
Win32 API Reference
Win32 API Reference for HLA

1 Kernel32.lib

1.1 AddAtom

The AddAtom function adds a character string to the local atom table and returns a unique value (an atom) identify-
ing the string.

AddAtom: procedure
(

lpString: string
);

stdcall;
returns( "eax" );
external( "__imp__AddAtomA@4" );

Parameters

lpString
[in] Pointer to the null-terminated string to be added. The string can have a maximum size of 255 bytes. Strings
differing only in case are considered identical. The case of the first string added is preserved and returned by the
GetAtomName function.

Alternatively, you can use an integer atom that has been converted using the MAKEINTATOM macro. See the
Remarks for more information.

Return Values
If the function succeeds, the return value in EAX is the newly created atom.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The AddAtom function stores no more than one copy of a given string in the atom table. If the string is already in the
table, the function returns the existing atom and, in the case of a string atom, increments the string's reference count.

If lpString has the form "#1234", AddAtom returns an integer atom whose value is the 16-bit representation of the
decimal number specified in the string (0x04D2, in this example). If the decimal value specified is 0x0000 or is
greater than or equal to 0xC000, the return value is zero, indicating an error. If lpString was created by the MAKEIN-
TATOM macro, the low-order word must be in the range 0x0001 through 0xBFFF. If the low-order word is not in
this range, the function fails.

If lpString has any other form, AddAtom returns a string atom.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf.

Library: Use Kernel32.lib.
Page 1



Volume 1
1.2 AllocConsole

The AllocConsole function allocates a new console for the calling process.

AllocConsole: procedure;
stdcall;
returns( "eax" ); // Zero if failure
external( "__imp__AllocConsole@0" );

Parameters

This function has no parameters.

Return Values
If the function succeeds, the return value in EAX is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

A process can be associated with only one console, so the AllocConsole function fails if the calling process already
has a console. A process can use the FreeConsole function to detach itself from its current console, and then it can
call AllocConsole to create a new console. If the calling process creates a child process, the child inherits the new
console.

AllocConsole also sets up standard input, standard output, and standard error handles for the new console. The stan-
dard input handle is a handle to the console's input buffer, and the standard output and standard error handles are han-
dles to the console's screen buffer. To retrieve these handles, use the GetStdHandle function.

This function is primarily used by graphics applications to create a console window. Graphics applications are initial-
ized without a console. Console applications are normally initialized with a console, unless they are created as
detached processes (by calling the CreateProcess function with the DETACHED_PROCESS flag).

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or later.

Header: Declared in kernel32.hhf

Library: Use Kernel32.lib.

1.3 AreFileApisANSI

The AreFileApisANSI function determines whether the file I/O functions are using the ANSI or OEM character set
code page. This function is useful for 8-bit console input and output operations.

AreFileApisANSI: procedure;
stdcall;
returns( "eax" ); // Zero for OEM code page, non-zero for ANSI.
external( "__imp__AreFileApisANSI@0" );

Parameters
This function has no parameters.

Return Values
If the set of file I/O functions is using the ANSI code page, the return value is nonzero.

If the set of file I/O functions is using the OEM code page, the return value is zero.

Remarks
The SetFileApisToOEM function causes a set of file I/O functions to use the OEM code page. The SetFileApis-
Page 2



Win32 API Reference
ToANSI function causes the same set of file I/O functions to use the ANSI code page. Use the AreFileApisANSI
function to determine which code page the set of file I/O functions is currently using. For a discussion of these func-
tions' usage, please refer to the Remarks sections of SetFileApisToOEM and SetFileApisToANSI.

The file I/O functions whose code page is ascertained by AreFileApisANSI are those functions exported by
KERNEL32.DLL that accept or return a file name.

The functions SetFileApisToOEM and SetFileApisToANSI set the code page for a process, so AreFileApisANSI
returns a value indicating the code page of an entire process.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or later.

Header: Declared in kernel32.hhf.

Library: Use Kernel32.lib.

1.4 AssignProcessToJobObject

The AssignProcessToJobObject function associates a process with an existing job object.

AssignProcessToJobObject: procedure
(

hJob:dword;
hProcess:dword

);
stdcall;
returns( "eax" );
external( "__imp__AssignProcessToJobObject@8" );

Parameters

hJob
[in] Handle to the job object to which the process will be associated. The CreateJobObject or OpenJobOb-
ject function returns this handle. The handle must have the JOB_OBJECT_ASSIGN_PROCESS access right
associated with it. For more information, see Job Object Security and Access Rights.

hProcess
[in] Handle to the process to associate with the job object. The process must not already be assigned to a job. The
handle must have PROCESS_SET_QUOTA and PROCESS_TERMINATE access to the process. For more
information, see Process Security and Access Rights.

Terminal Services: All processes within a job must run within the same session.

Return Values

If the function succeeds, the return value in EAX is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
After you associate a process with a job object using AssignProcessToJobObject, the process is subject to the limits
set for the job. To set limits for a job, use the SetInformationJobObject function.

If the job has a user-mode time limit, and the time limit has been exhausted, AssignProcessToJobObject fails and
the specified process is terminated. If the time limit would be exceeded by associating the process, AssignProcessTo-
JobObject still succeeds. However, the time limit violation will be reported. If the job has an active process limit,
and the limit would be exceeded by associating this process, AssignProcessToJobObject fails, and the specified pro-
cess is terminated.

Memory operations performed by a process associated with a job that has a memory limit are subject to the memory
Page 3



Volume 1
limit. Memory operations performed by the process before it was associated with the job are not examined by Assign-
ProcessToJobObject.

If the process is already running and the job has security limitations, AssignProcessToJobObject may fail. For
example, if the primary token of the process contains the local administrators group, but the job object has the secu-
rity limitation JOB_OBJECT_SECURITY_NO_ADMIN, the function fails. If the job has the security limitation
JOB_OBJECT_SECURITY_ONLY_TOKEN, the process must be created suspended. To create a suspended process,
call the CreateProcess function with the CREATE_SUSPENDED flag.

A process can be associated only with a single job. A process inherits limits from the job it is associated with and
adds its accounting information to the job. If a process is associated with a job, all processes it creates are associated
with that job by default. To create a process that is not part of the same job, call the CreateProcess function with
the CREATE_BREAKAWAY_FROM_JOB flag.

Requirements

Windows NT/2000: Requires Windows 2000 or later.

Windows 95/98: Unsupported.

Header: Declared in kernel32.hhf

Library: Use Kernel32.lib.

1.5 BackupRead

The BackupRead function reads data associated with a specified file or directory into a buffer. You use this function
to back up a file or directory.

BackupRead: procedure
(

hFile: dword;
var lpBuffer: var;

nNumberOfBytesToRead: dword;
var lpNumberOfBytesRead: dword;

bAbort: boolean;
bProcessSecurity: boolean;

var lpContext: var
);

stdcall;
returns( "eax" );
external( "__imp__BackupRead@28" );

Parameters

hFile
[in] Handle to the file or directory being backed up. The function reads data associated with this file. You obtain
this handle by calling the CreateFile function.

The BackupRead function fails if CreateFile was called with the flag FILE_FLAG_NO_BUFFERING. In this
case, the GetLastError function returns the value ERROR_INVALID_PARAMETER.

lpBuffer
[out] Pointer to a buffer that the function writes data to.

nNumberOfBytesToRead
[in] Specifies the length of the buffer. The buffer size must be greater than the size of a WIN32_STREAM_ID
structure.

lpNumberOfBytesRead
Page 4



Win32 API Reference
[out] Pointer to a variable that receives the number of bytes read.

If the function returns a nonzero value, and the variable pointed to by lpNumberOfBytesRead is zero, then all the
data associated with the file handle has been read.

bAbort
[in] Indicates whether you have finished using BackupRead on the handle. While you are backing up the file,
specify this parameter as FALSE. Once you are done using BackupRead, you must call BackupRead one more
time specifying TRUE for this parameter and passing the appropriate lpContext. lpContext must be passed when
bAbort is TRUE; all other parameters are ignored.

bProcessSecurity
[in] Indicates whether the function will restore the access-control list (ACL) data for the file or directory.

If bProcessSecurity is TRUE, the ACL data will be backed up.

lpContext
[out] Pointer to a variable that receives and holds a pointer to an internal data structure used by BackupRead to
maintain context information during a backup operation.

You must set the variable pointed to by lpContext to NULL before the first call to BackupRead for the specified
file or directory. The function allocates memory for the data structure, and then sets the variable to point to that
structure. You must not change lpContext or the variable that it points to between calls to BackupRead.

To release the memory used by the data structure, call BackupRead with the bAbort parameter set to TRUE
when the backup operation is complete.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero, indicating that an I/O error occurred. To get extended error information,
call GetLastError.

Remarks

BackupRead processes all of the data pertaining to an opened object as a series of discrete byte streams. Each stream
is preceded by a 32-bit aligned WIN32_STREAM_ID structure.

Streams must be processed in the same order in which they were written to the tape. This ordering enables applica-
tions to compare the data backed up against the data on the source device. The data returned by BackupRead is to be
used only as input to the BackupWrite function. This data is returned as one large data stream divided into sub-
streams. The substreams are separated by WIN32_STREAM_ID headers.

If an error occurs while BackupRead is reading, the calling process can skip the bad data by calling the BackupSeek
function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.

Header: Declared in kernel32.hhf

Library: Use Kernel32.lib.

1.6 BackupSeek

The BackupSeek function seeks forward in a data stream initially accessed by using the BackupRead or Backup-
Write function.

BackupSeek: procedure
(

hFile: dword;
dwLowBytesToSeek: dword;
dwHighBytesToSeek: dword;
Page 5



Volume 1
var lpdwLowByteSeeked: dword;
var lpdwHighByteSeeked: dword;
var lpContext: dword

);
stdcall;
returns( "eax" );
external( "__imp__BackupSeek@24" );

Parameters

hFile
[in] Handle to the file or directory being backed up. This handle is created by using the CreateFile function.

dwLowBytesToSeek
[in] Specifies the low-order bits of the number of bytes to seek.

dwHighBytesToSeek
[in] Specifies the high-order bits of the number of bytes to seek.

lpdwLowByteSeeked
[out] Pointer to a variable that receives the low-order bits of the number of bytes the function actually seeks.

lpdwHighByteSeeked
[out] Pointer to a variable that receives the high-order bits of the number of bytes the function actually seeks.

lpContext
[in] Pointer to an internal data structure used by the function. This structure must be the same structure that was
initialized by the BackupRead function. An application must not touch the contents of this structure.

Return Values
If the function could seek the requested amount, the function returns a nonzero value.

If the function could not seek the requested amount, the function returns zero. To get extended error information, call
GetLastError.

Remarks

Applications use the BackUpSeek function to skip portions of a data stream that cause errors. This function does not
seek across stream headers. If an application attempts to seek past the end of a substream, the function fails, the lpd-
wLowByteSeeked and lpdwHighByteSeeked parameters indicate the actual number of bytes the function seeks, and
the file position is placed at the start of the next stream header.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also

Tape Backup Overview, Tape Backup Functions, BackupRead, BackupWrite, CreateFile

1.7 BackupWrite

The BackupWrite function writes a stream of data from a buffer to a specified file or directory. The data must be
divided into substreams separated by WIN32_STREAM_ID structures. You use this function to restore a file or direc-
tory that has been backed up.

BackupWrite: procedure
Page 6



Win32 API Reference
(
hFile: dword;

var lpBuffer: var;
nNumberOfBytesToWrite: dword;

var lpNumberOfBytesWritten: dword;
bAbort: boolean;
bProcessSecurity: boolean;

var lpContext: var
);

stdcall;
returns( "eax" );
external( "__imp__BackupWrite@28" );

Parameters

hFile
[in] Handle to the file or directory being restored. The function writes data to this file. You obtain this handle by
calling the CreateFile function.

The BackupWrite function fails if CreateFile was called with the flag FILE_FLAG_NO_BUFFERING. In this
case, the GetLastError function returns the value ERROR_INVALID_PARAMETER.

lpBuffer
[in] Pointer to a buffer that the function writes data from.

nNumberOfBytesToWrite
[in] Specifies the length of the buffer. The buffer size must be greater than the size of a WIN32_STREAM_ID
structure.

lpNumberOfBytesWritten
[out] Pointer to a variable that receives the number of bytes written.

bAbort
[in] Indicates whether you have finished using BackupWrite on the handle. While you are backing up the file,
specify this parameter as FALSE. After you are done using BackupWrite, you must call BackupWrite one
more time specifying TRUE for this parameter and passing the appropriate lpContext. lpContext must be passed
when bAbort is TRUE; all other parameters are ignored.

bProcessSecurity
[in] Specifies whether the function will restore the access-control list (ACL) data for the file or directory.

If bProcessSecurity is TRUE, you need to have specified WRITE_OWNER and WRITE_DAC access when
opening the file or directory handle. If the handle does not have those access rights, the operating system denies
access to the ACL data, and ACL data restoration will not occur.

lpContext
[out] Pointer to a variable that receives a pointer to an internal data structure used by BackupWrite to maintain
context information during a restore operation.

You must set the variable pointed to by lpContext to NULL before the first call to BackupWrite for the specified
file or directory. The function allocates memory for the data structure, and then sets the variable to point to that
structure. You must not change lpContext or the variable that it points to between calls to BackupWrite.

To release the memory used by the data structure, call BackupWrite with the bAbort parameter set to TRUE
when the restore operation is complete.

Return Values

If the function succeeds, the return value is nonzero.
Page 7



Volume 1
If the function fails, the return value is zero, indicating that an I/O error occurred. To get extended error information,
call GetLastError.

Remarks

The BACKUP_LINK stream type lets you restore files with hard links.

Data obtained by the BackupRead function should only be used as input to the BackupWrite function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also

Tape Backup Overview, Tape Backup Functions, BackupRead, BackupSeek, CreateFile,
WIN32_STREAM_ID

1.8 Beep

The Beep function generates simple tones on the speaker. The function is synchronous; it does not return control to its
caller until the sound finishes.

Beep: procedure
(

dwFreq: dword;
dwDuration: dword

);
stdcall;
returns( "eax" );
external( "__imp__Beep@8" );

Parameters

dwFreq

Windows NT/ 2000: [in] Specifies the frequency, in hertz, of the sound. This parameter must be
in the range 37 through 32,767 (0x25 through 0x7FFF).

dwDuration

Windows NT/ 2000: [in] Specifies the duration, in milliseconds, of the sound.

Return Values
If the function succeeds, the return value in EAX is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

Windows 95: The Beep function ignores the dwFreq and dwDuration parameters. On computers with a sound card,
the function plays the default sound event. On computers without a sound card, the function plays the standard system
beep.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Page 8



Win32 API Reference
See Also

Error Handling Overview, Error Handling Functions, MessageBeep

1.9 BeginUpdateResource

The BeginUpdateResource function returns a handle that can be used by the UpdateResource function to add,
delete, or replace resources in an executable file.

BeginUpdateResource: procedure
(

filename: string;
bDeleteExistingResources: boolean

);
stdcall;
returns( "eax" );
external( "__imp__BeginUpdateResourceA@8" );

Parameters

pFileName
[in] Pointer to a null-terminated string that specifies the executable file in which to update resources. An applica-
tion must be able to obtain write access to this file; it cannot be currently executing. If pFileName does not spec-
ify a full path, the system searches for the file in the current directory.

bDeleteExistingResources
[in] Specifies whether to delete the pFileName parameter's existing resources. If this parameter is TRUE, exist-
ing resources are deleted and the updated executable file includes only resources added with the UpdateRe-
source function. If this parameter is FALSE, the updated executable file includes existing resources unless they
are explicitly deleted or replaced by using UpdateResource.

Return Values
If the function succeeds, the return value in EAX is a handle that can be used by the UpdateResource and EndUpda-
teResource functions. The return value is NULL if the specified file is not an executable file, the executable file is
already loaded, the file does not exist, or the file cannot be opened for writing. To get extended error information, call
GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Resources Overview, Resource Functions, EndUpdateResource, UpdateResource

1.10 BuildCommDCB

The BuildCommDCB function fills a specified DCB structure with values specified in a device-control string. The
device-control string uses the syntax of the mode command.

BuildCommDCB: procedure
(

lpDef: string;
var lpDCB: DCB
Page 9



Volume 1
);
stdcall;
returns( "eax" );
external( "__imp__BuildCommDCBA@8" );

Parameters

lpDef
[in] Pointer to a null-terminated string that specifies device-control information. The string must have the same
form as the mode command's command-line arguments. For example, the following string specifies a baud rate
of 1200, no parity, 8 data bits, and 1 stop bit:

baud=1200 parity=N data=8 stop=1

The device name is ignored if it is included in the string, but it must specify a valid device, as follows:

COM1: baud=1200 parity=N data=8 stop=1

For further information on mode command syntax, refer to the end-user documentation for your operating sys-
tem.

lpDCB
[out] Pointer to a DCB structure that receives the information.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The BuildCommDCB function adjusts only those members of the DCB structure that are specifically affected by the
lpDef parameter, with the following exceptions:

If the specified baud rate is 110, the function sets the stop bits to 2 to remain compatible with the
system's mode command.

By default, BuildCommDCB disables XON/XOFF and hardware flow control. To enable flow
control, you must explicitly set the appropriate members of the DCB structure.

The BuildCommDCB function only fills in the members of the DCB structure. To apply these settings to a serial
port, use the SetCommState function.

There are older and newer forms of the mode command syntax. The BuildCommDCB function supports both forms.
However, you cannot mix the two forms together.

The newer form of the mode command syntax lets you explicitly set the values of the flow control members of the
DCB structure. If you use an older form of the mode syntax, the BuildCommDCB function sets the flow control
members of the DCB structure, as follows:

For a string such as 96,n,8,1 or any other older-form mode string that doesn't end with an x or a p:

fInX, fOutX, fOutXDsrFlow, and fOutXCtsFlow are all set to FALSE

fDtrControl is set to DTR_CONTROL_ENABLE

fRtsControl is set to RTS_CONTROL_ENABLE

For a string such as 96,n,8,1,x or any other older-form mode string that ends with an x:

fInX and fOutX are both set to TRUE

fOutXDsrFlow and fOutXCtsFlow are both set to FALSE

fDtrControl is set to DTR_CONTROL_ENABLE

fRtsControl is set to RTS_CONTROL_ENABLE

For a string such as 96,n,8,1,p or any other older-form mode string that ends with a p:

fInX and fOutX are both set to FALSE
Page 10



Win32 API Reference
fOutXDsrFlow and fOutXCtsFlow are both set to TRUE

fDtrControl is set to DTR_CONTROL_HANDSHAKE

fRtsControl is set to RTS_CONTROL_HANDSHAKE

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Communications Overview, Communication Functions, DCB, SetCommState

1.11 BuildCommDCBAndTimeouts

The BuildCommDCBAndTimeouts function translates a device-definition string into appropriate device-control
block codes and places them into a device control block. The function can also set up time-out values, including the
possibility of no time-outs, for a device; the function's behavior in this regard varies based on the contents of the
device-definition string.

BuildCommDCBAndTimeouts: procedure
(

lpDef: string;
var lpDCB: DCB;
var lpCommTimeouts: COMMTIMEOUTS

);
stdcall;
returns( "eax" );
external( "__imp__BuildCommDCBAndTimeoutsA@12" );

Parameters

lpDef
[in] Pointer to a null-terminated string that specifies device-control information for the device. The function
takes this string, parses it, and then sets appropriate values in the DCB structure pointed to by lpDCB.

lpDCB
[out] Pointer to a DCB structure that receives information from the device-control information string pointed to by
lpDef. This DCB structure defines the control settings for a communications device.

lpCommTimeouts
[in] Pointer to a COMMTIMEOUTS structure that the function can use to set device time-out values.

The BuildCommDCBAndTimeouts function modifies its time-out setting behavior based on the presence or
absence of a "TO=xxx" substring in the string specified by lpDef:

If that string contains the substring "TO=ON", the function sets up total read and write time-out values for
the device based on the time-out structure pointed to by lpCommTimeouts.

If that string contains the substring "TO=OFF", the function sets up the device with no time-outs.

If that string contains neither the "TO=ON" substring nor the "TO=OFF" substring, the function ignores the
time-out structure pointed to by lpCommTimeouts. The time-out structure will not be accessed.
Page 11



Volume 1
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Communications Overview, Communication Functions, BuildCommDCB, COMMTIMEOUTS,
DCB, GetCommTimeouts, SetCommTimeouts

1.12 CallNamedPipe

The CallNamedPipe function connects to a message-type pipe (and waits if an instance of the pipe is not available),
writes to and reads from the pipe, and then closes the pipe.

CallNamedPipe: procedure
(

lpNamedPipeName: string;
var lpInBuffer: var;

nInBufferSize: dword;
var lpOutBuffer: var;

nOutBufferSize: dword;
var lpBytesRead: dword;

nTimeOut: dword
);

stdcall;
returns( "eax" );
external( "__imp__CallNamedPipeA@28" );

Parameters

lpNamedPipeName
[in] Pointer to a null-terminated string specifying the pipe name.

lpInBuffer
[in] Pointer to the buffer containing the data written to the pipe.

nInBufferSize
[in] Specifies the size, in bytes, of the write buffer.

lpOutBuffer
[out] Pointer to the buffer that receives the data read from the pipe.

nOutBufferSize
[in] Specifies the size, in bytes, of the read buffer.

lpBytesRead
[out] Pointer to a variable that receives the number of bytes read from the pipe.

nTimeOut
[in] Specifies the number of milliseconds to wait for the named pipe to be available. In addition to numeric val-
Page 12



Win32 API Reference
ues, the following special values can be specified.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Calling CallNamedPipe is equivalent to calling the CreateFile (or WaitNamedPipe, if CreateFile cannot open the
pipe immediately), TransactNamedPipe, and CloseHandle functions. CreateFile is called with an access flag
of GENERIC_READ | GENERIC_WRITE, an inherit handle flag of FALSE, and a share mode of zero (indicating no
sharing of this pipe instance).

If the message written to the pipe by the server process is longer than nOutBufferSize, CallNamedPipe returns
FALSE, and GetLastError returns ERROR_MORE_DATA. The remainder of the message is discarded, because
CallNamedPipe closes the handle to the pipe before returning.

CallNamedPipe fails if the pipe is a byte-type pipe.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Pipes Overview, Pipe Functions, CloseHandle, CreateFile, CreateNamedPipe, TransactNam-
edPipe, WaitNamedPipe

1.13 CancelWaitableTimer

The CancelWaitableTimer function sets the specified waitable timer to the inactive state.

CancelWaitableTimer: procedure
(

hTimer:dword
);

stdcall;
returns( "eax" );
external( "__imp__CancelWaitableTimer@4" );

Parameters

hTimer
[in] Handle to the timer object. The CreateWaitableTimer or OpenWaitableTimer function returns this
handle.

Value Meaning

NMPWAIT_NOWAIT Does not wait for the named pipe. If the named pipe is not available, the func-
tion returns an error.

NMPWAIT_WAIT_FOREVER Waits indefinitely.

NMPWAIT_USE_DEFAULT_
WAIT

Uses the default time-out specified in a call to the CreateNamedPipe func-
tion.
Page 13



Volume 1
Return Values
If the function succeeds, the return value in EAX is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The CancelWaitableTimer function does not change the signaled state of the timer. It stops the timer before it can be
set to the signaled state and cancels outstanding APCs. Therefore, threads performing a wait operation on the timer
remain waiting until they time out or the timer is reactivated and its state is set to signaled. If the timer is already in
the signaled state, it remains in that state.

To reactivate the timer, call the SetWaitableTimer function.

Requirements

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Synchronization Overview, Synchronization Functions, CreateWaitableTimer, OpenWaitable-
Timer, SetWaitableTimer

1.14 CloseHandle

The CloseHandle function closes an open object handle.

CloseHandle: procedure
(

handle:dword
);

stdcall;
returns( "eax" );
external( "__imp__CloseHandle@4" );

Parameters

hObject
[in/out] Handle to an open object.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Windows NT/2000: Closing an invalid handle raises an exception when the application is running under a debugger.
This includes closing a handle twice, and using CloseHandle on a handle returned by the FindFirstFile function.

Remarks

The CloseHandle function closes handles to the following objects:

Access token

Communications device

Console input

Console screen buffer
Page 14



Win32 API Reference
Event

File

File mapping

Job

Mailslot

Mutex

Named pipe

Process

Semaphore

Socket

Thread

CloseHandle invalidates the specified object handle, decrements the object's handle count, and performs object
retention checks. After the last handle to an object is closed, the object is removed from the system.

Closing a thread handle does not terminate the associated thread. To remove a thread object, you must terminate the
thread, then close all handles to the thread.

Use CloseHandle to close handles returned by calls to the CreateFile function. Use FindClose to close handles
returned by calls to FindFirstFile.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf.
Library: Use Kernel32.lib.

See Also

Handles and Objects Overview, Handle and Object Functions, CreateFile, DeleteFile, FindClose,
FindFirstFile

1.15 CommConfigDialog

The CommConfigDialog function displays a driver-supplied configuration dialog box.

CommConfigDialog: procedure
(

lpszName: string;
hWnd: dword;

var lpCC: COMMCONFIG
);

stdcall;
returns( "eax" );
external( "__imp__CommConfigDialogA@12" );

Parameters

lpszName
[in] Pointer to a null-terminated string specifying the name of the device for which a dialog box should be dis-
played.

hWnd
Page 15



Volume 1
[in] Handle to the window that owns the dialog box. This parameter can be any valid window handle, or it should
be NULL if the dialog box is to have no owner.

lpCC
[in/out] Pointer to a COMMCONFIG structure. This structure contains initial settings for the dialog box before the
call, and changed values after the call.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The CommConfigDialog function requires a dynamic-link library (DLL) provided by the communications hardware
vendor.

Requirements
Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf.
Library: Use Kernel32.lib.
See Also

Communications Overview, Communication Functions, COMMCONFIG

1.16 CompareFileTime

The CompareFileTime function compares two 64-bit file times.

CompareFileTime: procedure

(

var lpfileTime1: FILETIME;

var lpfileTime2: FILETIME

);

stdcall;

returns( "eax" );

external( "__imp__CompareFileTime@8" );

Parameters

lpFileTime1
[in] Pointer to a FILETIME structure that specifies the first 64-bit file time.

lpFileTime2
[in] Pointer to a FILETIME structure that specifies the second 64-bit file time.

Return Values
The return value is one of the following values.

Value Meaning

–1 First file time is less than second file time.
Page 16



Win32 API Reference
Remarks
MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Time Overview, Time Functions, GetFileTime, FILETIME

1.17 CompareString

The CompareString function compares two character strings, using the specified locale.

CompareString: procedure
(

Locale: LCID;
dwCmpFlags: dword;
lpString1: string;
cchCount1: uns32;
lpString2: string;
cchCount2: dword

);
stdcall;
returns( "eax" );
external( "__imp__CompareStringA@24" );

Parameters

Locale
[in] Specifies the locale used for the comparison. This parameter can be one of the following predefined locale
identifiers.

This parameter can also be a locale identifier created by the MAKELCID macro.

dwCmpFlags
[in] A set of flags that indicate how the function compares the two strings. By default, these flags are not set. This
parameter can specify zero to get the default behavior, or it can be any combination of the following values.

0 First file time is equal to second file time.

1 First file time is greater than second file time.

Value Meaning

LOCALE_SYSTEM_DEFAULT The system's default locale.

LOCALE_USER_DEFAULT The current user's default locale.

Value Meaning

NORM_IGNORECASE Ignore case.
Page 17



Volume 1
lpString1
[in] Pointer to the first string to be compared.

cchCount1
[in] Specifies the number of TCHARs in the string pointed to by the lpString1 parameter. This refers to bytes for
ANSI versions of the function or characters for Unicode versions. The count does not include the null-terminator.
If this parameter is –1, the string is assumed to be null terminated and the length is calculated automatically.

lpString2
[in] Pointer to the second string to be compared.

cchCount2
[in] Specifies the number of TCHARs in the string pointed to by the lpString2 parameter. The count does not
include the null-terminator. If this parameter is –1, the string is assumed to be null terminated and the length is
calculated automatically.

Return Values

If the function succeeds, the return value is one of the following values.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INVALID_FLAGS
ERROR_INVALID_PARAMETER

Remarks

Notice that if the return value is CSTR_EQUAL, the two strings are "equal" in the collation sense, though not neces-
sarily identical.

To maintain the C run-time convention of comparing strings, the value 2 can be subtracted from a nonzero return
value. The meaning of < 0, ==0 and > 0 is then consistent with the C run times.

If the two strings are of different lengths, they are compared up to the length of the shortest one. If they are equal to
that point, then the return value will indicate that the longer string is greater. For more information about locale iden-
tifiers, see Locales.

NORM_IGNOREKANATYPE Do not differentiate between Hiragana and Katakana characters.
Corresponding Hiragana and Katakana characters compare as
equal.

NORM_IGNORENONSPACE Ignore nonspacing characters.

NORM_IGNORESYMBOLS Ignore symbols.

NORM_IGNOREWIDTH Do not differentiate between a single-byte character and the
same character as a double-byte character.

SORT_STRINGSORT Treat punctuation the same as symbols.

Value Meaning

CSTR_LESS_THAN The string pointed to by the lpString1 parameter is less in lexical value
than the string pointed to by the lpString2 parameter.

CSTR_EQUAL The string pointed to by lpString1 is equal in lexical value to the string
pointed to by lpString2.

CSTR_GREATER_THAN The string pointed to by lpString1 is greater in lexical value than the
string pointed to by lpString2.
Page 18



Win32 API Reference
Typically, strings are compared using what is called a "word sort" technique. In a word sort, all punctuation marks
and other nonalphanumeric characters, except for the hyphen and the apostrophe, come before any alphanumeric
character. The hyphen and the apostrophe are treated differently than the other nonalphanumeric symbols, in order to
ensure that words such as "coop" and "co-op" stay together within a sorted list.

If the SORT_STRINGSORT flag is specified, strings are compared using what is called a "string sort" technique. In a
string sort, the hyphen and apostrophe are treated just like any other nonalphanumeric symbols: they come before the
alphanumeric symbols.

The following table shows a list of words sorted both ways.

The lstrcmp and lstrcmpi functions use a word sort. The CompareString and LCMapString functions default to
using a word sort, but use a string sort if their caller sets the SORT_STRINGSORT flag.

The CompareString function is optimized to run at the highest speed when dwCmpFlags is set to 0 or
NORM_IGNORECASE, and cchCount1 and cchCount2 have the value -1.

The CompareString function ignores Arabic Kashidas during the comparison. Thus, if two strings are identical save
for the presence of Kashidas, CompareString returns a value of 2; the strings are considered "equal" in the collation
sense, though they are not necessarily identical.

For DBCS locales, the flag NORM_IGNORECASE has an effect on all the wide (two-byte) characters as well as the
narrow (one-byte) characters. This includes the wide Greek and Cyrillic characters.

In Chinese Simplified, the sorting order used to compare the strings is based on the following sequence: symbols,
digit numbers, English letters, and Chinese Simplified characters. The characters within each group sort in charac-
ter-code order.

In Chinese Traditional, the sorting order used to compare strings is based on the number of strokes in the charaters.
Symbols, digit numbers, and English characters are considered to have zero strokes. The sort sequence is symbols,
digit numbers, English letters, and Chinese Traditional characters. The characters within each stroke-number group
sort in character-code order.

In Japanese, the sorting order used to compare the strings is based on the Japanese 50-on sorting sequence. The Kanji
ideographic characters sort in character-code order.

In Japanese, the flag NORM-IGNORENONSPACE has an effect on the daku-on, handaku-on, chou-on, you-on, and
soku-on modifiers, and on the repeat kana/kanji characters.

In Korean, the sort order is based on the sequence: symbols, digit numbers, Jaso and Hangeul, Hanja, and English.
Within the Jaso-Hangeul group, each Jaso character is followed by the Hangeuls that start with that Jaso. Hanja char-
acters are sorted in Hangeul pronunciation order. Where multiple Hanja have the same Hangeul pronunciation, they
are sorted in character-code order.

Word Sort String Sort Word Sort String Sort

billet bill's t-ant t-ant

bills billet tanya t-aria

bill's bills t-aria tanya

cannot can't sued sue's

cant cannot sues sued

can't cant sue's sues

con co-op went we're

coop con were went

co-op coop we're were
Page 19



Volume 1
The NORM_IGNORENONSPACE flag only has an effect for the locales in which accented characters are sorted in a
second pass from main characters. All characters in the string are first compared without regard to accents and (if the
strings are equal) a second pass over the strings is performed to compare accents. In this case, this flag causes the sec-
ond pass to not be performed. For locales that sort accented characters in the first pass, this flag has no effect.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnls.h; include Windows.h.
Library: Use Kernel32.lib.

See Also

Strings Overview, String Functions, FoldString, GetSystemDefaultLCID, GetUserDefaultLCID, LCMapString,
lstrcmp, lstrcmpi, MAKELCID

1.18 ConnectNamedPipe

The ConnectNamedPipe function enables a named pipe server process to wait for a client process to connect to an
instance of a named pipe. A client process connects by calling either the CreateFile or CallNamedPipe function.

ConnectNamedPipe: procedure
(

hNamedPipe: dword;
var lpOverlapped: OVERLAPPED

);
stdcall;
returns( "eax" );
external( "__imp__ConnectNamedPipe@8" );

Parameters

hNamedPipe
[in] Handle to the server end of a named pipe instance. This handle is returned by the CreateNamedPipe func-
tion.

lpOverlapped
[in] Pointer to an OVERLAPPED structure.

If hNamedPipe was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped parameter must not be
NULL. It must point to a valid OVERLAPPED structure. If hNamedPipe was opened with
FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the function can incorrectly report that the connect
operation is complete.

If hNamedPipe was created with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL, the OVER-
LAPPED structure must contain a handle to a manual-reset event object (which the server can create by using
the CreateEvent function).

If hNamedPipe was not opened with FILE_FLAG_OVERLAPPED, the function does not return until a client is
connected or an error occurs. Successful synchronous operations result in the function returning a nonzero value
if a client connects after the function is called.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

If a client connects before the function is called, the function returns zero and GetLastError returns
Page 20



Win32 API Reference
ERROR_PIPE_CONNECTED. This can happen if a client connects in the interval between the call to Create-
NamedPipe and the call to ConnectNamedPipe. In this situation, there is a good connection between client and
server, even though the function returns zero.

Remarks

A named pipe server process can use ConnectNamedPipe with a newly created pipe instance. It can also be used
with an instance that was previously connected to another client process; in this case, the server process must first call
the DisconnectNamedPipe function to disconnect the handle from the previous client before the handle can be
reconnected to a new client. Otherwise, ConnectNamedPipe returns zero, and GetLastError returns
ERROR_NO_DATA if the previous client has closed its handle or ERROR_PIPE_CONNECTED if it has not closed
its handle.

The behavior of ConnectNamedPipe depends on two conditions: whether the pipe handle's wait mode is set to
blocking or nonblocking and whether the function is set to execute synchronously or in overlapped mode. A server
initially specifies a pipe handle's wait mode in the CreateNamedPipe function, and it can be changed by using the
SetNamedPipeHandleState function.

The server process can use any of the wait functions or SleepEx — to determine when the state of the event object is
signaled, and it can then use the GetOverlappedResult function to determine the results of the ConnectNamed-
Pipe operation.

If the specified pipe handle is in nonblocking mode, ConnectNamedPipe always returns immediately. In nonblock-
ing mode, ConnectNamedPipe returns a nonzero value the first time it is called for a pipe instance that is discon-
nected from a previous client. This indicates that the pipe is now available to be connected to a new client process. In
all other situations when the pipe handle is in nonblocking mode, ConnectNamedPipe returns zero. In these situa-
tions, GetLastError returns ERROR_PIPE_LISTENING if no client is connected, ERROR_PIPE_CONNECTED if
a client is connected, and ERROR_NO_DATA if a previous client has closed its pipe handle but the server has not
disconnected. Note that a good connection between client and server exists only after the
ERROR_PIPE_CONNECTED error is received.

Note Nonblocking mode is supported for compatibility with Microsoft LAN Manager version 2.0, and it should not
be used to achieve asynchronous input and output (I/O) with named pipes.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Pipes Overview, Pipe Functions, CallNamedPipe, CreateEvent, CreateFile, CreateNamedPipe,
DisconnectNamedPipe, GetOverlappedResult, SetNamedPipeHandleState, SleepEx, OVER-
LAPPED

1.19 ContinueDebugEvent

The ContinueDebugEvent function enables a debugger to continue a thread that previously reported a debugging
event.

ContinueDebugEvent: procedure
(

dwProcessID: dword;
dwThreadID: dword;
dwContinueStatus: dword

);
stdcall;
returns( "eax" );
Page 21



Volume 1
external( "__imp__ContinueDebugEvent@12" );

Parameters

dwProcessId
[in] Handle to the process to continue.

dwThreadId
[in] Handle to the thread to continue. The combination of process identifier and thread identifier must identify a
thread that has previously reported a debugging event.

dwContinueStatus
[in] Specifies how to continue the thread that reported the debugging event.

If the DBG_CONTINUE flag is specified for this parameter and the thread specified by the dwThreadId parame-
ter previously reported an EXCEPTION_DEBUG_EVENT debugging event, the function stops all exception
processing and continues the thread. For any other debugging event, this flag simply continues the thread.

If the DBG_EXCEPTION_NOT_HANDLED flag is specified for this parameter and the thread specified by
dwThreadId previously reported an EXCEPTION_DEBUG_EVENT debugging event, the function continues
exception processing. If this is a first-chance exception event, the search and dispatch logic of the structured
exception handler is used; otherwise, the process is terminated. For any other debugging event, this flag simply
continues the thread.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Only the thread that created dwProcessId with the CreateProcess function can call ContinueDebugEvent.

After the ContinueDebugEvent function succeeds, the specified thread continues. Depending on the debugging
event previously reported by the thread, different actions occur. If the continued thread previously reported an
EXIT_THREAD_DEBUG_EVENT debugging event, ContinueDebugEvent closes the handle the debugger has to
the thread. If the continued thread previously reported an EXIT_PROCESS_DEBUG_EVENT debugging event,
ContinueDebugEvent closes the handles the debugger has to the process and to the thread.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Debugging Overview, Debugging Functions, CreateProcess

1.20 ConvertDefaultLocale

The ConvertDefaultLocale function converts a default locale value to an actual locale identifier.

ConvertDefaultLocale: procedure
(

Local: LCID
);

stdcall;
returns( "eax" );
Page 22



Win32 API Reference
external( "__imp__ConvertDefaultLocale@4" );

Parameters

Locale
[in/out] Default locale value that the function converts to a locale identifier (LCID). The following are the default
locale values.

Return Values

If the function succeeds, the return value is the appropriate LCID.

If the function fails, the return value is the Locale parameter. The function fails when Locale is not one of the default
locale values listed above.

Remarks

A call to ConvertDefaultLocale(LOCALE_SYSTEM_DEFAULT) is equivalent to a call to GetSystemDefaultL-
CID. A call to ConvertDefaultLocale(LOCALE_USER_DEFAULT) is equivalent to a call to GetUserDefaultL-
CID.

For more information, see Locales and Language Identifiers.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

National Language Support Overview, National Language Support Functions, GetSystemDefault-
LCID, GetUserDefaultLCID

1.21 ConvertThreadToFiber

The ConvertTheadToFiber function converts the current thread into a fiber. You must convert a thread into a fiber
before you can schedule other fibers.

ConvertThreadToFiber: procedure
(

var lpParameter: var;
);

stdcall;
returns( "eax" );
external( "__imp__ConvertThreadToFiber@4" );

Value Description

LOCALE_SYSTEM_DEFAULT The system's default locale.

LOCALE_USER_DEFAULT The current user's default locale.

A sublanguage-neutral locale A locale identifier constructed by calling MAKELCID with a
primary language identifier, such as LANG_ENGLISH, and
the SUBLANG_NEUTRAL sublanguage identifier.
Page 23



Volume 1
Parameters

lpParameter
[in] Specifies a single variable that is passed to the fiber. The fiber can retrieve this value by using the GetFi-
berData macro.

Return Values

If the function succeeds, the return value is the address of the fiber.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks

Only fibers can execute other fibers. If a thread needs to execute a fiber, it must call ConvertThreadToFiber to cre-
ate an area in which to save fiber state information. The thread is now the current fiber. The state information for this
fiber includes the fiber data specified by lpParameter.

Requirements

Windows NT/2000: Requires Windows NT 3.51 SP3 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also

Processes and Threads Overview, Process and Thread Functions, GetFiberData

1.22 CopyFile

The CopyFile function copies an existing file to a new file.

The CopyFileEx function provides two additional capabilities. CopyFileEx can call a specified callback function
each time a portion of the copy operation is completed, and CopyFileEx can be canceled during the copy operation.

CopyFile: procedure
(

lpExistingFileName: string;
lpNewFileName: string;
bFailIfExists: boolean

);
stdcall;
returns( "eax" );
external( "__imp__CopyFileA@12" );

Parameters

lpExistingFileName
[in] Pointer to a null-terminated string that specifies the name of an existing file.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

lpNewFileName
[in] Pointer to a null-terminated string that specifies the name of the new file.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
Page 24



Win32 API Reference
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

bFailIfExists
[in] Specifies how this operation is to proceed if a file of the same name as that specified by lpNewFileName
already exists. If this parameter is TRUE and the new file already exists, the function fails. If this parameter is
FALSE and the new file already exists, the function overwrites the existing file and succeeds.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Security attributes for the existing file are not copied to the new file.

File attributes for the existing file are copied to the new file. For example, if an existing file has the
FILE_ATTRIBUTE_READONLY file attribute, a copy created through a call to CopyFile will also have the
FILE_ATTRIBUTE_READONLY file attribute.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf.
Library: Use Kernel32.lib.

See Also

File I/O Overview, File I/O Functions, CopyFileEx, CreateFile, MoveFile

1.23 CopyFileEx

The CopyFileEx function copies an existing file to a new file. This function preserves extended attributes, OLE
structured storage, NTFS alternate data streams, and file attributes. Security attributes for the existing file are not cop-
ied to the new file.

CopyFileEx: procedure
(

lpExistingFileName: string;
lpNewFileName: string;

var lpProgressRoutine: PROGRESS_ROUTINE;
var lpData: var;
var pbCancel: boolean;

dwCopyFlags: dword
);

stdcall;
returns( "eax" );
external( "__imp__CopyFileExA@24" );

Parameters

lpExistingFileName
[in] Pointer to a null-terminated string that specifies the name of an existing file.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
Page 25



Volume 1
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

lpNewFileName
[in] Pointer to a null-terminated string that specifies the name of the new file.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

lpProgressRoutine
[in] Specifies the address of a callback function of type LPPROGRESS_ROUTINE that is called each time
another portion of the file has been copied. This parameter can be NULL. For more information on the progress
callback function, see CopyProgressRoutine.

lpData
[in] Specifies an argument to be passed to the callback function. This parameter can be NULL.

pbCancel
[in] Pointer to a Boolean variable that can be used to cancel the operation. If this flag is set to TRUE during the
copy operation, the operation is canceled.

dwCopyFlags
[in] Specifies how the file is to be copied. This parameter can be a combination of the following values.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf.
Library: Use Kernel32.lib.
See Also

File I/O Overview, File I/O Functions, CreateFile, CopyFile, CopyProgressRoutine, MoveFile

1.24 CreateConsoleScreenBuffer

The CreateConsoleScreenBuffer function creates a console screen buffer.

