab10a_6.obj lab10b_6.obj
    ml lab10a_6.obj lab10b_6.obj

lab10a_6.obj: lab10a_6.asm lab10_6.a
    ml /c lab10a_6.asm

lab10b_6.obj: lab10b_6.asm lab10_6.a
    ml /c lab10b_6.asm

Delete any .OBJ and .EXE files associated with this project (generated in exercise 10). If
you enter the following command, nmake should assemble and link together the files
from scratch:

nmake lab6x10.mak

After nmake creates the new .EXE file, immediately run nmake again. This time nmake
will not reassemble the files. Instead, it will simply report that lab10a_6.exe is up to
date. Since none of the dependent files have changed, nmake reports that there is no
need to reassemble the source files. 
Now, make a slight change to the lab10a_6.asm file, perhaps by adding a blank line or
a comment to the file. When you quit the editor, MS-DOS will update the time/date
stamp on the file so that it is newer than the other files in the project. Use the above
nmake command again. Note that nmake only assembles the lab10a_6.asm file and
relinks the files. It does not reassemble the lab10b_6.asm file. Repeat this operation
after modifying the lab10b_6.asm file. 
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Finally, try making a small modification to the lab6x10.a header file. Run nmake and note that it reassembles
both files. 
For your lab report: Include print-outs of the files, modifications, and DOS sessions running nmake in your
lab report. Hand annotate the changes and point out the changes that caused reassembly.

7.14 Sample Program

Here is a single program that demonstrates most of the concepts from Chapter Six. This program consists of several
files, including a makefile, that you can assemble and link using the nmake.exe program. This particular sample program
computes “cross products” of various functions. The multiplication table you learned in school is a good example of a
cross product, so are the truth tables found in Chapter Two of your textbook. This particular program generates cross
product tables for addition, subtraction, division, and, optionally, remainder (modulo). In addition to demonstrating sev-
eral concepts from Chapter Six, this sample program also demonstrates how to manipulate dynamically allocated arrays.
This particular program asks the user to input the matrix size (row and column sizes) and then computes an appropriate
set of cross products for that array.

7.14.1 EX6.MAK

The cross product program contains several modules. The following make file assembles all necessary files to
ensure a consistent .EXE file.

ex6:ex6.obj geti.obj getarray.obj xproduct.obj matrix.a
ml ex6.obj geti.obj getarray.obj xproduct.obj

ex6.obj: ex6.asm matrix.a
ml /c ex6.asm

geti.obj: geti.asm matrix.a
ml /c geti.asm

getarray.obj: getarray.asm matrix.a
ml /c getarray.asm

xproduct.obj: xproduct.asm matrix.a
ml /c xproduct.asm

7.14.2 Matrix.A

MATRIX.A is the header file containing definitions that the cross product program uses. It also contains all the
externdef statements for all externally defined routines.

; MATRIX.A
;
; This include file provides the external definitions
; and data type definitions for the matrix sample program
; in Chapter Six.
;
; Some useful type definitions:

Integer typedef word
Char typedef byte

; Some common constants:
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Bell equ 07 ;ASCII code for the bell character.

; A “Dope Vector” is a structure containing information about arrays that
; a program allocates dynamically during program execution.  This particular
; dope vector handles two dimensional arrays.  It uses the following fields:
;
; TTL- Points at a zero terminated string containing a description
; of the data in the array.
;
; Func- Pointer to function to compute for this matrix.
;
; Data- Pointer to the base address of the array.
;
; Dim1-   This is a word containing the number of rows in the array.
;
; Dim2- This is a word containing the number of elements per row
; in the array.
;
; ESize- Contains the number of bytes per element in the array.

DopeVec struct
TTL dword ?
Func dword ?
Data dword ?
Dim1 word ?
Dim2 word ?
ESize word ?
DopeVec ends

; Some text equates the matrix code commonly uses:

Base textequ <es:[di]>

byp textequ <byte ptr>
wp textequ <word ptr>
dp textequ <dword ptr>

; Procedure declarations.