CreateConsoleScreenBuffer: procedure

Value Meaning

COPY_FILE_FAIL_IF_EXISTS The copy operation fails immediately if the target file already
exists.

COPY_FILE_RESTARTABLE Progress of the copy is tracked in the target file in case the
copy fails. The failed copy can be restarted at a later time by
specifying the same values for lpExistingFileName and
lpNewFileName as those used in the call that failed.
Page 26



Win32 API Reference
(
dwDesiredAccess: dword;
dwShareMode: dword;

var lpSecurityAttributes: Security_Attributes;
dwFlags: dword;
lpScreenBufferData: dword // Should be NULL.

);
stdcall;
returns( "eax" );
external( "__imp__CreateConsoleScreenBuffer@20" );

Parameters

dwDesiredAccess
[in] Specifies the desired access to the console screen buffer. This parameter can be one or more of the following
values.

dwShareMode
[in] Specifies how this console screen buffer can be shared. This parameter can be zero, indicating that the buffer
cannot be shared, or it can be one or more of the following values.

lpSecurityAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited
by child processes. If lpSecurityAttributes is NULL, the handle cannot be inherited.

Windows NT/2000: The lpSecurityDescriptor member of the structure specifies a security descriptor for the
new console screen buffer. If lpSecurityAttributes is NULL, the console screen buffer gets a default security
descriptor.

dwFlags
[in] Specifies the type of console screen buffer to create. The only currently supported screen buffer type is
CONSOLE_TEXTMODE_BUFFER.

lpScreenBufferData
[in] Reserved; should be NULL.

Return Values

If the function succeeds, the return value is a handle to the new console screen buffer.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call Get-
LastError.

Value Meaning

GENERIC_READ Requests read access to the console screen buffer, enabling the process to read
data from the buffer.

GENERIC_WRITE Requests write access to the console screen buffer, enabling the process to
write data to the buffer.

Value Meaning

FILE_SHARE_READ Other open operations can be performed on the console screen buffer for
read access.

FILE_SHARE_WRITE Other open operations can be performed on the console screen buffer for
write access.
Page 27



Volume 1
Remarks
A console can have multiple screen buffers but only one active screen buffer. Inactive screen buffers can be accessed
for reading and writing, but only the active screen buffer is displayed. To make the new screen buffer the active
screen buffer, use the SetConsoleActiveScreenBuffer function.

The calling process can use the returned handle in any function that requires a handle to a console screen buffer, sub-
ject to the limitations of access specified by the dwDesiredAccess parameter.

The calling process can use the DuplicateHandle function to create a duplicate screen buffer handle that has different
access or inheritability from the original handle. However, DuplicateHandle cannot be used to create a duplicate that
is valid for a different process (except through inheritance).

To close the screen buffer handle, use the CloseHandle function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Consoles and Character-Mode Support Overview, Console Functions, CloseHandle, Duplicate-
Handle, GetConsoleScreenBufferInfo, SECURITY_ATTRIBUTES, SetConsoleActiveScreen-
Buffer, SetConsoleScreenBufferSize

1.25 CreateDirectory

The CreateDirectory function creates a new directory. If the underlying file system supports security on files and
directories, the function applies a specified security descriptor to the new directory.

To specify a template directory, use the CreateDirectoryEx function.

CreateDirectory: procedure
(

lpPathName: string;
lpSecurityAttributes: dword // Should be NULL

);
stdcall;
returns( "eax" );
external( "__imp__CreateDirectoryA@8" );

Parameters

lpPathName
[in] Pointer to a null-terminated string that specifies the path of the directory to be created.

There is a default string size limit for paths of 248 characters. This limit is related to how the CreateDirectory
function parses paths.

Windows NT/2000: To extend this limit to nearly 32,000 wide characters, call the Unicode version of the func-
tion and prepend "\\?\" to the path. For more information, see File Name Conventions.

lpSecurityAttributes
Windows NT/2000: [in] Pointer to a SECURITY_ATTRIBUTES structure. The lpSecurityDescriptor member of
the structure specifies a security descriptor for the new directory. If lpSecurityAttributes is NULL, the directory
gets a default security descriptor. The target file system must support security on files and directories for this
parameter to have an effect.
Page 28



Win32 API Reference
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

Some file systems, such as NTFS, support compression or encryption for individual files and directories. On volumes
formatted for such a file system, a new directory inherits the compression and encryption attributes of its parent direc-
tory.

Windows NT/2000: An application can obtain a handle to a directory by calling CreateFile with the
FILE_FLAG_BACKUP_SEMANTICS flag set. For a code example, see CreateFile.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

File I/O Overview, File I/O Functions, CreateDirectoryEx, CreateFile, RemoveDirectory,
SECURITY_ATTRIBUTES

1.26 CreateDirectoryEx

The CreateDirectoryEx function creates a new directory with the attributes of a specified template directory. If the
underlying file system supports security on files and directories, the function applies a specified security descriptor to
the new directory. The new directory retains the other attributes of the specified template directory.

CreateDirectoryEx: procedure
(

lpTemplateDirectory: string;
lpNewDirectory: string;
lpSecurityAttributes: dword // Should be NULL

);
stdcall;
returns( "eax" );
external( "__imp__CreateDirectoryExA@12" );

Parameters

lpTemplateDirectory
[in] Pointer to a null-terminated string that specifies the path of the directory to use as a template when creating
the new directory.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

lpNewDirectory
[in] Pointer to a null-terminated string that specifies the path of the directory to be created.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
Page 29



Volume 1
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

lpSecurityAttributes
Windows NT/2000: [in] Pointer to a SECURITY_ATTRIBUTES structure. The lpSecurityDescriptor member of
the structure specifies a security descriptor for the new directory. If lpSecurityAttributes is NULL, the directory
gets a default security descriptor. The target file system must support security on files and directories for this
parameter to have an effect.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The CreateDirectoryEx function allows you to create directories that inherit stream information from other directo-
ries. This function is useful, for example, when dealing with Macintosh directories, which have a resource stream that
is needed to properly identify directory contents as an attribute.

Some file systems, such as NTFS, support compression or encryption for individual files and directories. On volumes
formatted for such a file system, a new directory inherits the compression and encryption attributes of its parent direc-
tory.

Windows NT/2000: You can obtain a handle to a directory by calling the CreateFile function with the
FILE_FLAG_BACKUP_SEMANTICS flag set. See CreateFile for a code example.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also

File I/O Overview, File I/O Functions, CreateDirectory, CreateFile, RemoveDirectory,
SECURITY_ATTRIBUTES

1.27 CreateEvent

The CreateEvent function creates or opens a named or unnamed event object.

CreateEvent: procedure
(

lpEventAttributes: dword; // Should be NULL
bManualReset: boolean;
bInitialState: boolean;
lpName: string

);
stdcall;
returns( "eax" );
external( "__imp__CreateEventA@16" );

Parameters

lpEventAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited
Page 30



Win32 API Reference
by child processes. If lpEventAttributes is NULL, the handle cannot be inherited.

Windows NT/2000: The lpSecurityDescriptor member of the structure specifies a security descriptor for the
new event. If lpEventAttributes is NULL, the event gets a default security descriptor.

bManualReset
[in] Specifies whether a manual-reset or auto-reset event object is created. If TRUE, then you must use the
ResetEvent function to manually reset the state to nonsignaled. If FALSE, the system automatically resets the
state to nonsignaled after a single waiting thread has been released.

bInitialState
[in] Specifies the initial state of the event object. If TRUE, the initial state is signaled; otherwise, it is nonsig-
naled.

lpName
[in] Pointer to a null-terminated string specifying the name of the event object. The name is limited to
MAX_PATH characters. Name comparison is case sensitive.

If lpName matches the name of an existing named event object, this function requests EVENT_ALL_ACCESS
access to the existing object. In this case, the bManualReset and bInitialState parameters are ignored because
they have already been set by the creating process. If the lpEventAttributes parameter is not NULL, it determines
whether the handle can be inherited, but its security-descriptor member is ignored.

If lpName is NULL, the event object is created without a name.

If lpName matches the name of an existing semaphore, mutex, waitable timer, job, or file-mapping object, the
function fails and the GetLastError function returns ERROR_INVALID_HANDLE. This occurs because
these objects share the same name space.

Terminal Services: The name can have a "Global\" or "Local\" prefix to explicitly create the object in the global
or session name space. The remainder of the name can contain any character except the backslash character (\).
For more information, see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the "Global\" and "Local\" pre-
fixes are ignored. The remainder of the name can contain any character except the backslash character.

Windows NT 4.0 and earlier, Windows 95/98: The name can contain any character except the backslash char-
acter.

Return Values

If the function succeeds, the return value is a handle to the event object. If the named event object existed before the
function call, the function returns a handle to the existing object and GetLastError returns
ERROR_ALREADY_EXISTS.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks

The handle returned by CreateEvent has EVENT_ALL_ACCESS access to the new event object and can be used in
any function that requires a handle to an event object.

Any thread of the calling process can specify the event-object handle in a call to one of the wait functions. The sin-
gle-object wait functions return when the state of the specified object is signaled. The multiple-object wait functions
can be instructed to return either when any one or when all of the specified objects are signaled. When a wait function
returns, the waiting thread is released to continue its execution.

The initial state of the event object is specified by the bInitialState parameter. Use the SetEvent function to set the
state of an event object to signaled. Use the ResetEvent function to reset the state of an event object to nonsignaled.

When the state of a manual-reset event object is signaled, it remains signaled until it is explicitly reset to nonsignaled
by the ResetEvent function. Any number of waiting threads, or threads that subsequently begin wait operations for
the specified event object, can be released while the object's state is signaled.

When the state of an auto-reset event object is signaled, it remains signaled until a single waiting thread is released;
the system then automatically resets the state to nonsignaled. If no threads are waiting, the event object's state
Page 31



Volume 1
remains signaled.

Multiple processes can have handles of the same event object, enabling use of the object for interprocess synchroni-
zation. The following object-sharing mechanisms are available:

A child process created by the CreateProcess function can inherit a handle to an event object if the lpEventAt-
tributes parameter of CreateEvent enabled inheritance.
A process can specify the event-object handle in a call to the DuplicateHandle function to create a duplicate
handle that can be used by another process.
A process can specify the name of an event object in a call to the OpenEvent or CreateEvent function.

Use the CloseHandle function to close the handle. The system closes the handle automatically when the process ter-
minates. The event object is destroyed when its last handle has been closed.

Example

For an example that uses CreateEvent, see Using Event Objects.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CloseHandle, CreateProcess, Duplicate-
Handle, OpenEvent, ResetEvent, SECURITY_ATTRIBUTES, SetEvent, Object Names

1.28 CreateFiber

The CreateFiber function allocates a fiber object, assigns it a stack, and sets up execution to begin at the specified
start address, typically the fiber function. This function does not schedule the fiber.

CreateFiber: procedure
(

dwStackSize: dword;
var lpStartAddress: FIBER_START_ROUTINE;

lpParameter: dword
);

stdcall;
returns( "eax" );
external( "__imp__CreateFiber@12" );

Parameters

dwStackSize
[in] Specifies the size, in bytes, of the stack for the new fiber. If zero is specified, the stack size defaults to the
same size as that of the main thread. The function fails if it cannot commit dwStackSize bytes. Note that the sys-
tem increases the stack size dynamically, if necessary. For more information, see Thread Stack Size.

lpStartAddress
[in] Pointer to the application-defined function of type LPFIBER_START_ROUTINE to be executed by the fiber
and represents the starting address of the fiber. Execution of the newly created fiber does not begin until another
fiber calls the SwitchToFiber function with this address. For more information of the fiber callback function,
see FiberProc.

lpParameter
Page 32



Win32 API Reference
[in] Specifies a single argument that is passed to the fiber. This value can be retrieved by the fiber using the Get-
FiberData macro.

Return Values
If the function succeeds, the return value is the address of the fiber.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
Before a thread can schedule a fiber using the SwitchToFiber function, it must call the ConvertThreadToFiber
function so there is a fiber associated with the thread.

Requirements
Windows NT/2000: Requires Windows NT 3.51 SP3 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Processes and Threads Overview, Process and Thread Functions, ConvertThreadToFiber, Fiber-
Proc, GetFiberData, SwitchToFiber

1.29 CreateFile

The CreateFile function creates or opens the following objects and returns a handle that can be used to access the
object:

Consoles

Communications resources

Directories (open only)

Disk devices (Windows NT/2000 only)

Files

Mailslots

Pipes

CreateFile: procedure
(

lpFileName: string;
dwDesiredAccess: dword;
dwShareMode: dword;
lpSecurityAttributes: dword; // Should be NULL
dwCreationDisposition: dword;
dwFlagsAndAttributes: dword;
hTemplateFile: dword

);
stdcall;
returns( "eax" );
external( "__imp__CreateFileA@28" );

Parameters

lpFileName
Page 33



Volume 1
[in] Pointer to a null-terminated string that specifies the name of the object to create or open.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

dwDesiredAccess
[in] Specifies the type of access to the object. An application can obtain read access, write access, read/write
access, or device query access. This parameter can be any combination of the following values.

In addition, you can specify the following access flags.

Value Meaning

0 Specifies device query access to the object. An application can query device
attributes without accessing the device.

GENERIC_READ Specifies read access to the object. Data can be read from the file and the file
pointer can be moved. Combine with GENERIC_WRITE for read/write
access.

GENERIC_WRITE Specifies write access to the object. Data can be written to the file and the file
pointer can be moved. Combine with GENERIC_READ for read/write
access.

Value Documented

DELETE Standard Access Rights

READ_CONTROL Standard Access Rights

WRITE_DAC Standard Access Rights

WRITE_OWNER Standard Access Rights

SYNCHRONIZE Standard Access Rights

STANDARD_RIGHTS_REQUIRED Standard Access Rights

STANDARD_RIGHTS_READ Standard Access Rights

STANDARD_RIGHTS_WRITE Standard Access Rights

STANDARD_RIGHTS_EXECUTE Standard Access Rights

STANDARD_RIGHTS_ALL Standard Access Rights

SPECIFIC_RIGHTS_ALL ACCESS_MASK

ACCESS_SYSTEM_SECURITY ACCESS_MASK

MAXIMUM_ALLOWED ACCESS_MASK

GENERIC_READ ACCESS_MASK

GENERIC_WRITE ACCESS_MASK

GENERIC_EXECUTE ACCESS_MASK
Page 34



Win32 API Reference
dwShareMode
[in] Specifies how the object can be shared. If dwShareMode is 0, the object cannot be shared. Subsequent open
operations on the object will fail, until the handle is closed.

To share the object, use a combination of one or more of the following values.

lpSecurityAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited
by child processes. If lpSecurityAttributes is NULL, the handle cannot be inherited.

Windows NT/2000: The lpSecurityDescriptor member of the structure specifies a security descriptor for the
object. If lpSecurityAttributes is NULL, the object gets a default security descriptor. The target file system must
support security on files and directories for this parameter to have an effect on files.

dwCreationDisposition
[in] Specifies which action to take on files that exist, and which action to take when files do not exist. For more
information about this parameter, see the Remarks section. This parameter must be one of the following values.

dwFlagsAndAttributes
[in] Specifies the file attributes and flags for the file.

Any combination of the following attributes is acceptable for the dwFlagsAndAttributes parameter, except all

GENERIC_ALL ACCESS_MASK

Value Meaning

FILE_SHARE_DELETE Windows NT/2000: Subsequent open operations on the object will suc-
ceed only if delete access is requested.

FILE_SHARE_READ Subsequent open operations on the object will succeed only if read access
is requested.

FILE_SHARE_WRITE Subsequent open operations on the object will succeed only if write
access is requested.

Value Meaning

CREATE_NEW Creates a new file. The function fails if the specified file already
exists.

CREATE_ALWAYS Creates a new file. If the file exists, the function overwrites the file
and clears the existing attributes.

OPEN_EXISTING Opens the file. The function fails if the file does not exist.

For a discussion of why you should use the OPEN_EXISTING flag if
you are using the CreateFile function for devices, see Remarks.

OPEN_ALWAYS Opens the file, if it exists. If the file does not exist, the function cre-
ates the file as if dwCreationDisposition were CREATE_NEW.

TRUNCATE_EXISTING Opens the file. Once opened, the file is truncated so that its size is
zero bytes. The calling process must open the file with at least
GENERIC_WRITE access. The function fails if the file does not
exist.
Page 35



Volume 1
other file attributes override FILE_ATTRIBUTE_NORMAL.

Any combination of the following flags is acceptable for the dwFlagsAndAttributes parameter.

Attribute Meaning

FILE_ATTRIBUTE_ARCHIVE The file should be archived. Applications use this attribute to
mark files for backup or removal.

FILE_ATTRIBUTE_ENCRYPTED The file or directory is encrypted. For a file, this means that all
data in the file is encrypted. For a directory, this means that
encryption is the default for newly created files and subdirec-
tories.

This flag has no effect if FILE_ATTRIBUTE_SYSTEM is
also specified.

FILE_ATTRIBUTE_HIDDEN The file is hidden. It is not to be included in an ordinary direc-
tory listing.

FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This attribute is valid only
if used alone.

FILE_ATTRIBUTE_NOT_CONTENT_INDEX
ED

The file will not be indexed by the content indexing service.

FILE_ATTRIBUTE_OFFLINE The data of the file is not immediately available. This attribute
indicates that the file data has been physically moved to offline
storage. This attribute is used by Remote Storage, the hierar-
chical storage management software in Windows 2000. Appli-
cations should not arbitrarily change this attribute.

FILE_ATTRIBUTE_READONLY The file is read only. Applications can read the file but cannot
write to it or delete it.

FILE_ATTRIBUTE_SYSTEM The file is part of or is used exclusively by the operating sys-
tem.

FILE_ATTRIBUTE_TEMPORARY The file is being used for temporary storage. File systems
attempt to keep all of the data in memory for quicker access
rather than flushing the data back to mass storage. A tempo-
rary file should be deleted by the application as soon as it is no
longer needed.

Flag Meaning

FILE_FLAG_WRITE_THROUGH Instructs the system to write through any intermediate
cache and go directly to disk. The system can still cache
write operations, but cannot lazily flush them.
Page 36



Win32 API Reference
FILE_FLAG_OVERLAPPED Instructs the system to initialize the object, so that opera-
tions that take a significant amount of time to process
return ERROR_IO_PENDING. When the operation is fin-
ished, the specified event is set to the signaled state.

When you specify FILE_FLAG_OVERLAPPED, the file
read and write functions must specify an OVERLAPPED

structure. That is, when FILE_FLAG_OVERLAPPED is
specified, an application must perform overlapped read-
ing and writing.

When FILE_FLAG_OVERLAPPED is specified, the sys-
tem does not maintain the file pointer. The file position
must be passed as part of the lpOverlapped parameter
(pointing to an OVERLAPPED structure) to the file read
and write functions.

This flag also enables more than one operation to be per-
formed simultaneously with the handle (a simultaneous
read and write operation, for example).

FILE_FLAG_NO_BUFFERING Instructs the system to open the file with no intermediate
buffering or caching. When combined with
FILE_FLAG_OVERLAPPED, the flag gives maximum
asynchronous performance, because the I/O does not rely
on the synchronous operations of the memory manager.
However, some I/O operations will take longer, because
data is not being held in the cache.

An application must meet certain requirements when
working with files opened with
FILE_FLAG_NO_BUFFERING:

File access must begin at byte offsets within the file that
are integer multiples of the volume's sector size.

File access must be for numbers of bytes that are integer
multiples of the volume's sector size. For example, if the
sector size is 512 bytes, an application can request reads
and writes of 512, 1024, or 2048 bytes, but not of 335,
981, or 7171 bytes.

Buffer addresses for read and write operations should be
sector aligned (aligned on addresses in memory that are
integer multiples of the volume's sector size). Depending
on the disk, this requirement may not be enforced.

One way to align buffers on integer multiples of the vol-
ume sector size is to use VirtualAlloc to allocate the
buffers. It allocates memory that is aligned on addresses
that are integer multiples of the operating system's mem-
ory page size. Because both memory page and volume
sector sizes are powers of 2, this memory is also aligned
on addresses that are integer multiples of a volume's sec-
tor size.

An application can determine a volume's sector size by
calling the GetDiskFreeSpace function.

FILE_FLAG_RANDOM_ACCESS Indicates that the file is accessed randomly. The system
can use this as a hint to optimize file caching.
Page 37



Volume 1
If the CreateFile function opens the client side of a named pipe, the dwFlagsAndAttributes parameter can
also contain Security Quality of Service information. For more information, see Impersonation Levels. When
the calling application specifies the SECURITY_SQOS_PRESENT flag, the dwFlagsAndAttributes parameter
can contain one or more of the following values.

FILE_FLAG_SEQUENTIAL_SCAN Indicates that the file is to be accessed sequentially from
beginning to end. The system can use this as a hint to
optimize file caching. If an application moves the file
pointer for random access, optimum caching may not
occur; however, correct operation is still guaranteed.

Specifying this flag can increase performance for applica-
tions that read large files using sequential access. Perfor-
mance gains can be even more noticeable for applications
that read large files mostly sequentially, but occasionally
skip over small ranges of bytes.

FILE_FLAG_DELETE_ON_CLOSE Indicates that the operating system is to delete the file
immediately after all of its handles have been closed, not
just the handle for which you specified
FILE_FLAG_DELETE_ON_CLOSE.

Subsequent open requests for the file will fail, unless
FILE_SHARE_DELETE is used.

FILE_FLAG_BACKUP_SEMANTICS Windows NT/2000: Indicates that the file is being
opened or created for a backup or restore operation. The
system ensures that the calling process overrides file
security checks, provided it has the necessary privileges.
The relevant privileges are SE_BACKUP_NAME and
SE_RESTORE_NAME.

You can also set this flag to obtain a handle to a directory.
A directory handle can be passed to some Win32 func-
tions in place of a file handle.

FILE_FLAG_POSIX_SEMANTICS Indicates that the file is to be accessed according to
POSIX rules. This includes allowing multiple files with
names, differing only in case, for file systems that support
such naming. Use care when using this option because
files created with this flag may not be accessible by appli-
cations written for MS-DOS or 16-bit Windows.

FILE_FLAG_OPEN_REPARSE_POINT Specifying this flag inhibits the reparse behavior of NTFS
reparse points. When the file is opened, a file handle is
returned, whether the filter that controls the reparse point
is operational or not. This flag cannot be used with the
CREATE_ALWAYS flag.

FILE_FLAG_OPEN_NO_RECALL Indicates that the file data is requested, but it should con-
tinue to reside in remote storage. It should not be trans-
ported back to local storage. This flag is intended for use
by remote storage systems or the Hierarchical Storage
Management system.

Value Meaning
Page 38



Win32 API Reference
hTemplateFile
[in] Specifies a handle with GENERIC_READ access to a template file. The template file supplies file attributes
and extended attributes for the file being created.

Windows 95: The hTemplateFile parameter must be NULL. If you supply a handle, the call fails and GetLas-
tError returns ERROR_NOT_SUPPORTED.

Return Values
If the function succeeds, the return value is an open handle to the specified file. If the specified file exists before the
function call and dwCreationDisposition is CREATE_ALWAYS or OPEN_ALWAYS, a call to GetLastError

returns ERROR_ALREADY_EXISTS (even though the function has succeeded). If the file does not exist before the
call, GetLastError returns zero.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call Get-
LastError.

Remarks
Use the CloseHandle function to close an object handle returned by CreateFile.

As noted above, specifying zero for dwDesiredAccess allows an application to query device attributes without actu-
ally accessing the device. This type of querying is useful, for example, if an application wants to determine the size of
a floppy disk drive and the formats it supports without having a floppy in the drive.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Files
If you are attempting to create a file on a floppy drive that does not have a floppy disk or a CD-ROM drive that does
not have a CD, the system displays a message box asking the user to insert a disk or a CD, respectively. To prevent
the system from displaying this message box, call the SetErrorMode function with
SEM_FAILCRITICALERRORS.

When creating a new file, the CreateFile function performs the following actions:

Combines the file attributes and flags specified by dwFlagsAndAttributes with
FILE_ATTRIBUTE_ARCHIVE.

SECURITY_ANONYMOUS Specifies to impersonate the client at the Anonymous
impersonation level.

SECURITY_IDENTIFICATION Specifies to impersonate the client at the Identification
impersonation level.

SECURITY_IMPERSONATION Specifies to impersonate the client at the Impersonation
impersonation level.

SECURITY_DELEGATION Specifies to impersonate the client at the Delegation
impersonation level.

SECURITY_CONTEXT_TRACKING Specifies that the security tracking mode is dynamic. If
this flag is not specified, Security Tracking Mode is
static.

SECURITY_EFFECTIVE_ONLY Specifies that only the enabled aspects of the client's
security context are available to the server. If you do
not specify this flag, all aspects of the client's security
context are available.

This flag allows the client to limit the groups and privi-
leges that a server can use while impersonating the cli-
ent.
Page 39



Volume 1
Sets the file length to zero.

Copies the extended attributes supplied by the template file to the new file if the hTemplateFile
parameter is specified.

When opening an existing file, CreateFile performs the following actions:

Combines the file flags specified by dwFlagsAndAttributes with existing file attributes. CreateFile
ignores the file attributes specified by dwFlagsAndAttributes.

Sets the file length according to the value of dwCreationDisposition.

Ignores the hTemplateFile parameter.

Ignores the lpSecurityDescriptor member of the SECURITY_ATTRIBUTES structure if the lpSecu-
rityAttributes parameter is not NULL. The other structure members are used. The bInheritHandle member is the
only way to indicate whether the file handle can be inherited.

Windows NT/2000: If you rename or delete a file, then restore it shortly thereafter, Windows NT searches the cache
for file information to restore. Cached information includes its short/long name pair and creation time.

Windows NT/2000: Some file systems, such as NTFS, support compression or encryption for individual files and
directories. On volumes formatted for such a file system, a new file inherits the compression and encryption attributes
of its directory.

You cannot use the CreateFile function to set a file's compression state. Use the DeviceIoControl function to set a
file's compression state.

Pipes
If CreateFile opens the client end of a named pipe, the function uses any instance of the named pipe that is in the lis-
tening state. The opening process can duplicate the handle as many times as required but, once opened, the named
pipe instance cannot be opened by another client. The access specified when a pipe is opened must be compatible
with the access specified in the dwOpenMode parameter of the CreateNamedPipe function. For more information
about pipes, see Pipes.

Mailslots
If CreateFile opens the client end of a mailslot, the function returns INVALID_HANDLE_VALUE if the mailslot
client attempts to open a local mailslot before the mailslot server has created it with the CreateMailSlot function.
For more information about mailslots, see Mailslots.

Communications Resources
The CreateFile function can create a handle to a communications resource, such as the serial port COM1. For com-
munications resources, the dwCreationDisposition parameter must be OPEN_EXISTING, and the hTemplate parame-
ter must be NULL. Read, write, or read/write access can be specified, and the handle can be opened for overlapped
I/O. For more information about communications, see Communications.

Disk Devices
Volume handles may be opened as noncached at the discretion of the file system, even when the noncached option is
not specified with CreateFile. You should assume that all Microsoft file systems open volume handles as noncached.
The restrictions on noncached I/O for files apply to volumes as well.

A file system may or may not require buffer alignment even though the data is noncached. However, if the noncached
option is specified when opening a volume, buffer alignment is enforced regardless of the file system on the volume.
It is recommended on all file systems that you open volume handles as noncached and follow the noncached I/O
restrictions.

Windows NT/2000: You can use the CreateFile function to open a disk drive or a partition on a disk drive. The func-
tion returns a handle to the disk device; that handle can be used with the DeviceIOControl function. The following
requirements must be met in order for such a call to succeed:

The caller must have administrative privileges for the operation to succeed on a hard disk drive.

The lpFileName string should be of the form \\.\PHYSICALDRIVEx to open the hard disk x. Hard
disk numbers start at zero. For example:
Page 40



Win32 API Reference
For an example showing how to open a physical drive, see Calling DeviceIoControl on Windows NT/2000.

The lpFileName string should be \\.\x: to open a floppy drive x or a partition x on a hard disk. For
example:

There is no trailing backslash in a drive name. The string "\\.\c:\" refers to the root directory of drive C.

On Windows 2000, you can also open a volume by referring to its unique volume name. In this case also, there should
be no trailing backslash on the unique volume name.

Note that all I/O buffers should be sector aligned (aligned on addresses in memory that are integer multiples of the
volume's sector size), even if the disk device is opened without the FILE_FLAG_NO_BUFFERING flag. Depending
the disk, this requirement may not be enforced.

Windows 95: This technique does not work for opening a logical drive. In Windows 95, specifying a string in this
form causes CreateFile to return an error.

The dwCreationDisposition parameter must have the OPEN_EXISTING value.

When opening a floppy disk or a partition on a hard disk, you must set the FILE_SHARE_WRITE
flag in the dwShareMode parameter.

Tape Drives
Windows NT/2000: You can open tape drives using a file name of the form \\.\TAPEx where x is a number indi-
cating which drive to open, starting with tape drive 0. To open tape drive 0 in C, use the file name "\\\\.\\TAPE0". For
more information on manipulating tape drives for backup or other applications, see Tape Backup.

Consoles
The CreateFile function can create a handle to console input (CONIN$). If the process has an open handle to it as a
result of inheritance or duplication, it can also create a handle to the active screen buffer (CONOUT$). The calling
process must be attached to an inherited console or one allocated by the AllocConsole function. For console han-
dles, set the CreateFile parameters as follows.

String Meaning

\\.\PHYSICALDRIVE2 Obtains a handle to the third physical drive on the user's computer.

String Meaning

\\.\A: Obtains a handle to drive A on the user's computer.

\\.\C: Obtains a handle to drive C on the user's computer.

Parameters Value

lpFileName Use the CONIN$ value to specify console input and the CONOUT$ value to
specify console output.

CONIN$ gets a handle to the console's input buffer, even if the SetStdHan-
dle function redirected the standard input handle. To get the standard input
handle, use the GetStdHandle function.

CONOUT$ gets a handle to the active screen buffer, even if SetStdHandle
redirected the standard output handle. To get the standard output handle, use
GetStdHandle.

dwDesiredAccess GENERIC_READ | GENERIC_WRITE is preferred, but either one can limit
access.
Page 41



Volume 1
The following list shows the effects of various settings of fwdAccess and lpFileName.

Directories
An application cannot create a directory with CreateFile; it must call CreateDirectory or CreateDirectoryEx to
create a directory.

Windows NT/2000: You can obtain a handle to a directory by setting the FILE_FLAG_BACKUP_SEMANTICS
flag. A directory handle can be passed to some Win32 functions in place of a file handle.

Some file systems, such as NTFS, support compression or encryption for individual files and directories. On volumes
formatted for such a file system, a new directory inherits the compression and encryption attributes of its parent direc-
tory.

You cannot use the CreateFile function to set a directory's compression state. Use the DeviceIoControl function
to set a directory's compression state.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, ACCESS_MASK, AllocConsole, CloseHandle, ConnectNamedPipe, Create-
Directory, CreateDirectoryEx, CreateNamedPipe, DeviceIOControl, GetDiskFreeSpace, GetOverlappedResult, Get-
StdHandle, OpenFile, OVERLAPPED, ReadFile, SECURITY_ATTRIBUTES, SetErrorMode, SetStdHandle,
Standard Access Rights, TransactNamedPipe, Unique Volume Names, VirtualAlloc, WriteFile

dwShareMode If the calling process inherited the console or if a child process should be
able to access the console, this parameter must be FILE_SHARE_READ |
FILE_SHARE_WRITE.

lpSecurityAttributes If you want the console to be inherited, the bInheritHandle member of the
SECURITY_ATTRIBUTES structure must be TRUE.

dwCreationDisposition You should specify OPEN_EXISTING when using CreateFile to open the
console.

dwFlagsAndAttributes Ignored.

hTemplateFile Ignored.

lpFileName fwdAccess Result

CON GENERIC_READ Opens console for input.

CON GENERIC_WRITE Opens console for output.

CON GENERIC_READ
GENERIC_WRITE

Windows 95: Causes CreateFile to fail; Get-
LastError returns
ERROR_PATH_NOT_FOUND.

Windows NT/2000: Causes CreateFile to fail;
GetLastError returns
ERROR_FILE_NOT_FOUND.
Page 42



Win32 API Reference
1.30 CreateFileMapping

The CreateFileMapping function creates or opens a named or unnamed file-mapping object for the specified file.

CreateFileMapping: procedure
(

hFile: dword;
lpFileMappingAttributes: dword; // Should be NULL
flProtect: dword;
dwMaximumSizeHigh: dword;
dwMaximumSizeLow: dword;
lpName: string

);
stdcall;
returns( "eax" );
external( "__imp__CreateFileMappingA@24" );

Parameters

hFile
[in] Handle to the file from which to create a mapping object. The file must be opened with an access mode com-
patible with the protection flags specified by the flProtect parameter. It is recommended, though not required,
that files you intend to map be opened for exclusive access.

If hFile is INVALID_HANDLE_VALUE, the calling process must also specify a mapping object size in the
dwMaximumSizeHigh and dwMaximumSizeLow parameters. In this case, CreateFileMapping creates a
file-mapping object of the specified size backed by the operating-system paging file rather than by a named file
in the file system. The file-mapping object can be shared through duplication, through inheritance, or by name.

lpAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited
by child processes. If lpAttributes is NULL, the handle cannot be inherited.

Windows NT/2000: The lpSecurityDescriptor member of the structure specifies a security descriptor for the
new file-mapping object. If lpAttributes is NULL, the file-mapping object gets a default security descriptor.

flProtect
[in] Protection desired for the file view, when the file is mapped. This parameter can be one of the following val-
ues.

In addition, an application can specify certain section attributes by combining (using the bitwise OR operator)
one or more of the following section attribute values with one of the preceding page protection values.

Value Description

PAGE_READONLY Gives read-only access to the committed region of pages. An attempt to write to
or execute the committed region results in an access violation. The file specified
by the hFile parameter must have been created with GENERIC_READ access.

PAGE_READWRITE Gives read/write access to the committed region of pages. The file specified by
hFile must have been created with GENERIC_READ and GENERIC_WRITE
access.

PAGE_WRITECOPY Gives copy on write access to the committed region of pages. The files specified
by the hFile parameter must have been created with GENERIC_READ and
GENERIC_WRITE access.
Page 43



Volume 1
dwMaximumSizeHigh
[in] High-order DWORD of the maximum size of the file-mapping object.

dwMaximumSizeLow
[in] Low-order DWORD of the maximum size of the file-mapping object. If this parameter and dwMaximum-
SizeHigh are zero, the maximum size of the file-mapping object is equal to the current size of the file identified
by hFile.

An attempt to map a file with a length of zero in this manner fails with an error code of
ERROR_FILE_INVALID. Applications should test for files with a length of zero and reject such files.

lpName
[in] Pointer to a null-terminated string specifying the name of the mapping object.

If this parameter matches the name of an existing named mapping object, the function requests access to the
mapping object with the protection specified by flProtect.

If this parameter is NULL, the mapping object is created without a name.

If lpName matches the name of an existing event, semaphore, mutex, waitable timer, or job object, the function
fails and the GetLastError function returns ERROR_INVALID_HANDLE. This occurs because these objects
share the same name space.

Terminal Services: The name can have a "Global\" or "Local\" prefix to explicitly create the object in the global
or session name space. The remainder of the name can contain any character except the backslash character (\).
For more information, see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the "Global\" and "Local\" pre-
fixes are ignored. The remainder of the name can contain any character except the backslash character.

Windows NT 4.0 and earlier, Windows 95/98: The name can contain any character except the backslash char-
acter.

Return Values
If the function succeeds, the return value is a handle to the file-mapping object. If the object existed before the func-
tion call, the function returns a handle to the existing object (with its current size, not the specified size) and GetLas-

Value Description

SEC_COMMIT Allocates physical storage in memory or in the paging file on disk for all pages
of a section. This is the default setting.

SEC_IMAGE The file specified for a section's file mapping is an executable image file.
Because the mapping information and file protection are taken from the image
file, no other attributes are valid with SEC_IMAGE.

SEC_NOCACHE All pages of a section are to be set as noncacheable. This attribute is intended for
architectures requiring various locking structures to be in memory that is never
fetched into the processor's. On 80x86 and MIPS machines, using the cache for
these structures only slows down the performance as the hardware keeps the
caches coherent. Some device drivers require noncached data so that programs
can write through to the physical memory. SEC_NOCACHE requires either the
SEC_RESERVE or SEC_COMMIT to also be set.

SEC_RESERVE Reserves all pages of a section without allocating physical storage. The reserved
range of pages cannot be used by any other allocation operations until it is
released. Reserved pages can be committed in subsequent calls to the Virtu-
alAlloc function. This attribute is valid only if the hFile parameter is
INVALID_HANDLE_VALUE; that is, a file-mapping object backed by the
operating system paging file.
Page 44



Win32 API Reference
tError returns ERROR_ALREADY_EXISTS.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
After a file-mapping object has been created, the size of the file must not exceed the size of the file-mapping object;
if it does, not all of the file's contents will be available for sharing.

If an application specifies a size for the file-mapping object that is larger than the size of the actual named file on
disk, the file on disk is grown to match the specified size of the file-mapping object. If the file cannot be grown, this
results in a failure to create the file-mapping object. GetLastError will return ERROR_DISK_FULL.

The handle that CreateFileMapping returns has full access to the new file-mapping object. It can be used with any
function that requires a handle to a file-mapping object. File-mapping objects can be shared either through process
creation, through handle duplication, or by name. For information on duplicating handles, see DuplicateHandle.
For information on opening a file-mapping object by name, see OpenFileMapping.

Windows 95: File handles that have been used to create file-mapping objects must not be used in subsequent calls to
file I/O functions, such as ReadFile and WriteFile. In general, if a file handle has been used in a successful call to the
CreateFileMapping function, do not use that handle unless you first close the corresponding file-mapping object.

Creating a file-mapping object creates the potential for mapping a view of the file but does not map the view. The
MapViewOfFile and MapViewOfFileEx functions map a view of a file into a process's address space.

With one important exception, file views derived from a single file-mapping object are coherent, or identical, at a
given time. If multiple processes have handles of the same file-mapping object, they see a coherent view of the data
when they map a view of the file.

The exception has to do with remote files. Although CreateFileMapping works with remote files, it does not keep
them coherent. For example, if two computers both map a file as writable, and both change the same page, each com-
puter will only see its own writes to the page. When the data gets updated on the disk, it is not merged.

A mapped file and a file accessed by means of the input and output (I/O) functions (ReadFile and WriteFile) are
not necessarily coherent.

To fully close a file-mapping object, an application must unmap all mapped views of the file-mapping object by call-
ing UnmapViewOfFile, and close the file-mapping object handle by calling CloseHandle. The order in which
these functions are called does not matter. The call to UnmapViewOfFile is necessary because mapped views of a
file-mapping object maintain internal open handles to the object, and a file-mapping object will not close until all
open handles to it are closed.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a memory mapped view. For more information, see Reading and Writing.

Example
To implement a mapping-object creation function that fails if the object already exists, an application can use the fol-
lowing code.

hMap = CreateFileMapping(...);

if (hMap != NULL && GetLastError() == ERROR_ALREADY_EXISTS)

{

CloseHandle(hMap);

hMap = NULL;

}

return hMap;

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Page 45



Volume 1
Library: Use Kernel32.lib.

See Also
File Mapping Overview, File Mapping Functions, CloseHandle, DuplicateHandle, MapViewOfFile, MapViewOfFi-
leEx, OpenFileMapping, ReadFile, SECURITY_ATTRIBUTES, UnmapViewOfFile, VirtualAlloc, WriteFile

1.31 CreateHardLink

The CreateHardLink function establishes an NTFS hard link between an existing file and a new file. An NTFS hard
link is similar to a POSIX hard link.

CreateHardLink: procedure
(

lpFileName: string;
lpExistingFileName: string;

var lpSecurityAttributes: Security_Attributes
);

stdcall;
returns( "eax" );
external( "__imp__CreateHardLinkA@12" );

Parameters

lpFileName
[in] Pointer to the name of the new directory entry to be created.

lpExistingFileName
[in] Pointer to the name of the existing file to which the new link will point.

lpSecurityAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the new file.

If this parameter is NULL, it leaves the file's existing security descriptor unmodified.

If this parameter is not NULL, it modifies the file's security descriptor.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Any directory entry for a file, whether created with CreateFile or CreateHardLink, is a hard link to the associated
file. Additional hard links, created with the CreateHardLink function, allow you to have multiple directory entries
for a file, that is, multiple hard links to the same file. These may be different names in the same directory, or they may
be the same (or different) names in different directories. However, all hard links to a file must be on the same volume.

Because hard links are just directory entries for a file, whenever an application modifies a file through any hard link,
all applications using any other hard link to the file see the changes. Also, all of the directory entries are updated if the
file changes. For example, if the file's size changes, all of the hard links to the file will show the new size.

The security descriptor belongs to the file to which the hard link points. The link itself, being merely a directory entry,
has no security descriptor. Thus, if you change the security descriptor of any hard link, you're actually changing the
underlying file's security descriptor. All hard links that point to the file will thus allow the newly specified access.
There is no way to give a file different security descriptors on a per-hard-link basis.

Use DeleteFile to delete hard links. You can delete them in any order regardless of the order in which they were
created.
Page 46



Win32 API Reference
Flags, attributes, access, and sharing as specified in CreateFile operate on a per-file basis. That is, if you open a file
with no sharing allowed, another application cannot share the file by creating a new hard link to the file.

CreateHardLink does not work over the network redirector.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Unsupported.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows 2000.

See Also
File Systems Overview, File System Functions, CreateFile, DeleteFile, SECURITY_ATTRIBUTES

1.32 CreateIoCompletionPort

The CreateIoCompletionPort function can associate an instance of an opened file with a newly created or an exist-
ing input/output (I/O) completion port, or it can create an I/O completion port without associating it with a file.

Associating an instance of an opened file with an I/O completion port lets an application receive notification of the
completion of asynchronous I/O operations involving that file.

CreateIoCompletionPort: procedure
(

FileHandle: dword;
ExistingCompletionPort: dword;

var CompletionKey: dword;
NumberOfConcurrentThreads: dword

);
stdcall;
returns( "eax" );
external( "__imp__CreateIoCompletionPort@16" );

Parameters

FileHandle
[in] Handle to a file opened for overlapped I/O completion. You must specify the FILE_FLAG_OVERLAPPED
flag when using the CreateFile function to obtain the handle.

If FileHandle specifies INVALID_HANDLE_VALUE, CreateIoCompletionPort creates an I/O completion
port without associating it with a file. In this case, the ExistingCompletionPort parameter must be NULL and the
CompletionKey parameter is ignored.

ExistingCompletionPort
[in] Handle to the I/O completion port.

If this parameter specifies an existing completion port, the function associates it with the file specified by the
FileHandle parameter. The function returns the handle of the existing completion port; it does not create a new
I/O completion port.

If this parameter is NULL, the function creates a new I/O completion port and associates it with the file specified
by FileHandle. The function returns the handle to the new I/O completion port.

CompletionKey
[in] Per-file completion key that is included in every I/O completion packet for the specified file.

NumberOfConcurrentThreads
Page 47



Volume 1
[in] Maximum number of threads that the operating system allows to concurrently process I/O completion pack-
ets for the I/O completion port. If this parameter is zero, the system allows as many concurrently running threads
as there are processors in the system.

Although any number of threads can call the GetQueuedCompletionStatus function to wait for an I/O com-
pletion port, each thread is associated with only one completion port at a time. That port is the port that was last
checked by the thread.

When a packet is queued to a port, the system first checks how many threads associated with the port are run-
ning. If the number of threads running is less than the value of NumberOfConcurrentThreads, then one of the
waiting threads is allowed to process the packet. When a running thread completes its processing, it calls Get-
QueuedCompletionStatus again, at which point the system can allow another waiting thread to process a
packet.

The system also allows a waiting thread to process a packet if a running thread enters any wait state. When the
thread in the wait state begins running again, there may be a brief period when the number of active threads
exceeds the NumberOfConcurrentThreads value. However, the system quickly reduces the number by not allow-
ing any new active threads until the number of active threads falls below the specified value.

Return Values
If the function succeeds, the return value is the handle to the I/O completion port that is associated with the specified
file.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The I/O system can be instructed to send I/O completion notification packets to I/O completion ports, where they are
queued. The CreateIoCompletionPort function provides this functionality.

After an instance of an open file is associated with an I/O completion port, it cannot be used in the ReadFileEx or
WriteFileEx function. It is best not to share such an associated file through either handle inheritance or a call to the
DuplicateHandle function. Operations performed with such duplicate handles generate completion notifications.

When you perform an I/O operation with a file handle that has an associated I/O completion port, the I/O system
sends a completion notification packet to the completion port when the I/O operation completes. The I/O completion
port places the completion packet in a first-in-first-out queue. Use the GetQueuedCompletionStatus function to
retrieve these queued I/O completion packets.

Threads in the same process can use the PostQueuedCompletionStatus function to place I/O completion notification
packets in a completion port's queue. By doing so, you can use the port to receive communications from other threads
of the process, in addition to receiving I/O completion notification packets from the I/O system.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CreateFile, DuplicateHandle, GetQueuedCompletionStatus, PostQueuedCom-
pletionStatus, ReadFileEx, WriteFileEx

1.33 CreateJobObject

The CreateJobObject function creates or opens a job object.

CreateJobObject: procedure

(

Page 48



Win32 API Reference
var lpJobAttributes: Security_Attributes;

lpName: string

);

stdcall;

returns( "eax" );

external( "__imp__CreateJobObjectA@8" );

Parameters

lpJobAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that specifies the security descriptor for the job object and
determines whether child processes can inherit the returned handle. If lpJobAttributes is NULL, the job object
gets a default security descriptor and the handle cannot be inherited.

lpName
[in] Pointer to a null-terminated string specifying the name of the job. The name is limited to MAX_PATH char-
acters. Name comparison is case-sensitive.

If lpName is NULL, the job is created without a name.

If lpName matches the name of an existing event, semaphore, mutex, waitable timer, or file-mapping object, the
function fails and the GetLastError function returns ERROR_INVALID_HANDLE. This occurs because these
objects share the same name space.

Terminal Services: The name can have a "Global\" or "Local\" prefix to explicitly create the object in the global
or session name space. The remainder of the name can contain any character except the backslash character (\).
For more information, see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the "Global\" and "Local\" pre-
fixes are ignored. The remainder of the name can contain any character except the backslash character.

Return Values
If the function succeeds, the return value is a handle to the job object. The handle has JOB_OBJECT_ALL_ACCESS
access to the job object. If the object existed before the function call, the function returns a handle to the existing job
object and GetLastError returns ERROR_ALREADY_EXISTS.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
When a job is created, its accounting information is initialized to zero, all limits are inactive, and there are no associ-
ated processes. To associate a process with a job, use the AssignProcessToJobObject function. To set limits for a job,
use the SetInformationJobObject function. To query accounting information, use the QueryInformationJo-
bObject function.

To close a job object handle, use the CloseHandle function. The job is destroyed when its last handle has been
closed. If there are running processes still associated with the job when it is destroyed, they will continue to run even
after the job is destroyed.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Unsupported.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows 2000.

See Also
Processes and Threads Overview, Process and Thread Functions, AssignProcessToJobObject, CloseHandle, QueryIn-
Page 49



Volume 1
formationJobObject, SECURITY_ATTRIBUTES, SetInformationJobObject

1.34 CreateMailslot

The CreateMailslot function creates a mailslot with the specified name and returns a handle that a mailslot server
can use to perform operations on the mailslot. The mailslot is local to the computer that creates it. An error occurs if a
mailslot with the specified name already exists.

CreateMailslot: procedure
(

lpName: string;
nMaxMessageSize: dword;
lReadTimneout: dword;

var lpSecurityAttributes: SECURITY_ATTRIBUTES
);

stdcall;
returns( "eax" );
external( "__imp__CreateMailslotA@16" );

Parameters

lpName
[in] Pointer to a null-terminated string specifying the name of the mailslot. This name must have the following
form:

\\.\mailslot\[path]name

The name field must be unique. The name may include multiple levels of pseudodirectories separated by back-
slashes. For example, both \\.\mailslot\example_mailslot_name and \\.\mailslot\abc\def\ghi are valid names.

nMaxMessageSize
[in] Specifies the maximum size, in bytes, of a single message that can be written to the mailslots. To specify that
the message can be of any size, set this value to zero.

lReadTimeout
[in] Specifies the amount of time, in milliseconds, a read operation can wait for a message to be written to the
mailslot before a time-out occurs. The following values have special meanings.

This time-out value applies to all subsequent read operations and all inherited mailslot handles.

lpSecurityAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure. The bInheritHandle member of the structure determines
whether the returned handle can be inherited by child processes. If lpSecurityAttributes is NULL, the handle can-
not be inherited. The lpSecurityDescriptor member of the structure is ignored.

Return Values
If the function succeeds, the return value is a handle to the mailslot, for use in server mailslot operations. The server
side of the handle is overlapped.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call Get-

Value Meaning

0 Returns immediately if no message is present. (The system
does not treat an immediate return as an error.)

MAILSLOT_WAIT_FOREVER Waits forever for a message.
Page 50



Win32 API Reference
LastError.

Remarks
The mailslot exists until one of the following conditions is true:

The last (possibly inherited or duplicated) handle to it is closed using the CloseHandle function.

The process owning the last (possibly inherited or duplicated) handle exits.

The system uses the second method to destroy mailslots.

To write a message to a mailslot, a process uses the CreateFile function, specifying the mailslot name by using one
of the following formats.

If CreateFile specifies a domain or uses the asterisk format to specify the system's primary domain, the application
cannot write more than 424 bytes at a time to the mailslot. If the application attempts to do so, the WriteFile function
fails and GetLastError returns ERROR_BAD_NETPATH.

An application must specify the FILE_SHARE_READ flag when using CreateFile to retrieve a client handle to a
mailslot.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Mailslots Overview, Mailslot Functions, CloseHandle, CreateFile, GetMailslotInfo, SECURITY_ATTRIBUTES,
SetMailslotInfo, WriteFile

1.35 CreateMutex

The CreateMutex function creates or opens a named or unnamed mutex object.

CreateMutex: procedure
(

var lpMutexAttributes : SECURITY_ATTRIBUTES
bInitialOwner: boolean;
lpName: string

);
stdcall;
returns( "eax" );
external( "__imp__CreateMutexA@12" );

Format Usage

\\.\mailslot\name Retrieves a client handle to a local mailslot.

\\computername\mailslot\name Retrieves a client handle to a remote mailslot.

\\domainname\mailslot\name Retrieves a client handle to all mailslots with the specified name
in the specified domain.

\\*\mailslot\name Retrieves a client handle to all mailslots with the specified name
in the system's primary domain.
Page 51



Volume 1
Parameters

lpMutexAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited
by child processes. If lpMutexAttributes is NULL, the handle cannot be inherited.

Windows NT/2000: The lpSecurityDescriptor member of the structure specifies a security descriptor for the
new mutex. If lpMutexAttributes is NULL, the mutex gets a default security descriptor.

bInitialOwner
[in] Specifies the initial owner of the mutex object. If this value is TRUE and the caller created the mutex, the
calling thread obtains ownership of the mutex object. Otherwise, the calling thread does not obtain ownership of
the mutex. To determine if the caller created the mutex, see the Return Values section.

lpName
[in] Pointer to a null-terminated string specifying the name of the mutex object. The name is limited to
MAX_PATH characters. Name comparison is case sensitive.

If lpName matches the name of an existing named mutex object, this function requests MUTEX_ALL_ACCESS
access to the existing object. In this case, the bInitialOwner parameter is ignored because it has already been set
by the creating process. If the lpMutexAttributes parameter is not NULL, it determines whether the handle can be
inherited, but its security-descriptor member is ignored.

If lpName is NULL, the mutex object is created without a name.

If lpName matches the name of an existing event, semaphore, waitable timer, job, or file-mapping object, the
function fails and the GetLastError function returns ERROR_INVALID_HANDLE. This occurs because
these objects share the same name space.

Terminal Services: The name can have a "Global\" or "Local\" prefix to explicitly create the object in the global
or session name space. The remainder of the name can contain any character except the backslash character (\).
For more information, see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the "Global\" and "Local\" pre-
fixes are ignored. The remainder of the name can contain any character except the backslash character.

Windows NT 4.0 and earlier, Windows 95/98: The name can contain any character except the backslash char-
acter.

Return Values
If the function succeeds, the return value is a handle to the mutex object. If the named mutex object existed before the
function call, the function returns a handle to the existing object and GetLastError returns
ERROR_ALREADY_EXISTS. Otherwise, the caller created the mutex.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The handle returned by CreateMutex has MUTEX_ALL_ACCESS access to the new mutex object and can be used
in any function that requires a handle to a mutex object.

Any thread of the calling process can specify the mutex-object handle in a call to one of the wait functions. The sin-
gle-object wait functions return when the state of the specified object is signaled. The multiple-object wait functions
can be instructed to return either when any one or when all of the specified objects are signaled. When a wait function
returns, the waiting thread is released to continue its execution.

The state of a mutex object is signaled when it is not owned by any thread. The creating thread can use the bInitia-
lOwner flag to request immediate ownership of the mutex. Otherwise, a thread must use one of the wait functions to
request ownership. When the mutex's state is signaled, one waiting thread is granted ownership, the mutex's state
changes to nonsignaled, and the wait function returns. Only one thread can own a mutex at any given time. The own-
ing thread uses the ReleaseMutex function to release its ownership.

The thread that owns a mutex can specify the same mutex in repeated wait function calls without blocking its execu-
Page 52



Win32 API Reference
tion. Typically, you would not wait repeatedly for the same mutex, but this mechanism prevents a thread from dead-
locking itself while waiting for a mutex that it already owns. However, to release its ownership, the thread must call
ReleaseMutex once for each time that the mutex satisfied a wait.

Two or more processes can call CreateMutex to create the same named mutex. The first process actually creates the
mutex, and subsequent processes open a handle to the existing mutex. This enables multiple processes to get handles
of the same mutex, while relieving the user of the responsibility of ensuring that the creating process is started first.
When using this technique, you should set the bInitialOwner flag to FALSE; otherwise, it can be difficult to be cer-
tain which process has initial ownership.

Multiple processes can have handles of the same mutex object, enabling use of the object for interprocess synchroni-
zation. The following object-sharing mechanisms are available:

A child process created by the CreateProcess function can inherit a handle to a mutex object if the
lpMutexAttributes parameter of CreateMutex enabled inheritance.

A process can specify the mutex-object handle in a call to the DuplicateHandle function to create
a duplicate handle that can be used by another process.

A process can specify the name of a mutex object in a call to the OpenMutex or CreateMutex
function.

Use the CloseHandle function to close the handle. The system closes the handle automatically when the process ter-
minates. The mutex object is destroyed when its last handle has been closed.

Example
For an example that uses CreateMutex, see Using Mutex Objects.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Synchronization Overview, Synchronization Functions, CloseHandle, CreateProcess, DuplicateHandle, OpenMutex,
ReleaseMutex, SECURITY_ATTRIBUTES, Object Names

1.36 CreateNamedPipe

The CreateNamedPipe function creates an instance of a named pipe and returns a handle for subsequent pipe opera-
tions. A named pipe server process uses this function either to create the first instance of a specific named pipe and
establish its basic attributes or to create a new instance of an existing named pipe.

CreateNamedPipe: procedure
(

lpName: string;
dwOpenMode: dword;
dwPipeMode: dword;
nMaxInstances: dword;
nOutBufferSize: dword;
nInbufferSize: dword;
nDefaultTimeOut: dword;

var lpSecurityAttributes: SECURITY_ATTRIBUTES
);

stdcall;
returns( "eax" );
external( "__imp__CreateNamedPipeA@32" );
Page 53



Volume 1
Parameters

lpName
[in] Pointer to the null-terminated string that uniquely identifies the pipe. The string must have the following
form:

\\.\pipe\pipename

The pipename part of the name can include any character other than a backslash, including numbers and special
characters. The entire pipe name string can be up to 256 characters long. Pipe names are not case sensitive.

dwOpenMode
[in] Specifies the pipe access mode, the overlapped mode, the write-through mode, and the security access mode
of the pipe handle.

CreateNamedPipe fails if dwOpenMode specifies any flags other than those listed in the following tables.

This parameter must specify one of the following pipe access mode flags. The same mode must be specified for
each instance of the pipe.

This parameter can also include either or both of the following flags, which enable write-through mode and over-
lapped mode. These modes can be different for different instances of the same pipe.

Mode Description

PIPE_ACCESS_DUPLEX The pipe is bidirectional; both server and client processes can read
from and write to the pipe. This mode gives the server the equiva-
lent of GENERIC_READ | GENERIC_WRITE access to the pipe.
The client can specify GENERIC_READ or GENERIC_WRITE,
or both, when it connects to the pipe using the CreateFile func-
tion.

PIPE_ACCESS_INBOUND The flow of data in the pipe goes from client to server only. This
mode gives the server the equivalent of GENERIC_READ access
to the pipe. The client must specify GENERIC_WRITE access
when connecting to the pipe.

PIPE_ACCESS_OUTBOUND The flow of data in the pipe goes from server to client only. This
mode gives the server the equivalent of GENERIC_WRITE
access to the pipe. The client must specify GENERIC_READ
access when connecting to the pipe.

Mode Description

FILE_FLAG_WRITE_THROUGH Write-through mode is enabled. This mode affects only write oper-
ations on byte-type pipes and, then, only when the client and server
processes are on different computers. If this mode is enabled, func-
tions writing to a named pipe do not return until the data written is
transmitted across the network and is in the pipe's buffer on the
remote computer. If this mode is not enabled, the system enhances
the efficiency of network operations by buffering data until a mini-
mum number of bytes accumulate or until a maximum time
elapses.
Page 54



Win32 API Reference
This parameter can include any combination of the following security access mode flags. These modes can be
different for different instances of the same pipe. They can be specified without concern for what other dwOpen-
Mode modes have been specified.

dwPipeMode
[in] Specifies the type, read, and wait modes of the pipe handle.

One of the following type mode flags can be specified. The same type mode must be specified for each instance
of the pipe. If you specify zero, the parameter defaults to byte-type mode.

One of the following read mode flags can be specified. Different instances of the same pipe can specify different
read modes. If you specify zero, the parameter defaults to byte-read mode.

One of the following wait mode flags can be specified. Different instances of the same pipe can specify different

FILE_FLAG_OVERLAPPED Overlapped mode is enabled. If this mode is enabled, functions per-
forming read, write, and connect operations that may take a signifi-
cant time to be completed can return immediately. This mode
enables the thread that started the operation to perform other opera-
tions while the time-consuming operation executes in the back-
ground. For example, in overlapped mode, a thread can handle
simultaneous input and output (I/O) operations on multiple
instances of a pipe or perform simultaneous read and write opera-
tions on the same pipe handle. If overlapped mode is not enabled,
functions performing read, write, and connect operations on the
pipe handle do not return until the operation is finished. The Read-
FileEx and WriteFileEx functions can only be used with a pipe
handle in overlapped mode. The ReadFile, WriteFile, Con-

nectNamedPipe, and TransactNamedPipe functions can exe-
cute either synchronously or as overlapped operations.

Mode Description

WRITE_DAC The caller will have write access to the named pipe's discretionary
access control list (ACL).

WRITE_OWNER The caller will have write access to the named pipe's owner.

ACCESS_SYSTEM_SECURITY The caller will have write access to the named pipe's SACL. For
more information, see Access-Control Lists (ACLs) and SACL
Access Right.

Mode Description

PIPE_TYPE_BYTE Data is written to the pipe as a stream of bytes. This mode cannot be
used with PIPE_READMODE_MESSAGE.

PIPE_TYPE_MESSAGE Data is written to the pipe as a stream of messages. This mode can be
used with either PIPE_READMODE_MESSAGE or
PIPE_READMODE_BYTE.

Mode Description

PIPE_READMODE_BYTE Data is read from the pipe as a stream of bytes. This mode can be
used with either PIPE_TYPE_MESSAGE or PIPE_TYPE_BYTE.

PIPE_READMODE_MESSAGE Data is read from the pipe as a stream of messages. This mode can
be only used if PIPE_TYPE_MESSAGE is also specified.
Page 55



Volume 1
wait modes. If you specify zero, the parameter defaults to blocking mode.

nMaxInstances
[in] Specifies the maximum number of instances that can be created for this pipe. The same number must be
specified for all instances. Acceptable values are in the range 1 through PIPE_UNLIMITED_INSTANCES. If
this parameter is PIPE_UNLIMITED_INSTANCES, the number of pipe instances that can be created is limited
only by the availability of system resources.

nOutBufferSize
[in] Specifies the number of bytes to reserve for the output buffer. For a discussion on sizing named pipe buffers,
see the following Remarks section.

nInBufferSize
[in] Specifies the number of bytes to reserve for the input buffer. For a discussion on sizing named pipe buffers,
see the following Remarks section.

nDefaultTimeOut
[in] Specifies the default time-out value, in milliseconds, if the WaitNamedPipe function specifies
NMPWAIT_USE_DEFAULT_WAIT. Each instance of a named pipe must specify the same value.

lpSecurityAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the new named pipe
and determines whether child processes can inherit the returned handle. If lpSecurityAttributes is NULL, the
named pipe gets a default security descriptor and the handle cannot be inherited.

Return Values
If the function succeeds, the return value is a handle to the server end of a named pipe instance.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call Get-
LastError. The return value is ERROR_INVALID_PARAMETER if nMaxInstances is greater than
PIPE_UNLIMITED_INSTANCES.

Remarks
To create an instance of a named pipe by using CreateNamedPipe, the user must have
FILE_CREATE_PIPE_INSTANCE access to the named pipe object. If a new named pipe is being created, the access
control list (ACL) from the security attributes parameter defines the discretionary access control for the named pipe.

All instances of a named pipe must specify the same pipe type (byte-type or message-type), pipe access (duplex,
inbound, or outbound), instance count, and time-out value. If different values are used, this function fails and Get-
LastError returns ERROR_ACCESS_DENIED.

The client side of a named pipe starts out in byte mode, even if the server side is in message mode. To avoid problems

Mode Description

PIPE_WAIT Blocking mode is enabled. When the pipe handle is specified in the ReadFile,
WriteFile, or ConnectNamedPipe function, the operations are not completed
until there is data to read, all data is written, or a client is connected. Use of this mode
can mean waiting indefinitely in some situations for a client process to perform an
action.

PIPE_NOWAIT Nonblocking mode is enabled. In this mode, ReadFile, WriteFile, and Connect-
NamedPipe always return immediately.

Note that nonblocking mode is supported for compatibility with Microsoft LAN
Manager version 2.0 and should not be used to achieve asynchronous I/O with named
pipes. For more information on asynchronous pipe I/O, see Synchronous and Over-
lapped Input and Output.
Page 56



Win32 API Reference
receiving data, set the client side to message mode as well.

The input and output buffer sizes are advisory. The actual buffer size reserved for each end of the named pipe is either
the system default, the system minimum or maximum, or the specified size rounded up to the next allocation bound-
ary.

The pipe server should not perform a blocking read operation until the pipe client has started. Otherwise, a race con-
dition can occur. This typically occurs when initialization code, such as the C run-time, needs to lock and examine
inherited handles.

An instance of a named pipe is always deleted when the last handle to the instance of the named pipe is closed.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Pipes Overview, Pipe Functions, ConnectNamedPipe, CreateFile, ReadFile, ReadFileEx,
SECURITY_ATTRIBUTES, TransactNamedPipe, WaitNamedPipe, WriteFile, WriteFileEx

1.37 CreatePipe

The CreatePipe function creates an anonymous pipe, and returns handles to the read and write ends of the pipe.

CreatePipe: procedure

(

var hReadPipe: dword;

var hWritePipe: dword;

var lpPipeAttributes: SECURITY_ATTRIBUTES;

nSize: dword

);

stdcall;

returns( "eax" );

external( "__imp__CreatePipe@16" );

Parameters

hReadPipe
[out] Pointer to a variable that receives the read handle for the pipe.

hWritePipe
[out] Pointer to a variable that receives the write handle for the pipe.

lpPipeAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited
by child processes. If lpPipeAttributes is NULL, the handle cannot be inherited.

Windows NT/2000: The lpSecurityDescriptor member of the structure specifies a security descriptor for the
new pipe. If lpPipeAttributes is NULL, the pipe gets a default security descriptor.
Page 57



Volume 1
nSize
[in] Specifies the buffer size for the pipe, in bytes. The size is only a suggestion; the system uses the value to cal-
culate an appropriate buffering mechanism. If this parameter is zero, the system uses the default buffer size.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
CreatePipe creates the pipe, assigning the specified pipe size to the storage buffer. CreatePipe also creates handles
that the process uses to read from and write to the buffer in subsequent calls to the ReadFile and WriteFile functions.

To read from the pipe, a process uses the read handle in a call to the ReadFile function. ReadFile returns when one of
the following is true: a write operation completes on the write end of the pipe, the number of bytes requested has been
read, or an error occurs.

When a process uses WriteFile to write to an anonymous pipe, the write operation is not completed until all bytes are
written. If the pipe buffer is full before all bytes are written, WriteFile does not return until another process or thread
uses ReadFile to make more buffer space available.

Windows NT/2000: Anonymous pipes are implemented using a named pipe with a unique name. Therefore, you can
often pass a handle to an anonymous pipe to a function that requires a handle to a named pipe.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Pipes Overview, Pipe Functions, ReadFile, SECURITY_ATTRIBUTES, WriteFile

1.38 CreateProcess

The CreateProcess function creates a new process and its primary thread. The new process runs the specified execut-
able file.

To create a process that runs in a different security context, use the CreateProcessAsUser or CreateProcess-
WithLogonW function.

CreateProcess: procedure
(

lpApplicationName: string;
lpCommandLine: string;

var lpProcessAttributes: SECURITY_ATTRIBUTES;
var lpThreadAttributes: SECURITY_ATTRIBUTES;

InheritHandles: boolean;
dwCreationFlags: dword;

var lpEnvironment: var;
lpCurrentyDirectory: string;

var lpStartupInfo: STARTUPINFO;
var lpProcessInformation:dword

);
stdcall;
returns( "eax" );
external( "__imp__CreateProcessA@40" );
Page 58



Win32 API Reference
Parameters

lpApplicationName
[in] Pointer to a null-terminated string that specifies the module to execute.

The string can specify the full path and file name of the module to execute or it can specify a partial name. In the
case of a partial name, the function uses the current drive and current directory to complete the specification. The
function will not use the search path.

The lpApplicationName parameter can be NULL. In that case, the module name must be the first white
space-delimited token in the lpCommandLine string. If you are using a long file name that contains a space, use
quoted strings to indicate where the file name ends and the arguments begin; otherwise, the file name is ambigu-
ous. For example, consider the string "c:\program files\sub dir\program name". This string can be interpreted in a
number of ways. The system tries to interpret the possibilities in the following order:

c:\program.exe files\sub dir\program name
c:\program files\sub.exe dir\program name
c:\program files\sub dir\program.exe name
c:\program files\sub dir\program name.exe

The specified module can be a Win32-based application. It can be some other type of module (for example,
MS-DOS or OS/2) if the appropriate subsystem is available on the local computer.

Windows NT/2000: If the executable module is a 16-bit application, lpApplicationName should be NULL, and
the string pointed to by lpCommandLine should specify the executable module as well as its arguments. A 16-bit
application is one that executes as a VDM or WOW process.

lpCommandLine
[in] Pointer to a null-terminated string that specifies the command line to execute. The system adds a null charac-
ter to the command line, trimming the string if necessary, to indicate which file was actually used.

Windows NT/2000: The Unicode version of this function, CreateProcessW, will fail if this parameter is a const
string.

The lpCommandLine parameter can be NULL. In that case, the function uses the string pointed to by lpApplica-
tionName as the command line.

If both lpApplicationName and lpCommandLine are non-NULL, *lpApplicationName specifies the module to
execute, and *lpCommandLine specifies the command line. The new process can use GetCommandLine to
retrieve the entire command line. C runtime processes can use the argc and argv arguments. Note that it is a
common practice to repeat the module name as the first token in the command line.

If lpApplicationName is NULL, the first white-space – delimited token of the command line specifies the module
name. If you are using a long file name that contains a space, use quoted strings to indicate where the file name
ends and the arguments begin (see the explanation for the lpApplicationName parameter). If the file name does
not contain an extension, .exe is appended. If the file name ends in a period (.) with no extension, or if the file
name contains a path, .exe is not appended. If the file name does not contain a directory path, the system searches
for the executable file in the following sequence:

The directory from which the application loaded.

The current directory for the parent process.

Windows 95/98: The Windows system directory. Use the GetSystemDirectory function to get the path of this
directory.

Windows NT/2000: The 32-bit Windows system directory. Use the GetSystemDirectory function to get the
path of this directory. The name of this directory is System32.

Windows NT/2000: The 16-bit Windows system directory. There is no Win32 function that obtains the path of
this directory, but it is searched. The name of this directory is System.

The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

The directories that are listed in the PATH environment variable.
Page 59



Volume 1
lpProcessAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited
by child processes. If lpProcessAttributes is NULL, the handle cannot be inherited.

Windows NT/2000: The lpSecurityDescriptor member of the structure specifies a security descriptor for the
new process. If lpProcessAttributes is NULL, the process gets a default security descriptor.

lpThreadAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited
by child processes. If lpThreadAttributes is NULL, the handle cannot be inherited.

Windows NT/2000: The lpSecurityDescriptor member of the structure specifies a security descriptor for the
main thread. If lpThreadAttributes is NULL, the thread gets a default security descriptor.

bInheritHandles
[in] Indicates whether the new process inherits handles from the calling process. If TRUE, each inheritable open
handle in the calling process is inherited by the new process. Inherited handles have the same value and access
privileges as the original handles.

dwCreationFlags
[in] Specifies additional flags that control the priority class and the creation of the process. The following cre-
ation flags can be specified in any combination, except as noted.

Value Meaning

CREATE_BREAKAWAY_FROM_JOB Windows 2000: The child processes of a process associated with a
job are not associated with the job.

If the calling process is not associated with a job, this flag has no
effect. If the calling process is associated with a job, the job must
set the JOB_OBJECT_LIMIT_BREAKAWAY_OK limit or Cre-
ateProcess will fail.

CREATE_DEFAULT_ERROR_MODE The new process does not inherit the error mode of the calling pro-
cess. Instead, CreateProcess gives the new process the current
default error mode. An application sets the current default error
mode by calling SetErrorMode.

This flag is particularly useful for multi-threaded shell applications
that run with hard errors disabled.

The default behavior for CreateProcess is for the new process to
inherit the error mode of the caller. Setting this flag changes that
default behavior.

CREATE_FORCEDOS Windows NT/2000: This flag is valid only when starting a 16-bit
bound application. If set, the system will force the application to
run as an MS-DOS-based application rather than as an OS/2-based
application.

CREATE_NEW_CONSOLE The new process has a new console, instead of inheriting the par-
ent's console. This flag cannot be used with the
DETACHED_PROCESS flag.
Page 60



Win32 API Reference
CREATE_NEW_PROCESS_GROUP The new process is the root process of a new process group. The
process group includes all processes that are descendants of this
root process. The process identifier of the new process group is the
same as the process identifier, which is returned in the lpProcessIn-
formation parameter. Process groups are used by the Generate-
ConsoleCtrlEvent function to enable sending a CTRL+C or
CTRL+BREAK signal to a group of console processes.

CREATE_NO_WINDOW Windows NT/2000: This flag is valid only when starting a console
application. If set, the console application is run without a console
window.

CREATE_SEPARATE_WOW_VDM Windows NT/2000: This flag is valid only when starting a 16-bit
Windows-based application. If set, the new process runs in a pri-
vate Virtual DOS Machine (VDM). By default, all 16-bit Win-
dows-based applications run as threads in a single, shared VDM.
The advantage of running separately is that a crash only terminates
the single VDM; any other programs running in distinct VDMs
continue to function normally. Also, 16-bit Windows-based appli-
cations that are run in separate VDMs have separate input queues.
That means that if one application stops responding momentarily,
applications in separate VDMs continue to receive input. The dis-
advantage of running separately is that it takes significantly more
memory to do so. You should use this flag only if the user requests
that 16-bit applications should run in them own VDM.

CREATE_SHARED_WOW_VDM Windows NT/2000: The flag is valid only when starting a 16-bit
Windows-based application. If the DefaultSeparateVDM switch in
the Windows section of WIN.INI is TRUE, this flag causes the
CreateProcess function to override the switch and run the new
process in the shared Virtual DOS Machine.

CREATE_SUSPENDED The primary thread of the new process is created in a suspended
state, and does not run until the ResumeThread function is called.

CREATE_UNICODE_ENVIRONMENT Indicates the format of the lpEnvironment parameter. If this flag is
set, the environment block pointed to by lpEnvironment uses Uni-
code characters. Otherwise, the environment block uses ANSI
characters.

DEBUG_PROCESS If this flag is set, the calling process is treated as a debugger, and
the new process is debugged. The system notifies the debugger of
all debug events that occur in the process being debugged.

If you create a process with this flag set, only the calling thread (the
thread that called CreateProcess) can call the WaitForDebugEv-
ent function.

Windows 95/98: This flag is not valid if the new process is a 16-bit
application.

DEBUG_ONLY_THIS_PROCESS If this flag is not set and the calling process is being debugged, the
new process becomes another process being debugged by the call-
ing process's debugger. If the calling process is not a process being
debugged, no debugging-related actions occur.
Page 61



Volume 1
The dwCreationFlags parameter also controls the new process's priority class, which is used to determine the
scheduling priorities of the process's threads. If none of the following priority class flags is specified, the priority
class defaults to NORMAL_PRIORITY_CLASS unless the priority class of the creating process is
IDLE_PRIORITY_CLASS or BELOW_NORMAL_PRIORITY_CLASS. In this case, the child process receives
the default priority class of the calling process. You can specify one of the following values.

lpEnvironment
[in] Pointer to an environment block for the new process. If this parameter is NULL, the new process uses the
environment of the calling process.

An environment block consists of a null-terminated block of null-terminated strings. Each string is in the form:

name=value

Because the equal sign is used as a separator, it must not be used in the name of an environment variable.

If an application provides an environment block, rather than passing NULL for this parameter, the current direc-
tory information of the system drives is not automatically propagated to the new process. For a discussion of this
situation and how to handle it, see the following Remarks section.

An environment block can contain either Unicode or ANSI characters. If the environment block pointed to by
lpEnvironment contains Unicode characters, set the dwCreationFlags field's
CREATE_UNICODE_ENVIRONMENT flag. Otherwise, do not set this flag.

DETACHED_PROCESS For console processes, the new process does not have access to the
console of the parent process. The new process can call the Alloc-
Console function at a later time to create a new console. This flag
cannot be used with the CREATE_NEW_CONSOLE flag.

Priority Meaning

ABOVE_NORMAL_PRIORITY_CLASS Windows 2000: Indicates a process that has priority higher than
NORMAL_PRIORITY_CLASS but lower than
HIGH_PRIORITY_CLASS.

BELOW_NORMAL_PRIORITY_CLAS
S

Windows 2000: Indicates a process that has priority higher than
IDLE_PRIORITY_CLASS but lower than
NORMAL_PRIORITY_CLASS.

HIGH_PRIORITY_CLASS Indicates a process that performs time-critical tasks. The threads of a
high-priority class process preempt the threads of normal-priority or
idle-priority class processes. An example is the Task List, which
must respond quickly when called by the user, regardless of the load
on the system. Use extreme care when using the high-priority class,
because a CPU-bound application with a high-priority class can use
nearly all available cycles.

IDLE_PRIORITY_CLASS Indicates a process whose threads run only when the system is idle
and are preempted by the threads of any process running in a higher
priority class. An example is a screen saver. The idle priority class is
inherited by child processes.

NORMAL_PRIORITY_CLASS Indicates a normal process with no special scheduling needs.

REALTIME_PRIORITY_CLASS Indicates a process that has the highest possible priority. The threads
of a real-time priority class process preempt the threads of all other
processes, including operating system processes performing impor-
tant tasks. For example, a real-time process that executes for more
than a very brief interval can cause disk caches not to flush or cause
the mouse to be unresponsive.
Page 62



Win32 API Reference
Note that an ANSI environment block is terminated by two zero bytes: one for the last string, one more to termi-
nate the block. A Unicode environment block is terminated by four zero bytes: two for the last string, two more
to terminate the block.

lpCurrentDirectory
[in] Pointer to a null-terminated string that specifies the current drive and directory for the child process. The
string must be a full path and file name that includes a drive letter. If this parameter is NULL, the new process
will have the same current drive and directory as the calling process. This option is provided primarily for shells
that need to start an application and specify its initial drive and working directory.

lpStartupInfo
[in] Pointer to a STARTUPINFO structure that specifies how the main window for the new process should appear.

lpProcessInformation
[out] Pointer to a PROCESS_INFORMATION structure that receives identification information about the new pro-
cess.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The CreateProcess function is used to run a new program. The WinExec and LoadModule functions are still avail-
able, but they are implemented as calls to CreateProcess.

In addition to creating a process, CreateProcess also creates a thread object. The thread is created with an initial
stack whose size is described in the image header of the specified program's executable file. The thread begins execu-
tion at the image's entry point.

When created, the new process and the new thread handles receive full access rights. For either handle, if a security
descriptor is not provided, the handle can be used in any function that requires an object handle to that type. When a
security descriptor is provided, an access check is performed on all subsequent uses of the handle before access is
granted. If access is denied, the requesting process cannot use the handle to gain access to the thread.

The process is assigned a process identifier. The identifier is valid until the process terminates. It can be used to iden-
tify the process, or specified in the OpenProcess function to open a handle to the process. The initial thread in the
process is also assigned a thread identifier. The identifier is valid until the thread terminates and can be used to
uniquely identify the thread within the system. These identifiers are returned in the PROCESS_INFORMATION struc-
ture.

When specifying an application name in the lpApplicationName or lpCommandLine strings, it doesn't matter whether
the application name includes the file name extension, with one exception: an MS-DOS – based or Windows-based
application whose file name extension is .com must include the .com extension.

The calling thread can use the WaitForInputIdle function to wait until the new process has finished its initializa-
tion and is waiting for user input with no input pending. This can be useful for synchronization between parent and
child processes, because CreateProcess returns without waiting for the new process to finish its initialization. For
example, the creating process would use WaitForInputIdle before trying to find a window associated with the new
process.

The preferred way to shut down a process is by using the ExitProcess function, because this function sends notifi-
cation of approaching termination to all DLLs attached to the process. Other means of shutting down a process do not
notify the attached DLLs. Note that when a thread calls ExitProcess, other threads of the process are terminated with-
out an opportunity to execute any additional code (including the thread termination code of attached DLLs).

ExitProcess, ExitThread, CreateThread, CreateRemoteThread, and a process that is starting (as the
result of a call by CreateProcess) are serialized between each other within a process. Only one of these events at a
time can happen in an address space, and the following restrictions apply.

During process startup and DLL initialization routines, new threads can be created, but they do not
Page 63



Volume 1
begin execution until DLL initialization is finished for the process.

Only one thread at a time can be in a DLL initialization or detach routine.

The ExitProcess function does not return until there are no threads are in their DLL initialization or
detach routines.

The created process remains in the system until all threads within the process have terminated and all handles to the
process and any of its threads have been closed through calls to CloseHandle. The handles for both the process and
the main thread must be closed through calls to CloseHandle. If these handles are not needed, it is best to close them
immediately after the process is created.

When the last thread in a process terminates, the following events occur:

All objects opened by the process are implicitly closed.

The process's termination status (which is returned by GetExitCodeProcess) changes from its
initial value of STILL_ACTIVE to the termination status of the last thread to terminate.

The thread object of the main thread is set to the signaled state, satisfying any threads that were
waiting on the object.

The process object is set to the signaled state, satisfying any threads that were waiting on the object.

If the current directory on drive C is \MSVC\MFC, there is an environment variable called =C: whose value is
C:\MSVC\MFC. As noted in the previous description of lpEnvironment, such current directory information for a sys-
tem's drives does not automatically propagate to a new process when the CreateProcess function's lpEnvironment
parameter is non-NULL. An application must manually pass the current directory information to the new process. To
do so, the application must explicitly create the =X environment variable strings, get them into alphabetical order
(because the system uses a sorted environment), and then put them into the environment block specified by lpEnvi-
ronment. Typically, they will go at the front of the environment block, due to the previously mentioned environment
block sorting.

One way to obtain the current directory variable for a drive X is to call GetFullPathName("X:",. .). That avoids an
application having to scan the environment block. If the full path returned is X:\, there is no need to pass that value on
as environment data, since the root directory is the default current directory for drive X of a new process.

The handle returned by the CreateProcess function has PROCESS_ALL_ACCESS access to the process object.

The current directory specified by the lpcurrentDirectory parameter is the current directory for the child process. The
current directory specified in item 2 under the lpCommandLine parameter is the current directory for the parent pro-
cess.

Note The name of the executable in the command line that the operating system provides to a process is not necessar-
ily identical to that in the command line that the calling process gives to the CreateProcess function. The operating
system may prepend a fully qualified path to an executable name that is provided without a fully qualified path.

Windows NT/2000: When a process is created with CREATE_NEW_PROCESS_GROUP specified, an implicit call
to SetConsoleCtrlHandler(NULL,TRUE) is made on behalf of the new process; this means that the new process has
CTRL+C disabled. This lets good shells handle CTRL+C themselves, and selectively pass that signal on to sub-pro-
cesses. CTRL+BREAK is not disabled, and may be used to interrupt the process/process group.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also

Processes and Threads Overview, Process and Thread Functions, AllocConsole, CloseHandle, CreateProcessAsUser,
CreateProcessWithLogonW, CreateRemoteThread, CreateThread, ExitProcess, ExitThread, GenerateConsoleCtrlEv-
ent, GetCommandLine, GetEnvironmentStrings, GetExitCodeProcess, GetFullPathName, GetStartupInfo, GetSys-
temDirectory, GetWindowsDirectory, LoadModule, OpenProcess, PROCESS_INFORMATION, ResumeThread,
SECURITY_ATTRIBUTES, SetConsoleCtrlHandler, SetErrorMode, STARTUPINFO, TerminateProcess, Wait-
Page 64



Win32 API Reference
ForInputIdle, WaitForDebugEvent, WinExec

1.39 CreateRemoteThread

The CreateRemoteThread function creates a thread that runs in the virtual address space of another process.

CreateRemoteThread: procedure
(

hProcess: dword;
var lpThreadAttributes: SECURITY_ATTRIBUTES;

dwStackSize: dword;
lpStartAddress: LPTHREAD_START_ROUTINE;
lpParameter: dword;
dwCreationFlags: dword;

var lpThreadId: dword
);

stdcall;
returns( "eax" );
external( "__imp__CreateRemoteThread@28" );

Parameters

hProcess
[in] Handle to the process in which the thread is to be created. The handle must have the
PROCESS_CREATE_THREAD, PROCESS_QUERY_INFORMATION, PROCESS_VM_OPERATION,
PROCESS_VM_WRITE, and PROCESS_VM_READ access rights. For more information, see Process Security
and Access Rights.

lpThreadAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the new thread and
determines whether child processes can inherit the returned handle. If lpThreadAttributes is NULL, the thread
gets a default security descriptor and the handle cannot be inherited.

dwStackSize
[in] Specifies the initial commit size of the stack, in bytes. The system rounds this value to the nearest page. If
this value is zero, or is smaller than the default commit size, the default is to use the same size as the calling
thread. For more information, see Thread Stack Size.

lpStartAddress
[in] Pointer to the application-defined function of type LPTHREAD_START_ROUTINE to be executed by the
thread and represents the starting address of the thread in the remote process. The function must exist in the
remote process. For more information on the thread function, see ThreadProc.

lpParameter
[in] Specifies a single value passed to the thread function.

dwCreationFlags
[in] Specifies additional flags that control the creation of the thread. If the CREATE_SUSPENDED flag is spec-
ified, the thread is created in a suspended state and will not run until the ResumeThread function is called. If this
value is zero, the thread runs immediately after creation.

lpThreadId
[out] Pointer to a variable that receives the thread identifier.
Page 65



Volume 1
If this parameter is NULL, the thread identifier is not returned.

Return Values
If the function succeeds, the return value is a handle to the new thread.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Note that CreateRemoteThread may succeed even if lpStartAddress points to data, code, or is not accessible. If the
start address is invalid when the thread runs, an exception occurs, and the thread terminates. Thread termination due
to a invalid start address is handled as an error exit for the thread's process. This behavior is similar to the asynchro-
nous nature of CreateProcess, where the process is created even if it refers to invalid or missing dynamic-link librar-
ies (DLLs).

Remarks
The CreateRemoteThread function causes a new thread of execution to begin in the address space of the specified
process. The thread has access to all objects opened by the process.

The new thread handle is created with full access to the new thread. If a security descriptor is not provided, the handle
may be used in any function that requires a thread object handle. When a security descriptor is provided, an access
check is performed on all subsequent uses of the handle before access is granted. If the access check denies access,
the requesting process cannot use the handle to gain access to the thread.

The thread is created with a thread priority of THREAD_PRIORITY_NORMAL. Use the GetThreadPriority and
SetThreadPriority functions to get and set the priority value of a thread.

When a thread terminates, the thread object attains a signaled state, satisfying any threads that were waiting for the
object.