InpSeg segment para public ‘input’

externdef geti:far
externdef getarray:far

InpSeg ends

cseg segment para public ‘code’

externdef CrossProduct:near

cseg ends

; Variable declarations

dseg segment para public ‘data’

externdef InputLine:byte

dseg ends
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; Uncomment the following equates if you want to turn on the
; debugging statements or if you want to include the MODULO function.

;debug equ 0
;DoMOD equ 0

7.14.3 EX6.ASM

This is the main program. It calls appropriate routines to get the user input, compute the cross product, and print the
result.

; Sample program for Chapter Six.
; Demonstrates the use of many MASM features discussed in Chapter Six
; including label types, constants, segment ordering, procedures, equates,
; address expressions, coercion and type operators, segment prefixes,
; the assume directive, conditional assembly, macros, listing directives,
; separate assembly, and using the UCR Standard Library.
;
; Include the header files for the UCR Standard Library.  Note that the
; “stdlib.a” file defines two segments; MASM will load these segments into
; memory before “dseg” in this program.
;
; The “.nolist” directive tells MASM not to list out all the macros for
; the standard library when producing an assembly listing.  Doing so would
; increase the size of the listing by many tens of pages and would tend to
; obscure the real code in this program.
;
; The “.list” directive turns the listing back on after MASM gets past the
; standard library files.  Note that these two directives (“.nolist” and
; “.list”) are only active if you produce an assembly listing using MASM’s
; “/Fl” command line parameter.

.nolist
include  stdlib.a
includelib stdlib.lib
.list

; The following statement includes the special header file for this
; particular program.  The header file contains external definitions
; and various data type definitions.

include matrix.a

; The following two statements allow us to use 80386 instructions
; in the program.  The “.386” directive turns on the 80386 instruction
; set, the “option” directive tells MASM to use 16-bit segments by
; default (when using 80386 instructions, 32-bit segments are the default).
; DOS real mode programs must be written using 16-bit segments.

.386
option segment:use16

dseg segment para public ‘data’
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Rows integer ? ;Number of rows in matrices
Columns integer ? ;Number of columns in matrices

; Input line is an input buffer this code uses to read a string of text
; from the user.  In particular, the GetWholeNumber procedure passes the
; address of InputLine to the GETS routine that reads a line of text
; from the user and places each character into this array.  GETS reads
; a maximum of 127 characters plus the enter key from the user.  It zero
; terminates that string (replacing the ASCII code for the ENTER key with
; a zero).  Therefore, this array needs to be at least 128 bytes long to
; prevent the possibility of buffer overflow.
;
; Note that the GetArray module also uses this array.

InputLine char 128 dup (0)

; The following two pointers point at arrays of integers.
; This program dynamically allocates storage for the actual array data
; once the user tells the program how big the arrays should be.  The
; Rows and Columns variables above determine the respective sizes of
; these arrays.  After allocating the storage with a call to MALLOC,
; this program stores the pointers to these arrays into the following
; two pointer variables.

RowArray dword ? ;Pointer to Row values
ColArray dword ? ;Pointer to column values.

; ResultArrays is an array of dope vectors(*) to hold the results
; from the matrix operations:
;
; [0]- addition table
; [1]- subtraction table
; [2]- multiplication table
; [3]- division table
;
; [4]- modulo (remainder) table -- if the symbol “DoMOD” is defined.
;
; The equate that follows the ResultArrays declaration computes the number
; of elements in the array.  “$” is the offset into dseg immediately after
; the last byte of ResultArrays.  Subtracting this value from ResultArrays
; computes the number of bytes in ResultArrays.  Dividing this by the size
; of a single dope vector produces the number of elements in the array.
; This is an excellent example of how you can use address expressions in
; an assembly language program.
;
; The IFDEF DoMOD code demonstrates how easy it is to extend this matrix.
; Defining the symbol “DoMOD” adds another entry to this array.  The
; rest of the program adjusts for this new entry automatically.
;
; You can easily add new items to this array of dope vectors.  You will
; need to supply a title and a function to compute the matrice’s entries.
; Other than that, however, this program automatically adjusts to any new
; entries you add to the dope vector array.
;
; (*) A “Dope Vector” is a data structure that describes a dynamically
; allocated array.  A typical dope vector contains the maximum value for
; each dimension, a pointer to the array data in memory, and some other
; possible information.  This program also stores a pointer to an array
; title and a pointer to an arithmetic function in the dope vector.
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ResultArrays DopeVec {AddTbl,Addition}, {SubTbl,Subtraction}
DopeVec {MulTbl,Multiplication}, {DivTbl,Division}