The thread object remains in the system until the thread has terminated and all handles to it have been closed through
a call to CloseHandle.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a process that is starting (as
the result of a CreateProcess call) are serialized between each other within a process. Only one of these events can
happen in an address space at a time. This means the following restrictions hold:

During process startup and DLL initialization routines, new threads can be created, but they do not
begin execution until DLL initialization is done for the process.

Only one thread in a process can be in a DLL initialization or detach routine at a time.

ExitProcess does not return until no threads are in their DLL initialization or detach routines.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CloseHandle, CreateProcess, CreateThread, Exit-
Process, ExitThread, GetThreadPriority, ResumeThread, SECURITY_ATTRIBUTES, SetThreadPriority, Thread-
Proc

1.40 CreateSemaphore

The CreateSemaphore function creates or opens a named or unnamed semaphore object.

CreateSemaphore: procedure
(

var lpSemaphoreAttributes: SECURITY_ATTRIBUTES;
lInitialCount: int32;
lMaximumCount: int32;
Page 66



Win32 API Reference
lpName: lpName
);

stdcall;
returns( "eax" );
external( "__imp__CreateSemaphoreA@16" );

Parameters

lpSemaphoreAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited
by child processes. If lpSemaphoreAttributes is NULL, the handle cannot be inherited.

Windows NT/2000: The lpSecurityDescriptor member of the structure specifies a security descriptor for the
new semaphore. If lpSemaphoreAttributes is NULL, the semaphore gets a default security descriptor.

lInitialCount
[in] Specifies an initial count for the semaphore object. This value must be greater than or equal to zero and less
than or equal to lMaximumCount. The state of a semaphore is signaled when its count is greater than zero and
nonsignaled when it is zero. The count is decreased by one whenever a wait function releases a thread that was
waiting for the semaphore. The count is increased by a specified amount by calling the ReleaseSemaphore
function.

lMaximumCount
[in] Specifies the maximum count for the semaphore object. This value must be greater than zero.

lpName
[in] Pointer to a null-terminated string specifying the name of the semaphore object. The name is limited to
MAX_PATH characters. Name comparison is case sensitive.

If lpName matches the name of an existing named semaphore object, this function requests
SEMAPHORE_ALL_ACCESS access to the existing object. In this case, the lInitialCount and lMaximumCount
parameters are ignored because they have already been set by the creating process. If the lpSemaphoreAttributes
parameter is not NULL, it determines whether the handle can be inherited, but its security-descriptor member is
ignored.

If lpName is NULL, the semaphore object is created without a name.

If lpName matches the name of an existing event, mutex, waitable timer, job, or file-mapping object, the function
fails and the GetLastError function returns ERROR_INVALID_HANDLE. This occurs because these objects
share the same name space.

Terminal Services: The name can have a "Global\" or "Local\" prefix to explicitly create the object in the global
or session name space. The remainder of the name can contain any character except the backslash character (\).
For more information, see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the "Global\" and "Local\" pre-
fixes are ignored. The remainder of the name can contain any character except the backslash character.

Windows NT 4.0 and earlier, Windows 95/98: The name can contain any character except the backslash char-
acter.

Return Values
If the function succeeds, the return value is a handle to the semaphore object. If the named semaphore object existed
before the function call, the function returns a handle to the existing object and GetLastError returns
ERROR_ALREADY_EXISTS.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The handle returned by CreateSemaphore has SEMAPHORE_ALL_ACCESS access to the new semaphore object
Page 67



Volume 1
and can be used in any function that requires a handle to a semaphore object.

Any thread of the calling process can specify the semaphore-object handle in a call to one of the wait functions. The
single-object wait functions return when the state of the specified object is signaled. The multiple-object wait func-
tions can be instructed to return either when any one or when all of the specified objects are signaled. When a wait
function returns, the waiting thread is released to continue its execution.

The state of a semaphore object is signaled when its count is greater than zero, and nonsignaled when its count is
equal to zero. The lInitialCount parameter specifies the initial count. Each time a waiting thread is released because
of the semaphore's signaled state, the count of the semaphore is decreased by one. Use the ReleaseSemaphore
function to increment a semaphore's count by a specified amount. The count can never be less than zero or greater
than the value specified in the lMaximumCount parameter.

Multiple processes can have handles of the same semaphore object, enabling use of the object for interprocess syn-
chronization. The following object-sharing mechanisms are available:

A child process created by the CreateProcess function can inherit a handle to a semaphore
object if the lpSemaphoreAttributes parameter of CreateSemaphore enabled inheritance.

A process can specify the semaphore-object handle in a call to the DuplicateHandle function to
create a duplicate handle that can be used by another process.

A process can specify the name of a semaphore object in a call to the OpenSemaphore or Create-
Semaphore function.

Use the CloseHandle function to close the handle. The system closes the handle automatically when the process ter-
minates. The semaphore object is destroyed when its last handle has been closed.

Example
For an example that uses CreateSemaphore, see Using Semaphore Objects.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.lib.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Synchronization Overview, Synchronization Functions, CloseHandle, CreateProcess, DuplicateHandle, OpenSema-
phore, ReleaseSemaphore, SECURITY_ATTRIBUTES, Object Names

1.41 CreateTapePartition

The CreateTapePartition function reformats a tape.

CreateTapePartition: procedure
(

hDevice: dword;
dwParitionMethod: dword;
dwCount: dword;
dwSize: dword

);
stdcall;
returns( "eax" );
external( "__imp__CreateTapePartition@16" );
Page 68



Win32 API Reference
Parameters

hDevice
[in] Handle to the device where the new partition is to be created. This handle is created by using the Create-
File function.

dwPartitionMethod
[in] Specifies the type of partition to create. To determine what type of partitions your device supports, see the
documentation for your hardware. This parameter can have one of the following values.

dwCount
[in] Specifies the number of partitions to create. The GetTapeParameters function provides the maximum
number of partitions a tape can support.

dwSize
[in] Specifies the size, in megabytes, of each partition. This value is ignored if the dwPartitionMethod parameter
is TAPE_SELECT_PARTITIONS.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, it may return one of the following error codes:

Value Description

TAPE_FIXED_PARTITIONS Partitions the tape based on the device's default defini-
tion of partitions. The dwCount and dwSize parameters
are ignored.

TAPE_INITIATOR_PARTITIONS Partitions the tape into the number and size of partitions
specified by dwCount and dwSize, respectively, except
for the last partition. The size of the last partition is the
remainder of the tape.

TAPE_SELECT_PARTITIONS Partitions the tape into the number of partitions specified
by dwCount. The dwSize parameter is ignored. The size
of the partitions is determined by the device's default
partition size. For more specific information, refer to the
documentation for your tape device.

Error Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data before the beginning-of-medium marker
failed.

ERROR_BUS_RESET A reset condition was detected on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during an operation.

ERROR_SETMARK_DETECTED A setmark was reached during an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on a new tape in a multivolume partition.
Page 69



Volume 1
Remarks
Creating partitions reformats the tape. All previous information recorded on the tape is destroyed.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Tape Backup Overview, Tape Backup Functions, CreateFile, GetTapeParameters

1.42 CreateThread

The CreateThread function creates a thread to execute within the virtual address space of the calling process.

To create a thread that runs in the virtual address space of another process, use the CreateRemoteThread function.

CreateThread: procedure
(

var lpThreadAttributes: SECURITY_ATTRIBUTES;
dwStackSize: dword;
lpStartAddress: LPTHREAD_START_ROUTINE;
lpParameter: dword;
dwCreationFlags: dword;

var lpThreadID: dword
);

stdcall;
returns( "eax" );
external( "__imp__CreateThread@24" );

Parameters

lpThreadAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited
by child processes. If lpThreadAttributes is NULL, the handle cannot be inherited.

Windows NT/2000: The lpSecurityDescriptor member of the structure specifies a security descriptor for the
new thread. If lpThreadAttributes is NULL, the thread gets a default security descriptor.

dwStackSize

ERROR_DEVICE_NOT_PARTITIONE
D

The partition information could not be found when a tape was being
loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive has been replaced or removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.

ERROR_NOT_SUPPORTED The tape driver does not support a requested function.

ERROR_UNABLE_TO_LOCK_MEDI
A

An attempt to lock the ejection mechanism failed.

ERROR_UNABLE_TO_UNLOAD_ME
DIA

An attempt to unload the tape failed.

ERROR_WRITE_PROTECT The media is write protected.
Page 70



Win32 API Reference
[in] Specifies the initial commit size of the stack, in bytes. The system rounds this value to the nearest page. If
this value is zero, or is smaller than the default commit size, the default is to use the same size as the calling
thread. For more information, see Thread Stack Size.

lpStartAddress
[in] Pointer to the application-defined function of type LPTHREAD_START_ROUTINE to be executed by the
thread and represents the starting address of the thread. For more information on the thread function, see
ThreadProc.

lpParameter
[in] Specifies a single parameter value passed to the thread.

dwCreationFlags
[in] Specifies additional flags that control the creation of the thread. If the CREATE_SUSPENDED flag is spec-
ified, the thread is created in a suspended state, and will not run until the ResumeThread function is called. If
this value is zero, the thread runs immediately after creation. At this time, no other values are supported.

lpThreadId
[out] Pointer to a variable that receives the thread identifier.

Windows NT/2000: If this parameter is NULL, the thread identifier is not returned.

Windows 95/98: This parameter may not be NULL.

Return Values
If the function succeeds, the return value is a handle to the new thread.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Note that CreateThread may succeed even if lpStartAddress points to data, code, or is not accessible. If the start
address is invalid when the thread runs, an exception occurs, and the thread terminates. Thread termination due to a
invalid start address is handled as an error exit for the thread's process. This behavior is similar to the asynchronous
nature of CreateProcess, where the process is created even if it refers to invalid or missing dynamic-link libraries
(DLLs).

Windows 95/98: CreateThread succeeds only when it is called in the context of a 32-bit program. A 32-bit DLL
cannot create an additional thread when that DLL is being called by a 16-bit program.

Remarks
The number of threads a process can create is limited by the available virtual memory. By default, every thread has
one megabyte of stack space. Therefore, you can create at most 2028 threads. If you reduce the default stack size, you
can create more threads. However, your application will have better performance if you create one thread per proces-
sor and build queues of requests for which the application maintains the context information. A thread would process
all requests in a queue before processing requests in the next queue.

The new thread handle is created with THREAD_ALL_ACCESS to the new thread. If a security descriptor is not
provided, the handle can be used in any function that requires a thread object handle. When a security descriptor is
provided, an access check is performed on all subsequent uses of the handle before access is granted. If the access
check denies access, the requesting process cannot use the handle to gain access to the thread. If the thread imperson-
ates a client, then calls CreateThread with a NULL security descriptor, the thread object created has a default secu-
rity descriptor which allows access only to the impersonation token's TokenDefaultDacl owner or members. For more
information, see Thread Security and Access Rights.

The thread execution begins at the function specified by the lpStartAddress parameter. If this function returns, the
DWORD return value is used to terminate the thread in an implicit call to the ExitThread function. Use the GetEx-
itCodeThread function to get the thread's return value.

The thread is created with a thread priority of THREAD_PRIORITY_NORMAL. Use the GetThreadPriority and
SetThreadPriority functions to get and set the priority value of a thread.

When a thread terminates, the thread object attains a signaled state, satisfying any threads that were waiting on the
Page 71



Volume 1
object.

The thread object remains in the system until the thread has terminated and all handles to it have been closed through
a call to CloseHandle.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a process that is start-
ing (as the result of a call by CreateProcess) are serialized between each other within a process. Only one of these
events can happen in an address space at a time. This means that the following restrictions hold:

During process startup and DLL initialization routines, new threads can be created, but they do not
begin execution until DLL initialization is done for the process.

Only one thread in a process can be in a DLL initialization or detach routine at a time.

ExitProcess does not return until no threads are in their DLL initialization or detach routines.

A thread that uses functions from the C run-time libraries should use the beginthread and endthread C run-time
functions for thread management rather than CreateThread and ExitThread. Failure to do so results in small mem-
ory leaks when ExitThread is called.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CloseHandle, CreateProcess, CreateRemoteThread,
ExitProcess, ExitThread, GetExitCodeThread, GetThreadPriority, ResumeThread, SetThreadPriority,
SECURITY_ATTRIBUTES, ThreadProc

1.43 CreateToolhelp32Snapshot

Takes a snapshot of the processes and the heaps, modules, and threads used by the processes.

CreateToolhelp32Snapshot: procedure
(

dwFlags: dword;
th32ProcessID: dword

);
stdcall;
returns( "eax" );
external( "__imp__CreateToolhelp32Snapshot@8" );

Parameters

dwFlags
[in] Specifies portions of the system to include in the snapshot. This parameter can be one of the following val-
ues.

Value Meaning

TH32CS_INHERIT Indicates that the snapshot handle is to be inheritable.

TH32CS_SNAPALL Equivalent to specifying TH32CS_SNAPHEAPLIST,
TH32CS_SNAPMODULE, TH32CS_SNAPPROCESS, and
TH32CS_SNAPTHREAD.
Page 72



Win32 API Reference
th32ProcessID
[in] Specifies the process identifier. This parameter can be zero to indicate the current process. This parameter is
used when the TH32CS_SNAPHEAPLIST or TH32CS_SNAPMODULE value is specified. Otherwise, it is
ignored.

Return Values
Returns an open handle to the specified snapshot if successful or – 1 otherwise.

Remarks
The snapshot taken by this function is examined by the other tool help functions to provide their results. Access to the
snapshot is read only. The snapshot handle acts like an object handle and is subject to the same rules regarding which
processes and threads it is valid in.

To retrieve an extended error status code generated by this function, use the GetLastError function.

To destroy the snapshot, use the CloseHandle function.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Tlhelp32.h.
Library: Use Kernel32.lib.

See Also
Tool Help Library Overview, Tool Help Functions

1.44 CreateWaitableTimer

The CreateWaitableTimer function creates or opens a waitable timer object.

CreateWaitableTimer: procedure
(

var lpTimerAttributes: SECURITY_ATTRIBUTES;
bManualReset: boolean;
lpTimerName: string

);
stdcall;
returns( "eax" );
external( "__imp__CreateWaitableTimerA@12" );

Parameters

lpTimerAttributes
[in] Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the new timer object
and determines whether child processes can inherit the returned handle. If lpTimerAttributes is NULL, the timer
object gets a default security descriptor and the handle cannot be inherited.

bManualReset

TH32CS_SNAPHEAPLIST Includes the heap list of the specified process in the snapshot.

TH32CS_SNAPMODULE Includes the module list of the specified process in the snapshot.

TH32CS_SNAPPROCESS Includes the process list in the snapshot.

TH32CS_SNAPTHREAD Includes the thread list in the snapshot.
Page 73



Volume 1
[in] Specifies the timer type. If bManualReset is TRUE, the timer is a manual-reset notification timer. Otherwise,
the timer is a synchronization timer.

lpTimerName
[in] Pointer to a null-terminated string specifying the name of the timer object. The name is limited to
MAX_PATH characters. Name comparison is case sensitive.

If the string specified in the lpTimerName parameter matches the name of an existing named timer object, the call
returns successfully and the GetLastError function returns ERROR_ALREADY_EXISTS.

If lpTimerName is NULL, the timer object is created without a name.

If lpTimerName matches the name of an existing event, semaphore, mutex, job, or file-mapping object, the func-
tion fails and GetLastError returns ERROR_INVALID_HANDLE. This occurs because these objects share
the same name space.

Terminal Services: The name can have a "Global\" or "Local\" prefix to explicitly create the object in the global
or session name space. The remainder of the name can contain any character except the backslash character (\).
For more information, see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the "Global\" and "Local\" pre-
fixes are ignored. The remainder of the name can contain any character except the backslash character.

Windows NT 4.0 and earlier, Windows 95/98: The name can contain any character except the backslash char-
acter.

Return Values
If the function succeeds, the return value is a handle to the timer object. If the named timer object exists before the
function call, the function returns a handle to the existing object and GetLastError returns
ERROR_ALREADY_EXISTS.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The handle returned by CreateWaitableTimer is created with the TIMER_ALL_ACCESS access right. This handle
can be used in any function that requires a handle to a timer object.

Any thread of the calling process can specify the timer object handle in a call to one of the wait functions.

Multiple processes can have handles to the same timer object, enabling use of the object for interprocess synchroniza-
tion.

A process created by the CreateProcess function can inherit a handle to a timer object if the lpTi-
merAttributes parameter of CreateWaitableTimer enables inheritance.

A process can specify the timer object handle in a call to the DuplicateHandle function. The
resulting handle can be used by another process.

A process can specify the name of a timer object in a call to the OpenWaitableTimer or Cre-
ateWaitableTimer function.

Use the CloseHandle function to close the handle. The system closes the handle automatically when the process ter-
minates. The timer object is destroyed when its last handle has been closed.

Example
For an example that uses CreateWaitableTimer, see Using Waitable Timer Objects.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.
Page 74



Win32 API Reference
See Also
Synchronization Overview, Synchronization Functions, CancelWaitableTimer, CloseHandle, CreateProcess, Dupli-
cateHandle, FILETIME, OpenWaitableTimer, SECURITY_ATTRIBUTES, SetWaitableTimer, Object Names

1.45 DebugActiveProcess

The DebugActiveProcess function enables a debugger to attach to an active process and debug it. To stop debugging
the process, you must exit the process. Exiting the debugger will also exit the process.

DebugActiveProcess: procedure
(

dwProcessID: dword
);

stdcall;
returns( "eax" );
external( "__imp__DebugActiveProcess@4" );

Parameters

dwProcessId
[in] Specifies the identifier for the process to be debugged. The debugger gets debugging access to the process as
if it created the process with the DEBUG_ONLY_THIS_PROCESS flag. See the Remarks section for more
details.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The debugger must have appropriate access to the target process; it must be able to open the process for
PROCESS_ALL_ACCESS access. On Windows 95/98, the debugger has appropriate access if the process identifier
is valid. However, on Windows NT/Windows 2000, DebugActiveProcess can fail if the target process was created
with a security descriptor that grants the debugger anything less than full access. Note that if the debugging process
has the SE_DEBUG_NAME privilege granted and enabled, it can debug any process.

After the system checks the process identifier and determines that a valid debugging attachment is being made, the
function returns TRUE. The debugger is then expected to wait for debugging events by using the WaitForDebugEv-
ent function. The system suspends all threads in the process and sends the debugger events representing the current
state of the process.

The system sends the debugger a single CREATE_PROCESS_DEBUG_EVENT debugging event representing the
process specified by the dwProcessId parameter. The lpStartAddress member of the
CREATE_PROCESS_DEBUG_INFO structure is NULL.

For each thread currently part of the process, the system sends a CREATE_THREAD_DEBUG_EVENT debugging
event. The lpStartAddress member of the CREATE_THREAD_DEBUG_INFO structure is NULL.

For each dynamic-link library (DLL) currently loaded into the address space of the target process, the system sends a
LOAD_DLL_DEBUG_EVENT debugging event. The system arranges for the first thread in the process to execute a
breakpoint instruction after it resumes. Continuing this thread causes it to return to whatever it was doing before the
debugger was attached.

After all of this has been done, the system resumes all threads in the process. When the first thread in the process
resumes, it executes a breakpoint instruction that causes an EXCEPTION_DEBUG_EVENT debugging event to be
sent to the debugger. All future debugging events are sent to the debugger by using the normal mechanism and rules.
Page 75



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Debugging Overview, Debugging Functions, CreateProcess, CREATE_PROCESS_DEBUG_INFO,
CREATE_THREAD_DEBUG_INFO, WaitForDebugEvent

1.46 DebugBreak

The DebugBreak function causes a breakpoint exception to occur in the current process so that the calling thread can
signal the debugger and force it to take some action. If the process is not being debugged, the search logic of a stan-
dard exception handler is used. In most cases, this causes the calling process to terminate because of an unhandled
breakpoint exception.

DebugBreak: procedure;
stdcall;
returns( "eax" );
external( "__imp__DebugBreak@0" );

Parameters
This function has no parameters.

Return Values
This function does not return a value.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Debugging Overview, Debugging Functions, DebugActiveProcess

1.47 DefineDosDevice

The DefineDosDevice function defines, redefines, or deletes MS-DOS device names.

DefineDosDevice: procedure
(

dwFlags: dword;
lpDeviceName: string;
lpTargetPath: string

);
stdcall;
returns( "eax" );
external( "__imp__DefineDosDeviceA@12" );
Page 76



Win32 API Reference
Parameters

dwFlags
[in] Specifies several controllable aspects of the DefineDosDevice function. This parameter can be one or more
of the following values.

lpDeviceName
[in] Pointer to an MS-DOS device name string specifying the device the function is defining, redefining, or delet-
ing. The device name string must not have a trailing colon, unless a drive letter (C or D, for example) is being
defined, redefined, or deleted. In no case is a trailing backslash allowed.

lpTargetPath
[in] Pointer to a path string that will implement this device. The string is an MS-DOS path string unless the
DDD_RAW_TARGET_PATH flag is specified, in which case this string is a path string.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
MS-DOS device names are stored as symbolic links in the object name space. The code that converts an MS-DOS
path into a corresponding path uses these symbolic links to map MS-DOS devices and drive letters. The DefineDos-
Device function provides a mechanism whereby an application can modify the symbolic links used to implement the
MS-DOS device name space.

To retrieve the current mapping for a particular MS-DOS device name or to obtain a list of all MS-DOS devices
known to the system, use the QueryDosDevice function.

MS-DOS Device names are global. After it is defined, an MS-DOS device name remains visible to all processes until
either it is explicitly removed or the system restarts.

Windows 2000: To define a drive letter assignment that is persistent across boots and not a network share, use the
SetVolumeMountPoint function. If the volume to be mounted already has a drive letter assigned to it, use the

Value Meaning

DDD_RAW_TARGET_PATH If this value is specified, the function does not convert the lpTargetPath
string from an MS-DOS path to a path, but takes it as is.

DDD_REMOVE_DEFINITION If this value is specified, the function removes the specified definition for
the specified device. To determine which definition to remove, the function
walks the list of mappings for the device, looking for a match of lpTarget-
Path against a prefix of each mapping associated with this device. The first
mapping that matches is the one removed, and then the function returns.

If lpTargetPath is NULL or a pointer to a NULL string, the function will
remove the first mapping associated with the device and pop the most
recent one pushed. If there is nothing left to pop, the device name will be
removed.

If this value is NOT specified, the string pointed to by the lpTargetPath
parameter will become the new mapping for this device.

DDD_EXACT_MATCH_ON_RE
MOVE

If this value is specified along with DDD_REMOVE_DEFINITION, the
function will use an exact match to determine which mapping to remove.
Use this value to insure that you do not delete something that you did not
define.
Page 77



Volume 1
DeleteVolumeMountPoint function to remove the assignment.

Note Drive letters and device names defined at system boot time are protected from redefinition and deletion unless
the user is an administrator.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

File I/O Overview, File I/O Functions, DeleteVolumeMountPoint, QueryDosDevice, SetVolumeMountPoint

1.48 DeleteAtom

The DeleteAtom function decrements the reference count of a local string atom. If the atom's reference count is
reduced to zero, DeleteAtom removes the string associated with the atom from the local atom table.

DeleteFiber: procedure
(

nAtom: ATOM
);

stdcall;
returns( "eax" );
external( "__imp__DeleteFiber@4" );

Parameters

nAtom
[in] Identifies the atom to be deleted.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is the nAtom parameter. To get extended error information, call GetLastError.

Remarks
A string atom's reference count specifies the number of times the atom has been added to the atom table. The AddA-
tom function increments the count on each call. The DeleteAtom function decrements the count on each call but
removes the string only if the atom's reference count is zero.

Each call to AddAtom should have a corresponding call to DeleteAtom. Do not call DeleteAtom more times than
you call AddAtom, or you may delete the atom while other clients are using it.

The DeleteAtom function has no effect on an integer atom (an atom whose value is in the range 0x0001 to 0xBFFF).
The function always returns zero for an integer atom.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Atoms Overview, Atom Functions, AddAtom, FindAtom, GlobalAddAtom, GlobalDeleteAtom, GlobalFindAtom,
MAKEINTATOM
Page 78



Win32 API Reference
1.49 DeleteFile

The DeleteFile function deletes an existing file.

DeleteFile: procedure
(

lpFileName: string
);

stdcall;
returns( "eax" );
external( "__imp__DeleteFileA@4" );

Parameters

lpFileName
[in] Pointer to a null-terminated string that specifies the file to be deleted.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If an application attempts to delete a file that does not exist, the DeleteFile function fails.

To delete or rename a file, you must have either delete permission on the file or delete child permission in the parent
directory. If you set up a directory with all access except delete and delete child and the ACLs of new files are inher-
ited, then you should be able to create a file without being able to delete it. However, you can then create a file, and
you will get all the access you request on the handle returned to you at the time you create the file. If you requested
delete permission at the time you created the file, you could delete or rename the file with that handle but not with any
other.

Windows 95: The DeleteFile function deletes a file even if it is open for normal I/O or as a memory-mapped file. To
prevent loss of data, close files before attempting to delete them.

Windows NT/2000: The DeleteFile function fails if an application attempts to delete a file that is open for normal
I/O or as a memory-mapped file.

To close an open file, use the CloseHandle function.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
File I/O Overview, File I/O Functions, CloseHandle, CreateFile
Page 79



Volume 1
1.50 DeviceIoControl

The DeviceIoControl function sends a control code directly to a specified device driver, causing the corresponding
device to perform the corresponding operation.

DeviceIoControl: procedure
(

hDevice: dword;
dwIoControlCode: dword;

var lpInBuffer: var;
nInBufferSize: dword;

var lpOutBuffer: var;
nOutBufferSize: dword;

var lpBytesReturned: dword;
var lpOverlapped: OVERLAPPED

);
stdcall;
returns( "eax" );
external( "__imp__DeviceIoControl@32" );

Parameters

hDevice
[in] Handle to the device on which to perform the operation, typically a volume, directory, file, or alternate
stream. To retrieve a device handle, use the CreateFile function.

dwIoControlCode
[in] Specifies the control code for the operation. This value identifies the specific operation to be performed and
the type of device on which to perform it.

For a list of the control codes and a short description of each control code, see Device Input and Output Control
Codes .

For more detailed information on each control code, see its documentation. In particular, the documentation pro-
vides details on the usage of the lpInBuffer, nInBufferSize, lpOutBuffer, nOutBufferSize, and lpBytesReturned
parameters.

lpInBuffer
[in] Pointer to a buffer that contains the data required to perform the operation.

This parameter can be NULL if the dwIoControlCode parameter specifies an operation that does not require
input data.

nInBufferSize
[in] Specifies the size, in bytes, of the buffer pointed to by lpInBuffer.

lpOutBuffer
[out] Pointer to a buffer that receives the operation's output data.

This parameter can be NULL if the dwIoControlCode parameter specifies an operation that does not produce
output data.

nOutBufferSize
[in] Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.

lpBytesReturned
[out] Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to by lpOut-
Buffer.
Page 80



Win32 API Reference
If the output buffer is too small to return any data, then the call fails, GetLastError returns the error code
ERROR_INSUFFICIENT_BUFFER, and the returned byte count is zero.

If the output buffer is too small to hold all of the data but can hold some entries, then the operating system returns
as much as fits, the call fails, GetLastError returns the error code ERROR_MORE_DATA, and lpBytesRe-
turned indicates the amount of data returned. Your application should call DeviceIoControl again with the same
operation, specifying a new starting point.

If lpOverlapped is NULL, lpBytesReturned cannot be NULL. Even when an operation produces no output data,
and lpOutBuffer can be NULL, DeviceIoControl makes use of the variable pointed to by lpBytesReturned. After
such an operation, the value of the variable is without meaning.

If lpOverlapped is not NULL, lpBytesReturned can be NULL. If this is an overlapped operation, you can get the
number of bytes returned by calling GetOverlappedResult. If hDevice is associated with an I/O completion
port, you can get the number of bytes returned by calling GetQueuedCompletionStatus.

lpOverlapped
[in] Pointer to an OVERLAPPED structure.

If hDevice was opened with the FILE_FLAG_OVERLAPPED flag, lpOverlapped must point to a valid OVER-
LAPPED structure. In this case, the operation is performed as an overlapped (asynchronous) operation. If the
device was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the function fails in unpre-
dictable ways.

If hDevice was opened without specifying the FILE_FLAG_OVERLAPPED flag, lpOverlapped is ignored and
DeviceIoControl does not return until the operation has been completed, or an error occurs.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If hDevice was opened with FILE_FLAG_OVERLAPPED and the lpOverlapped parameter points to an OVER-
LAPPED structure, the operation is performed as an overlapped (asynchronous) operation. In this case, the OVER-
LAPPED structure must contain a handle to a manual-reset event object created by a call to the CreateEvent
function. For more information on manual-reset event objects, see Synchronization.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Device Input and Output Overview, Device Input and Output Functions, CreateEvent, CreateFile, GetOverlappe-
dResult, GetQueuedCompletionStatus, OVERLAPPED

1.51 DisableThreadLibraryCalls

The DisableThreadLibraryCalls function disables the DLL_THREAD_ATTACH and DLL_THREAD_DETACH
notifications for the specified dynamic-link library (DLL). This can reduce the size of the working code set for some
applications.

DisableThreadLibraryCalls: procedure
(

hModule: dword
);

stdcall;
Page 81



Volume 1
returns( "eax" );
external( "__imp__DisableThreadLibraryCalls@4" );

Parameters

hModule
[in] Handle to the DLL module for which the DLL_THREAD_ATTACH and DLL_THREAD_DETACH notifi-
cations are to be disabled. The LoadLibrary or GetModuleHandle function returns this handle.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. The DisableThreadLibraryCalls function fails if the DLL specified by
hModule has active static thread local storage, or if hModule is an invalid module handle. To get extended error infor-
mation, call GetLastError.

Remarks
The DisableThreadLibraryCalls function lets a DLL disable the DLL_THREAD_ATTACH and
DLL_THREAD_DETACH notification calls. This can be a useful optimization for multithreaded applications that
have many DLLs, frequently create and delete threads, and whose DLLs do not need these thread-level notifications
of attachment/detachment. A remote procedure call (RPC) server application is an example of such an application. In
these sorts of applications, DLL initialization routines often remain in memory to service DLL_THREAD_ATTACH
and DLL_THREAD_DETACH notifications. By disabling the notifications, the DLL initialization code is not paged
in because a thread is created or deleted, thus reducing the size of the application's working code set. To implement
the optimization, modify a DLL's DLL_PROCESS_ATTACH code to call DisableThreadLibraryCalls.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Dynamic-Link Libraries Overview, Dynamic-Link Library Functions, FreeLibraryAndExitThread

1.52 DisconnectNamedPipe

The DisconnectNamedPipe function disconnects the server end of a named pipe instance from a client process.

DisconnectNamedPipe: procedure
(

hNamedPipe: dword
);

stdcall;
returns( "eax" );
external( "__imp__DisconnectNamedPipe@4" );

Parameters

hNamedPipe
[in] Handle to an instance of a named pipe. This handle must be created by the CreateNamedPipe function.
Page 82



Win32 API Reference
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the client end of the named pipe is open, the DisconnectNamedPipe function forces that end of the named pipe
closed. The client receives an error the next time it attempts to access the pipe. A client that is forced off a pipe by
DisconnectNamedPipe must still use the CloseHandle function to close its end of the pipe.

When the server process disconnects a pipe instance, any unread data in the pipe is discarded. Before disconnecting,
the server can make sure data is not lost by calling the FlushFileBuffers function, which does not return until the cli-
ent process has read all the data.

The server process must call DisconnectNamedPipe to disconnect a pipe handle from its previous client before the
handle can be connected to another client by using the ConnectNamedPipe function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Pipes Overview, Pipe Functions, CloseHandle, ConnectNamedPipe, CreateNamedPipe, FlushFileBuffers

1.53 DosDateTimeToFileTime

The DosDateTimeToFileTime function converts MS-DOS date and time values to a 64-bit file time.

DosDateTimeToFileTime: procedure
(

wFateDate: word;
wFatTime: word;

var lpFileTime: FILETIME
);

stdcall;
returns( "eax" );
external( "__imp__DosDateTimeToFileTime@12" );

Parameters

wFatDate
[in] Specifies the MS-DOS date. The date is a packed 16-bit value with the following format.

wFatTime
[in] Specifies the MS-DOS time. The time is a packed 16-bit value with the following format.

Bits Contents

0–4 Day of the month (1–31)

5–8 Month (1 = January, 2 = February, and so on)

9–15 Year offset from 1980 (add 1980 to get actual year)
Page 83



Volume 1
lpFileTime
[out] Pointer to a FILETIME structure to receive the converted 64-bit file time.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf.
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, FILETIME, FileTimeToDosDateTime, FileTimeToSystemTime, SystemTimeToFi-
leTime

1.54 DuplicateHandle

The DuplicateHandle function duplicates an object handle. The duplicate handle refers to the same object as the
original handle. Therefore, any changes to the object are reflected through both handles. For example, the current file
mark for a file handle is always the same for both handles.

DuplicateHandle: procedure
(

hSourceProcessHandle: dword;
hSourceHandle: dword;
hTargetProcessHandle: dword;

var lpTargetProcesHandle: dword;
dwDesiredAccess: dword;
bInheritHandle: boolean;
dwOptions: dword

);
stdcall;
returns( "eax" );
external( "__imp__DuplicateHandle@28" );

Parameters

hSourceProcessHandle
[in] Handle to the process with the handle to duplicate.

Windows NT/2000: The handle must have PROCESS_DUP_HANDLE access. For more information, see Pro-

Bits Contents

0–4 Second divided by 2

5–10 Minute (0–59)

11–15 Hour (0–23 on a 24-hour clock)
Page 84



Win32 API Reference
cess Security and Access Rights.

hSourceHandle
[in] Handle to duplicate. This is an open object handle that is valid in the context of the source process. For a list
of objects whose handles can be duplicated, see the following Remarks section.

hTargetProcessHandle
[in] Handle to the process that is to receive the duplicated handle. The handle must have
PROCESS_DUP_HANDLE access.

lpTargetHandle
[out] Pointer to a variable that receives the value of the duplicate handle. This handle value is valid in the context
of the target process.

If lpTargetHandle is NULL, the function duplicates the handle, but does not return the duplicate handle value to
the caller. This behavior exists only for backward compatibility with previous versions of this function. You
should not use this feature, as you will lose system resources until the target process terminates.

dwDesiredAccess
[in] Specifies the access requested for the new handle. This parameter is ignored if the dwOptions parameter
specifies the DUPLICATE_SAME_ACCESS flag. Otherwise, the flags that can be specified depend on the type
of object whose handle is being duplicated. For the flags that can be specified for each object type, see the fol-
lowing Remarks section. Note that the new handle can have more access than the original handle.

bInheritHandle
[in] Indicates whether the handle is inheritable. If TRUE, the duplicate handle can be inherited by new processes
created by the target process. If FALSE, the new handle cannot be inherited.

dwOptions
[in] Specifies optional actions. This parameter can be zero, or any combination of the following values.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
DuplicateHandle can be called by either the source process or the target process. It can also be invoked where the
source and target process are the same. For example, a process can use DuplicateHandle to create a noninheritable
duplicate of an inheritable handle, or a handle with different access than the original handle.

The duplicating process uses the GetCurrentProcess function to get a handle of itself. To get the other process
handle, it may be necessary to use some form of interprocess communication (for example, named pipe or shared
memory) to communicate the process identifier to the duplicating process. This identifier is then used in the Open-
Process function to open a handle.

If the process that calls DuplicateHandle is not the target process, the duplicating process must use interprocess
communication to pass the value of the duplicate handle to the target process.

DuplicateHandle can duplicate handles to the following types of objects.

Value Meaning

DUPLICATE_CLOSE_SOURCE Closes the source handle. This occurs regardless of any
error status returned.

DUPLICATE_SAME_ACCESS Ignores the dwDesiredAccess parameter. The duplicate
handle has the same access as the source handle.
Page 85



Volume 1
Object Description

Access token The handle is returned by the CreateRestrictedToken, Dupli-

cateToken, DuplicateTokenEx, OpenProcessToken, or
OpenThreadToken function.

Communications device The handle is returned by the CreateFile function.

Console input The handle is returned by the CreateFile function when CONIN$ is
specified, or by the GetStdHandle function when
STD_INPUT_HANDLE is specified. Console handles can be duplicated
for use only in the same process.

Console screen buffer The handle is returned by the CreateFile function when CONOUT$ is
specified, or by the GetStdHandle function when
STD_OUTPUT_HANDLE is specified. Console handles can be dupli-
cated for use only in the same process.

Desktop The handle is returned by the GetThreadDesktop function.

Directory The handle is returned by the CreateDirectory function.

Event The handle is returned by the CreateEvent or OpenEvent function.

File The handle is returned by the CreateFile function.

File mapping The handle is returned by the CreateFileMapping function.

Job The handle is returned by the CreateJobObject function.

Mailslot The handle is returned by the CreateMailslot function.

Mutex The handle is returned by the CreateMutex or OpenMutex function.

Pipe A named pipe handle is returned by the CreateNamedPipe or Create-
File function. An anonymous pipe handle is returned by the Cre-
atePipe function.

Process The handle is returned by the CreateProcess, GetCurrentProcess,

or OpenProcess function.

Registry key Windows NT/2000: The handle is returned by the RegCreateKey,
RegCreateKeyEx, RegOpenKey, or RegOpenKeyEx function. Note
that registry key handles returned by the RegConnectRegistry function
cannot be used in a call to DuplicateHandle.

Windows 95/98: You cannot use DuplicateHandle to duplicate registry
key handles.

Semaphore The handle is returned by the CreateSemaphore or OpenSemaphore
function.

Socket The handle is returned by the socket or accept function.

Thread The handle is returned by the CreateProcess, CreateThread, Cre-

ateRemoteThread, or GetCurrentThread function

Timer The handle is returned by the CreateWaitableTimer or OpenWait-
ableTimer function.

Window station The handle is returned by the GetProcessWindowStation function.
Page 86



Win32 API Reference
Note that DuplicateHandle should not be used to duplicate handles to I/O completion ports. In this case, no error is
returned, but the duplicate handle cannot be used.

In addition to STANDARD_RIGHTS_REQUIRED, the following access flags can be specified in the dwDesiredAc-
cess parameter for the different object types. Note that the new handle can have more access than the original handle.
However, in some cases DuplicateHandle cannot create a duplicate handle with more access permission than the
original handle. For example, a file handle created with GENERIC_READ access cannot be duplicated so that it has
both GENERIC_READ and GENERIC_WRITE access.

Any combination of the following access flags is valid for handles to communications devices, console input, console
screen buffers, files, and pipes.

Any combination of the following access flags is valid for file-mapping objects.

Any combination of the following flags is valid for mutex objects.

Any combination of the following access flags is valid for semaphore objects.

Any combination of the following access flags is valid for event objects.

Access Description

GENERIC_READ Enables read access.

GENERIC_WRITE Enables write access.

Access Description

FILE_MAP_ALL_ACCESS Specifies all possible access flags for the file-mapping object.

FILE_MAP_READ Enables mapping the object into memory that permits read access.

FILE_MAP_WRITE Enables mapping the object into memory that permits write access. For
write access, PAGE_READWRITE protection must have been specified
when the file-mapping object was created by the CreateFileMapping
function.

Access Description

MUTEX_ALL_ACCESS Specifies all possible access flags for the mutex object.

SYNCHRONIZE Windows NT/2000: Enables use of the mutex handle in any of the wait
functions to acquire ownership of the mutex, or in the ReleaseMutex
function to release ownership.

Access Description

SEMAPHORE_ALL_ACCESS Specifies all possible access flags for the semaphore object.

SEMAPHORE_MODIFY_STATE Enables use of the semaphore handle in the ReleaseSemaphore function
to modify the semaphore's count.

SYNCHRONIZE Windows NT/2000: Enables use of the semaphore handle in any of the
wait functions to wait for the semaphore's state to be signaled.

Access Description

EVENT_ALL_ACCESS Specifies all possible access flags for the event object.
Page 87



Volume 1
Any combination of the following access flags is valid for handles to registry keys.

Any combination of the following access flags is valid for process objects.

EVENT_MODIFY_STATE Enables use of the event handle in the SetEvent and ResetEvent func-
tions to modify the event's state.

SYNCHRONIZE Windows NT/2000: Enables use of the event handle in any of the wait
functions to wait for the event's state to be signaled.

Value Meaning

KEY_ALL_ACCESS Specifies all possible flags for the registry key.

KEY_CREATE_LINK Enables using the handle to create a link to a registry-key object.

KEY_CREATE_SUB_KEY Enables using the handle to create a subkey of a registry-key object.

KEY_ENUMERATE_SUB_KEYS Enables using the handle to enumerate the subkeys of a registry-key
object.

KEY_EXECUTE Equivalent to KEY_READ.

KEY_NOTIFY Enables using the handle to request change notifications for a registry key
or for subkeys of a registry key.

KEY_QUERY_VALUE Enables using the handle to query a value of a registry-key object.

KEY_READ Combines the STANDARD_RIGHTS_READ, KEY_QUERY_VALUE,
KEY_ENUMERATE_SUB_KEYS, and KEY_NOTIFY values.

KEY_SET_VALUE Enables using the handle to create or set a value of a registry-key object.

KEY_WRITE Combines the STANDARD_RIGHTS_WRITE, KEY_SET_VALUE, and
KEY_CREATE_SUB_KEY values.

Access Description

PROCESS_ALL_ACCESS Specifies all possible access flags for the process object.

PROCESS_CREATE_PROCESS Used internally.

PROCESS_CREATE_THREAD Enables using the process handle in the CreateRemoteThread function
to create a thread in the process.

PROCESS_DUP_HANDLE Enables using the process handle as either the source or target process in
the DuplicateHandle function to duplicate a handle.

PROCESS_QUERY_INFORMATI
ON

Enables using the process handle in the GetExitCodeProcess and
GetPriorityClass functions to read information from the process
object.

PROCESS_SET_INFORMATION Enables using the process handle in the SetPriorityClass function to
set the process's priority class.

PROCESS_TERMINATE Enables using the process handle in the TerminateProcess function to
terminate the process.

PROCESS_VM_OPERATION Enables using the process handle in the VirtualProtectEx and
WriteProcessMemory functions to modify the virtual memory of the
process.
Page 88



Win32 API Reference
Any combination of the following access flags is valid for thread objects.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Handles and Objects Overview, Handle and Object Functions, CloseHandle

1.55 EndUpdateResource

The EndUpdateResource function ends a resource update in an executable file.

PROCESS_VM_READ Enables using the process handle in the ReadProcessMemory function to
read from the virtual memory of the process.

PROCESS_VM_WRITE Enables using the process handle in the WriteProcessMemory function
to write to the virtual memory of the process.

SYNCHRONIZE Windows NT/2000: Enables using the process handle in any of the wait
functions to wait for the process to terminate.

Access Description

SYNCHRONIZE Windows NT/2000: Enables using the thread handle in any of the wait
functions to wait for the thread to terminate.

THREAD_ALL_ACCESS Specifies all possible access flags for the thread object.

THREAD_DIRECT_IMPERSONA
TION

Used internally.

THREAD_GET_CONTEXT Enables using the thread handle in the GetThreadContext function to
read the thread's context.