ifdef DoMOD
DopeVec {ModTbl,Modulo}
endif

; Add any new functions of your own at this point, before the following equate:

RASize = ($-ResultArrays) / (sizeof DopeVec)

; Titles for each of the four (five) matrices.

AddTbl char “Addition Table”,0
SubTbl  char “Subtraction Table”,0
MulTbl char “Multiplication Table”,0
DivTbl char “Division Table”,0

ifdef DoMOD
ModTbl char “Modulo (Remainder) Table”,0

endif

; This would be a good place to put a title for any new array you create.

dseg ends

; Putting PrintMat inside its own segment demonstrates that you can have
; multiple code segments within a program.  There is no reason we couldn’t
; have put “PrintMat” in CSEG other than to demonstrate a far call to a
; different segment.

PrintSeg segment para public ‘PrintSeg’

; PrintMat- Prints a matrix for the cross product operation.
;
; On Entry:
;
; DS must point at DSEG.
; DS:SI points at the entry in ResultArrays for the
; array to print.
;
; The output takes the following form:
;
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; Matrix Title
;
;        <- column matrix values ->
;
; ^      *------------------------*
; |      |                        |
; R      |                        |
; o      | Cross Product Matrix   |
; w      |       Values           |
;        |                        |
; V      |                        |
; a      |                        |
; l      |                        |
; u      |                        |
; e      |                        |
; s      |                        |
; |      |                        |
; v      *------------------------*

PrintMat proc far
assume ds:dseg

; Note the use of conditional assembly to insert extra debugging statements
; if a special symbol “debug” is defined during assembly.  If such a symbol
; is not defined during assembly, the assembler ignores the following
; statements:

ifdef debug
print
char “In PrintMat”,cr,lf,0
endif

; First, print the title of this table.  The TTL field in the dope vector
; contains a pointer to a zero terminated title string.  Load this pointer
; into es:di and call PUTS to print that string.

putcr
les di, [si].DopeVec.TTL
puts

; Now print the column values.  Note the use of PUTISIZE so that each
; value takes exactly six print positions. The following loop repeats
; once for each element in the Column array (the number of elements in
; the column array is given by the Dim2 field in the dope vector).

print ;Skip spaces to move past the
char cr,lf,lf,”       “,0 ; row values.

mov dx, [si].DopeVec.Dim2 ;# of times to repeat the loop.
les di, ColArray ;Base address of array.

ColValLp: mov ax, es:[di] ;Fetch current array element.
mov cx, 6 ;Print the value using a
putisize ; minimum of six positions.
add di, 2 ;Move on to next array element.
dec dx ;Repeat this loop DIM2 times.
jne ColValLp
putcr ;End of column array output
putcr ;Insert a blank line.

; Now output each row of the matrix.  Note that we need to output the
; RowArray value before each row of the matrix.
;
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; RowLp is the outer loop that repeats for each row.

mov Rows, 0 ;Repeat for 0..Dim1-1 rows.
RowLp: les di, RowArray ;Output the current RowArray

mov bx, Rows ; value on the left hand side
add bx, bx ; of the matrix.
mov ax, es:[di][bx] ;ES:DI is base, BX is index.
mov cx, 5 ;Output using five positions.
putisize
print
char “: “,0

; ColLp is the inner loop that repeats for each item on each row.

mov Columns, 0 ;Repeat for 0..Dim2-1 columns.
ColLp: mov bx, Rows ;Compute index into the array

imul bx, [si].DopeVec.Dim2; index := (Rows*Dim2 +
add bx, Columns ;              columns) * 2
add bx, bx

; Note that we only have a pointer to the base address of the array, so we
; have to fetch that pointer and index off it to access the desired array
; element.  This code loads the pointer to the base address of the array into
; the es:di register pair.

les di, [si].DopeVec.Data ;Base address of array.
mov ax, es:[di][bx] ;Get array element

; The functions that compute the values for the array store an 8000h into
; the array element if some sort of error occurs.  Of course, it is possible
; to produce 8000h as an actual result, but giving up a single value to
; trap errors is worthwhile.  The following code checks to see if an error
; occurred during the cross product.  If so, this code prints “  ****”,
; otherwise, it prints the actual value.

cmp ax, 8000h ;Check for error value
jne GoodOutput
print
char “  ****”,0 ;Print this for errors.
jmp DoNext

GoodOutput: mov cx, 6 ;Use six print positions.
putisize ;Print a good value.

DoNext: mov ax, Columns ;Move on to next array
inc ax ; element.
mov Columns, ax
cmp ax, [si].DopeVec.Dim2 ;See if we’re done with
jb ColLp ; this column.

putcr ;End each column with CR/LF

mov ax, Rows ;Move on to the next row.
inc ax
mov Rows, ax
cmp ax, [si].DopeVec.Dim1 ;Have we finished all the
jb RowLp ; rows?  Repeat if not done.
ret

PrintMat endp
PrintSeg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg
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;GetWholeNum- This routine reads a whole number (an integer greater than
; zero) from the user.  If the user enters an illegal whole
; number, this procedure makes the user re-enter the data.

GetWholeNum proc near
lesi InputLine ;Point es:di at InputLine array.
gets

call Geti ;Get an integer from the line.
jc BadInt ;Carry set if error reading integer.
cmp ax, 0 ;Must have at least one row or column!
jle BadInt
ret

BadInt: print
char Bell
char “Illegal integer value, please re-enter”,cr,lf,0
jmp GetWholeNum

GetWholeNum endp

; Various routines to call for the cross products we compute.
; On entry, AX contains the first operand, dx contains the second.
; These routines return their result in AX.
; They return AX=8000h if an error occurs.
;
; Note that the CrossProduct function calls these routines indirectly.

addition proc far
add ax, dx
jno AddDone ;Check for signed arithmetic overflow.
mov ax, 8000h ;Return 8000h if overflow occurs.

AddDone: ret
addition endp

subtraction proc far
sub ax, dx
jno SubDone
mov ax, 8000h ;Return 8000h if overflow occurs.

SubDone: ret
subtraction endp

multiplication procfar
 imul ax, dx
 jno MulDone
 mov ax, 8000h ;Error if overflow occurs.

MulDone:  ret
multiplication endp

division proc far
push cx ;Preserve registers we destory.

mov cx, dx
cwd
test cx, cx ;See if attempting division by zero.
je BadDivide
idiv cx

mov dx, cx ;Restore the munged register.
pop cx
ret
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BadDivide: mov ax, 8000h
mov dx, cx
pop cx
ret

division endp

; The following function computes the remainder if the symbol “DoMOD”
; is defined somewhere prior to this point.

ifdef DoMOD
modulo proc far

push cx

mov cx, dx
cwd
test cx, cx ;See if attempting division by zero.
je BadDivide
idiv cx
mov ax, dx ;Need to put remainder in AX.
mov dx, cx ;Restore the munged registers.
pop cx
ret

BadMod: mov ax, 8000h
mov dx, cx
pop cx
ret

modulo endp
endif

; If you decide to extend the ResultArrays dope vector array, this is a good
; place to define the function for those new arrays.

; The main program that reads the data from the user, calls the appropriate
; routines, and then prints the results.