THREAD_IMPERSONATE Used internally.

THREAD_QUERY_INFORMATIO
N

Enables using the thread handle in the GetExitCodeThread,

GetThreadPriority, and GetThreadSelectorEntry functions to
read information from the thread object.

THREAD_SET_CONTEXT Enables using the thread handle in the SetThreadContext function to
set the thread's context.

THREAD_SET_INFORMATION Enables using the thread handle in the SetThreadPriority function to
set the thread's priority.

THREAD_SET_THREAD_TOKE
N

Used internally.

THREAD_SUSPEND_RESUME Enables using the thread handle in the SuspendThread or ResumeTh-
read functions to suspend or resume a thread.

THREAD_TERMINATE Enables using the thread handle in the TerminateThread function to ter-
minate the thread.
Page 89



Volume 1
EndUpdateResource: procedure
(

hUpdate: dword;
fDiscard: boolean

);
stdcall;
returns( "eax" );
external( "__imp__EndUpdateResourceA@8" );

Parameters

hUpdate
[in] Handle used in a resource update. This handle is returned by the BeginUpdateResource function.

fDiscard
[in] Specifies whether to write resource updates to an executable file. If this parameter is TRUE, no changes are
made to the executable file. If it is FALSE, the changes are made.

Return Values
If the function succeeds and the accumulated resource modifications specified by calls to the UpdateResource func-
tion are written to the specified executable file, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Resources Overview, Resource Functions, BeginUpdateResource, UpdateResource

1.56 EnterCriticalSection

The EnterCriticalSection function waits for ownership of the specified critical section object. The function returns
when the calling thread is granted ownership.

EnterCriticalSection: procedure
(

lpCriticalSection: CRITICAL_SECTION
);

stdcall;
returns( "eax" );
external( "__imp__EnterCriticalSection@4" );

Parameters

lpCriticalSection
[in/out] Pointer to the critical section object.

Return Values
This function does not return a value.

In low memory situations, EnterCriticalSection can raise a STATUS_INVALID_HANDLE exception. To avoid
Page 90



Win32 API Reference
problems, use structured exception handling, or call the InitializeCriticalSectionAndSpin-
Count function to preallocate the event used by EnterCriticalSection instead of calling the InitializeCriti-
calSection function, which forces EnterCriticalSection to allocate the event.

Remarks
The threads of a single process can use a critical section object for mutual-exclusion synchronization. The process is
responsible for allocating the memory used by a critical section object, which it can do by declaring a variable of type
CRITICAL_SECTION. Before using a critical section, some thread of the process must call InitializeCriti-
calSection or InitializeCriticalSectionAndSpinCount to initialize the object.

To enable mutually exclusive access to a shared resource, each thread calls the EnterCriticalSection or TryEnter-
CriticalSection function to request ownership of the critical section before executing any section of code that
accesses the protected resource. The difference is that TryEnterCriticalSection returns immediately, regardless of
whether it obtained ownership of the critical section, while EnterCriticalSection blocks until the thread can take
ownership of the critical section. When it has finished executing the protected code, the thread uses the LeaveCrit-
icalSection function to relinquish ownership, enabling another thread to become owner and access the protected
resource. The thread must call LeaveCriticalSection once for each time that it entered the critical section. The thread
enters the critical section each time EnterCriticalSection and TryEnterCriticalSection succeed.

After a thread has ownership of a critical section, it can make additional calls to EnterCriticalSection or TryEnter-
CriticalSection without blocking its execution. This prevents a thread from deadlocking itself while waiting for a
critical section that it already owns.

Any thread of the process can use the DeleteCriticalSection function to release the system resources that were allo-
cated when the critical section object was initialized. After this function has been called, the critical section object can
no longer be used for synchronization.

If a thread terminates while it has ownership of a critical section, the state of the critical section is undefined.

If a critical section is deleted while it is still owned, the state of the threads waiting for ownership of the deleted criti-
cal section is undefined.

Example
For an example that uses EnterCriticalSection, see Using Critical Section Objects.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, DeleteCriticalSection, InitializeCriticalSection, Initialize-
CriticalSectionAndSpinCount, LeaveCriticalSection TryEnterCriticalSection

1.57 EnumCalendarInfo

The EnumCalendarInfo function enumerates calendar information for a specified locale. The CalType parameter
specifies the type of calendar information to enumerate. The function returns the specified calendar information for
all applicable calendars for the locale or, for a single requested calendar, depending on the value of the Calendar
parameter.

The EnumCalendarInfo function enumerates the calendar information by calling an application defined–callback
function. It passes the callback function a pointer to a buffer containing the requested calendar information. This con-
tinues until either the last applicable calendar is found or the callback function returns FALSE.

To receive a calendar identifier in addition to the calendar information provided by EnumCalendarInfo, use the
Page 91



Volume 1
EnumCalendarInfoEx function.

EnumCalendarInfo: procedure
(

pCalInfoEnumProc: CALINFO_ENUMPROC;
Locale: LCID;
Calendar: CALID;
CalType: CALTYPE

);
stdcall;
returns( "eax" );
external( "__imp__EnumCalendarInfoA@16" );

Parameters

pCalInfoEnumProc
[in] Pointer to an application defined–callback function. For more information, see the EnumCalendarInfo-
Proc callback function.

Locale
[in] Specifies the locale for which to retrieve calendar information. This parameter can be a locale identifier cre-
ated by the MAKELCID macro, or one of the following predefined values.

Calendar
[in] Specifies the calendar for which information is requested. The following values are defined.

CalType

Value Meaning

LOCALE_SYSTEM_DEFAULT Default system locale.

LOCALE_USER_DEFAULT Default user locale.

Value Meaning

ENUM_ALL_CALENDARS All applicable calendars for the specified locale.

CAL_GREGORIAN Gregorian (localized).

CAL_GREGORIAN_US Gregorian (English strings always).

CAL_JAPAN Japanese Emperor Era.

CAL_TAIWAN Taiwan Era.

CAL_KOREA Korean Tangun Era.

CAL_HIJRI Hijri (Arabic Lunar).

CAL_THAI Thai.

CAL_HEBREW Hebrew (Lunar).

CAL_GREGORIAN_ME_FRENCH Gregorian Middle East French.

CAL_GREGORIAN_ARABIC Gregorian Arabic.

CAL_GREGORIAN_XLIT_ENGLISH Gregorian transliterated English.

CAL_GREGORIAN_XLIT_FRENCH Gregorian transliterated French.
Page 92



Win32 API Reference
[in] Specifies the type of calendar information to be returned. See the listing of constant values in Calendar Type
Information. Note that only one CALTYPE value can be specified per call of this function, except where noted.

Windows 98: EnumCalendarInfo does not support CAL_ITWODIGITYEARMAX.

Windows Me: EnumCalendarInfo supports CAL_ITWODIGITYEARMAX.

Return Values
If the function succeeds, the return values is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_BADDB

ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETER

Remarks
Windows 2000: The ANSI version of this function will fail if it is used with a Unicode-only LCID. See Language
Identifiers.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, EnumCalendarInfoEx, EnumCalendar-
InfoProc, EnumDateFormats, MAKELCID

1.58 EnumCalendarInfoEx

The EnumCalendarInfoEx function enumerates calendar information for a specified locale. The CalType parameter
specifies the type of calendar information to enumerate. The function returns the specified calendar information for
all applicable calendars for the locale or, for a single requested calendar, depending on the value of the Calendar
parameter.

The EnumCalendarInfoEx function enumerates the calendar information by calling an application defined–callback
function. It passes the callback function a pointer to a buffer containing the requested calendar information and a cal-
endar identifier (CALID). This continues until either the last applicable calendar is found or the callback function
returns FALSE.

EnumCalendarInfoEx: procedure
(

pCalInfoEnumProcEx:CALINFO_ENUMPROCEX;
Locale: LCID;
Calendar: CALID;
CalendarType:CALTYPE

);
stdcall;
returns( "eax" );
external( "__imp__EnumCalendarInfoExA@16" );

Parameters

pCalInfoEnumProcEx
[in] Pointer to an application defined–callback function. For more information, see the EnumCalendarInfo-
Page 93



Volume 1
ProcEx callback function.

Locale
[in] Specifies the locale for which to retrieve calendar information. This parameter can be a locale identifier cre-
ated by the MAKELCID macro, or one of the following predefined values.

Calendar
[in] Specifies the calendar for which information is requested. The following values are defined.

CalType
[in] Specifies the type of calendar information to be returned. See the listing of constant values in Calendar Type
Information. Note that only one CALTYPE value can be specified per call of this function, except where noted.

Return Values
If the function succeeds, the return values is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError may
return one of the following error codes:

ERROR_BADDB

ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETER

Remarks
Windows 2000: The ANSI version of this function will fail if it is used with a Unicode-only LCID. See Language
Identifiers.

Value Meaning

LOCALE_SYSTEM_DEFAULT Default system locale.

LOCALE_USER_DEFAULT Default user locale.

Value Meaning

ENUM_ALL_CALENDARS All applicable calendars for the specified locale.

CAL_GREGORIAN Gregorian (localized)

CAL_GREGORIAN_US Gregorian (English strings always)

CAL_JAPAN Japanese Emperor Era

CAL_TAIWAN Taiwan Era

CAL_KOREA Korean Tangun Era

CAL_HIJRI Hijri (Arabic Lunar)

CAL_THAI Thai

CAL_HEBREW Hebrew (Lunar)

CAL_GREGORIAN_ME_FRENCH Gregorian Middle East French

CAL_GREGORIAN_ARABIC Gregorian Arabic

CAL_GREGORIAN_XLIT_ENGLISH Gregorian transliterated English

CAL_GREGORIAN_XLIT_FRENCH Gregorian transliterated French
Page 94



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, EnumCalendarInfoEx, EnumCalendar-
InfoProc, EnumDateFormats

1.59 EnumDateFormats

The EnumDateFormats function enumerates the long or short date formats that are available for a specified locale.
The value of the dwFlags parameter determines whether the long or short date formats are enumerated. The function
enumerates the date formats by passing date format string pointers, one at a time, to the specified application–defined
callback function. This continues until the last date format is found or the callback function returns FALSE.

To receive a calendar identifier in addition to the date format information provided by EnumDateFormats, use the
EnumDateFormatsEx function.

EnumDateFormats: procedure
(

lpDateFmtEnumProc: DATEFMT_ENUMPROC;
Locale: LCID;
dwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__EnumDateFormatsA@12" );

Parameters

lpDateFmtEnumProc
[in] Pointer to an application–defined callback function. The EnumDateFormats function enumerates date for-
mats by making repeated calls to this callback function. For more information, see the EnumDateFormatsProc
callback function.

Locale
[in] Specifies the locale for which to retrieve date format information. This parameter can be a locale identifier
created by the MAKELCID macro, or one of the following predefined values.

dwFlags
[in] Specifies the date formats of interest. Use one of the following values.

Value Meaning

LOCALE_SYSTEM_DEFAULT Default system locale.

LOCALE_USER_DEFAULT Default user locale.

Value Meaning
Page 95



Volume 1
Return Values
If the function succeeds, the return values is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INVALID_PARAM

ETERERROR_BADDB

ERROR_INVALID FLAGS

Remarks
This function will return all date formats for the specified locale, including alternate calendars, if any. However, the
calendar identifier is not returned along with the date format in the callback function, so formats for locales with
alternate calendars are difficult to use. To get the date formats for locales with alternate calendars, use EnumDate-
FormatsEx.

Windows 2000: The ANSI version of this function will fail if it is used with a Unicode-only LCID. See Language
Identifiers.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, EnumDateFormatsEx, EnumDateFor-
matsProc, EnumCalendarInfo, EnumTimeFormats

1.60 EnumDateFormatsEx

The EnumDateFormatsEx function enumerates the long or short date formats that are available for a specified
locale, including date formats for any alternate calendars. The value of the dwFlags parameter determines whether
the long date, short date, or year/month formats are enumerated. The function enumerates the date formats by passing
date format string pointers, one at a time, to the specified application–defined callback function. This continues until
the last date format is found or the callback function returns FALSE.

EnumDateFormatsEx: procedure
(

lpDateFmtEnumProcEx: DATEFMT_ENUMPROCEX;
Locale: LCID;
dwFlags: dword

);
stdcall;
returns( "eax" );

LOCALE_USE_CP_ACP Uses the system ANSI code page for string translation instead of the
locale's code page.

DATE_SHORTDATE Return short date formats. This value cannot be used with
DATE_LONGDATE.

DATE_LONGDATE Return long date formats. This value cannot be used with
DATE_SHORTDATE.

DATE_YEARMONTH Return year/month formats.
Page 96



Win32 API Reference
external( "__imp__EnumDateFormatsExA@12" );

Parameters

lpDateFmtEnumProcEx
[in] Pointer to an application–defined callback function. The EnumDateFormatsEx function enumerates date
formats by making repeated calls to this callback function. For more information, see the EnumDateFor-
matsProcEx callback function.

Locale
[in] Specifies the locale for which to retrieve date format information. This parameter can be a locale identifier
created by the MAKELCID macro, or one of the following predefined values.

dwFlags
[in] Specifies the date formats that are of interest. Use one of the following values.

Return Values
If the function succeeds, the return values is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INVALID_PARAM

ETERERROR_BADDB

ERROR_INVALID FLAGS

Remarks
Windows 2000: The ANSI version of this function will fail if it is used with a Unicode-only LCID. See Language
Identifiers.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in Winnls.h; include Windows.h.
Library: Use Kernel32.lib.

Value Meaning

LOCALE_SYSTEM_DEFAULT Default system locale.

LOCALE_USER_DEFAULT Default user locale.

Value Meaning

LOCALE_USE_CP_ACP Uses the system ANSI code page for string translation instead of the
locale's code page.

DATE_SHORTDATE Return short date formats. This value cannot be used with
DATE_LONGDATE.

DATE_LONGDATE Return long date formats. This value cannot be used with
DATE_SHORTDATE.

DATE_YEARMONTH Return year/month formats.
Page 97



Volume 1
See Also
National Language Support Overview, National Language Support Functions, EnumDateFormatsProcEx, EnumCal-
endarInfo, EnumTimeFormats

1.61 EnumResourceLanguages

The EnumResourceLanguages function searches a module for each resource of the specified type and name and
passes the language of each resource it locates to a defined callback function.

EnumResourceLanguages: procedure
(

hModule: dword;
lpType: string;
lpName: string;
lpEnumFunc:ENUMRESLANGPROC;
lParam: dword

);
stdcall;
returns( "eax" );
external( "__imp__EnumResourceLanguagesA@20" );

Parameters

hModule
[in] Handle to the module whose executable file contains the resources for which the languages are to be enumer-
ated. If this parameter is NULL, the function enumerates the resource languages in the module used to create the
current process.

lpType
[in] Pointer to a null-terminated string specifying the type of the resource for which the language is being enu-
merated. For standard resource types, this parameter can be one of the following values.

Value Meaning

RT_ACCELERATOR Accelerator table

RT_ANICURSOR Animated cursor

RT_ANIICON Animated icon

RT_BITMAP Bitmap resource

RT_CURSOR Hardware-dependent cursor resource

RT_DIALOG Dialog box

RT_FONT Font resource

RT_FONTDIR Font directory resource

RT_GROUP_CURSOR Hardware-independent cursor resource

RT_GROUP_ICON Hardware-independent icon resource

RT_ICON Hardware-dependent icon resource
Page 98



Win32 API Reference
lpName
[in] Pointer to a null-terminated string specifying the name of the resource for which the language is being enu-
merated.

lpEnumFunc
[in] Pointer to the callback function to be called for each enumerated resource language. For more information,
see EnumResLangProc.

lParam
[in] Specifies an application-defined value passed to the callback function. This parameter may be used in error
checking.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If a resource has an ID, the ID is returned to the callback function; otherwise the resource name is returned to the call-
back function. For more information, see EnumResLangProc.

The EnumResourceLanguages function continues to enumerate resource languages until the callback function
returns FALSE or all resource languages have been enumerated.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Resources Overview, Resource Functions, EnumResLangProc, EnumResourceNames, EnumResourceTypes

1.62 EnumResourceNames

The EnumResourceNames function searches a module for each resource of the specified type and passes either the
name or the ID of each resource it locates to an application-defined callback function.

EnumResourceNames: procedure
(

hModule:dword;
lpszType:string;
lpEnumFunc:ENUMRESNAMEPROC;
lParam: dword

);

RT_MENU Menu resource

RT_MESSAGETABLE Message-table entry

RT_RCDATA Application-defined resource (raw data)

RT_STRING String-table entry

RT_VERSION Version resource

RT_VXD VXD
Page 99



Volume 1
stdcall;
returns( "eax" );
external( "__imp__EnumResourceNamesA@16" );

Parameters

hModule
[in] Handle to the module whose executable file contains the resources that are to be enumerated. If this parame-
ter is NULL, the function enumerates the resources in the module used to create the current process.

lpszType
[in] Pointer to a null-terminated string specifying the type of resource to be enumerated. For standard resource
types, this parameter can be one of the following values.

lpEnumFunc
[in] Pointer to the callback function to be called for each enumerated resource name. For more information, see
EnumResNameProc.

lParam
[in] Specifies an application-defined value passed to the callback function. This parameter can be used in error
checking.

Return Values
If the function succeeds, the return value is nonzero.

Value Meaning

RT_ACCELERATOR Accelerator table

RT_ANICURSOR Animated cursor

RT_ANIICON Animated icon

RT_BITMAP Bitmap resource

RT_CURSOR Hardware-dependent cursor resource

RT_DIALOG Dialog box

RT_FONT Font resource

RT_FONTDIR Font directory resource

RT_GROUP_CURSOR Hardware-independent cursor resource

RT_GROUP_ICON Hardware-independent icon resource

RT_ICON Hardware-dependent icon resource

RT_MENU Menu resource

RT_MESSAGETABLE Message-table entry

RT_RCDATA Application-defined resource (raw data)

RT_STRING String-table entry

RT_VERSION Version resource

RT_VXD VXD
Page 100



Win32 API Reference
If the function does not find a resource of the type specified, or if the function fails for another reason, the return
value is zero. To get extended error information, call GetLastError.

Remarks
If a resource has an ID, the ID is returned to the callback function; otherwise the resource name is returned to the call-
back function. For more information, see EnumResNameProc.

The EnumResourceNames function continues to enumerate resources until the callback function returns FALSE or
all resources have been enumerated.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on all platforms.

See Also
Resources Overview, Resource Functions, EnumResNameProc, EnumResourceLanguages, EnumResourceTypes

1.63 EnumResourceTypes

The EnumResourceTypes function searches a module for resources and passes each resource type it finds to an
application-defined callback function.

EnumResourceTypes: procedure
(

hModule: dword;
lpEnumFunc: ENUMRESTYPEPROC;
lParam: dword

);
stdcall;
returns( "eax" );
external( "__imp__EnumResourceTypesA@12" );

Parameters

hModule
[in] Handle to the module whose executable file contains the resources for which the types are to be enumerated.
If this parameter is NULL, the function enumerates the resource types in the module used to create the current
process.

lpEnumFunc
[in] Pointer to the callback function to be called for each enumerated resource type. For more information, see
the EnumResTypeProc function.

GetLastError value Meaning

NO_ERROR Windows 95/98: No resource of the specified type was
found.

ERROR_RESOURCE_TYPE_NOT_FOUND Windows NT/2000: No resource of the specified type
was found.

any other return value Some other type of error occurred.
Page 101



Volume 1
lParam
[in] Specifies an application-defined value passed to the callback function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The EnumResourceTypes function continues to enumerate resource types until the callback function returns FALSE
or all resource types have been enumerated.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on all platforms.

See Also
Resources Overview, Resource Functions, EnumResourceLanguages, EnumResourceNames, EnumResTypeProc

1.64 EnumSystemCodePages

The EnumSystemCodePages function enumerates the code pages that are either installed on or supported by a sys-
tem. The dwFlags parameter determines whether the function enumerates installed or supported code pages. The
function enumerates the code pages by passing code page identifiers, one at a time, to the specified application
defined–callback function. This continues until all of the installed or supported code page identifiers have been
passed to the callback function, or the callback function returns FALSE.

EnumSystemCodePages: procedure
(

lpCodePageEnumProc: CODEPAGE_ENUMPROC;
dwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__EnumSystemCodePagesA@8" );

Parameters

lpCodePageEnumProc
[in] Pointer to an application defined–callback function. The EnumSystemCodePages function enumerates
code pages by making repeated calls to this callback function. For more information, see the EnumCodePage-
sProc callback function.

dwFlags
[in] Specifies the code pages to enumerate. This parameter can be one of the following values.

Value Meaning

CP_INSTALLED Enumerate only installed code pages.
Page 102



Win32 API Reference
Return Values
If the function succeeds, the return values is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INVALID_PARAMETER

ERROR_BADDB

ERROR_INVALID FLAGS

Remarks
The CP_INSTALLED and CP_SUPPORTED flags are mutually exclusive.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnls.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
National Language Support Overview, National Language Support Functions, EnumCodePage-
sProc

1.65 EnumSystemLocales

The EnumSystemLocales function enumerates the locales that are either installed on or supported by a system. The
dwFlags parameter determines whether the function enumerates installed or supported system locales. The function
enumerates locales by passing locale identifiers, one at a time, to the specified application defined–callback function.
This continues until all of the installed or supported locale identifiers have been passed to the callback function or the
callback function returns FALSE.

EnumSystemLocales: procedure
(

lpLocaleEnumProc: LOCALE_ENUMPROC;
dwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__EnumSystemLocalesA@8" );

Parameters

lpLocaleEnumProc
[in] Pointer to an application defined–callback function. The EnumSystemLocales function enumerates locales
by making repeated calls to this callback function. For more information, see the EnumLocalesProc callback
function.

dwFlags
[in] Locale identifiers to enumerate. This parameter can be one or more of the following values.

CP_SUPPORTED Enumerate all supported code pages.
Page 103



Volume 1
Return Values
If the function succeeds, the return values is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INVALID_PARAMETER

ERROR_BADDB

ERROR_INVALID FLAGS

Remarks
The LCID_INSTALLED and LCID_SUPPORTED flags are mutually exclusive.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, EnumLocalesProc

1.66 EnumTimeFormats

The EnumTimeFormats function enumerates the time formats that are available for a specified locale. The function
enumerates the time formats by passing a pointer to a buffer containing a time format to an application defined–call-
back function. It continues to do so until the last time format is found or the callback function returns FALSE.

EnumTimeFormats: procedure
(

lpTimeFmtEnumProc: TIMEFMT_ENUMPROC;
Locale: LCID;
dwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__EnumTimeFormatsA@12" );

Parameters

lpTimeFmtEnumProc

Value Meaning

LCID_INSTALLED Enumerate only installed locale identifiers. This value cannot be
used with LCID_SUPPORTED.

LCID_SUPPORTED Enumerate all supported locale identifiers. This value cannot be used
with LCID_INSTALLED.

LCID_ALTERNATE_SORTS Enumerate only the alternate sorts. If this value is used with either
LCID_INSTALLED or LCID_SUPPORTED, then the installed or
supported locales will be returned as well as the alternate sort locale
IDs.
Page 104



Win32 API Reference
[in] Pointer to an application defined–callback function. For more information, see EnumTimeFormatsProc.

Locale
[in] Specifies the locale to retrieve time format information for. This parameter can be a locale identifier created
by the MAKELCID macro, or by one of the following predefined values.

dwFlags
[in] Currently, only the following value is defined.

Return Values
If the function succeeds, the return values is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INVALID_PARAMETER

ERROR_BADDB

ERROR_INVALID FLAGS

Remarks
Windows 2000: The ANSI version of this function will fail if it is used with a Unicode-only LCID. See Language
Identifiers.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, EnumTimeFormatsProc, EnumCalen-
darInfo, EnumDateFormats

1.67 EraseTape

The EraseTape function erases all or part of a tape.

EraseTape: procedure
(

hDevice: dword;
dwEraseType: dword;
bImmediate: boolean

);
stdcall;

Value Meaning

LOCALE_SYSTEM_DEFAULT Default system locale.

LOCALE_USER_DEFAULT Default user locale.

Value Meaning

LOCALE_USE_CP_ACP Use the system ANSI code page for string translation instead of
the locale's code page.
Page 105



Volume 1
returns( "eax" );
external( "__imp__EraseTape@12" );

Parameters

hDevice
[in] Handle to the device where the tape is to be erased. This handle is created by using the CreateFile func-
tion.

dwEraseType
[in] Specifies the erasing technique. This parameter can be one of the following values.

bImmediate
[in] Specifies whether to return as soon as the erase operation begins. If this parameter is TRUE, the function
returns immediately; if it is FALSE, the function does not return until the erase operation has been completed.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Value Description

TAPE_ERASE_LONG Erases the tape from the current position to the end of the current parti-
tion.

TAPE_ERASE_SHORT Writes an erase gap or end-of-data marker at the current position.

Error code Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data before the beginning-of-medium marker
failed.

ERROR_BUS_RESET A reset condition was detected on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during an operation.

ERROR_SETMARK_DETECTED A setmark was reached during an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on a new tape in a multivolume partition.

ERROR_DEVICE_NOT_PARTITIONE
D

The partition information could not be found when a tape was being
loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive has been replaced or removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.

ERROR_NOT_SUPPORTED The tape driver does not support a requested function.

ERROR_UNABLE_TO_LOCK_MEDI
A

An attempt to lock the ejection mechanism failed.
Page 106



Win32 API Reference
Remarks
Some tape devices do not support certain tape operations. To determine your tape device's capabilities, see your tape
device documentation and use the GetTapeParameters function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tape Backup Overview, Tape Backup Functions, CreateFile, GetTapeParameters

1.68 EscapeCommFunction

The EscapeCommFunction function directs a specified communications device to perform an extended function.

EscapeCommFunction: procedure
(

hFile: dword;
dwFunc: dword

);
stdcall;
returns( "eax" );
external( "__imp__EscapeCommFunction@8" );

Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

dwFunc
[in] Specifies the code of the extended function to perform. This parameter can be one of the following values.

ERROR_UNABLE_TO_UNLOAD_ME
DIA

An attempt to unload the tape failed.

ERROR_WRITE_PROTECT The media is write protected.

Value Meaning

CLRDTR Clears the DTR (data-terminal-ready) signal.

CLRRTS Clears the RTS (request-to-send) signal.

SETDTR Sends the DTR (data-terminal-ready) signal.

SETRTS Sends the RTS (request-to-send) signal.

SETXOFF Causes transmission to act as if an XOFF character has been received.

SETXON Causes transmission to act as if an XON character has been received.
Page 107



Volume 1
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, ClearCommBreak, CreateFile, SetCommBreak

1.69 ExitProcess

The ExitProcess function ends a process and all its threads.

ExitProcess: procedure
(

uExitCode:uns32
);

stdcall;
returns( "eax" );
external( "__imp__ExitProcess@4" );

Parameters

uExitCode
[in] Specifies the exit code for the process, and for all threads that are terminated as a result of this call. Use the
GetExitCodeProcess function to retrieve the process's exit value. Use the GetExitCodeThread function to
retrieve a thread's exit value.

Return Values
This function does not return a value.

Remarks
ExitProcess is the preferred method of ending a process. This function provides a clean process shutdown. This
includes calling the entry-point function of all attached dynamic-link libraries (DLLs) with a value indicating that the
process is detaching from the DLL. If a process terminates by calling TerminateProcess, the DLLs that the pro-
cess is attached to are not notified of the process termination.

After all attached DLLs have executed any process termination value, this function terminates the current process.

Terminating a process causes the following:

SETBREAK Suspends character transmission and places the transmission line in a break state until
the ClearCommBreak function is called (or EscapeCommFunction is called with the
CLRBREAK extended function code). The SETBREAK extended function code is
identical to the SetCommBreak function. Note that this extended function does not
flush data that has not been transmitted.

CLRBREAK Restores character transmission and places the transmission line in a nonbreak state.
The CLRBREAK extended function code is identical to the ClearCommBreak func-
tion.
Page 108



Win32 API Reference
All of the object handles opened by the process are closed.

All of the threads in the process terminate their execution.

The state of the process object becomes signaled, satisfying any threads that had been waiting for the process to ter-
minate.

The states of all threads of the process become signaled, satisfying any threads that had been waiting for the threads
to terminate.

The termination status of the process changes from STILL_ACTIVE to the exit value of the process.

Terminating a process does not cause child processes to be terminated.

Terminating a process does not necessarily remove the process object from the operating system. A process object is
deleted when the last handle to the process is closed.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a process that is starting
(as the result of a call by CreateProcess) are serialized between each other within a process. Only one of these
events can happen in an address space at a time. This means the following restrictions hold:

During process startup and DLL initialization routines, new threads can be created, but they do not
begin execution until DLL initialization is done for the process.

Only one thread in a process can be in a DLL initialization or detach routine at a time.

If any process is in its DLL initialization or detach routine, ExitProcess does not return.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CreateProcess, CreateRe-
moteThread, CreateThread, ExitThread, GetExitCodeProcess, GetExitCodeThread, OpenProc-
ess, TerminateProcess

1.70 ExitThread

The ExitThread function ends a thread.

ExitThread: procedure
(

dwExitCode: dword
);

stdcall;
returns( "eax" );
external( "__imp__ExitThread@4" );

Parameters

dwExitCode
[in] Specifies the exit code for the calling thread. Use the GetExitCodeThread function to retrieve a thread's
exit code.

Return Values
This function does not return a value.
Page 109



Volume 1
Remarks
ExitThread is the preferred method of exiting a thread. When this function is called (either explicitly or by returning
from a thread procedure), the current thread's stack is deallocated and the thread terminates. The entry-point function
of all attached dynamic-link libraries (DLLs) is invoked with a value indicating that the thread is detaching from the
DLL.

If the thread is the last thread in the process when this function is called, the thread's process is also terminated.

The state of the thread object becomes signaled, releasing any other threads that had been waiting for the thread to
terminate. The thread's termination status changes from STILL_ACTIVE to the value of the dwExitCode parameter.

Terminating a thread does not necessarily remove the thread object from the operating system. A thread object is
deleted when the last handle to the thread is closed.

The ExitProcess, ExitThread, CreateThread, CreateRemoteThread functions, and a process that is starting
(as the result of a CreateProcess call) are serialized between each other within a process. Only one of these events
can happen in an address space at a time. This means the following restrictions hold:

During process startup and DLL initialization routines, new threads can be created, but they do not
begin execution until DLL initialization is done for the process.

Only one thread in a process can be in a DLL initialization or detach routine at a time.

ExitProcess does not return until no threads are in their DLL initialization or detach routines.

A thread that uses functions from the C run-time libraries should use the _beginthread and _endthread C run-time
functions for thread management rather than CreateThread and ExitThread. Failure to do so results in small mem-
ory leaks when ExitThread is called.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CreateProcess, CreateRe-
moteThread, CreateThread, ExitProcess, FreeLibraryAndExitThread, GetExitCodeThread,
OpenThread, TerminateThread

1.71 ExpandEnvironmentStrings

The ExpandEnvironmentStrings function expands environment-variable strings and replaces them with their
defined values.

ExpandEnvironmentStrings: procedure

(

lpSrc: string;

lpDst: string;

nSize: dword

);

stdcall;

returns( "eax" );

external( "__imp__ExpandEnvironmentStringsA@12" );
Page 110



Win32 API Reference
Parameters

lpSrc
[in] Pointer to a null-terminated string that contains environment-variable strings of the form: %variableName%.
For each such reference, the %variableName% portion is replaced with the current value of that environment
variable.

The replacement rules are the same as those used by the command interpreter. Case is ignored when looking up
the environment-variable name. If the name is not found, the %variableName% portion is left undisturbed.

lpDst
[out] Pointer to a buffer to receive a copy of the source buffer after all environment-variable name substitutions
have been performed.

nSize
[in] Specifies the maximum number of TCHARs that can be stored in the buffer pointed to by the lpDst parame-
ter, including the terminating null character.

Return Values
If the function succeeds, the return value is the number of TCHARs stored in the destination buffer, including the ter-
minating null character. If the destination buffer is too small to hold the expanded string, the return value is the
required buffer size, in TCHARs.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
There are certain restrictions on the size of the lpSrc and lpDst buffers.

On Windows NT 4.0 and earlier, these buffers are limited to 32K.

On Windows 2000, these buffers are limited to 32K in the ANSI version, but there is no size restric-
tion in the Unicode version.

On Windows 95/98, the ANSI version has no size restriction; the Unicode version is not supported.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
System Information Overview, System Information Functions

1.72 FatalAppExit

The FatalAppExit function displays a message box and terminates the application when the message box is closed.
If the system is running with a kernel debugger, the message box gives the user the opportunity to terminate the appli-
cation or to cancel the message box and return to the application that called FatalAppExit.

FatalAppExit: procedure
(

uAction: uns32;
lpMessageText: string
Page 111



Volume 1
);
stdcall;
returns( "eax" );
external( "__imp__FatalAppExitA@8" );

Parameters

uAction
Reserved; must be zero.

lpMessageText
[in] Pointer to a null-terminated string that is displayed in the message box. The message is displayed on a single
line. To accommodate low-resolution screens, the string should be no more than 35 characters in length.

Return Values
This function does not return a value.

Remarks
An application calls FatalAppExit only when it is not capable of terminating any other way. FatalAppExit may not
always free an application's memory or close its files, and it may cause a general failure of the system. An application
that encounters an unexpected error should terminate by freeing all its memory and returning from its main message
loop.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Error Handling Overview, Error Handling Functions, FatalExit

1.73 FatalExit

The FatalExit function transfers execution control to the debugger. The behavior of the debugger thereafter is spe-
cific to the type of debugger used.

FatalExit: procedure
(

ExitCode: int32
);

stdcall;
returns( "eax" );
external( "__imp__FatalExit@4" );

Parameters

ExitCode
[in] Specifies the error code associated with the exit.

Return Values
This function does not return a value.
Page 112



Win32 API Reference
Remarks
An application should only use FatalExit for debugging purposes. It should not call the function in a retail version of
the application because doing so will terminate the application.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Debugging Overview, Debugging Functions, FatalAppExit

1.74 FileTimeToDosDateTime

The FileTimeToDosDateTime function converts a 64-bit file time to MS-DOS date and time values.

FileTimeToDosDateTime: procedure
(

var lpFileTime: FILETIME;
var lpFatDate: word;
var lpFatTime: word

);
stdcall;
returns( "eax" );
external( "__imp__FileTimeToDosDateTime@12" );

Parameters

lpFileTime
[in] Pointer to a FILETIME structure containing the 64-bit file time to convert to MS-DOS date and time format.

lpFatDate
[out] Pointer to a variable to receive the MS-DOS date. The date is a packed 16-bit value with the following for-
mat.

lpFatTime
[out] Pointer to a variable to receive the MS-DOS time. The time is a packed 16-bit value with the following for-
mat.

Bits Contents

0–4 Day of the month (1–31)

5–8 Month (1 = January, 2 = February, etc.)

9–15 Year offset from 1980 (add 1980 to get actual year)

Bits Contents

0–4 Second divided by 2

5–10 Minute (0–59)
Page 113



Volume 1
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The MS-DOS date format can represent only dates between 1/1/1980 and 12/31/2107; this conversion fails if the
input file time is outside this range.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, DosDateTimeToFileTime, FileTimeToSystemTime, SystemTimeToFileTime

1.75 FileTimeToLocalFileTime

The FileTimeToLocalFileTime function converts a file time based on the Coordinated Universal Time (UTC) to a
local file time.

FileTimeToLocalFileTime: procedure
(

var lpFileTime: FILETIME;
var lpLocalFileTime: FILETIME

);
stdcall;
returns( "eax" );
external( "__imp__FileTimeToLocalFileTime@8" );

Parameters

lpFileTime
[in] Pointer to a FILETIME structure containing the UTC-based file time to be converted into a local file time.

lpLocalFileTime
[out] Pointer to a FILETIME structure to receive the converted local file time. This parameter cannot be the
same as the lpFileTime parameter.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
FileTimeToLocalFileTime uses the current settings for the time zone and daylight saving time. Therefore, if it is
daylight saving time, this function will take daylight saving time into account, even if the time you are converting is
in standard time.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

11–15 Hour (0–23 on a 24-hour clock)
Page 114



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, FILETIME, LocalFileTimeToFileTime

1.76 FileTimeToSystemTime

The FileTimeToSystemTime function converts a 64-bit file time to system time format.

FileTimeToSystemTime: procedure
(

var lpFileTime: FILETIME;
var lpSystemTime: SYSTEMTIME

);
stdcall;
returns( "eax" );
external( "__imp__FileTimeToSystemTime@8" );

Parameters

lpFileTime
[in] Pointer to a FILETIME structure containing the file time to convert to system date and time format.

The FileTimeToSystemTime function only works with FILETIME values that are less than
0x8000000000000000. The function fails with values equal to or greater than that.

lpSystemTime
[out] Pointer to a SYSTEMTIME structure to receive the converted file time.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
As noted above, the function fails for FILETIME values that are equal to or greater than 0x8000000000000000.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, DosDateTimeToFileTime, FILETIME, FileTimeToDosDateTime, SYSTEMTIME,
SystemTimeToFileTime
Page 115



Volume 1
1.77 FillConsoleOutputAttribute

The FillConsoleOutputAttribute function sets the text and background color attributes for a specified number of
character cells, beginning at the specified coordinates in a screen buffer.

FillConsoleOutputCharacter: procedure
(

hConsoleOutput: dword;
wAttribute: word;
nLength: dword;
dwWriteCoord: COORD;
var lpNumberOfAttrsWritten: dword

);
stdcall;
returns( "eax" );
external( "__imp__FillConsoleOutputCharacterA@20" );

Parameters

hConsoleOutput
[in] Handle to a screen buffer. The handle must have GENERIC_WRITE access.

wAttribute
[in] Specifies the foreground and background color attributes to write to the screen buffer. Any combination of
the following values can be specified: FOREGROUND_BLUE, FOREGROUND_GREEN,
FOREGROUND_RED, FOREGROUND_INTENSITY, BACKGROUND_BLUE, BACKGROUND_GREEN,
BACKGROUND_RED, and BACKGROUND_INTENSITY. For example, the following combination of values
produces white text on a black background:

FOREGROUND_RED | FOREGROUND_GREEN | FOREGROUND_BLUE

nLength
[in] Specifies the number of character cells to be set to the specified color attributes.

dwWriteCoord
[in] Specifies a COORD structure containing the screen buffer coordinates of the first cell whose attributes are to
be set.

lpNumberOfAttrsWritten
[out] Pointer to the variable that receives the number of character cells whose attributes were actually set.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the number of character cells whose attributes are to be set extends beyond the end of the specified row in the
screen buffer, the cells of the next row are set. If the number of cells to write to extends beyond the end of the screen
buffer, the cells are written up to the end of the screen buffer.

The character values at the positions written to are not changed.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Page 116



Win32 API Reference
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, COORD, FillConsoleOutputCharacter, Set-
ConsoleTextAttribute, WriteConsoleOutputAttribute

1.78 FindAtom

The FindAtom function searches the local atom table for the specified character string and retrieves the atom associ-
ated with that string.

FindAtom: procedure
(

lpString: string
);

stdcall;
returns( "eax" );
external( "__imp__FindAtomA@4" );

Parameters

lpString
[in] Pointer to the null-terminated character string to search for.

Alternatively, you can use an integer atom that has been converted using the MAKEINTATOM macro. See the
Remarks for more information.

Return Values
If the function succeeds, the return value is the atom associated with the given string.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Even though the system preserves the case of a string in an atom table, the search performed by the FindAtom func-
tion is not case sensitive.

If lpString was created by the MAKEINTATOM macro, the low-order word must be in the range 0x0001 through
0xBFFF. If the low-order word is not in this range, the function fails.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Atoms Overview, Atom Functions, AddAtom, DeleteAtom, GlobalAddAtom, GlobalDeleteAtom, GlobalFindAtom

1.79 FindClose

The FindClose function closes the specified search handle. The FindFirstFile and FindNextFile functions use
the search handle to locate files with names that match a given name.
Page 117



Volume 1
FindClose: procedure
(

hFindFile: dword
);

stdcall;
returns( "eax" );
external( "__imp__FindClose@4" );

Parameters

hFindFile
[in/out] File search handle. This handle must have been previously opened by the FindFirstFile function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
After the FindClose function is called, the handle specified by the hFindFile parameter cannot be used in subsequent
calls to either the FindNextFile or FindClose function.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, FindFirstFile, FindNextFile

1.80 FindCloseChangeNotification

The FindCloseChangeNotification function stops change notification handle monitoring.

FindCloseChangeNotification: procedure
(

hChangeHandle:dword
);

stdcall;
returns( "eax" );
external( "__imp__FindCloseChangeNotification@4" );

Parameters

hChangeHandle
[in] Handle to a change notification handle created by the FindFirstChangeNotification function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
Page 118



Win32 API Reference
Remarks
After the FindCloseChangeNotification function is called, the handle specified by the hChangeHandle parameter
cannot be used in subsequent calls to either the FindNextChangeNotification or FindCloseChangeNotification
function.

Change notifications can also be used in the wait functions.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, FindFirstChangeNotification, FindNextChangeNotification

1.81 FindFirstChangeNotification

The FindFirstChangeNotification function creates a change notification handle and sets up initial change notifica-
tion filter conditions. A wait on a notification handle succeeds when a change matching the filter conditions occurs in
the specified directory or subtree.

FindFirstChangeNotification: procedure
(

lpPathName: string;
bWatchSubtree: boolean;
dwNotifyFilter: dword

);
stdcall;
returns( "eax" );
external( "__imp__FindFirstChangeNotificationA@12" );

Parameters

lpPathName
[in] Pointer to a null-terminated string that specifies the path of the directory to watch.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

bWatchSubtree
[in] Specifies whether the function will monitor the directory or the directory tree. If this parameter is TRUE, the
function monitors the directory tree rooted at the specified directory; if it is FALSE, it monitors only the speci-
fied directory.

dwNotifyFilter
[in] Specifies the filter conditions that satisfy a change notification wait. This parameter can be one or more of
the following values.

Value Meaning
Page 119



Volume 1
Return Values
If the function succeeds, the return value is a handle to a find change notification object.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call Get-
LastError.

Remarks
The wait functions can monitor the specified directory or subtree by using the handle returned by the Find-
FirstChangeNotification function. A wait is satisfied when one of the filter conditions occurs in the monitored
directory or subtree.

After the wait has been satisfied, the application can respond to this condition and continue monitoring the directory
by calling the FindNextChangeNotification function and the appropriate wait function. When the handle is no
longer needed, it can be closed by using the FindCloseChangeNotification function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, FindCloseChangeNotification, FindNextChangeNotification

1.82 FindFirstFile

The FindFirstFile function searches a directory for a file whose name matches the specified file name. FindFirstFile
examines subdirectory names as well as file names.

FILE_NOTIFY_CHANGE_FILE_NAME Any file name change in the watched directory or subtree causes a
change notification wait operation to return. Changes include
renaming, creating, or deleting a file name.

FILE_NOTIFY_CHANGE_DIR_NAME Any directory-name change in the watched directory or subtree
causes a change notification wait operation to return. Changes
include creating or deleting a directory.