Main proc
mov ax, dseg
mov ds, ax
mov es, ax
meminit

; Prompt the user to enter the number of rows and columns:

GetRows: print
byte “Enter the number of rows for the matrix:”,0

call GetWholeNum
mov Rows, ax

; Okay, read each of the row values from the user:

print
char “Enter values for the row (vertical) array”,cr,lf,0

; Malloc allocates the number of bytes specified in the CX register.
; AX contains the number of array elements we want;  multiply this value
; by two since we want an array of words.  On return from malloc, es:di
; points at the array allocated on the “heap”.  Save away this pointer in
; the “RowArray” variable.
;
; Note the use of the “wp” symbol. This is an equate to “word ptr” appearing
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; in the “matrix.a” include file.  Also note the use of the address expression
; “RowArray+2” to access the segment portion of the double word pointer.

mov cx, ax
shl cx, 1
malloc
mov wp RowArray, di
mov wp RowArray+2, es

; Okay, call “GetArray” to read “ax” input values from the user.
; GetArray expects the number of values to read in AX and a pointer
; to the base address of the array in es:di.

print
char “Enter row data:”,0

mov ax, Rows ;# of values to read.
call GetArray ;ES:DI still points at array.

; Okay, time to repeat this for the column (horizontal) array.

GetCols: print
byte “Enter the number of columns for the matrix:”,0

call GetWholeNum ;Get # of columns from the user.
mov Columns, ax ;Save away number of columns.

; Okay, read each of the column values from the user:

print
char “Enter values for the column (horz.) array”,cr,lf,0

; Malloc allocates the number of bytes specified in the CX register.
; AX contains the number of array elements we want;  multiply this value
; by two since we want an array of words.  On return from malloc, es:di
; points at the array allocated on the “heap”.  Save away this pointer in
; the “RowArray” variable.

mov cx, ax ;Convert # Columns to # bytes
shl cx, 1 ; by multiply by two.
malloc ;Get the memory.
mov wp ColArray, di ;Save pointer to the
mov wp ColArray+2, es ; columns vector (array).

; Okay, call “GetArray” to read “ax” input values from the user.
; GetArray expects the number of values to read in AX and a pointer
; to the base address of the array in es:di.

print
char “Enter Column data:”,0

mov ax, Columns ;# of values to read.
call GetArray ;ES:DI points at column array.

; Okay, initialize the matrices that will hold the cross products.
; Generate RASize copies of the following code.
; The “repeat” macro repeats the statements between the “repeat” and the “endm”
; directives RASize times.  Note the use of the Item symbol to automatically
; generate different indexes for each repetition of the following code.
; The “Item = Item+1” statement ensures that Item will take on the values
; 0, 1, 2, ..., RASize on each repetition of this loop.
;
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; Remember, the “repeat..endm” macro copies the statements multiple times
; within the source file, it does not execute a “repeat..until” loop at
; run time.  That is, the following macro is equivalent to making “RASize”
; copies of the code, substituting different values for Item for each
; copy.
;
; The nice thing about this code is that it automatically generates the
; proper amount of initialization code, regardless of the number of items
; placed in the ResultArrays array.

Item = 0

repeat RASize

mov cx, Columns ;Compute the size, in bytes,
imul cx, Rows ; of the matrix and allocate
add cx, cx ; sufficient storage for the
malloc ; array.

mov wp ResultArrays[Item * (sizeof DopeVec)].Data, di
mov wp ResultArrays[Item * (sizeof DopeVec)].Data+2, es

mov ax, Rows
mov ResultArrays[Item * (sizeof DopeVec)].Dim1, ax

mov ax, Columns
mov ResultArrays[Item * (sizeof DopeVec)].Dim2, ax

mov ResultArrays[Item * (sizeof DopeVec)].ESize, 2

Item = Item+1
endm

; Okay, we’ve got the input values from the user,
; now let’s compute the addition, subtraction, multiplication,
; and division tables.  Once again, a macro reduces the amount of
; typing we need to do at this point as well as automatically handling
; however many items are present in the ResultArrays array.

element = 0

repeat RASize
lfs bp, RowArray ;Pointer to row data.
lgs bx, ColArray ;Pointer to column data.

lea cx, ResultArrays[element * (sizeof DopeVec)]
call CrossProduct

element = element+1
endm

; Okay, print the arrays down here.  Once again, note the use of the
; repeat..endm macro to save typing and automatically handle additions
; to the ResultArrays array.

Item = 0

repeat RASize
mov si, offset ResultArrays[item * (sizeof DopeVec)]
call PrintMat
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Item = Item+1
endm

; Technically, we don’t have to free up the storage malloc’d for each
; of the arrays since the program is about to quit.  However, it’s a
; good idea to get used to freeing up all your storage when you’re done
; with it.  For example, were you to add code later at the end of this
; program, you would have that extra memory available to that new code.

les di, ColArray
free
les di, RowArray
free

Item = 0
repeat RASize
les di, ResultArrays[Item * (sizeof DopeVec)].Data
free

Item = Item+1
endm

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk byte 1024 dup (“stack   “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes byte 16 dup (?)
zzzzzzseg ends

end Main

7.14.4 GETI.ASM

GETI.ASM contains a routine (geti) that reads an integer value from the user.

; GETI.ASM
;
; This module contains the integer input routine for the matrix
; example in Chapter Six.

.nolist
include stdlib.a
.list

include matrix.a

InpSeg segment para public ‘input’

; Geti-On entry, es:di points at a string of characters.
; This routine skips any leading spaces and comma characters and then
; tests the first (non-space/comma) character to see if it is a digit.
; If not, this routine returns the carry flag set denoting an error.
; If the first character is a digit, then this routine calls the
; standard library routine “atoi2” to convert the value to an integer.
; It then ensures that the number ends with a space, comma, or zero
; byte.
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;
; Returns carry clear and value in AX if no error.
; Returns carry set if an error occurs.
;
; This routine leaves ES:DI pointing at the character it fails on when
; converting the string to an integer.  If the conversion occurs without
; an error, the ES:DI points at a space, comma, or zero terminating byte.

geti proc far

ifdef debug
print
char “Inside GETI”,cr,lf,0
endif

; First, skip over any leading spaces or commas.
; Note the use of the “byp” symbol to save having to type “byte ptr”.
; BYP is a text equate appearing in the macros.a file.
; A “byte ptr” coercion operator is required here because MASM cannot
; determine the size of the memory operand (byte, word, dword, etc)
; from the operands.  I.e., “es:[di]” and ‘ ‘ could be any of these
; three sizes.
;
; Also note a cute little trick here; by decrementing di before entering
; the loop and then immediately incrementing di, we can increment di before
; testing the character in the body of the loop.  This makes the loop
; slightly more efficient and a lot more elegant.

dec di
SkipSpcs: inc di

cmp byp es:[di], ‘ ‘
je SkipSpcs
cmp byp es:[di], ‘,’
je SkipSpcs

; See if the first non-space/comma character is a decimal digit:

mov al, es:[di]
cmp al, ‘-’ ;Minus sign is also legal in integers.
jne TryDigit
mov al, es:[di+1];Get next char, if “-”

TryDigit: isdigit
jne BadGeti ;Jump if not a digit.

; Okay, convert the characters that follow to an integer:

ConvertNum: atoi2 ;Leaves integer in AX
jc BadGeti ;Bomb if illegal conversion.

; Make sure this number ends with a reasonable character (space, comma,
; or a zero byte):

cmp byp es:[di], ‘ ‘
je GoodGeti
cmp byp es:[di], ‘,’
je GoodGeti
cmp byp es:[di], 0
je GoodGeti

ifdef debug
print
char “GETI: Failed because number did not end with “
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char “a space, comma, or zero byte”,cr,lf,0
endif

BadGeti: stc ;Return an error condition.
ret

GoodGeti: clc ;Return no error and an integer in AX
ret

geti endp

InpSeg ends
end

7.14.5 GetArray.ASM

GetArray.ASM contains the GetArray input routine. This reads the data for the array from the user to produce the
cross products. Note that GetArray reads the data for a single dimension array (or one row in a multidimension array).
The cross product program reads two such vectors: one for the column values and one for the row values in the cross
product.

; GETARRAY.ASM
;
; This module contains the GetArray input routine.  This routine reads a
; set of values for a row of some array.