FILE_NOTIFY_CHANGE_ATTRIBUTES Any attribute change in the watched directory or subtree causes a
change notification wait operation to return.

FILE_NOTIFY_CHANGE_SIZE Any file-size change in the watched directory or subtree causes a
change notification wait operation to return. The operating system
detects a change in file size only when the file is written to the disk.
For operating systems that use extensive caching, detection occurs
only when the cache is sufficiently flushed.

FILE_NOTIFY_CHANGE_LAST_WRIT
E

Any change to the last write-time of files in the watched directory
or subtree causes a change notification wait operation to return.
The operating system detects a change to the last write-time only
when the file is written to the disk. For operating systems that use
extensive caching, detection occurs only when the cache is suffi-
ciently flushed.

FILE_NOTIFY_CHANGE_SECURITY Any security-descriptor change in the watched directory or subtree
causes a change notification wait operation to return.
Page 120



Win32 API Reference
To specify additional attributes to be used in the search, use the FindFirstFileEx function.

FindFirstFile: procedure
(

lpFileName: string;
var lpFindFileData: WIN32_FIND_DATA

);
stdcall;
returns( "eax" );
external( "__imp__FindFirstFileA@8" );

Parameters

lpFileName
[in] Pointer to a null-terminated string that specifies a valid directory or path and file name, which can contain
wildcard characters (* and ?).

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

lpFindFileData
[out] Pointer to the WIN32_FIND_DATA structure that receives information about the found file or subdirectory.

Return Values
If the function succeeds, the return value is a search handle used in a subsequent call to FindNextFile or Find-
Close.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call Get-
LastError.

Remarks
The FindFirstFile function opens a search handle and returns information about the first file whose name matches
the specified pattern. After the search handle has been established, use the FindNextFile function to search for other
files that match the same pattern. When the search handle is no longer needed, close it by using the FindClose func-
tion.

This function searches for files by name only; it cannot be used for attribute-based searches.

You cannot use root directories as the lpFileName input string for FindFirstFile, with or without a trailing backslash.
To examine files in a root directory, use something like "C:\*" and step through the directory with FindNextFile.
To get the attributes of a root directory, use GetFileAttributes. Prepending the string "\\?\" does not allow access
to the root directory.

Similarly, on network shares, you can use an lpFileName of the form "\\server\service\*" but you cannot use an
lpFileName that points to the share itself, such as "\\server\service".

To examine any directory other than a root directory, use an appropriate path to that directory, with no trailing back-
slash. For example, an argument of "C:\windows" will return information about the directory "C:\windows", not
about any directory or file in "C:\windows". An attempt to open a search with a trailing backslash will always fail.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

The following code shows a minimal use of FindFirstFile.

#define _WIN32_WINNT 0x0400

#include "windows.h"

int
Page 121



Volume 1
main(int argc, char *argv[])

{

WIN32_FIND_DATA FindFileData;

HANDLE hFind;

printf ("Target file is %s.\n", argv[1]);

hFind = FindFirstFile(argv[1], &FindFileData);

if (hFind == INVALID_HANDLE_VALUE) {

printf ("Invalid File Handle. Get Last Error reports %d\n", GetLastError ());

} else {

printf ("The first file found is %s\n", FindFileData.cFileName);

FindClose(hFind);

}

return (0);

}

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, FindClose, FindFirstFileEx, FindNextFile, GetFileAttributes, SetFileAt-
tributes, WIN32_FIND_DATA

1.83 FindFirstFileEx

The FindFirstFileEx function searches a directory for a file whose name and attributes match those specified in the
function call.

FindFirstFileEx: procedure
(

lpFileName: string;
fInfoLevelId: FINDEX_INFO_LEVELS;

var lpFindFileData: var;
fSearchOp: FINDEX_SEARCH_OPS;

var lpSearchFilter: var;
dwAdditionalFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__FindFirstFileExA@24" );

Parameters

lpFileName
Page 122



Win32 API Reference
[in] Pointer to a null-terminated string that specifies a valid directory or path and file name, which can contain
wildcard characters (* and ?).

In the ANSI version of this function, the name is limited to MAX_PATH characters. To extend this limit to nearly
32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to the path. For more infor-
mation, see File Name Conventions.

fInfoLevelId
[in] Specifies a FINDEX_INFO_LEVELS enumeration type that gives the information level of the returned data.

lpFindFileData
[out] Pointer to the buffer that receives the file data. The pointer type is determined by the level of information
specified in the fInfoLevelId parameter.

fSearchOp
[in] Specifies a FINDEX_SEARCH_OPS enumeration type that gives the type of filtering to perform beyond wild-
card matching.

lpSearchFilter
[in] If the specified fSearchOp needs structured search information, lpSearchFilter points to the search criteria.
At this time, none of the supported fSearchOp values require extended search information. Therefore, this pointer
must be NULL.

dwAdditionalFlags
[in] Specifies additional options for controlling the search. You can use FIND_FIRST_EX_CASE_SENSITIVE
for case-sensitive searches. The default search is case insensitive. At this time, no other flags are defined.

Return Values
If the function succeeds, the return value is a search handle that can be used in a subsequent call to the FindNext-
File or FindClose functions.

If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call Get-
LastError.

Remarks
The FindFirstFileEx function is provided to open a search handle and return information about the first file whose
name matches the specified pattern and attributes.

If the underlying file system does not support the specified type of filtering, other than directory filtering, FindFirst-
FileEx fails with the error ERROR_NOT_SUPPORTED. The application has to use FINDEX_SEARCH_OPS type
FileExSearchNameMatch and perform its own filtering.

After the search handle has been established, use it in the FindNextFile function to search for other files that match
the same pattern with the same filtering being performed. When the search handle is no longer needed, it should be
closed using the FindClose function.

You cannot use root directories as the lpFileName input string for FindFirstFileEx, with or without a trailing back-
slash. To examine files in a root directory, use something like "C:\*" and step through the directory with FindNext-
File. To get the attributes of a root directory, use GetFileAttributes. Prepending the string "\\?\" does not allow
access to the root directory.

Similarly, on network shares, you can use an lpFileName of the form "\\server\service\*" but you cannot use an
lpFileName that points to the share itself, such as "\\server\service".

To examine any directory other than a root directory, use an appropriate path to that directory, with no trailing back-
slash. For example, an argument of "C:\windows" will return information about the directory "C:\windows", not
about any directory or file in "C:\windows". An attempt to open a search with a trailing backslash will always fail.

The call

FindFirstFileEx( lpFileName,
Page 123



Volume 1
FindExInfoStandard,

lpFindData,

FindExSearchNameMatch,

NULL,

0 );

is equivalent to the call

FindFirstFile( lpFileName, lpFindData);

The following code shows a minimal use of FindFirstFileEx. This program is the equivalent of the example shown
in FindFirstFile.

#define _WIN32_WINNT 0x0400

#include "windows.h"

int

main(int argc, char *argv[])

{

WIN32_FIND_DATA FindFileData;

HANDLE hFind;

printf ("Target file is %s.\n", argv[1]);

hFind = FindFirstFileEx(argv[1], FindExInfoStandard, &FindFileData,

FindExSearchNameMatch, NULL, 0 );

if (hFind == INVALID_HANDLE_VALUE) {

printf ("Invalid File Handle. Get Last Error reports %d\n", GetLastError ());

} else {

printf ("The first file found is %s\n", FindFileData.cFileName);

FindClose(hFind);

}

return (0);

}

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, FINDEX_INFO_LEVELS, FINDEX_SEARCH_OPS, Find-
FirstFile, FindNextFile, FindClose, GetFileAttributes
Page 124



Win32 API Reference
1.84 FindNextChangeNotification

The FindNextChangeNotification function requests that the operating system signal a change notification handle
the next time it detects an appropriate change.

FindNextChangeNotification: procedure
(

hChangeHandle:dword
);

stdcall;
returns( "eax" );
external( "__imp__FindNextChangeNotification@4" );

Parameters

hChangeHandle
[in] Handle to a change notification handle created by the FindFirstChangeNotification function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
After the FindNextChangeNotification function returns successfully, the application can wait for notification that a
change has occurred by using the wait functions.

If a change occurs after a call to FindFirstChangeNotification but before a call to FindNextChangeNotification,
the operating system records the change. When FindNextChangeNotification is executed, the recorded change
immediately satisfies a wait for the change notification.

FindNextChangeNotification should not be used more than once on the same handle without using one of the wait
functions. An application may miss a change notification if it uses FindNextChangeNotification when there is a
change request outstanding.

When hChangeHandle is no longer needed, close it by using the FindCloseChangeNotification function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, FindCloseChangeNotification, FindFirstChangeNotification

1.85 FindNextFile

The FindNextFile function continues a file search from a previous call to the FindFirstFile function.

FindNextFile: procedure
(

hFindFile: dword;
var lpFindFileData: WIN32_FIND_DATA

);
stdcall;
Page 125



Volume 1
returns( "eax" );
external( "__imp__FindNextFileA@8" );

Parameters

hFindFile
[in] Search handle returned by a previous call to the FindFirstFile function.

lpFindFileData
[out] Pointer to the WIN32_FIND_DATA structure that receives information about the found file or subdirectory.
The structure can be used in subsequent calls to FindNextFile to refer to the found file or directory.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError. If no matching
files can be found, the GetLastError function returns ERROR_NO_MORE_FILES.

Remarks
The FindNextFile function searches for files by name only; it cannot be used for attribute-based searches.

The order in which this function returns the file names is dependent on the file system type. With NTFS and CDFS
file systems, the names are returned in alphabetical order. With FAT file systems, the names are returned in the order
the files were written to the disk, which may or may not be in alphabetical order.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, FindClose, FindFirstFile, GetFileAttributes, SetFileAttributes,
WIN32_FIND_DATA

1.86 FindResource

The FindResource function determines the location of a resource with the specified type and name in the specified
module.

To specify a language, use the FindResourceEx function.

FindResource: procedure
(

hModule: dword;
lpName: string;
lpType: string

);
stdcall;
returns( "eax" );
external( "__imp__FindResourceA@12" );
Page 126



Win32 API Reference
Parameters

hModule
[in] Handle to the module whose executable file contains the resource.

A value of NULL specifies the module handle associated with the image file that the operating system used to
create the current process.

lpName
[in] Specifies the name of the resource. For more information, see the Remarks section.

lpType
[in] Specifies the resource type. For more information, see the Remarks section. For standard resource types, this
parameter can be one of the following values.

Return Values
If the function succeeds, the return value is a handle to the specified resource's information block. To obtain a handle
to the resource, pass this handle to the LoadResource function.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
If IS_INTRESOURCE(x) is TRUE for x = lpName or lpType, x specifies the integer identifier of the name or type of
the given resource. Otherwise, those parameters are long pointers to null-terminated strings. If the first character of

Value Meaning

RT_ACCELERATOR Accelerator table

RT_ANICURSOR Animated cursor

RT_ANIICON Animated icon

RT_BITMAP Bitmap resource

RT_CURSOR Hardware-dependent cursor resource

RT_DIALOG Dialog box

RT_FONT Font resource

RT_FONTDIR Font directory resource

RT_GROUP_CURSOR Hardware-independent cursor resource

RT_GROUP_ICON Hardware-independent icon resource

RT_ICON Hardware-dependent icon resource

RT_MENU Menu resource

RT_MESSAGETABLE Message-table entry

RT_RCDATA Application-defined resource (raw data)

RT_STRING String-table entry

RT_VERSION Version resource
Page 127



Volume 1
the string is a pound sign (#), the remaining characters represent a decimal number that specifies the integer identifier
of the resource's name or type. For example, the string "#258" represents the integer identifier 258.

To reduce the amount of memory required for a resource, an application should refer to it by integer identifier instead
of by name.

An application can use FindResource to find any type of resource, but this function should be used only if the appli-
cation must access the binary resource data when making subsequent calls to LockResource.

To use a resource immediately, an application should use one of the following resource-specific functions to find and
load the resources in one call.

For example, an application can use the LoadIcon function to load an icon for display on the screen. However, the
application should use FindResource and LoadResource if it is loading the icon to copy its data to another applica-
tion.

String resources are stored in sections of up to 16 strings per section. The strings in each section are stored as a
sequence of counted (not null-terminated) Unicode strings. The LoadString function will extract the string resource
from its corresponding section.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Resources Overview, Resource Functions, FindResourceEx, FormatMessage, IS_INTRESOURCE, LoadAccelera-
tors, LoadBitmap, LoadCursor, LoadIcon, LoadMenu, LoadResource, LoadString, LockResource, SizeofResource

1.87 FindResourceEx

The FindResourceEx function determines the location of the resource with the specified type, name, and language in
the specified module.

FindResourceEx: procedure
(

hModule: dword;
lpType: string;
lpName: string;
wLanguage: word

);

Function Action

FormatMessage Loads and formats a message-table entry.

LoadAccelerators Loads an accelerator table.

LoadBitmap Loads a bitmap resource.

LoadCursor Loads a cursor resource.

LoadIcon Loads an icon resource.

LoadMenu Loads a menu resource.

LoadString Loads a string-table entry.
Page 128



Win32 API Reference
stdcall;
returns( "eax" );
external( "__imp__FindResourceExA@16" );

Parameters

hModule
[in] Handle to the module whose executable file contains the resource. If this parameter is NULL, the function
searches the module used to create the current process.

lpType
[in] Pointer to a null-terminated string specifying the type name of the resource. For more information, see the
Remarks section. For standard resource types, this parameter can be one of the following values.

lpName
[in] Pointer to a null-terminated string specifying the name of the resource. For more information, see the
Remarks section.

wLanguage
[in] Specifies the language of the resource. If this parameter is MAKELANGID(LANG_NEUTRAL,
SUBLANG_NEUTRAL), the current language associated with the calling thread is used.

To specify a language other than the current language, use the MAKELANGID macro to create this parameter.
For more information, see MAKELANGID.

Value Meaning

RT_ACCELERATOR Accelerator table

RT_ANICURSOR Animated cursor

RT_ANIICON Animated icon

RT_BITMAP Bitmap resource

RT_CURSOR Hardware-dependent cursor resource

RT_DIALOG Dialog box

RT_FONT Font resource

RT_FONTDIR Font directory resource

RT_GROUP_CURSOR Hardware-independent cursor resource

RT_GROUP_ICON Hardware-independent icon resource

RT_ICON Hardware-dependent icon resource

RT_MENU Menu resource

RT_MESSAGETABLE Message-table entry

RT_RCDATA Application-defined resource (raw data)

RT_STRING String-table entry

RT_VERSION Version resource
Page 129



Volume 1
Return Values
If the function succeeds, the return value is a handle to the specified resource's information block. To obtain a handle
to the resource, pass this handle to the LoadResource function.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
If IS_INTRESOURCE(x) is TRUE for x = lpType or lpName, x specifies the integer identifier of the type or name of
the given resource. Otherwise, those parameters are long pointers to null-terminated strings. If the first character of
the string is a pound sign (#), the remaining characters represent a decimal number that specifies the integer identifier
of the resource's name or type. For example, the string "#258" represents the integer identifier 258.

To reduce the amount of memory required for a resource, an application should refer to it by integer identifier instead
of by name.

An application can use FindResourceEx to find any type of resource, but this function should be used only if the
application must access the binary resource data when making subsequent calls to the LockResource function.

To use a resource immediately, an application should use the following resource-specific functions to find and load
the resources in one call.

For example, an application can use the LoadIcon function to load an icon for display on the screen. However, the
application should use FindResourceEx and LoadResource if it is loading the icon to copy its data to another appli-
cation.

String resources are stored in sections of up to 16 strings per section. The strings in each section are stored as a
sequence of counted (not null-terminated) Unicode strings. The LoadString function will extract the string resource
from its corresponding section.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Resources Overview, Resource Functions, FormatMessage, IS_INTRESOURCE, LoadAccelerators, LoadBitmap,
LoadCursor, LoadIcon, LoadMenu, LoadString, LoadResource, MAKELANGID

Function Action

FormatMessage Loads and formats a message-table entry.

LoadAccelerators Loads an accelerator table.

LoadBitmap Loads a bitmap resource.

LoadCursor Loads a cursor resource.

LoadIcon Loads an icon resource.

LoadMenu Loads a menu resource.

LoadString Loads a string-table entry.
Page 130



Win32 API Reference
1.88 FlushConsoleInputBuffer

The FlushConsoleInputBuffer function flushes the console input buffer. All input records currently in the input
buffer are discarded.

FlushConsoleInputBuffer: procedure
(

hConsoleInput: dword
);

stdcall;
returns( "eax" );
external( "__imp__FlushConsoleInputBuffer@4" );

Parameters

hConsoleInput
[in] Handle to the console input buffer. The handle must have GENERIC_WRITE access.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, GetNumberOfConsoleIn-
putEvents, PeekConsoleInput, ReadConsoleInput, WriteConsoleInput

1.89 FlushFileBuffers

The FlushFileBuffers function clears the buffers for the specified file and causes all buffered data to be written to the
file.

FlushFileBuffers: procedure
(

hFile:dword
);

stdcall;
returns( "eax" );
external( "__imp__FlushFileBuffers@4" );

Parameters

hFile
[in] Handle to an open file. The function flushes this file's buffers. The file handle must have GENERIC_WRITE
access to the file.

If hFile is a handle to a communications device, the function only flushes the transmit buffer.

If hFile is a handle to the server end of a named pipe, the function does not return until the client has read all
buffered data from the pipe.
Page 131



Volume 1
Windows NT/2000: The function fails if hFile is a handle to console output. That is because console output is
not buffered. The function returns FALSE, and GetLastError returns ERROR_INVALID_HANDLE.

Windows 95: The function does nothing if hFile is a handle to console output. That is because console output is
not buffered. The function returns TRUE, but it does nothing.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The WriteFile and WriteFileEx functions typically write data to an internal buffer that the operating system writes to
disk on a regular basis. The FlushFileBuffers function writes all of the buffered information for the specified file to
disk.

You can pass the same file handle used with the _lread, _lwrite, _lcreat, and related functions to FlushFileBuffers.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, _lread, _lwrite, _lcreat, WriteFile, WriteFileEx

1.90 FlushInstructionCache

The FlushInstructionCache function flushes the instruction cache for the specified process.

FlushInstructionCache: procedure
(

hProcess: dword;
var lpBaseAddress: var;

dwSize: dword
);

stdcall;
returns( "eax" );
external( "__imp__FlushInstructionCache@12" );

Parameters

hProcess
[in] Handle to a process whose instruction cache is to be flushed.

lpBaseAddress
[in] Pointer to the base of the region to be flushed. This parameter can be NULL.

dwSize
[in] Specifies the length, in bytes, of the region to be flushed if the lpBaseAddress parameter is not NULL.

Return Values
If the function succeeds, the return value is nonzero.
Page 132



Win32 API Reference
If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Windows NT/ 2000: Applications should call FlushInstructionCache if they generate or modify code in memory.
The CPU cannot detect the change, and may execute the old code it cached.

Windows 95/98: The FlushInstructionCache function has no effect; it always returns TRUE.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Debugging Overview, Debugging Functions

1.91 FlushViewOfFile

The FlushViewOfFile function writes to the disk a byte range within a mapped view of a file.

FlushViewOfFile: procedure
(

var lpBaseAddress: var;
dwNumberOfBytesToFlush: SIZE_T

);
stdcall;
returns( "eax" );
external( "__imp__FlushViewOfFile@8" );

Parameters

lpBaseAddress
[in] Pointer to the base address of the byte range to be flushed to the disk representation of the mapped file.

dwNumberOfBytesToFlush
[in] Specifies the number of bytes to flush. If dwNumberOfBytesToFlush is zero, the file is flushed from the base
address to the end of the mapping.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Flushing a range of a mapped view causes any dirty pages within that range to be written to the disk. Dirty pages are
those whose contents have changed since the file view was mapped.

When flushing a memory-mapped file over a network, FlushViewOfFile guarantees that the data has been written
from the local computer, but not that the data resides on the remote computer. The server can cache the data on the
remote side. Therefore, FlushViewOfFile can return before the data has been physically written to disk. However,
you can cause FlushViewOfFile to return only when the physical write is complete by specifying the
FILE_FLAG_WRITE_THROUGH flag when you open the file with the CreateFile function.
Page 133



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File Mapping Overview, File Mapping Functions, CreateFile, MapViewOfFile, UnmapViewOfFile

1.92 FoldString

The FoldString function maps one string to another, performing a specified transformation option.

FoldString: procedure
(

dwMapFlags: dword;
lpSrcStr: string;
cchSrc: int32;

var lpDestStr: var;
cchDest: int32

);
stdcall;
returns( "eax" );
external( "__imp__FoldStringA@20" );

Parameters

dwMapFlags
[in] A set of bit flags that indicate the type of transformation to be used during mapping. This value can be a
combination of the following values.

lpSrcStr
[in] Pointer to the string to be mapped.

Value Meaning

MAP_FOLDCZONE Fold compatibility zone characters into standard Unicode equiva-
lents. For information about compatibility zone characters, see the
following Remarks section.

MAP_FOLDDIGITS Map all digits to Unicode characters 0 through 9.

MAP_PRECOMPOSED Map accented characters to precomposed characters, in which the
accent and base character are combined into a single character
value. This value cannot be combined with MAP_COMPOSITE.

MAP_COMPOSITE Map accented characters to composite characters, in which the
accent and base character are represented by two character values.
This value cannot be combined with MAP_PRECOMPOSED.

MAP_EXPAND_LIGATURES Expand all ligature characters so that they are represented by their
two-character equivalent. For example, the ligature 'æ' expands to
the two characters 'a' and 'e'. This value cannot be combined with
MAP_PRECOMPOSED or MAP_COMPOSITE.
Page 134



Win32 API Reference
cchSrc
[in] Specifies the size, in TCHARs, of the lpSrcStr buffer. This refers to bytes for ANSI versions of the function
or characters for Unicode versions. If cchSrc is –1, lpSrcStr is assumed to be null-terminated, and the length is
calculated automatically.

lpDestStr
[out] Pointer to the buffer to store the mapped string.

cchDest
[in] Specifies the size, in TCHARs, of the lpDestStr buffer. If cchDest is zero, the function returns the number of
characters required to hold the mapped string, and the buffer pointed to by lpDestStr is not used.

Return Values
If the function succeeds, the return value is the number of TCHARs written to the destination buffer, or if the cchDest
parameter is zero, the number of characters required to hold the mapped string. This refers to bytes for ANSI versions
of the function or characters for Unicode versions.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER
ERROR_INVALID_FLAGS
ERROR_INVALID_PARAMETER

Remarks
The mapped string is null-terminated if the source string is null-terminated.

The lpSrcStr and lpDestStr pointers must not be the same. If they are the same, the function fails and GetLastError
returns ERROR_INVALID_PARAMETER.

The compatibility zone in Unicode consists of characters in the range 0xF900 through 0xFFEF that are assigned to
characters from other character-encoding standards but are actually variants of characters that are already in Unicode.
The compatibility zone is used to support round-trip mapping to these standards. Applications can use the
MAP_FOLDCZONE flag to avoid supporting the duplication of characters in the compatibility zone.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Strings Overview, String Functions, LCMapString, CompareString

1.93 FormatMessage

The FormatMessage function formats a message string. The function requires a message definition as input. The
message definition can come from a buffer passed into the function. It can come from a message table resource in an
already-loaded module. Or the caller can ask the function to search the system's message table resource(s) for the
message definition. The function finds the message definition in a message table resource based on a message identi-
fier and a language identifier. The function copies the formatted message text to an output buffer, processing any
embedded insert sequences if requested.

FormatMessage: procedure
(

dwFlags: dword;
Page 135



Volume 1
var lpSource: var;
dwMessageId: dword;
dwLanguageId: dword;

var lpBuffer: var;
nSize: uns32;

var Arguments: var
);

stdcall;
returns( "eax" );
external( "__imp__FormatMessageA@28" );

Parameters

dwFlags
[in] Specifies aspects of the formatting process and how to interpret the lpSource parameter. The low-order byte
of dwFlags specifies how the function handles line breaks in the output buffer. The low-order byte can also spec-
ify the maximum width of a formatted output line.

You can specify a combination of the following values.

Value Meaning

FORMAT_MESSAGE_ALLOCATE_BU
FFER

Specifies that the lpBuffer parameter is a pointer to a PVOID
pointer, and that the nSize parameter specifies the minimum number
of TCHARs to allocate for an output message buffer. The function
allocates a buffer large enough to hold the formatted message, and
places a pointer to the allocated buffer at the address specified by
lpBuffer. The caller should use the LocalFree function to free the
buffer when it is no longer needed.

FORMAT_MESSAGE_IGNORE_INSER
TS

Specifies that insert sequences in the message definition are to be
ignored and passed through to the output buffer unchanged. This
flag is useful for fetching a message for later formatting. If this flag
is set, the Arguments parameter is ignored.

FORMAT_MESSAGE_FROM_STRING Specifies that lpSource is a pointer to a null-terminated message def-
inition. The message definition may contain insert sequences, just as
the message text in a message table resource may. Cannot be used
with FORMAT_MESSAGE_FROM_HMODULE or
FORMAT_MESSAGE_FROM_SYSTEM.

FORMAT_MESSAGE_FROM_HMODU
LE

Specifies that lpSource is a module handle containing the mes-
sage-table resource(s) to search. If this lpSource handle is NULL,
the current process's application image file will be searched. Cannot
be used with FORMAT_MESSAGE_FROM_STRING.

FORMAT_MESSAGE_FROM_SYSTEM Specifies that the function should search the system message-table
resource(s) for the requested message. If this flag is specified with
FORMAT_MESSAGE_FROM_HMODULE, the function searches
the system message table if the message is not found in the module
specified by lpSource. Cannot be used with
FORMAT_MESSAGE_FROM_STRING.

If this flag is specified, an application can pass the result of the Get-
LastError function to retrieve the message text for a sys-
tem-defined error.
Page 136



Win32 API Reference
The low-order byte of dwFlags can specify the maximum width of a formatted output line. Use the
FORMAT_MESSAGE_MAX_WIDTH_MASK constant and bitwise Boolean operations to set and retrieve this
maximum width value.

The following table shows how FormatMessage interprets the value of the low-order byte.

lpSource
[in] Specifies the location of the message definition. The type of this parameter depends upon the settings in the
dwFlags parameter.

If neither of these flags is set in dwFlags, then lpSource is ignored.

dwMessageId
[in] Specifies the message identifier for the requested message. This parameter is ignored if dwFlags includes
FORMAT_MESSAGE_FROM_STRING.

dwLanguageId
[in] Specifies the language identifier for the requested message. This parameter is ignored if dwFlags includes
FORMAT_MESSAGE_FROM_STRING.

If you pass a specific LANGID in this parameter, FormatMessage will return a message for that LANGID only.
If the function cannot find a message for that LANGID, it returns
ERROR_RESOURCE_LANG_NOT_FOUND. If you pass in zero, FormatMessage looks for a message for
LANGIDs in the following order:

Language neutral

Thread LANGID, based on the thread's locale value

User default LANGID, based on the user's default locale value

System default LANGID, based on the system default locale value

FORMAT_MESSAGE_ARGUMENT_A
RRAY

Specifies that the Arguments parameter is not a va_list structure, but
instead is just a pointer to an array of values that represent the argu-
ments.

Value Meaning

0 There are no output line width restrictions. The function stores line
breaks that are in the message definition text into the output buffer.

A nonzero value other than
FORMAT_MESSAGE_MAX_WIDT
H_MASK

The nonzero value is the maximum number of characters in an output
line. The function ignores regular line breaks in the message definition
text. The function never splits a string delimited by white space across a
line break. The function stores hard-coded line breaks in the message
definition text into the output buffer. Hard-coded line breaks are coded
with the %n escape sequence.

FORMAT_MESSAGE_MAX_WIDT
H_MASK

The function ignores regular line breaks in the message definition text.
The function stores hard-coded line breaks in the message definition
text into the output buffer. The function generates no new line breaks.

dwFlags Setting Parameter Type

FORMAT_MESSAGE_FROM_HMO
DULE

This parameter is a handle to the module that contains the message table
to search.

FORMAT_MESSAGE_FROM_STRI
NG

This parameter is a pointer to a string that consists of unformatted mes-
sage text. It will be scanned for inserts and formatted accordingly.
Page 137



Volume 1
US English

If FormatMessage doesn't find a message for any of the preceding LANGIDs, it returns any language message
string that is present. If that fails, it returns ERROR_RESOURCE_LANG_NOT_FOUND.

lpBuffer
[out] Pointer to a buffer for the formatted (and null-terminated) message. If dwFlags includes
FORMAT_MESSAGE_ALLOCATE_BUFFER, the function allocates a buffer using the LocalAlloc func-
tion, and places the pointer to the buffer at the address specified in lpBuffer.

nSize
[in] If the FORMAT_MESSAGE_ALLOCATE_BUFFER flag is not set, this parameter specifies the maximum
number of TCHARs that can be stored in the output buffer. If FORMAT_MESSAGE_ALLOCATE_BUFFER is
set, this parameter specifies the minimum number of TCHARs to allocate for an output buffer. For ANSI text,
this is the number of bytes; for Unicode text, this is the number of characters.

Arguments
[in] Pointer to an array of values that are used as insert values in the formatted message. A %1 in the format
string indicates the first value in the Arguments array; a %2 indicates the second argument; and so on.

The interpretation of each value depends on the formatting information associated with the insert in the message
definition. The default is to treat each value as a pointer to a null-terminated string.

By default, the Arguments parameter is of type va_list*, which is a language- and implementation-specific data
type for describing a variable number of arguments. If you do not have a pointer of type va_list*, then specify
the FORMAT_MESSAGE_ARGUMENT_ARRAY flag and pass a pointer to an array of values; those values are
input to the message formatted as the insert values. Each insert must have a corresponding element in the array.

Windows 95: No single insertion string may exceed 1023 characters in length.

Return Values
If the function succeeds, the return value is the number of TCHARs stored in the output buffer, excluding the termi-
nating null character.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The FormatMessage function can be used to obtain error message strings for the system error codes returned by Get-
LastError, as shown in the following sample code.

LPVOID lpMsgBuf;

FormatMessage(

FORMAT_MESSAGE_ALLOCATE_BUFFER |

FORMAT_MESSAGE_FROM_SYSTEM |

FORMAT_MESSAGE_IGNORE_INSERTS,

NULL,

GetLastError(),

MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language

(LPTSTR) &lpMsgBuf,

0,

NULL

);

// Process any inserts in lpMsgBuf.

// ...

// Display the string.

MessageBox( NULL, (LPCTSTR)lpMsgBuf, "Error", MB_OK | MB_ICONINFORMATION );
Page 138



Win32 API Reference
// Free the buffer.

LocalFree( lpMsgBuf );

Within the message text, several escape sequences are supported for dynamically formatting the message. These
escape sequences and their meanings are shown in the following table. All escape sequences start with the percent
character (%).

Any other nondigit character following a percent character is formatted in the output message without the percent
character. Following are some examples:

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Error Handling Overview, Error Handling Functions, MESSAGETABLE Resource, Message Com-
piler

Escape Sequence Meaning

%0 Terminates a message text line without a trailing newline character. This escape
sequence can be used to build up long lines or to terminate the message itself without
a trailing newline character. It is useful for prompt messages.

%n!printf format string! Identifies an insert. The value of n can be in the range 1 through 99. The printf format
string (which must be bracketed by exclamation marks) is optional and defaults to !s!
if not specified.

The printf format string can contain the * specifier for either the precision or the
width component. If * is specified for one component, the FormatMessage function
uses insert %n+1; it uses %n+2 if * is specified for both components.

Floating-point printf format specifiers — e, E, f, and g — are not supported. The
workaround is to to use the sprintf function to format the floating-point number into a
temporary buffer, then use that buffer as the insert string.

Format string Resulting output

%% A single percent sign in the formatted message text.

%n A hard line break when the format string occurs at the end of a line. This format string
is useful when FormatMessage is supplying regular line breaks so the message fits in
a certain width.

%space A space in the formatted message text. This format string can be used to ensure the
appropriate number of trailing spaces in a message text line.

%. A single period in the formatted message text. This format string can be used to
include a single period at the beginning of a line without terminating the message text
definition.

%! A single exclamation point in the formatted message text. This format string can be
used to include an exclamation point immediately after an insert without its being mis-
taken for the beginning of a printf format string.
Page 139



Volume 1
1.94 FreeConsole

The FreeConsole function detaches the calling process from its console.

FreeConsole: procedure;
stdcall;
returns( "eax" );
external( "__imp__FreeConsole@0" );

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If other processes share the console, the console is not destroyed, but the calling process cannot refer to it.

A process can use FreeConsole to detach itself from its current console, and then it can call the AllocConsole func-
tion to create a new console.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wincon.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, AllocConsole

1.95 FreeEnvironmentStrings

The FreeEnvironmentStrings function frees a block of environment strings.

FreeEnvironmentStrings: procedure
(

lpszEnvironmentBlock: string
);

stdcall;
returns( "eax" );
external( "__imp__FreeEnvironmentStringsA@4" );

Parameters

lpszEnvironmentBlock
[in] Pointer to a block of environment strings. The pointer to the block must be obtained by calling the GetEn-
vironmentStrings function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero To get extended error information, call GetLastError.
Page 140



Win32 API Reference
Remarks
When GetEnvironmentStrings is called, it allocates memory for a block of environment strings. When the block is
no longer needed, it should be freed by calling FreeEnvironmentStrings.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Processes and Threads Overview, Process and Thread Functions, GetEnvironmentStrings

1.96 FreeLibrary

The FreeLibrary function decrements the reference count of the loaded dynamic-link library (DLL). When the refer-
ence count reaches zero, the module is unmapped from the address space of the calling process and the handle is no
longer valid.

FreeLibrary: procedure
(

hModule:dword
);

stdcall;
returns( "eax" );
external( "__imp__FreeLibrary@4" );

Parameters

hModule
[in, out] Handle to the loaded DLL module. The LoadLibrary or GetModuleHandle function returns this han-
dle.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Each process maintains a reference count for each loaded library module. This reference count is incremented each
time LoadLibrary is called and is decremented each time FreeLibrary is called. A DLL module loaded at process
initialization due to load-time dynamic linking has a reference count of one. This count is incremented if the same
module is loaded by a call to LoadLibrary.

Before unmapping a library module, the system enables the DLL to detach from the process by calling the DLL's
DllMain function, if it has one, with the DLL_PROCESS_DETACH value. Doing so gives the DLL an opportunity
to clean up resources allocated on behalf of the current process. After the entry-point function returns, the library
module is removed from the address space of the current process.

It is not safe to call FreeLibrary from DllMain. For more information, see the Remarks section in DllMain.

Calling FreeLibrary does not affect other processes using the same library module.
Page 141



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Dynamic-Link Libraries Overview, Dynamic-Link Library Functions, DllMain, FreeLibraryAndExitThread, Get-
ModuleHandle, LoadLibrary

1.97 FreeLibraryAndExitThread

The FreeLibraryAndExitThread function decrements the reference count of a loaded dynamic-link library (DLL)
by one, and then calls ExitThread to terminate the calling thread. The function does not return.

The FreeLibraryAndExitThread function gives threads that are created and executed within a dynamic-link library
an opportunity to safely unload the DLL and terminate themselves.

FreeLibraryAndExitThread: procedure
(

hModule: dword;
dwExitCode: dword

);
stdcall;
returns( "eax" );
external( "__imp__FreeLibraryAndExitThread@8" );

Parameters

hModule
[in] Handle to the DLL module whose reference count the function decrements. The LoadLibrary or GetMod-
uleHandle function returns this handle.

dwExitCode
[in] Specifies the exit code for the calling thread.

Return Values
The function has no return value. The function does not return. Invalid hModule handles are ignored.

Remarks
The FreeLibraryAndExitThread function is implemented as:

FreeLibrary(hModule);

ExitThread(dwExitCode);

Refer to the reference pages for FreeLibrary and ExitThread for further information on those functions.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Page 142



Win32 API Reference
See Also
Dynamic-Link Libraries Overview, Dynamic-Link Library Functions, FreeLibrary, ExitThread, DisableThreadLi-
braryCalls

1.98 FreeResource

The FreeResource function is obsolete. It is provided only for compatibility with 16-bit Windows. It is not necessary
for Win32-based applications to free resources loaded by using the LoadResource function. A resource is automati-
cally freed when its module is unloaded.

To save memory and decrease the size of your process's working set, Win32-based applications should release the
memory associated with resources by calling the following functions.

See Also
Resources Overview, Resource Functions

1.99 GenerateConsoleCtrlEvent

The GenerateConsoleCtrlEvent function sends a specified signal to a console process group that shares the console
associated with the calling process.

GenerateConsoleCtrlEvent: procedure
(

dwCtrlEvent: dword;
dwProcessGroupId: dword

);
stdcall;
returns( "eax" );
external( "__imp__GenerateConsoleCtrlEvent@8" );

Parameters

dwCtrlEvent
[in] Specifies the type of signal to generate. This parameter can be one of the following values.

dwProcessGroupId

Resource Release function

Accelerator table DestroyAcceleratorTable

Bitmap DeleteObject

Cursor DestroyCursor

Icon DestroyIcon

Menu DestroyMenu

Value Meaning

CTRL_C_EVENT Generates a CTRL+C signal.

CTRL_BREAK_EVENT Generates a CTRL+BREAK signal.
Page 143



Volume 1
[in] Specifies the identifier of the process group that receives the signal. A process group is created when the
CREATE_NEW_PROCESS_GROUP flag is specified in a call to the CreateProcess function. The process
identifier of the new process is also the process group identifier of a new process group. The process group
includes all processes that are descendants of the root process. Only those processes in the group that share the
same console as the calling process receive the signal. In other words, if a process in the group creates a new con-
sole, that process does not receive the signal, nor do its descendants.

If this parameter is zero, the signal is generated in all processes that share the console of the calling process.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
GenerateConsoleCtrlEvent causes the control handler functions of processes in the target group to be called. All
console processes have a default handler function that calls the ExitProcess function. A console process can use
the SetConsoleCtrlHandler function to install or remove other handler functions.

SetConsoleCtrlHandler can also enable an inheritable attribute that causes the calling process to ignore CTRL+C
signals. If GenerateConsoleCtrlEvent sends a CTRL+C signal to a process for which this attribute is enabled, the
handler functions for that process are not called. CTRL+BREAK signals always cause the handler functions to be
called.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, CreateProcess, ExitProcess, SetConsoleCtrl-
Handler

1.100 GetACP

The GetACP function retrieves the current ANSI code-page identifier for the system.

GetACP: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetACP@0" );

Parameters
This function has no parameters.

Return Values
The return value is the current ANSI code-page identifier for the system, or a default identifier if no code page is cur-
rent.

Remarks
The following are the ANSI code-page identifiers.

Identifier Meaning
Page 144



Win32 API Reference
MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Windows 2000: The return value for the Indic languages is 0, because they are Unicode only.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, GetCPInfo, GetOEMCP

1.101 GetAtomName

The GetAtomName function retrieves a copy of the character string associated with the specified local atom.

GetAtomName: procedure
(

nAtom: ATOM;
VAR lpBuffer: var;

nSize: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetAtomNameA@12" );

Parameters

nAtom
[in] Specifies the local atom that identifies the character string to be retrieved.

874 Thai

932 Japan

936 Chinese (PRC, Singapore)

949 Korean

950 Chinese (Taiwan; Hong Kong SAR, PRC)

1200 Unicode (BMP of ISO 10646)

1250 Windows 3.1 Eastern European

1251 Windows 3.1 Cyrillic

1252 Windows 3.1 Latin 1 (US, Western Europe)

1253 Windows 3.1 Greek

1254 Windows 3.1 Turkish

1255 Hebrew

1256 Arabic

1257 Baltic
Page 145



Volume 1
lpBuffer
[out] Pointer to the buffer for the character string.

nSize
[in] Specifies the size, in TCHARs, of the buffer. For ANSI versions of the function this is the number of bytes,
while for wide-character (Unicode) versions this is the number of characters.

Return Values
If the function succeeds, the return value is the length of the string copied to the buffer, in TCHARs, not including
the terminating null character.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The string returned for an integer atom (an atom whose value is in the range 0x0001 to 0xBFFF) is a null-terminated
string in which the first character is a pound sign (#) and the remaining characters represent the unsigned integer atom
value.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Atoms Overview, Atom Functions, AddAtom, DeleteAtom, FindAtom, GlobalAddAtom, GlobalDeleteAtom, Glo-
balFindAtom, GlobalGetAtomName, MAKEINTATOM

1.102 GetBinaryType

The GetBinaryType function determines whether a file is executable, and if so, what type of executable file it is.
That last property determines which subsystem an executable file runs under.

GetCPInfo: procedure
(

lpApplicationName: string;
var lpBinaryType: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetCPInfo@8" );

Parameters

lpApplicationName
[in] Pointer to a null-terminated string that contains the full path of the file whose binary type the function shall
determine.

In the ANSI version of this function, the name is limited to MAX_PATH characters. To extend this limit to nearly
32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to the path. For more infor-
mation, see File Name Conventions.

lpBinaryType
[out] Pointer to a variable to receive information about the executable type of the file specified by lpApplication-
Page 146



Win32 API Reference
Name. The function adjusts a set of bit flags in this variable. The following bit flag constants are defined.

Return Values
If the file is executable, the return value is nonzero. The function sets the variable pointed to by lpBinaryType to indi-
cate the file's executable type.

If the function is not executable, or if the function fails, the return value is zero. To get extended error information,
call GetLastError.

Remarks
As an alternative, you can obtain the same information by calling the SHGetFileInfo function, passing the
SHGFI_EXETYPE flag in the uFlags parameter.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions

1.103 GetCPInfoEx

The GetCPInfoEx function retrieves information about any valid installed or available code page.

GetCPInfoEx: procedure

(

CodePage: uns32;

dwFlags: dword;

var lpCPInfoEx: CPINFOEX

);

stdcall;

returns( "eax" );

external( "__imp__GetCPInfoExA@12" );

Parameters

CodePage

Value Description

SCS_32BIT_BINARY A Win32-based application

SCS_DOS_BINARY An MS-DOS – based application

SCS_OS216_BINARY A 16-bit OS/2-based application

SCS_PIF_BINARY A PIF file that executes an MS-DOS – based application

SCS_POSIX_BINARY A POSIX – based application

SCS_WOW_BINARY A 16-bit Windows-based application
Page 147



Volume 1
[in] Specifies the code page about which information is to be retrieved. You can specify the code-page identifier
for any installed or available code page, or you can specify one of the following predefined values.

dwFlags
Reserved. Must be zero.

lpCPInfoEx
[out] Pointer to a CPINFOEX structure that receives information about the code page.

Return Values
If the function succeeds, the return values is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the specified code page is not installed or not available, the GetCPInfoEx function sets the last-error value to
ERROR_INVALID_PARAMETER.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, GetACP, GetOEMCP, CPINFOEX

1.104 GetCommConfig

The GetCommConfig function retrieves the current configuration of a communications device.

GetCommConfig: procedure
(

hCommDev: dword;
var lpCC: COMMCONFIG;
var lpdwSize: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetCommConfig@12" );

Parameters

hCommDev
[in] Handle to the open communications device.

lpCC

Value Meaning

CP_ACP Use the system default–ANSI code page.

CP_MACCP Windows NT/2000: Use the system default–Macintosh code page.

CP_OEMCP Use the system default–OEM code page.
Page 148



Win32 API Reference
[out] Pointer to a buffer that receives a COMMCONFIG structure.

lpdwSize
[in/out] Pointer to a variable that specifies the size, in bytes, of the buffer pointed to by lpCC. When the function
returns, the variable contains the number of bytes copied if the function succeeds, or the number of bytes
required if the buffer was too small.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the GetLastError function.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, SetCommConfig, COMMCONFIG

1.105 GetCommMask

The GetCommMask function retrieves the value of the event mask for a specified communications device.

GetCommMask: procedure

(

hFile: dword;

var lpEvtMask: dword

);

stdcall;

returns( "eax" );

external( "__imp__GetCommMask@8" );

Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

lpEvtMask
[out] Pointer to the variable to be filled with a mask of events that are currently enabled. This parameter can be
one or more of the following values.

Value Meaning

EV_BREAK A break was detected on input.

EV_CTS The CTS (clear-to-send) signal changed state.

EV_DSR The DSR (data-set-ready) signal changed state.
Page 149



Volume 1
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetCommMask function uses a mask variable to indicate the set of events that can be monitored for a particular
communications resource. A handle to the communications resource can be specified in a call to the WaitCom-
mEvent function, which waits for one of the events to occur. To modify the event mask of a communications
resource, use the SetCommMask function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, CreateFile, DCB, SetCommMask, WaitCommEvent

1.106 GetCommModemStatus

The GetCommModemStatus function retrieves modem control-register values.

GetCommModemStatus: procedure
(

hFile: dword;
var lpModemStat: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetCommModemStatus@8" );

EV_ERR A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN,
and CE_RXPARITY.

EV_EVENT1 An event of the first provider-specific type occurred.

EV_EVENT2 An event of the second provider-specific type occurred.

EV_PERR A printer error occurred.

EV_RING A ring indicator was detected.

EV_RLSD The RLSD (receive-line-signal-detect) signal changed state.

EV_RX80FULL The receive buffer is 80 percent full.

EV_RXCHAR A character was received and placed in the input buffer.

EV_RXFLAG The event character was received and placed in the input buffer. The event character
is specified in the device's DCB structure, which is applied to a serial port by using the
SetCommState function.

EV_TXEMPTY The last character in the output buffer was sent.
Page 150



Win32 API Reference
Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

lpModemStat
[out] Pointer to a variable that specifies the current state of the modem control-register values. This parameter
can be one or more of the following values.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetCommModemStatus function is useful when you are using the WaitCommEvent function to monitor the
CTS, RLSD, DSR, or ring indicator signals. To detect when these signals change state, use WaitCommEvent and then
use GetCommModemStatus to determine the state after a change occurs.

The function fails if the hardware does not support the control-register values.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, CreateFile, WaitCommEvent

1.107 GetCommProperties

The GetCommProperties function retrieves information about the communications properties for a specified com-
munications device.

GetCommProperties: procedure
(

hFile: dword;
var lpCommProp: COMMPROP

);
stdcall;
returns( "eax" );
external( "__imp__GetCommProperties@8" );

Value Meaning

MS_CTS_ON The CTS (clear-to-send) signal is on.

MS_DSR_ON The DSR (data-set-ready) signal is on.

MS_RING_ON The ring indicator signal is on.

MS_RLSD_ON The RLSD (receive-line-signal-detect) signal is on.
Page 151



Volume 1
Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

lpCommProp
[out] Pointer to a COMMPROP structure in which the communications properties information is returned. This
information can be used in subsequent calls to the SetCommState, SetCommTimeouts, or SetupComm func-
tion to configure the communications device.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetCommProperties function returns information from a device driver about the configuration settings that are
supported by the driver.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, COMMPROP, CreateFile, SetCommState, SetCommTime-
outs, SetupComm

1.108 GetCommState

The GetCommState function retrieves the current control settings for a specified communications device.

GetCommState: procedure
(

hFile: dword;
var lpDCB: DCB

);
stdcall;
returns( "eax" );
external( "__imp__GetCommState@8" );

Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

lpDCB
[out] Pointer to a DCB structure that receives the control settings information.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
Page 152



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, CreateFile, DCB, SetCommState

1.109 GetCommTimeouts

The GetCommTimeouts function retrieves the time-out parameters for all read and write operations on a specified
communications device.

GetCommTimeouts: procedure
(

hFile: dword;
var lpCommTimeouts: COMMTIMEOUTS

);
stdcall;
returns( "eax" );
external( "__imp__GetCommTimeouts@8" );

Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

lpCommTimeouts
[out] Pointer to a COMMTIMEOUTS structure in which the time-out information is returned.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
For more information about time-out values for communications devices, see the SetCommTimeouts function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, CreateFile, COMMTIMEOUTS, SetCommTimeouts

1.110 GetCommandLine

The GetCommandLine function retrieves the command-line string for the current process.
Page 153



Volume 1
GetCommandLine: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetCommandLineA@0" );

Parameters
This function has no parameters.

Return Values
The return value is a pointer to the command-line string (zero-terminated) for the current process.

Remarks
ANSI console processes written in C can use the argc and argv arguments of the main function to access the com-
mand-line arguments. ANSI GUI applications can use the lpCmdLine parameter of the WinMain function to access
the command-line string, excluding the program name. The reason that main and WinMain cannot return Unicode
strings is that argc, argv, and lpCmdLine use the LPSTR data type for parameters, not the LPTSTR data type. The
GetCommandLine function can be used to access Unicode strings, because it uses the LPTSTR data type.

To convert the command line to an argv style array of strings, call the CommandLineToArgvW function.

Note The name of the executable in the command line that the operating system provides to a process is not necessar-
ily identical to that in the command line that the calling process gives to the CreateProcess function. The operating
system may prepend a fully qualified path to an executable name that is provided without a fully qualified path.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CommandLineToArgvW, CreateProcess, WinMain

1.111 GetCompressedFileSize

The GetCompressedFileSize function retrieves the actual number of bytes of disk storage used to store a specified
file. If the file is located on a volume that supports compression, and the file is compressed, the value obtained is the
compressed size of the specified file. If the file is located on a volume that supports sparse files, and the file is a
sparse file, the value obtained is the sparse size of the specified file.

GetCompressedFileSize: procedure

(

lpFileName: string;

var lpFileSizeHigh: dword

);

stdcall;

returns( "eax" );

external( "__imp__GetCompressedFileSizeA@8" );

Parameters

lpFileName
Page 154



Win32 API Reference
[in] Pointer to a null-terminated string that specifies the name of the file.

Do not specify the name of a file on a nonseeking device, such as a pipe or a communications device, as its file
size has no meaning.

lpFileSizeHigh
[out] Pointer to a variable that receives the high-order DWORD of the compressed file size. The function's return
value is the low-order DWORD of the compressed file size.

This parameter can be NULL if the high-order DWORD of the compressed file size is not needed. Files less than
4 gigabytes in size do not need the high-order DWORD.

Return Values
If the function succeeds, the return value is the low-order DWORD of the actual number of bytes of disk storage used
to store the specified file, and if lpFileSizeHigh is non-NULL, the function puts the high-order DWORD of that
actual value into the DWORD pointed to by that parameter. This is the compressed file size for compressed files, the
actual file size for noncompressed files.

If the function fails, and lpFileSizeHigh is NULL, the return value is INVALID_FILE_SIZE. To get extended error
information, call GetLastError.

If the return value is INVALID_FILE_SIZE and lpFileSizeHigh is non-NULL, an application must call GetLastEr-
ror to determine whether the function has succeeded (value is NO_ERROR) or failed (value is other than
NO_ERROR).

Remarks
An application can determine whether a volume is compressed by calling GetVolumeInformation, then checking the
status of the FS_VOL_IS_COMPRESSED flag in the DWORD value pointed to by that function's lpFileSystem-
Flags parameter.

If the file is not located on a volume that supports compression or sparse files, or if the file is not compressed or a
sparse file, the value obtained is the actual file size, the same as the value returned by a call to GetFileSize.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
File Systems Overview, File System Functions, GetFileSize, GetVolumeInformation

1.112 GetComputerName

The GetComputerName function retrieves the NetBIOS name of the local computer. This name is established at
system startup, when the system reads it from the registry.

If the local computer is a node in a cluster, GetComputerName returns the name of the node.

Windows 2000: GetComputerName retrieves only the NetBIOS name of the local computer. To retrieve the DNS
host name, DNS domain name, or the fully qualified DNS name, call the GetComputerNameEx function.

Windows 2000: Additional information is provided by the IADsADSystemInfo interface.

GetComputerName: procedure
(

var lpBuffer: var;
Page 155



Volume 1
var lpnSize: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetComputerNameA@8" );

Parameters

lpBuffer
[out] Pointer to a buffer that receives a null-terminated string containing the computer name. The buffer size
should be large enough to contain MAX_COMPUTERNAME_LENGTH + 1 characters.

lpnSize
[in/out] On input, specifies the size, in TCHARs, of the buffer. On output, receives the number of TCHARs cop-
ied to the destination buffer, not including the terminating null character.

If the buffer is too small, the function fails and GetLastError returns ERROR_BUFFER_OVERFLOW.

Windows 95/98: GetComputerName fails if the input size is less than MAX_COMPUTERNAME_LENGTH +
1.

Return Values
If the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetComputerName function retrieves the NetBIOS name established at system startup. Name changes made by
the SetComputerName or SetComputerNameEx functions do not take effect until the user restarts the computer.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
System Information Overview, System Information Functions, GetComputerNameEx, SetComputerName, SetCom-
puterNameEx

1.113 GetConsoleCP

Windows NT/2000: The GetConsoleCP function retrieves the input code page used by the console associated with
the calling process. A console uses its input code page to translate keyboard input into the corresponding character
value.

Windows 95: On Japanese and Korean implementations of Windows 95, the GetConsoleCP function returns the
VM code page, because the OEM code page can be either 437 or DBCS. On all other implementations of Windows
95, the GetConsoleCP function returns the OEM code page.

GetConsoleCP: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetConsoleCP@0" );
Page 156



Win32 API Reference
Parameters
This function has no parameters.

Return Values
The return value is a code that identifies the code page.

Remarks
A code page maps 256 character codes to individual characters. Different code pages include different special charac-
ters, typically customized for a language or a group of languages.

To set a console's input code page, use the SetConsoleCP function. To set and query a console's output code page,
use the SetConsoleOutputCP and GetConsoleOutputCP functions.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, GetConsoleOutputCP,
SetConsoleCP, SetConsoleOutputCP

1.114 GetConsoleCursorInfo

The GetConsoleCursorInfo function retrieves information about the size and visibility of the cursor for the specified
console screen buffer.

GetConsoleCursorInfo: procedure
(

hConsoleOutput: dword;
var lpConsoleCursorInfo: CONSOLE_CURSOR_INFO

);
stdcall;
returns( "eax" );
external( "__imp__GetConsoleCursorInfo@8" );

Parameters

hConsoleOutput
[in] Handle to a console screen buffer. The handle must have GENERIC_READ access.

lpConsoleCursorInfo
[out] Pointer to a CONSOLE_CURSOR_INFO structure in which information about the console's cursor is returned.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Page 157



Volume 1
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, CONSOLE_CURSOR_INFO,
SetConsoleCursorInfo

1.115 GetConsoleMode

The GetConsoleMode function retrieves the current input mode of a console's input buffer or the current output
mode of a console screen buffer.

GetConsoleMode: procedure
(

hConsoleHandle: dword;
var lpMode: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetConsoleMode@8" );

Parameters

hConsoleHandle
[in] Handle to a console input buffer or a screen buffer. The handle must have GENERIC_READ access.

lpMode
[out] Pointer to a variable that indicates the current mode of the specified buffer.

If the hConsoleHandle parameter is an input handle, the mode can be a combination of the following values.
When a console is created, all input modes except ENABLE_WINDOW_INPUT are enabled by default.

Value Meaning

ENABLE_LINE_INPUT The ReadFile or ReadConsole function returns only when
a carriage return character is read. If this mode is disabled,
the functions return when one or more characters are avail-
able.

ENABLE_ECHO_INPUT Characters read by the ReadFile or ReadConsole function
are written to the active screen buffer as they are read. This
mode can be used only if the ENABLE_LINE_INPUT mode
is also enabled.

ENABLE_PROCESSED_INPUT CTRL+C is processed by the system and is not placed in the
input buffer. If the input buffer is being read by ReadFile or
ReadConsole, other control keys are processed by the sys-
tem and are not returned in the ReadFile or ReadConsole
buffer. If the ENABLE_LINE_INPUT mode is also enabled,
backspace, carriage return, and linefeed characters are han-
dled by the system.
Page 158



Win32 API Reference
If the hConsoleHandle parameter is a screen buffer handle, the mode can be a combination of the following val-
ues. When a screen buffer is created, both output modes are enabled by default.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
A console consists of an input buffer and one or more screen buffers. The mode of a console buffer determines how
the console behaves during input or output (I/O) operations. One set of flag constants is used with input handles, and
another set is used with screen buffer (output) handles. Setting the output modes of one screen buffer does not affect
the output modes of other screen buffers.

The ENABLE_LINE_INPUT and ENABLE_ECHO_INPUT modes only affect processes that use ReadFile or
ReadConsole to read from the console's input buffer. Similarly, the ENABLE_PROCESSED_INPUT mode prima-
rily affects ReadFile and ReadConsole users, except that it also determines whether CTRL+C input is reported in the
input buffer (to be read by the ReadConsoleInput function) or is passed to a function defined by the application.

The ENABLE_WINDOW_INPUT and ENABLE_MOUSE_INPUT modes determine whether user interactions
involving window resizing and mouse actions are reported in the input buffer or discarded. These events can be read
by ReadConsoleInput, but they are always filtered by ReadFile and ReadConsole.

The ENABLE_PROCESSED_OUTPUT and ENABLE_WRAP_AT_EOL_OUTPUT modes only affect processes
using ReadFile or ReadConsole and WriteFile or WriteConsole.

To change a console's I/O modes, call SetConsoleMode function.

ENABLE_WINDOW_INPUT User interactions that change the size of the console screen
buffer are reported in the console's input buffer. Information
about these events can be read from the input buffer by appli-
cations using the ReadConsoleInput function, but not by
those using ReadFile or ReadConsole.

ENABLE_MOUSE_INPUT If the mouse pointer is within the borders of the console win-
dow and the window has the keyboard focus, mouse events
generated by mouse movement and button presses are placed
in the input buffer. These events are discarded by ReadFile

or ReadConsole, even when this mode is enabled.

Value Meaning

ENABLE_PROCESSED_OUTPUT Characters written by the WriteFile or WriteCon-
sole function or echoed by the ReadFile or ReadCon-
sole function are parsed for ASCII control sequences,
and the correct action is performed. Backspace, tab, bell,
carriage return, and linefeed characters are processed.

ENABLE_WRAP_AT_EOL_OUTPUT When writing with WriteFile or WriteConsole or echo-
ing with ReadFile or ReadConsole, the cursor moves to
the beginning of the next row when it reaches the end of
the current row. This causes the rows displayed in the
console window to scroll up automatically when the cur-
sor advances beyond the last row in the window. It also
causes the contents of the screen buffer to scroll up (dis-
carding the top row of the screen buffer) when the cursor
advances beyond the last row in the screen buffer. If this
mode is disabled, the last character in the row is over-
written with any subsequent characters.
Page 159



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, ReadConsole, ReadConsoleInput, ReadFile,
SetConsoleMode, WriteConsole, WriteFile

1.116 GetConsoleOutputCP

Windows NT/2000: The GetConsoleOutputCP function retrieves the output code page used by the console associ-
ated with the calling process. A console uses its output code page to translate the character values written by the vari-
ous output functions into the images displayed in the console window.

Windows 95: On Japanese and Korean implementations of Windows 95, the GetConsoleOutputCP function returns
the VM code page, because the OEM code page can be either 437 or DBCS. On all other implementations of Win-
dows 95, the GetConsoleOutputCP function returns the OEM code page.

GetConsoleOutputCP: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetConsoleOutputCP@0" );

Parameters
This function has no parameters.

Return Values
The return value is a code that identifies the code page.

Remarks
A code page maps 256 character codes to individual characters. Different code pages include different special charac-
ters, typically customized for a language or a group of languages.

To set a console's output code page, use the SetConsoleOutputCP function. To set and query a console's input code
page, use the SetConsoleCP and GetConsoleCP functions.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, GetConsoleCP, SetCon-
soleCP, SetConsoleOutputCP

1.117 GetConsoleScreenBufferInfo

The GetConsoleScreenBufferInfo function retrieves information about the specified console screen buffer.
Page 160



Win32 API Reference
GetConsoleScreenBufferInfo: procedure
(

handle: dword;
var csbi: CONSOLE_SCREEN_BUFFER_INFO

);
stdcall;
returns( "eax" );
external( "__imp__GetConsoleScreenBufferInfo@8" );

Parameters

hConsoleOutput
[in] Handle to a console screen buffer. The handle must have GENERIC_READ access.

lpConsoleScreenBufferInfo
[out] Pointer to a CONSOLE_SCREEN_BUFFER_INFO structure in which the screen buffer information is returned.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The rectangle returned in the srWindow member of the CONSOLE_SCREEN_BUFFER_INFO structure can be modified
and then passed to the SetConsoleWindowInfo function to scroll the screen buffer in the window, to change the
size of the window, or both.

All coordinates returned in the CONSOLE_SCREEN_BUFFER_INFO structure are in character-cell coordinates,
where the origin (0, 0) is at the upper-left corner of the screen buffer.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, CONSOLE_SCREEN_BUFFER_INFO, Get-
LargestConsoleWindowSize, SetConsoleCursorPosition, SetConsoleScreenBufferSize, SetConsoleWindowInfo

1.118 GetConsoleTitle

The GetConsoleTitle function retrieves the title bar string for the current console window.

GetConsoleTitle: procedure
(

var lpConsoleTitle: var;
nSize: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetConsoleTitleA@8" );
Page 161



Volume 1
Parameters

lpConsoleTitle
[out] Pointer to a buffer that receives a null-terminated string containing the text that appears in the title bar of
the console window.

nSize
[in] Specifies the size, in characters, of the buffer pointed to by the lpConsoleTitle parameter.

Return Values
If the function succeeds, the return value is the length, in characters, of the string copied to the buffer.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
To set the title bar string for a console window, use the SetConsoleTitle function.

Windows NT/2000: This function uses either Unicode characters or 8-bit characters from the console's current code
page. The console's code page defaults initially to the system's OEM code page. To change the console's code page,
use the SetConsoleCP or SetConsoleOutputCP functions, or use the chcp or mode con cp select= commands.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, SetConsoleCP, SetCon-
soleOutputCP, SetConsoleTitle

1.119 GetConsoleWindow

The GetConsoleWindow function retrieves the window handle used by the console associated with the calling pro-
cess.

GetConsoleWindow: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetConsoleWindow@0" );

Parameters
None.

Return Values
The return value is a handle to the window used by the console associated with the calling process or NULL if there
is no such associated console.

See Also
Consoles and Character Support Overview, Console Functions
Page 162



Win32 API Reference
1.120 GetCurrencyFormat

The GetCurrencyFormat function formats a number string as a currency string for a specified locale.

GetCurrencyFormat: procedure
(

Locale: LCID;
dwFlags: dword;
lpValue: string;

var lpFormat: CURRENCYFMT;
var lpCurrencyStr: var;

cchCurrency: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetCurrencyFormatA@24" );

Parameters

Locale
[in] Specifies the locale for which the currency string is to be formatted. If lpFormat is NULL, the function for-
mats the string according to the currency format for this locale. If lpFormat is not NULL, the function uses the
locale only for formatting information not specified in the CURRENCYFMT structure (for example, the locale's
string value for the negative sign).

This parameter can be a locale identifier created by the MAKELCID macro, or one of the following predefined val-
ues.

dwFlags
[in] Controls the operation of the function. If lpFormat is non-NULL, this parameter must be zero.

If lpFormat is NULL, you can specify the LOCALE_NOUSEROVERRIDE flag to format the string using the
system default currency format for the specified locale; or you can specify zero to format the string using any
user overrides to the locale's default currency format.

lpValue
[in] Pointer to a null-terminated string containing the number string to format.

This string can contain only the following characters:

Characters '0' through '9'.

One decimal point (dot) if the number is a floating-point value.

A minus sign in the first character position if the number is a negative value.

All other characters are invalid. The function returns an error if the string pointed to by lpValue deviates from
these rules.

lpFormat
[in] Pointer to a CURRENCYFMT structure that contains currency formatting information. All members in the
structure pointed to by lpFormat must contain appropriate values.

If lpFormat is NULL, the function uses the currency format of the specified locale.

Value Meaning

LOCALE_SYSTEM_DEFAULT Default system locale.

LOCALE_USER_DEFAULT Default user locale.
Page 163



Volume 1
lpCurrencyStr
[out] Pointer to a buffer that receives the formatted currency string.

cchCurrency
[in] Specifies the size, in TCHARs, of the lpCurrencyStr buffer. If cchCurrency is zero, the function returns the
number of TCHARs required to hold the formatted currency string, and the buffer pointed to by lpCurrencyStr is
not used.

Return Values
If the function succeeds, the return value is the number of TCHARs written to the buffer pointed to by lpCurrencyStr,
or if the cchCurrency parameter is zero, the number of bytes or characters required to hold the formatted currency
string. The count includes the terminating null.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER

ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETER

Remarks
Windows 2000: The ANSI version of this function will fail if it is used with a Unicode-only LCID. See Language
Identifiers.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, GetNumberFormat, CURRENCYFMT

1.121 GetCurrentDirectory

The GetCurrentDirectory function retrieves the current directory for the current process.

GetCurrentDirectory: procedure
(

nBufferLength: dword;
var lpBuffer: var

);
stdcall;
returns( "eax" );
external( "__imp__GetCurrentDirectoryA@8" );

Parameters

nBufferLength
[in] Specifies the length, in TCHARs, of the buffer for the current directory string. The buffer length must
include room for a terminating null character.

lpBuffer
[out] Pointer to the buffer that receives the current directory string. This null-terminated string specifies the abso-
Page 164



Win32 API Reference
lute path to the current directory.

Return Values
If the function succeeds, the return value specifies the number of characters written to the buffer, not including the
terminating null character.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

If the buffer pointed to by lpBuffer is not large enough, the return value specifies the required size of the buffer,
including the number of bytes necessary for a terminating null character.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CreateDirectory, GetSystemDirectory, GetWindowsDirectory, RemoveDirec-
tory, SetCurrentDirectory

1.122 GetCurrentProcess

The GetCurrentProcess function retrieves a pseudo handle for the current process.

GetCurrentProcess: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetCurrentProcess@0" );

Parameters
This function has no parameters.

Return Values
The return value is a pseudo handle to the current process.

Remarks
A pseudo handle is a special constant that is interpreted as the current process handle. The calling process can use this
handle to specify its own process whenever a process handle is required. Pseudo handles are not inherited by child
processes.

This handle has the maximum possible access to the process object. For systems that support security descriptors, this
is the maximum access allowed by the security descriptor for the calling process. For systems that do not support
security descriptors, this is PROCESS_ALL_ACCESS. For more information, see Process Security and Access
Rights.

A process can create a "real" handle to itself that is valid in the context of other processes, or that can be inherited by
other processes, by specifying the pseudo handle as the source handle in a call to the DuplicateHandle function. A
process can also use the OpenProcess function to open a real handle to itself.

The pseudo handle need not be closed when it is no longer needed. Calling the CloseHandle function with a pseudo
handle has no effect. If the pseudo handle is duplicated by DuplicateHandle, the duplicate handle must be closed.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Page 165



Volume 1
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CloseHandle, DuplicateHandle, GetCurrentPro-
cessId, GetCurrentThread, OpenProcess

1.123 GetCurrentProcessId

The GetCurrentProcessId function retrieves the process identifier of the calling process.

GetCurrentProcessId: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetCurrentProcessId@0" );

Parameters
This function has no parameters.

Return Values
The return value is the process identifier of the calling process.

Remarks
Until the process terminates, the process identifier uniquely identifies the process throughout the system.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, GetCurrentProcess, OpenProcess

1.124 GetCurrentThread

The GetCurrentThread function retrieves a pseudo handle for the current thread.

GetCurrentThread: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetCurrentThread@0" );

Parameters
This function has no parameters.

Return Values
The return value is a pseudo handle for the current thread.
Page 166



Win32 API Reference
Remarks
A pseudo handle is a special constant that is interpreted as the current thread handle. The calling thread can use this
handle to specify itself whenever a thread handle is required. Pseudo handles are not inherited by child processes.

This handle has the maximum possible access to the thread object. For systems that support security descriptors, this
is the maximum access allowed by the security descriptor for the calling process. For systems that do not support
security descriptors, this is THREAD_ALL_ACCESS.

The function cannot be used by one thread to create a handle that can be used by other threads to refer to the first
thread. The handle is always interpreted as referring to the thread that is using it. A thread can create a "real" handle
to itself that can be used by other threads, or inherited by other processes, by specifying the pseudo handle as the
source handle in a call to the DuplicateHandle function.

The pseudo handle need not be closed when it is no longer needed. Calling the CloseHandle function with this han-
dle has no effect. If the pseudo handle is duplicated by DuplicateHandle, the duplicate handle must be closed.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CloseHandle, DuplicateHandle, GetCurrentProcess,
GetCurrentThreadId, OpenThread

1.125 GetCurrentThreadId

The GetCurrentThreadId function retrieves the thread identifier of the calling thread.

GetCurrentThreadId: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetCurrentThreadId@0" );

Parameters
This function has no parameters.

Return Values
The return value is the thread identifier of the calling thread.

Remarks
Until the thread terminates, the thread identifier uniquely identifies the thread throughout the system.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, GetCurrentThread, OpenThread
Page 167



Volume 1
1.126 GetDateFormat

The GetDateFormat function formats a date as a date string for a specified locale. The function formats either a
specified date or the local system date.

GetDateFormat: procedure
(

Locale: LCID;
dwFlags: dword;

var lpDate: SYSTEMTIME;
lpFormat: string;

var lpDateStr: var;
cchDate: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetDateFormatA@24" );

Parameters

Locale
[in] Specifies the locale for which the date string is to be formatted. If lpFormat is NULL, the function formats
the string according to the date format for this locale. If lpFormat is not NULL, the function uses the locale only
for information not specified in the format picture string (for example, the locale's day and month names).

This parameter can be a locale identifier created by the MAKELCID macro, or one of the following predefined val-
ues.

dwFlags
[in] Specifies various function options. If lpFormat is non-NULL, this parameter must be zero.

If lpFormat is NULL, you can specify a combination of the following values.

Value Meaning

LOCALE_SYSTEM_DEFAULT Default system locale.

LOCALE_USER_DEFAULT Default user locale.

Value Meaning

LOCALE_NOUSEROVERRIDE If set, the function formats the string using the system default–date for-
mat for the specified locale. If not set, the function formats the string
using any user overrides to the locale's default–date format.

LOCALE_USE_CP_ACP Uses the system ANSI code page for string translation instead of the
locale's code page.

DATE_SHORTDATE Uses the short date format. This is the default. This value cannot be
used with DATE_LONGDATE or DATE_YEARMONTH.

DATE_LONGDATE Uses the long date format. This value cannot be used with
DATE_SHORTDATE or DATE_YEARMONTH.

DATE_YEARMONTH Uses the year/month format. This value cannot be used with
DATE_SHORTDATE or DATE_LONGDATE.
Page 168



Win32 API Reference
If you do not specify either DATE_YEARMONTH, DATE_SHORTDATE, or DATE_LONGDATE, and lpFor-
mat is NULL, then DATE_SHORTDATE is the default.

lpDate
[in] Pointer to a SYSTEMTIME structure that contains the date information to be formatted. If this pointer is
NULL, the function uses the current local system date.

lpFormat
[in] Pointer to a format picture string that is used to form the date string. The format picture string must be zero
terminated. If lpFormat is NULL, the function uses the date format of the specified locale.

Use the following elements to construct a format picture string. If you use spaces to separate the elements in the
format string, these spaces will appear in the same location in the output string. The letters must be in uppercase
or lowercase as shown in the table (for example, "MM" not "mm"). Characters in the format string that are
enclosed in single quotation marks will appear in the same location and unchanged in the output string.

For example, to get the date string

DATE_USE_ALT_CALENDAR Uses the alternate calendar, if one exists, to format the date string. If
this flag is set, the function uses the default format for that alternate
calendar, rather than using any user overrides. The user overrides will
be used only in the event that there is no default format for the speci-
fied alternate calendar.

DATE_LTRREADING Adds marks for left-to-right reading layout. This value cannot be used
with DATE_RTLREADING.

DATE_RTLREADING Adds marks for right-to-left reading layout. This value cannot be used
with DATE_LTRREADING

Picture Meaning

d Day of month as digits with no leading zero for single-digit days.

dd Day of month as digits with leading zero for single-digit days.

ddd Day of week as a three-letter abbreviation. The function uses the
LOCALE_SABBREVDAYNAME value associated with the specified locale.

dddd Day of week as its full name. The function uses the LOCALE_SDAYNAME value associated
with the specified locale.

M Month as digits with no leading zero for single-digit months.

MM Month as digits with leading zero for single-digit months.

MMM Month as a three-letter abbreviation. The function uses the
LOCALE_SABBREVMONTHNAME value associated with the specified locale.

MMMM Month as its full name. The function uses the LOCALE_SMONTHNAME value associated
with the specified locale.

y Year as last two digits, but with no leading zero for years less than 10.

yy Year as last two digits, but with leading zero for years less than 10.

yyyy Year represented by full four digits.

gg Period/era string. The function uses the CAL_SERASTRING value associated with the speci-
fied locale. This element is ignored if the date to be formatted does not have an associated era or
period string.
Page 169



Volume 1
"Wed, Aug 31 94"

use the following picture string:

"ddd',' MMM dd yy"

lpDateStr
[out] Pointer to a buffer that receives the formatted date string.

cchDate
[in] Specifies the size, in TCHARs, of the lpDateStr buffer. If cchDate is zero, the function returns the number
of bytes or characters required to hold the formatted date string, and the buffer pointed to by lpDateStr is not
used.

Return Values
If the function succeeds, the return value is the number of TCHARs written to the lpDateStr buffer, or if the cchDate
parameter is zero, the number of bytes or characters required to hold the formatted date string. The count includes the
terminating null.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER

ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETER

Remarks
The earliest date supported by this function is January 1, 1601.

The day name, abbreviated day name, month name, and abbreviated month name are all localized based on the locale
identifier.

The date values in the SYSTEMTIME structure pointed to by lpDate must be valid. The function checks each of the
date values: year, month, day, and day of week. If the day of the week is incorrect, the function uses the correct value,
and returns no error. If any of the other date values are outside the correct range, the function fails, and sets the
last-error to ERROR_INVALID_PARAMETER.

The function ignores the time portions of the SYSTEMTIME structure pointed to by lpDate: wHour, wMinute,
wSecond, and wMilliseconds.

If the lpFormat parameter is a bad format string, no errors are returned. The function simply forms the best date string
that it can. For example, the only year pictures that are valid are L"yyyy" and L"yy" (the 'L' indicates a Unicode
(16-bit characters) string). If L"y" is passed in, the function assumes L"yy". If L"yyy" is passed in, the function
assumes L"yyyy". If more than 4 date (L"dddd") or 4 month (L"MMMM") pictures are passed in, then the function
defaults to L"dddd" or L"MMMM".

Any text that should remain in its exact form in the date string should be enclosed within single quotation marks in
the date format picture. The single quotation mark may also be used as an escape character to allow the single quota-
tion mark itself to be displayed in the date string. However, the escape sequence must be enclosed within two single
quotation marks. For example, to display the date as "May '93", the format string would be: L"MMMM ''''yy" The
first and last single quotation marks are the enclosing quotation marks. The second and third single quotation marks
are the escape sequence to allow the single quotation mark to be displayed before the century.

When the date picture contains a numeric form of the day (either d or dd) followed by the full month name
(MMMM), the genitive form of the month name is returned in the date string.

To obtain the default short and long date format without performing any actual formatting, use the GetLocaleInfo
function with the LOCALE_SSHORTDATE or LOCALE_SLONGDATE parameter. To get the date format for an
alternate calendar, use GetLocaleInfo with the LOCALE_IOPTIONALCALENDAR parameter. To get the date for-
mat for a particular calendar, use GetCalendarInfo. Also, to return all of the date formats for a particular calendar,
you can use EnumCalendarInfo or EnumDateFormatsEx.

Windows 2000: The ANSI version of this function will fail if it is used with a Unicode-only LCID. See Language
Page 170



Win32 API Reference
Identifiers.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
National Language Support Overview, National Language Support Functions, EnumCalendarInfo, EnumDateFor-
matsEx, GetCalendarInfo, GetLocaleInfo, GetTimeFormat, SYSTEMTIME

1.127 GetDefaultCommConfig

The GetDefaultCommConfig function retrieves the default configuration for the specified communications device.

GetDefaultCommConfig: procedure
(

lpszName: string;
var lpCC: COMMCONFIG;
var lpdwSize: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetDefaultCommConfigA@12" );

Parameters

lpszName
[in] Pointer to a null-terminated string specifying the name of the device.

lpCC
[out] Pointer to a buffer that receives a COMMCONFIG structure.

lpdwSize
[in/out] Pointer to a variable that specifies the size, in bytes, of the buffer pointed to by lpCC. Upon return, the
variable contains the number of bytes copied if the function succeeds, or the number of bytes required if the
buffer was too small.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the GetLastError function.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Communications Overview, Communication Functions, SetDefaultCommConfig, COMMCONFIG
Page 171



Volume 1
1.128 GetDevicePowerState

The GetDevicePowerState function retrieves the current power state of the specified device.

GetDevicePowerState: procedure
(

hDevice:dword
);

stdcall;
returns( "eax" );
external( "__imp__GetDevicePowerState@4" );

Parameters

hDevice
[in] Handle to an object on the device, such as a file or socket, or a handle to the device itself.

Return Values
Otherwise, the function returns the power state in EAX.

[note: MS’ documentation does not agree with the variable’s declaration in kernel32.lib. Beware.]

Remarks
An application can use GetSystemPowerState to determine whether a disk or other device is spun up. If the device is
not spun up, the application should defer accessing it.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Power Management Overview, Power Management Functions, GetSystemPowerStatus

1.129 GetDiskFreeSpace

The GetDiskFreeSpace function retrieves information about the specified disk, including the amount of free space
on the disk.

This function has been superseded by the GetDiskFreeSpaceEx function. New Win32-based applications should
use GetDiskFreeSpaceEx.

GetDiskFreeSpace: procedure
(

lpRootPathName: string;
var lpSectorsPerCluster: dword;
var lpBytesPerSector: dword;
var lpNumberOfFreeClusters: dword;
var lpTotalNumberOfClusters:dword

);
stdcall;
returns( "eax" );
Page 172



Win32 API Reference
external( "__imp__GetDiskFreeSpaceA@20" );

Parameters

lpRootPathName
[in] Pointer to a null-terminated string that specifies the root directory of the disk to return information about. If
lpRootPathName is NULL, the function uses the root of the current directory. If this parameter is a UNC name,
you must follow it with a trailing backslash. For example, you would specify \\MyServer\MyShare as \\MySer-
ver\MyShare\. However, a drive specification such as "C:" cannot have a trailing backslash.

Windows 95: The initial release of Windows 95 does not support UNC paths for the lpszRootPathName param-
eter. To query the free disk space using a UNC path, temporarily map the UNC path to a drive letter, query the
free disk space on the drive, then remove the temporary mapping. Windows 95 OSR2 and later: UNC paths are
supported.

lpSectorsPerCluster
[out] Pointer to a variable for the number of sectors per cluster.

lpBytesPerSector
[out] Pointer to a variable for the number of bytes per sector.

lpNumberOfFreeClusters
[out] Pointer to a variable for the total number of free clusters on the disk that are available to the user associated
with the calling thread.

Windows 2000: If per-user disk quotas are in use, this value may be less than the total number of free clusters on
the disk.

lpTotalNumberOfClusters
[out] Pointer to a variable for the total number of clusters on the disk that are available to the user associated with
the calling thread.

Windows 2000: If per-user disk quotas are in use, this value may be less than the total number of clusters on the
disk.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetDiskFreeSpaceEx function lets you avoid the arithmetic required by the GetDiskFreeSpace function.

Windows 95:
For volumes that are larger than 2 gigabytes, the GetDiskFreeSpace function may return misleading values. The
function caps the values stored into *lpNumberOfFreeClusters and *lpTotalNumberOfClusters so as to never
report volume sizes that are greater than 2 gigabytes.

Even on volumes that are smaller than 2 gigabytes, the values stored into *lpSectorsPerCluster, *lpNumberOf-
FreeClusters, and *lpTotalNumberOfClusters values may be incorrect. That is because the operating system
manipulates the values so that computations with them yield the correct volume size.

Windows 95 OSR2 and Windows 98:
The GetDiskFreeSpaceEx function is available beginning with Windows 95 OEM Service Release 2 (OSR2),
and you should use it whenever possible. The GetDiskFreeSpaceEx function returns correct values for all vol-
umes, including those that are larger than 2 gigabytes.

Windows NT and Windows 2000:
Page 173



Volume 1
GetDiskFreeSpaceEx is available on Windows NT version 4.0 and higher, including Windows 2000.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetDiskFreeSpaceEx, GetDriveType

1.130 GetDiskFreeSpaceEx

The GetDiskFreeSpaceEx function retrieves information about the amount of space available on a disk volume: the
total amount of space, the total amount of free space, and the total amount of free space available to the user associ-
ated with the calling thread.

GetDiskFreeSpaceEx: procedure
(

lpDirectoryName: string;
var lpFreeBytesAvailable: qword;
var lpTotalNumberOfBytes: qword;
var lpTotalNumberOfFreeBytes: qword

);
stdcall;
returns( "eax" );
external( "__imp__GetDiskFreeSpaceExA@16" );

Parameters

lpDirectoryName
[in] Pointer to a null-terminated string that specifies a directory on the disk of interest. This string can be a UNC
name. If this parameter is a UNC name, you must follow it with an additional backslash. For example, you would
specify \\MyServer\MyShare as \\MyServer\MyShare\.

If lpDirectoryName is NULL, the GetDiskFreeSpaceEx function retrieves information about the disk that con-
tains the current directory.

Note that lpDirectoryName does not have to specify the root directory on a disk. The function accepts any direc-
tory on the disk.

lpFreeBytesAvailable
[out] Pointer to a variable that receives the total number of free bytes on the disk that are available to the user
associated with the calling thread.

Windows 2000: If per-user quotas are in use, this value may be less than the total number of free bytes on the
disk.

lpTotalNumberOfBytes
[out] Pointer to a variable that receives the total number of bytes on the disk that are available to the user associ-
ated with the calling thread.

Windows 2000: If per-user quotas are in use, this value may be less than the total number of bytes on the disk.

lpTotalNumberOfFreeBytes
[out] Pointer to a variable that receives the total number of free bytes on the disk.
Page 174



Win32 API Reference
This parameter can be NULL.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Note that the values obtained by this function are of type ULARGE_INTEGER. Be careful not to truncate these val-
ues to 32 bits.

Windows NT and Windows 2000: GetDiskFreeSpaceEx is available on Windows NT version 4.0 and higher,
including Windows 2000. See the following information for a method to determine at run time if it is available.

Windows 95 OSR2 and Windows 98: The GetDiskFreeSpaceEx function is available beginning with Windows 95
OEM Service Release 2 (OSR2).

To determine whether GetDiskFreeSpaceEx is available, call GetModuleHandle to get the handle to Kernel32.dll.
Then you can call GetProcAddress.

The following code fragment shows one way to do this:

pGetDiskFreeSpaceEx = GetProcAddress( GetModuleHandle("kernel32.dll"),
"GetDiskFreeSpaceExA");

if (pGetDiskFreeSpaceEx)
{

fResult = pGetDiskFreeSpaceEx (pszDrive,
(PULARGE_INTEGER)&i64FreeBytesToCaller,
(PULARGE_INTEGER)&i64TotalBytes,
(PULARGE_INTEGER)&i64FreeBytes);

// Process GetDiskFreeSpaceEx results.
}

else
{

fResult = GetDiskFreeSpace (pszDrive,
&dwSectPerClust,
&dwBytesPerSect,
&dwFreeClusters,
&dwTotalClusters)

// Process GetDiskFreeSpace results.

}

It is not necessary to call LoadLibrary on Kernel32.dll because it is already loaded into every Win32 process's
address space.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 OSR2 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetDiskFreeSpace, GetModuleHandle, GetProcAddress
Page 175



Volume 1
1.131 GetDriveType

The GetDriveType function determines whether a disk drive is a removable, fixed, CD-ROM, RAM disk, or network
drive.

GetDriveType: procedure
(

lpRootPathName: string
);

stdcall;
returns( "eax" );
external( "__imp__GetDriveTypeA@4" );

Parameters

lpRootPathName
[in] Pointer to a null-terminated string that specifies the root directory of the disk to return information about. A
trailing backslash is required. If lpRootPathName is NULL, the function uses the root of the current directory.

Return Values
The return value specifies the type of drive. It can be one of the following values.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
File I/O Overview, File I/O Functions, GetDiskFreeSpace

1.132 GetEnvironmentStrings

The GetEnvironmentStrings function retrieves the environment block for the current process.

GetEnvironmentStrings: procedure;
stdcall;
returns( "eax" );

Value Meaning

DRIVE_UNKNOWN The drive type cannot be determined.

DRIVE_NO_ROOT_DIR The root path is invalid. For example, no volume is mounted at the
path.

DRIVE_REMOVABLE The disk can be removed from the drive.

DRIVE_FIXED The disk cannot be removed from the drive.

DRIVE_REMOTE The drive is a remote (network) drive.

DRIVE_CDROM The drive is a CD-ROM drive.

DRIVE_RAMDISK The drive is a RAM disk.
Page 176



Win32 API Reference
external( "__imp__GetEnvironmentStrings@0" );

Parameters
This function has no parameters.

Return Values
The return value (in EAX) is a pointer to an environment block for the current process.

Remarks
The GetEnvironmentStrings function returns a pointer to the environment block of the calling process. This should
be treated as a read-only block; do not modify it directly. Instead, use the GetEnvironmentVariable and SetEn-

vironmentVariable functions to retrieve or change the environment variables within this block. When the block is
no longer needed, it should be freed by calling FreeEnvironmentStrings.

A process can use this function's return value to specify the environment address used by the CreateProcess func-
tion.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CreateProcess, GetEnvironmentVariable, SetEnvi-
ronmentVariable, FreeEnvironmentStrings

1.133 GetEnvironmentVariable

The GetEnvironmentVariable function retrieves the value of the specified variable from the environment block of
the calling process. The value is in the form of a null-terminated string of characters.