.386
option segment:use16

.nolist
include stdlib.a
.list

include matrix.a

; Some local variables for this module:

localdseg segment para public ‘LclData’

NumElements word ?
ArrayPtr dword ?

Localdseg ends

InpSeg segment para public ‘input’
assume ds:Localdseg

; GetArray- Read a set of numbers and store them into an array.
;
; On Entry:
;
; es:di points at the base address of the array.
; ax contains the number of elements in the array.
;
; This routine reads the specified number of array elements
; from the user and stores them into the array.  If there
; is an input error of some sort, then this routine makes
; the user reenter the data.

GetArray proc far
pusha ;Preserve all the registers
push ds ; that this code modifies
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push es
push fs

ifdef debug
print
char “Inside GetArray, # of input values =”,0
puti
putcr
endif

mov cx, Localdseg ;Point ds at our local
mov ds, cx ; data segment.

mov wp ArrayPtr, di ;Save in case we have an
mov wp ArrayPtr+2, es ; error during input.
mov NumElements, ax

; The following loop reads a line of text from the user containing some
; number of integer values.  This loop repeats if the user enters an illegal
; value on the input line.
;
; Note: LESI is a macro from the stdlib.a include file.  It loads ES:DI
; with the address of its operand (as opposed to les di, InputLine that would
; load ES:DI with the dword value at address InputLine).

RetryLp: lesi InputLine ;Read input line from user.
gets
mov cx, NumElements ;# of values to read.
lfs si, ArrayPtr ;Store input values here.

; This inner loop reads “ax” integers from the input line.  If there is
; an error, it transfers control to RetryLp above.

ReadEachItem: call geti ;Read next available value.
jc BadGA
mov fs:[si], ax ;Save away in array.
add si, 2 ;Move on to next element.
loop ReadEachItem ;Repeat for each element.

pop fs ;Restore the saved registers
pop es ; from the stack before
pop ds ; returning.
popa
ret

; If an error occurs, make the user re-enter the data for the entire
; row:

BadGA: print
char “Illegal integer value(s).”,cr,lf
char “Re-enter data:”,0
jmp RetryLp

getArray endp

InpSeg ends
end

7.14.6 XProduct.ASM

This file contains the code that computes the actual cross-product.

; XProduct.ASM-
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;
; This file contains the cross-product module.

.386
option  segment:use16

.nolist
include  stdlib.a
includelib stdlib.lib
.list

include  matrix.a

; Local variables for this module.

dseg segment para public ‘data’
DV dword ?
RowNdx integer ?
ColNdx integer ?
RowCntr integer ?
ColCntr integer ?
dseg ends

cseg segment para public ‘code’
assume ds:dseg

; CrossProduct- Computes the cartesian product of two vectors.
;
; On entry:
;
; FS:BP- Points at the row matrix.
; GS:BX- Points at the column matrix.
; DS:CX- Points at the dope vector for the destination.
;
; This code assume ds points at dseg.
; This routine only preserves the segment registers.

RowMat textequ <fs:[bp]>
ColMat textequ <gs:[bx]>
DVP textequ <ds:[bx].DopeVec>

CrossProduct proc near

ifdef debug
print
char “Entering CrossProduct routine”,cr,lf,0
endif

xchg bx, cx ;Get dope vector pointer
mov ax, DVP.Dim1 ;Put Dim1 and Dim2 values
mov RowCntr, ax ; where they are easy to access.
mov ax, DVP.Dim2
mov ColCntr, ax
xchg bx, cx

; Okay, do the cross product operation.  This is defined as follows:
;
; for RowNdx := 0 to NumRows-1 do
;     for ColNdx := 0 to NumCols-1 do
; Result[RowNdx, ColNdx] = Row[RowNdx] op Col[ColNdx];

mov RowNdx, -1 ;Really starts at zero.
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OutsideLp: add RowNdx, 1
mov ax, RowNdx
cmp ax, RowCntr
jge Done

mov ColNdx, -1 ;Really starts at zero.
InsideLp: add ColNdx, 1

mov ax, ColNdx
cmp ax, ColCntr
jge OutSideLp

mov di, RowNdx
add di, di
mov ax, RowMat[di]

mov di, ColNdx
add di, di
mov dx, ColMat[di]

push bx ;Save pointer to column matrix.
mov bx, cx ;Put ptr to dope vector where we can

; use it.

call    DVP.Func ;Compute result for this guy.

mov di, RowNdx ;Index into array is
imul di, DVP.Dim2 ; (RowNdx*Dim2 + ColNdx) * ElementSize
add di, ColNdx
imul di, DVP.ESize

les bx, DVP.Data ;Get base address of array.
mov es:[bx][di], ax ;Save away result.

pop bx ;Restore ptr to column array.
jmp InsideLp

Done: ret
CrossProduct endp
cseg ends

end
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7.15 Programming Projects

❏ Program #1: Write any program of your choice that uses at least ten different UCR Standard Library routines.
Consult the appendix in your textbook and the electronic documentation on the diskette for details on the var-
ious StdLib routines. At least five of the routines you choose should not appear in this chapter or in Chapter Six
of your textbook. Learn those routines yourself by studying the UCR StdLib documentation.

❏ Program #2: Write a program that demonstrates the use of each of the format options in the PRINTF StdLib rou-
tine.

❏ Program #3: Rewrite the sample program in the previous section so that it uses the ForLp and Next macros pro-
vided in Chapter Six of your textbook in place of all the individual instructions that simulate a FOR loop in this
code.

❏ Program #4: Write a program that inputs two 4x4 integer matrices from the user and compute their matrix prod-
uct. The matrix multiply algorithm (computing C := A * B) is

for i := 0 to 3 do
for j := 0 to 3 do begin

c[i,j] := 0;
for k := 0 to 3 do
    c[i,j] := c[i,j] + a[i,k] * b[k,j];

end;

Feel free to use the ForLp and Next macros from Chapter Six.

❏ Program #5: Modify the sample program in this chapter to use the FORLP and NEXT macros provided in the
textbook. Replace all for loop simulations in the program with the corresponding macros.

❏ Program #6: Write a program that asks the user to input three integer values, m, p, and n. This program should
allocate storage for three arrays: A[0..m-1, 0..p-1], B[0..p-1, 0..n-1], and C[0..m-1, 0..n-1]. The program should
then read values for arrays A and B from the user. Next, this program should compute the matrix product of A
and B using the algorithm:

for i := 0 to m-1 do
for j := 0 to n-1 do begin

c[i,j] := 0;
for k := 0 to p-1 do
    c[i,j] := c[i,j] + a[i,k] * b[k,j];

end;

Finally, the program should print arrays A, B, and C. Feel free to use the ForLp and Next macro given in Chapter
Six. You should also take a look at the sample program (see “Sample Program” on page 278) to see how to
dynamically allocate storage for arrays and access arrays whose dimensions are not known until run time.

❏ Program #7: The ForLp and Next macros provide in Chapter Six only increment their loop control variable by
one on each iteration of the loop. Write a new macro, ForTo, that lets you specify an increment constant. Incre-
ment the loop control variable by this constant on each iteration of the for loop. Write a program to demon-
strate the use of this macro. Hint: you will need to create a global label to pass the increment information to the
NEXT macro, or you will need to perform the increment operation inside the ForLp macro.

❏ Program #8: Write a third version for ForLp and Next (see Program #7 above) that lets you specify negative
increments (like the for..downto statement in Pascal). Call this macro ForDT (for..downto).
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7.16 Answers to Selected Exercises

2) Label, mnemonic, operand, and comment.
6) The order that segments appear in the source file is the primary method for determining segment loading order. The

class operand to the segment directive is the secondary mechanism.
7) a. constant (abs)

h. byte
j. macro
k. segment
m. string (or text)

9) b. SHORT lets you force a one byte JMP displacement.
10) mov bx, offset Table

lea bx, Table 
Generally there is no difference between the values the assembler loads into bx by these two instructions.

12) CSEG, ESEG, then DSEG.