GetEnvironmentVariable: procedure
(

lpName: string;
var lpBuffer: var;

nSize: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetEnvironmentVariableA@12" );

Parameters

lpName
[in] Pointer to a null-terminated string that specifies the environment variable.

lpBuffer
[out] Pointer to a buffer to receive the value of the specified environment variable.

nSize
[in] Specifies the size, in TCHARs, of the buffer pointed to by the lpBuffer parameter.
Page 177



Volume 1
Return Values
If the function succeeds, the return value is the number of TCHARs stored into the buffer pointed to by lpBuffer, not
including the terminating null character.

If the specified environment variable name was not found in the environment block for the current process, the return
value is zero.

If the buffer pointed to by lpBuffer is not large enough, the return value is the buffer size, in TCHARs, required to
hold the value string and its terminating null character.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Processes and Threads Overview, Process and Thread Functions, GetEnvironmentStrings, SetEnvironmentVariable

1.134 GetExitCodeProcess

The GetExitCodeProcess function retrieves the termination status of the specified process.

GetExitCodeProcess: procedure
(

hProcess: dword;
var lpExitCode: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetExitCodeProcess@8" );

Parameters

hProcess
[in] Handle to the process.

Windows NT/2000: The handle must have PROCESS_QUERY_INFORMATION access. For more informa-
tion, see Process Security and Access Rights.

lpExitCode
[out] Pointer to a variable to receive the process termination status.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the specified process has not terminated, the termination status returned is STILL_ACTIVE. If the process has ter-
minated, the termination status returned may be one of the following:

The exit value specified in the ExitProcess or TerminateProcess function.

The return value from the main or WinMain function of the process.

The exception value for an unhandled exception that caused the process to terminate.
Page 178



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, ExitProcess, ExitThread, TerminateProcess, Win-
Main

1.135 GetExitCodeThread

The GetExitCodeThread function retrieves the termination status of the specified thread.

GetExitCodeThread: procedure
(

hThread: dword;
var lpExitCode: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetExitCodeThread@8" );

Parameters

hThread
[in] Handle to the thread.

Windows NT/2000: The handle must have THREAD_QUERY_INFORMATION access. For more information,
see Thread Security and Access Rights.

lpExitCode
[out] Pointer to a variable to receive the thread termination status.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the specified thread has not terminated, the termination status returned is STILL_ACTIVE. If the thread has termi-
nated, the termination status returned may be one of the following:

The exit value specified in the ExitThread or TerminateThread function.

The return value from the thread function.

The exit value of the thread's process.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Page 179



Volume 1
See Also
Processes and Threads Overview, Process and Thread Functions, ExitThread, GetExitCodeProcess, OpenThread,
TerminateThread

1.136 GetFileAttributes

The GetFileAttributes function retrieves attributes for a specified file or directory.

This function retrieves a set of FAT-style attribute information. The GetFileAttributesEx function can obtain
other sets of file or directory attribute information.

GetFileAttributes: procedure
(

lpFileName: string
);

stdcall;
returns( "eax" );
external( "__imp__GetFileAttributesA@4" );

Parameters

lpFileName
[in] Pointer to a null-terminated string that specifies the name of a file or directory.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

Return Values
If the function succeeds, the return value contains the attributes of the specified file or directory.

If the function fails, the return value is -1. To get extended error information, call GetLastError.

The attributes can be one or more of the following values.

Attribute Meaning

FILE_ATTRIBUTE_ARCHIVE The file or directory is an archive file or directory. Appli-
cations use this attribute to mark files for backup or
removal.

FILE_ATTRIBUTE_COMPRESSED The file or directory is compressed. For a file, this means
that all of the data in the file is compressed. For a directory,
this means that compression is the default for newly cre-
ated files and subdirectories.

FILE_ATTRIBUTE_DEVICE Reserved; do not use.

FILE_ATTRIBUTE_DIRECTORY The handle identifies a directory.

FILE_ATTRIBUTE_ENCRYPTED The file or directory is encrypted. For a file, this means
that all data streams in the file are encrypted. For a direc-
tory, this means that encryption is the default for newly
created files and subdirectories.
Page 180



Win32 API Reference
Remarks
When GetFileAttributes is called on a directory containing a volume mount point, the file attributes returned are
those of the directory where the volume mount point is set, not those of the root directory in the target mounted vol-
ume. To obtain the file attributes of the mounted volume, call GetVolumeNameForVolumeMountPoint to obtain
the name of the target volume. Then use the resulting name in a call to GetFileAttributes. The results will be the
attributes of the root directory on the target volume.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
File I/O Overview, File I/O Functions, DeviceIoControl, FindFirstFile, FindNextFile, GetFileAttributesEx, SetFile-
Attributes

1.137 GetFileAttributesEx

The GetFileAttributesEx function retrieves attributes for a specified file or directory.

FILE_ATTRIBUTE_HIDDEN The file or directory is hidden. It is not included in an ordi-
nary directory listing.

FILE_ATTRIBUTE_NORMAL The file or directory has no other attributes set. This
attribute is valid only if used alone.

FILE_ATTRIBUTE_NOT_CONTENT_INDEXED The file will not be indexed by the content indexing ser-
vice.

FILE_ATTRIBUTE_OFFLINE The data of the file is not immediately available. This
attribute indicates that the file data has been physically
moved to offline storage. This attribute is used by Remote
Storage, the hierarchical storage management software in
Windows 2000. Applications should not arbitrarily change
this attribute.

FILE_ATTRIBUTE_READONLY The file or directory is read-only. Applications can read the
file but cannot write to it or delete it. In the case of a direc-
tory, applications cannot delete it.

FILE_ATTRIBUTE_REPARSE_POINT The file has an associated reparse point.

FILE_ATTRIBUTE_SPARSE_FILE The file is a sparse file.

FILE_ATTRIBUTE_SYSTEM The file or directory is part of, or is used exclusively by,
the operating system.

FILE_ATTRIBUTE_TEMPORARY The file is being used for temporary storage. File systems
attempt to keep all of the data in memory for quicker
access rather than flushing the data back to mass storage.
A temporary file should be deleted by the application as
soon as it is no longer needed.
Page 181



Volume 1
GetFileAttributesEx: procedure
(

lpFileName: string;
fInfoLevelId: GET_FILEEX_INFO_LEVELS;

var lpFileInformation: var
);

stdcall;
returns( "eax" );
external( "__imp__GetFileAttributesExA@12" );

Parameters

lpFileName
[in] Pointer to a null-terminated string that specifies a file or directory.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 98: This string must not exceed MAX_PATH characters.

fInfoLevelId
[in] Specifies a GET_FILEEX_INFO_LEVELS enumeration type that gives the set of attribute information to
obtain.

lpFileInformation
[out] Pointer to a buffer that receives the attribute information. The type of attribute information stored into this
buffer is determined by the value of fInfoLevelId.

Return Values
If the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetFileAttributes function retrieves a set of FAT-style attribute information. GetFileAttributesEx can obtain
other sets of file or directory attribute information. Currently, GetFileAttributeEx retrieves a set of standard
attributes that is a superset of the FAT-style attribute information.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetFileAttributes, GET_FILEEX_INFO_LEVELS, SetFileAttributes

1.138 GetFileInformationByHandle

The GetFileInformationByHandle function retrieves file information for a specified file.

GetFileInformationByHandle: procedure
(

hFile: dword;
var lpFileInformation: BY_HANDLE_FILE_INFORMATION
Page 182



Win32 API Reference
);
stdcall;
returns( "eax" );
external( "__imp__GetFileInformationByHandle@8" );

Parameters

hFile
[in] Handle to the file for which to obtain information.

This handle should not be a pipe handle. The GetFileInformationByHandle function does not work with pipe
handles.

lpFileInformation
[out] Pointer to a BY_HANDLE_FILE_INFORMATION structure that receives the file information. The structure
can be used in subsequent calls to GetFileInformationByHandle to refer to the information about the file.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Depending on the underlying network components of the operating system and the type of server connected to, the
GetFileInformationByHandle function may fail, return partial information, or full information for the given file. In
general, you should not use GetFileInformationByHandle unless your application is intended to be run on a limited
set of operating system configurations.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, BY_HANDLE_FILE_INFORMATION

1.139 GetFileSize

The GetFileSize function retrieves the size of a specified file.

This function stores the file size in a DWORD value. To retrieve a file size that is larger than a DWORD value, use
the GetFileSizeEx function.

GetFileSize: procedure
(

hFile: dword;
var lpFileSizeHigh: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetFileSize@8" );

Parameters

hFile
Page 183



Volume 1
[in] Handle to the file whose size is to be returned. This handle must have been created with either
GENERIC_READ or GENERIC_WRITE access to the file.

lpFileSizeHigh
[out] Pointer to the variable where the high-order word of the file size is returned. This parameter can be NULL
if the application does not require the high-order word.

Return Values
If the function succeeds, the return value is the low-order doubleword of the file size, and, if lpFileSizeHigh is
non-NULL, the function puts the high-order doubleword of the file size into the variable pointed to by that parameter.

If the function fails and lpFileSizeHigh is NULL, the return value is INVALID_FILE_SIZE. To get extended error
information, call GetLastError.

If the function fails and lpFileSizeHigh is non-NULL, the return value is INVALID_FILE_SIZE and GetLastError
will return a value other than NO_ERROR.

Remarks
You cannot use the GetFileSize function with a handle of a nonseeking device such as a pipe or a communications
device. To determine the file type for hFile, use the GetFileType function.

The GetFileSize function retrieves the uncompressed size of a file. Use the GetCompressedFileSize function to
obtain the compressed size of a file.

Note that if the return value is INVALID_FILE_SIZE and lpFileSizeHigh is non-NULL, an application must call
GetLastError to determine whether the function has succeeded or failed. The following sample code illustrates this
point:

// Case One: calling the function with
// lpFileSizeHigh == NULL

// Try to obtain hFile's size
dwSize = GetFileSize (hFile, NULL) ;

// If we failed ...
if (dwSize == INVALID_FILE_SIZE)
{

// Obtain the error code.
dwError = GetLastError() ;

// Deal with that failure.
.
.
.

} // End of error handler

//
// Case Two: calling the function with
// lpFileSizeHigh != NULL

// Try to obtain hFile's huge size.
dwSizeLow = GetFileSize (hFile, & dwSizeHigh) ;

// If we failed ...
if (dwSizeLow == INVALID_FILE_SIZE

&&
(dwError = GetLastError()) != NO_ERROR )

{
// Deal with that failure.
.

Page 184



Win32 API Reference
.

.

} // End of error handler.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetCompressedFileSize, GetFileSizeEx, GetFileType

1.140 GetFileTime

The GetFileTime function retrieves the date and time that a file was created, last accessed, and last modified.

GetFileTime: procedure
(

hFile: dword;
var lpCreationTime: FILETIME;
var lpLastAccessTime: FILETIME;
var lpLastWriteTime: FILETIME

);
stdcall;
returns( "eax" );
external( "__imp__GetFileTime@16" );

Parameters

hFile
[in] Handle to the files for which to get dates and times. The file handle must have been created with
GENERIC_READ access to the file.

lpCreationTime
[out] Pointer to a FILETIME structure to receive the date and time the file was created. This parameter can be
NULL if the application does not require this information.

lpLastAccessTime
[out] Pointer to a FILETIME structure to receive the date and time the file was last accessed. The last access time
includes the last time the file was written to, read from, or, in the case of executable files, run. This parameter can
be NULL if the application does not require this information.

lpLastWriteTime
[out] Pointer to a FILETIME structure to receive the date and time the file was last written to. This parameter can
be NULL if the application does not require this information.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
Page 185



Volume 1
Remarks
The FAT and NTFS file systems support the file creation, last access, and last write time values.

Windows NT/2000: If you rename or delete a file, then restore it shortly thereafter, Windows NT searches the cache
for file information to restore. Cached information includes its short/long name pair and creation time.

Note Not all file systems can record creation and last access time and not all file systems record them in the same
manner. For example, on Windows NT FAT, create time has a resolution of 10 milliseconds, write time has a resolu-
tion of 2 seconds, and access time has a resolution of 1 day (really, the access date). On NTFS, access time has a res-
olution of 1 hour. Therefore, GetFileTime may not return the same file time information set using the SetFileTime
function. Furthermore, FAT records times on disk in local time. However, NTFS records times on disk in UTC, so it
is not affected by changes in time zone or daylight saving time.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, FILETIME, GetFileSize, GetFileType, SetFileTime

1.141 GetFileType

The GetFileType function retrieves the file type for the specified file.

GetFileType: procedure
(

hFile:dword
);

stdcall;
returns( "eax" );
external( "__imp__GetFileType@4" );

Parameters

hFile
[in] Handle to an open file.

Return Values
The return value is one of the following values.

Value Meaning

FILE_TYPE_UNKNOWN The type of the specified file is unknown.

FILE_TYPE_DISK The specified file is a disk file.

FILE_TYPE_CHAR The specified file is a character file, typically an LPT device or a con-
sole.

FILE_TYPE_PIPE The specified file is either a named or anonymous pipe.
Page 186



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetFileSize, GetFileTime

1.142 GetFullPathName

The GetFullPathName function retrieves the full path and file name of a specified file.

GetFullPathName: procedure
(

lpFileName: string;
nBufferLength: dword;

var lpBuffer: var;
var lpFilePart: var

);
stdcall;
returns( "eax" );
external( "__imp__GetFullPathNameA@16" );

Parameters

lpFileName
[in] Pointer to a null-terminated string that specifies a valid file name. This string can use either short (the 8.3
form) or long file names.

nBufferLength
[in] Specifies the size, in TCHARs, of the buffer for the drive and path.

lpBuffer
[out] Pointer to a buffer that receives the null-terminated string for the name of the drive and path.

lpFilePart
[out] Pointer to a buffer that receives the address (in lpBuffer) of the final file name component in the path.

Return Values
If the GetFullPathName function succeeds, the return value is the length, in TCHARs, of the string copied to
lpBuffer, not including the terminating null character.

If the lpBuffer buffer is too small, the return value is the size of the buffer, in TCHARs, required to hold the path.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
GetFullPathName merges the name of the current drive and directory with the specified file name to determine the
full path and file name of the specified file. It also calculates the address of the file name portion of the full path and
file name. This function does not verify that the resulting path and file name are valid or that they refer to an existing
file on the associated volume.

GetFullPathName does no conversion of the specified file name, lpFileName. If the specified file name exists, you
Page 187



Volume 1
can use GetLongPathName and GetShortPathName to convert to long and short path names, respectively.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
File I/O Overview, File I/O Functions, GetLongPathName, GetShortPathName, GetTempPath, SearchPath

1.143 GetHandleInformation

The GetHandleInformation function retrieves certain properties of an object handle.

GetHandleInformation: procedure
(

hObject: dword;
var lpdwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetHandleInformation@8" );

Parameters

hObject
[in] Specifies a handle to an object. The GetHandleInformation function obtains information about this object
handle.

You can specify a handle to one of the following types of objects: access token, event, file, file mapping, job,
mailslot, mutex, pipe, printer, process, registry key, semaphore, serial communication device, socket, thread, or
waitable timer.

Windows 2000: This parameter can also be a handle to a console input buffer or a console screen buffer.

lpdwFlags
[out] Pointer to a variable that receives a set of bit flags that specify properties of the object handle. The follow-
ing flags are defined:

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Value Meaning

HANDLE_FLAG_INHERIT If this flag is set, a child process created with the bInheritHandles
parameter of CreateProcess set to TRUE will inherit the object
handle.

HANDLE_FLAG_PROTECT_FROM_
CLOSE

If this flag is set, calling the CloseHandle function will not close the
object handle.
Page 188



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Handles and Objects Overview, Handle and Object Functions, CloseHandle, CreateProcess, SetHandleInformation

1.144 GetLargestConsoleWindowSize

The GetLargestConsoleWindowSize function retrieves the size of the largest possible console window, based on the
current font and the size of the display.

GetLargestConsoleWindowSize: procedure
(

hConsoleOutput:dword
);

stdcall;
returns( "eax" );
external( "__imp__GetLargestConsoleWindowSize@4" );

Parameters

hConsoleOutput
[in] Handle to a console screen buffer.

Return Values
If the function succeeds, the return value (in EAX) is a COORD structure that specifies the number of character cell
rows (X member in AX) and columns (Y member in H.O. word of EAX) in the largest possible console window. Oth-
erwise, the members of the structure are zero.

To get extended error information, call GetLastError.

Remarks
The function does not take into consideration the size of the screen buffer, which means that the window size returned
may be larger than the size of the screen buffer. The GetConsoleScreenBufferInfo function can be used to determine
the maximum size of the console window, given the current screen buffer size, the current font, and the display size.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, COORD, GetConsoleScreenBufferInfo, Set-
ConsoleWindowInfo
Page 189



Volume 1
1.145 GetLastError

The GetLastError function retrieves the calling thread's last-error code value. The last-error code is maintained on a
per-thread basis. Multiple threads do not overwrite each other's last-error code.

GetLastError: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetLastError@0" );

Parameters
This function has no parameters.

Return Values
The return value is the calling thread's last-error code value. Functions set this value by calling the SetLastError
function. The Return Value section of each reference page notes the conditions under which the function sets the
last-error code.

Windows 95/98: Because SetLastError is a 32-bit function only, Win32 functions that are actually implemented in
16-bit code do not set the last-error code. You should ignore the last-error code when you call these functions. They
include window management functions, GDI functions, and Multimedia functions.

Remarks
To obtain an error string for system error codes, use the FormatMessage function. For a complete list of error codes,
see Error Codes.

You should call the GetLastError function immediately when a function's return value indicates that such a call will
return useful data. That is because some functions call SetLastError(0) when they succeed, wiping out the error code
set by the most recently failed function.

Most functions in the Win32 API that set the thread's last error code value set it when they fail; a few functions set it
when they succeed. Function failure is typically indicated by a return value error code such as zero, NULL, or –1.
Some functions call SetLastError under conditions of success; those cases are noted in each function's reference
page.

Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved for application-defined error codes;
no system error code has this bit set. If you are defining an error code for your application, set this bit to one. That
indicates that the error code has been defined by an application, and ensures that your error code does not conflict
with any error codes defined by the system.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf.
Library: Use Kernel32.lib.

See Also
Error Handling Overview, Error Handling Functions, FormatMessage, SetLastError, SetLastErrorEx

1.146 GetLocalTime

The GetLocalTime function retrieves the current local date and time.

GetLocalTime: procedure
Page 190



Win32 API Reference
(
var lpSystemTime: SYSTEMTIME

);
stdcall;
returns( "eax" );
external( "__imp__GetLocalTime@4" );

Parameters

lpSystemTime
[out] Pointer to a SYSTEMTIME structure to receive the current local date and time.

Return Values
This function does not return a value.

Remarks
MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, GetSystemTime, SetLocalTime, SYSTEMTIME

1.147 GetLocaleInfo

The GetLocaleInfo function retrieves information about a locale.

GetLocaleInfo: procedure
(

Locale: LCID;
LCType: LCTYPE;

var lpLCData: var;
cchData: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetLocaleInfoA@16" );

Parameters

Locale
[in] Specifies the locale to retrieve information for. This parameter can be a locale identifier created by the
MAKELCID macro, or one of the following predefined values.

Value Meaning

LOCALE_SYSTEM_DEFAULT Default system locale.

LOCALE_USER_DEFAULT Default user locale.
Page 191



Volume 1
LCType
[in] Specifies the type of locale information to be retrieved, by using an LCTYPE constant. For a list of
LCTYPE constants, see Locale Information.

Note that only one LCTYPE constant may be specified per call, except that an application may use the
binary-OR operator to combine LOCALE_NOUSEROVERRIDE or LOCALE_USE_CP_ACP with any other
LCTYPE value.

If LOCALE_NOUSEROVERRIDE is combined with another value, the function bypasses user overrides, and
returns the system default value for the requested LCID. The information is retrieved from the locale database,
even if the LCID is the current one and the user has changed some of the values in Control Panel. If this flag is
not specified, the values in Win.ini take precedence over the database settings when getting values for the current
system default locale.

lpLCData
[out] Pointer to a buffer that receives the requested data.This pointer is not used if cchData is zero.

cchData
[in] Specifies the size, in TCHARs, of the lpLCData buffer. If cchData is zero, the function returns the number
of bytes or characters required to hold the information, including the terminating null character, and the buffer
pointed to by lpLCData is not used.

Return Values
If the function succeeds, the return value is the number of TCHARs written to the destination buffer. If the cchData
parameter is zero, the return value is the number of bytes or characters required to hold the locale information.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER

ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETER

Remarks
The GetLocaleInfo function always retrieves information in text format. If the information is a numeric value, the
function converts the number to text using decimal notation.

The LOCALE_FONTSIGNATURE parameter will return a non-NULL terminated string. In all other cases, the string
is NULL terminated.

The ANSI string returned by the ANSI version of this function is translated from Unicode to ANSI based on the
default ANSI code page for the LCID. However, if LOCALE_USE_CP_ACP is specified, the translation is based on
the system default–ANSI code page.

Windows 2000: The ANSI version of this function will fail if it is used with a Unicode-only LCID. See Language
Identifiers.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, GetStringTypeA, GetStringTypeEx,
GetStringTypeW, GetSystemDefaultLCID, GetUserDefaultLCID, LCTYPE Constants, SetLocaleInfo, MAKELCID
Page 192



Win32 API Reference
1.148 GetLogicalDriveStrings

The GetLogicalDriveStrings function fills a buffer with strings that specify valid drives in the system.

GetLogicalDriveStrings: procedure
(

nBufferLength: dword;
var lpBuffer: var

);
stdcall;
returns( "eax" );
external( "__imp__GetLogicalDriveStringsA@8" );

Parameters

nBufferLength
[in] Specifies the maximum size, in characters, of the buffer pointed to by lpBuffer. This size does not include the
terminating null character.

lpBuffer
[out] Pointer to a buffer that receives a series of null-terminated strings, one for each valid drive in the system,
that end with a second null character. The following example shows the buffer contents with <null> representing
the terminating null character.

c:\<null>d:\<null><null>

Return Values
If the function succeeds, the return value is the length, in characters, of the strings copied to the buffer, not including
the terminating null character. Note that an ANSI-ASCII null character uses one byte, but a Unicode null character
uses two bytes.

If the buffer is not large enough, the return value is greater than nBufferLength. It is the size of the buffer required to
hold the drive strings.

If the function fails, the return value is zero. To get extended error information, use the GetLastError function.

Remarks
Each string in the buffer may be used wherever a root directory is required, such as for the GetDriveType and Get-
DiskFreeSpace functions.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetDriveType, GetDiskFreeSpace, GetLogicalDrives

1.149 GetLogicalDrives

The GetLogicalDrives function retrieves a bitmask representing the currently available disk drives.

GetLogicalDrives: procedure;
stdcall;
Page 193



Volume 1
returns( "eax" );
external( "__imp__GetLogicalDrives@0" );

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is a bitmask representing the currently available disk drives. Bit position 0
(the least-significant bit) is drive A, bit position 1 is drive B, bit position 2 is drive C, and so on.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetLogicalDriveStrings

1.150 GetLongPathName

The GetLongPathName function converts the specified path to its long form. If no long path is found, this function
simply returns the specified name.

GetLongPathName: procedure
(

lpszShortPath: string;
var lpszLongPath: var;

cchBuffer: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetLongPathNameA@12" );

Parameters

lpszShortPath
[in] Pointer to a null-terminated path to be converted.

Windows 2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To extend
this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to the path.
For more information, see File Name Conventions.

Windows 98: This string must not exceed MAX_PATH characters.

lpszLongPath
[out] Pointer to the buffer to receive the long path. You can use the same buffer you used for the lpszShortPath
parameter.

cchBuffer
[in] Specifies the size of the buffer, in TCHARs.
Page 194



Win32 API Reference
Return Values
If the function succeeds, the return value is the length of the string copied to the lpszLongPath parameter, in
TCHARs. This length does not include the terminating null character.

If lpszLongPath is too small, the function returns the size, in TCHARs, of the buffer required to hold the long path.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetFullPathName, GetShortPathName

1.151 GetMailslotInfo

The GetMailslotInfo function retrieves information about the specified mailslot.

GetMailslotInfo: procedure
(

hMailslot: dword;
var lpMaxMessageSize: dword;
var lpNextSize: dword;
var lpMessageCount: dword;
var lpReadTimeout: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetMailslotInfo@20" );

Parameters

hMailslot
[in] Handle to a mailslot. The CreateMailslot function must create this handle.

lpMaxMessageSize
[in] Pointer to a buffer specifying the maximum message size, in bytes, allowed for this mailslot, when the func-
tion returns. This value can be greater than or equal to the value specified in the cbMaxMsg parameter of the
CreateMailslot function that created the mailslot. This parameter can be NULL.

lpNextSize
[in] Pointer to a buffer specifying the size, in bytes, of the next message, when the function returns. The follow-
ing value has special meaning.

This parameter can be NULL.

lpMessageCount
[in] Pointer to a buffer specifying the total number of messages waiting to be read, when the function returns.

Value Meaning

MAILSLOT_NO_MESSAGE There is no next message.
Page 195



Volume 1
This parameter can be NULL.

lpReadTimeout
[in] Pointer to a buffer specifying the amount of time, in milliseconds, a read operation can wait for a message to
be written to the mailslot before a time-out occurs. This parameter is filled in when the function returns. This
parameter can be NULL.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Mailslots Overview, Mailslot Functions, CreateMailslot, SetMailslotInfo

1.152 GetModuleFileName

The GetModuleFileName function retrieves the full path and file name for the file containing the specified module.

Windows 95/98: The GetModuleFilename function retrieves long file names when an application's version number
is greater than or equal to 4.00 and the long file name is available. Otherwise, it returns only 8.3 format file names.

GetModuleFileName: procedure
(

hModule: dword;
var lpFilename: var;

nSize: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetModuleFileNameA@12" );

Parameters

hModule
[in] Handle to the module whose file name is being requested. If this parameter is NULL, GetModuleFileName
returns the path for the file containing the current process.

lpFilename
[out] Pointer to a buffer that receives the path and file name of the specified module.

nSize
[in] Specifies the length, in TCHARs, of the lpFilename buffer. If the length of the path and file name exceeds
this limit, the string is truncated.

Return Values
If the function succeeds, the return value is the length, in TCHARs, of the string copied to the buffer.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
Page 196



Win32 API Reference
Remarks
If a DLL is loaded in two processes, its file name in one process may differ in case from its file name in the other pro-
cess.

For the ANSI version of the function, the number of TCHARs is the number of bytes; for the Unicode version, it is
the number of characters.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Dynamic-Link Libraries Overview, Dynamic-Link Library Functions, GetModuleHandle, LoadLibrary

1.153 GetModuleHandle

The GetModuleHandle function retrieves a module handle for the specified module if the file has been mapped into
the address space of the calling process.

GetModuleHandle: procedure
(

lpModuleName: string
);

stdcall;
returns( "eax" );
external( "__imp__GetModuleHandleA@4" );

Parameters

lpModuleName
[in] Pointer to a null-terminated string that contains the name of the module (either a .dll or .exe file). If the file
name extension is omitted, the default library extension .dll is appended. The file name string can include a trail-
ing point character (.) to indicate that the module name has no extension. The string does not have to specify a
path. When specifying a path, be sure to use backslashes (\), not forward slashes (/). The name is compared (case
independently) to the names of modules currently mapped into the address space of the calling process.

If this parameter is NULL, GetModuleHandle returns a handle to the file used to create the calling process.

Return Values
If the function succeeds, the return value is a handle to the specified module.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The returned handle is not global, inheritable, or duplicative, and it cannot be used by another process.

The handles returned by GetModuleHandle and LoadLibrary can be used in the same functions — for example,
GetProcAddress, FreeLibrary, or LoadResource. The difference between the two functions involves the ref-
erence count. LoadLibrary maps the module into the address space of the calling process, if necessary, and incre-
ments the module's reference count, if it is already mapped. GetModuleHandle, however, returns the handle to a
mapped module without incrementing its reference count.

Note that the reference count is used in FreeLibrary to determine whether to unmap the function from the address
space of the process. For this reason, use care when using a handle returned by GetModuleHandle in a call to FreeL-
Page 197



Volume 1
ibrary because doing so can cause a dynamic-link library (DLL) module to be unmapped prematurely.

This function must also be used carefully in a multithreaded application. There is no guarantee that the module handle
remains valid between the time this function returns the handle and the time it is used by another function. For exam-
ple, a thread might retrieve a module handle by calling GetModuleHandle. Before the thread uses the handle in
another function, a second thread could free the module and the system could load another module, giving it the same
handle as the module that was recently freed. The first thread would then be left with a module handle that refers to a
module different than the one intended.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Dynamic-Link Libraries Overview, Dynamic-Link Library Functions, FreeLibrary, GetModuleFileName, GetPro-
cAddress, LoadLibrary, LoadResource

1.154 GetNamedPipeHandleState

The GetNamedPipeHandleState function retrieves information about a specified named pipe. The information
returned can vary during the lifetime of an instance of the named pipe.

GetNamedPipeHandleState: procedure
(

hNamedPipe: dword;
var lpState: var;
var lpCurInstances: var;
var lpMaxCollectionCount: var;
var lpCollectDataTimeout: var;
var lpUserName: var;

nMaxUserNameSize: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetNamedPipeHandleStateA@28" );

Parameters

hNamedPipe
[in] Handle to the named pipe for which information is wanted. The handle must have GENERIC_READ access
to the named pipe.

Windows NT/2000: This parameter can also be a handle to an anonymous pipe, as returned by the CreatePipe
function.

lpState
[out] Pointer to a variable that indicates the current state of the handle. This parameter can be NULL if this infor-
mation is not needed. Either or both of the following values can be specified.

Value Meaning

PIPE_NOWAIT The pipe handle is in nonblocking mode. If this flag is not
specified, the pipe handle is in blocking mode.
Page 198



Win32 API Reference
lpCurInstances
[out] Pointer to a variable that receives the number of current pipe instances. This parameter can be NULL if this
information is not required.

lpMaxCollectionCount
[out] Pointer to a variable that receives the maximum number of bytes to be collected on the client's computer
before transmission to the server. This parameter must be NULL if the specified pipe handle is to the server end
of a named pipe or if client and server processes are on the same computer. This parameter can be NULL if this
information is not required.

lpCollectDataTimeout
[out] Pointer to a variable that receives the maximum time, in milliseconds, that can pass before a remote named
pipe transfers information over the network. This parameter must be NULL if the specified pipe handle is to the
server end of a named pipe or if client and server processes are on the same computer. This parameter can be
NULL if this information is not required.

lpUserName
[out] Pointer to a buffer that receives the null-terminated string containing the user name string associated with
the client application. The server can only retrieve this information if the client opened the pipe with
SECURITY_IMPERSONATION access.

This parameter must be NULL if the specified pipe handle is to the client end of a named pipe. This parameter
can be NULL if this information is not required.

nMaxUserNameSize
[in] Specifies the size, in TCHARs, of the buffer specified by the lpUserName parameter. This parameter is
ignored if lpUserName is NULL.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetNamedPipeHandleState function returns successfully even if all of the pointers passed to it are NULL.

To set the pipe handle state, use the SetNamedPipeHandleState function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Pipes Overview, Pipe Functions, SetNamedPipeHandleState

1.155 GetNamedPipeInfo

The GetNamedPipeInfo function retrieves information about the specified named pipe.

PIPE_READMODE_MESSAGE The pipe handle is in message-read mode. If this flag is not
specified, the pipe handle is in byte-read mode.
Page 199



Volume 1
GetNamedPipeInfo: procedure
(

hNamedPipe: dword;
var lpFlags: dword;
var lpOutBufferSize: dword;
var lpInBufferSize: dword;
var lpMaxInstances: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetNamedPipeInfo@20" );

Parameters

hNamedPipe
[in] Handle to the named pipe instance. The handle must have GENERIC_READ access to the named pipe.

Windows NT/2000: This parameter can also be a handle to an anonymous pipe, as returned by the CreatePipe
function.

lpFlags
[in] Pointer to a variable that indicates the type of the named pipe. This parameter can be NULL if this informa-
tion is not required. Otherwise, use the following values.

lpOutBufferSize
[out] Pointer to a variable that receives the size, in bytes, of the buffer for outgoing data. If the buffer size is zero,
the buffer is allocated as needed. This parameter can be NULL if this information is not required.

lpInBufferSize
[out] Pointer to a variable that receives the size, in bytes, of the buffer for incoming data. If the buffer size is zero,
the buffer is allocated as needed. This parameter can be NULL if this information is not required.

lpMaxInstances
[out] Pointer to a variable that receives the maximum number of pipe instances that can be created. If the variable
is set to PIPE_UNLIMITED_INSTANCES, the number of pipe instances that can be created is limited only by
the availability of system resources. This parameter can be NULL if this information is not required.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.

Value Meaning

PIPE_CLIENT_END The handle refers to the client end of a named pipe instance. This is
the default.

PIPE_SERVER_END The handle refers to the server end of a named pipe instance. If this
value is not specified, the handle refers to the client end of a named
pipe instance.

PIPE_TYPE_BYTE The named pipe is a byte pipe. This is the default.

PIPE_TYPE_MESSAGE The named pipe is a message pipe. If this value is not specified, the
pipe is a byte pipe.
Page 200



Win32 API Reference
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Pipes Overview, Pipe Functions, CreateNamedPipe, GetNamedPipeHandleState

1.156 GetNumberFormat

The GetNumberFormat function formats a number string as a number string customized for a specified locale.

GetNumberFormat: procedure
(

Locale: LCID;
dwFlags: dword;
lpValue: string;

var lpFormat: NUMBERFMT;
var lpNumberStr:var;

cchNumber: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetNumberFormatA@24" );

Parameters

Locale
[in] Specifies the locale for which the number string is to be formatted. If lpFormat is NULL, the function for-
mats the string according to the number format for this locale. If lpFormat is not NULL, the function uses the
locale only for formatting information not specified in the NUMBERFMT structure (for example, the locale's string
value for the negative sign).

This parameter can be a locale identifier created by the MAKELCID macro, or one of the following predefined val-
ues.

dwFlags
[in] Controls the operation of the function. If lpFormat is non-NULL, this parameter must be zero.

If lpFormat is NULL, you can specify LOCALE_NOUSEROVERRIDE to format the string using the system
default number format for the specified locale; or you can specify zero to format the string using any user over-
rides to the locale's default number format.

lpValue
[in] Pointer to a null-terminated string containing the number string to format.

This string can only contain the following characters:

Characters '0' through '9'.

One decimal point (dot) if the number is a floating-point value.

A minus sign in the first character position if the number is a negative value.

Value Meaning

LOCALE_SYSTEM_DEFAULT Default system locale.

LOCALE_USER_DEFAULT Default user locale.
Page 201



Volume 1
All other characters are invalid. The function returns an error if the string pointed to by lpValue deviates from
these rules.

lpFormat
[in] Pointer to a NUMBERFMT structure that contains number formatting information. All members in the structure
pointed to by lpFormat must contain appropriate values.

If lpFormat is NULL, the function uses the number format of the specified locale.

lpNumberStr
[out] Pointer to a buffer that receives the formatted number string.

cchNumber
[in] Specifies the size, in TCHARs, of the lpNumberStr buffer. If cchNumber is zero, the function returns the
number of bytes or characters required to hold the formatted number string, and the buffer pointed to by lpNum-
berStr is not used.

Return Values
If the function succeeds, the return value is the number of TCHARs written to the buffer pointed to by lpNumberStr,
or if the cchNumber parameter is zero, the number of bytes or characters required to hold the formatted number
string. The count includes the terminating null.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER

ERROR_INVALID FLAGS

ERROR_INVALID_PARAMETER

Remarks
Windows 2000: The ANSI version of this function will fail if it is used with a Unicode-only locale. See Language
Identifiers.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, GetCurrencyFormat, NUMBERFMT

1.157 GetNumberOfConsoleInputEvents

The GetNumberOfConsoleInputEvents function retrieves the number of unread input records in the console's input
buffer.

GetNumberOfConsoleInputEvents: procedure
(

hConsoleInput: dword;
var lpcNumberOfEvents: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetNumberOfConsoleInputEvents@8" );
Page 202



Win32 API Reference
Parameters

hConsoleInput
[in] Handle to the console input buffer. The handle must have GENERIC_READ access.

lpcNumberOfEvents
[out] Pointer to a variable that receives the number of unread input records in the console's input buffer.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetNumberOfConsoleInputEvents function reports the total number of unread input records in the input
buffer, including keyboard, mouse, and window-resizing input records. Processes using the ReadFile or ReadCon-
sole function can only read keyboard input. Processes using the ReadConsoleInput function can read all types of
input records.

A process can specify a console input buffer handle in one of the wait functions to determine when there is unread
console input. When the input buffer is not empty, the state of a console input buffer handle is signaled.

To read input records from a console input buffer without affecting the number of unread records, use the PeekCon-
soleInput function. To discard all unread records in a console's input buffer, use the FlushConsoleInputBuffer
function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, FlushConsoleInputBuffer, PeekConsoleInput,
ReadConsole, ReadConsoleInput, ReadFile

1.158 GetNumberOfConsoleMouseButtons

The GetNumberOfConsoleMouseButtons function retrieves the number of buttons on the mouse used by the cur-
rent console.

GetNumberOfConsoleMouseButtons: procedure
(

var lpNumberOfMouseButtons: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetNumberOfConsoleMouseButtons@4" );

Parameters

lpNumberOfMouseButtons
[out] Pointer to a variable that receives the number of mouse buttons.
Page 203



Volume 1
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
When a console receives mouse input, an INPUT_RECORD structure containing a MOUSE_EVENT_RECORD structure is
placed in the console's input buffer. The dwButtonState member of MOUSE_EVENT_RECORD has a bit indicat-
ing the state of each mouse button. The bit is 1 if the button is down and 0 if the button is up. To determine the num-
ber of bits that are significant, use GetNumberOfConsoleMouseButtons.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, ReadConsoleInput, INPUT_RECORD,
MOUSE_EVENT_RECORD

1.159 GetOEMCP

The GetOEMCP function retrieves the current original equipment manufacturer (OEM) code-page identifier for the
system.

GetOEMCP: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetOEMCP@0" );

Parameters
This function has no parameters.

Return Values
The return value is the current OEM code-page identifier for the system or a default identifier if no code page is cur-
rent.

Remarks
The following are the OEM code-page identifiers.

Identifier Meaning

437 MS-DOS United States

708 Arabic (ASMO 708)

709 Arabic (ASMO 449+, BCON V4)

710 Arabic (Transparent Arabic)

720 Arabic (Transparent ASMO)

737 Greek (formerly 437G)
Page 204



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, GetACP

1.160 GetOverlappedResult

The GetOverlappedResult function retrieves the results of an overlapped operation on the specified file, named
pipe, or communications device.

Windows 95/98: This function works only on communications devices or on files opened by using the DeviceIoCon-
trol function.

GetOverlappedResult: procedure
(

hFile: dword;
var lpOverlapped: OVERLAPPED;
var lpNumberOfBytesTransferred: dword;

bWait: dword

775 Baltic

850 MS-DOS Multilingual (Latin I)

852 MS-DOS Slavic (Latin II)

855 IBM Cyrillic (primarily Russian)

857 IBM Turkish

860 MS-DOS Portuguese

861 MS-DOS Icelandic

862 Hebrew

863 MS-DOS Canadian-French

864 Arabic

865 MS-DOS Nordic

866 MS-DOS Russian

869 IBM Modern Greek

874 Thai

932 Japan

936 Chinese (PRC, Singapore)

949 Korean

950 Chinese (Taiwan; Hong Kong SAR, PRC)

1361 Korean (Johab)
Page 205



Volume 1
);
stdcall;
returns( "eax" );
external( "__imp__GetOverlappedResult@16" );

Parameters

hFile
[in] Handle to the file, named pipe, or communications device. This is the same handle that was specified when
the overlapped operation was started by a call to the ReadFile, WriteFile, ConnectNamedPipe, Trans-

actNamedPipe, DeviceIoControl, or WaitCommEvent function.

lpOverlapped
[in] Pointer to an OVERLAPPED structure that was specified when the overlapped operation was started.

lpNumberOfBytesTransferred
[out] Pointer to a variable that receives the number of bytes that were actually transferred by a read or write oper-
ation. For a TransactNamedPipe operation, this is the number of bytes that were read from the pipe. For a
DeviceIoControl operation, this is the number of bytes of output data returned by the device driver. For a
ConnectNamedPipe or WaitCommEvent operation, this value is undefined.

bWait
[in] Specifies whether the function should wait for the pending overlapped operation to be completed. If TRUE,
the function does not return until the operation has been completed. If FALSE and the operation is still pending,
the function returns FALSE and the GetLastError function returns ERROR_IO_INCOMPLETE.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The results reported by the GetOverlappedResult function are those of the specified handle's last overlapped opera-
tion to which the specified OVERLAPPED structure was provided, and for which the operation's results were pending.
A pending operation is indicated when the function that started the operation returns FALSE, and the GetLastError
function returns ERROR_IO_PENDING. When an I/O operation is pending, the function that started the operation
resets the hEvent member of the OVERLAPPED structure to the nonsignaled state. Then when the pending opera-
tion has been completed, the system sets the event object to the signaled state.

Specify a manual-reset event object in the OVERLAPPED structure. If an auto-reset event object is used, the event
handle must not be specified in any other wait operation in the interval between starting the overlapped operation and
the call to GetOverlappedResult. For example, the event object is sometimes specified in one of the wait functions
to wait for the operation's completion. When the wait function returns, the system sets an auto-reset event's state to
nonsignaled, and a subsequent call to GetOverlappedResult with the bWait parameter set to TRUE causes the func-
tion to be blocked indefinitely.

If the bWait parameter is TRUE, GetOverlappedResult determines whether the pending operation has been com-
pleted by waiting for the event object to be in the signaled state.

Windows 95/98: If bWait is TRUE, the hEvent member of the OVERLAPPED structure must not be NULL.

Windows NT/2000: If the hEvent member of the OVERLAPPED structure is NULL, the system uses the state of the
hFile handle to signal when the operation has been completed. Use of file, named pipe, or communications-device
handles for this purpose is discouraged. It is safer to use an event object because of the confusion that can occur when
multiple simultaneous overlapped operations are performed on the same file, named pipe, or communications device.
In this situation, there is no way to know which operation caused the object's state to be signaled.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Page 206



Win32 API Reference
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CancelIo, ConnectNamedPipe, CreateEvent, DeviceIoCon-
trol, GetLastError, OVERLAPPED, ReadFile, TransactNamedPipe, WaitCommEvent, WriteFile

1.161 GetPriorityClass

The GetPriorityClass function retrieves the priority class for the specified process. This value, together with the pri-
ority value of each thread of the process, determines each thread's base priority level.

GetPriorityClass: procedure
(

hProcess: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetPriorityClass@4" );

Parameters

hProcess
[in] Handle to the process.

Windows NT/2000: The handle must have PROCESS_QUERY_INFORMATION access. For more informa-
tion, see Process Security and Access Rights.

Return Values
If the function succeeds, the return value is the priority class of the specified process.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

The process's priority class is one of the following values.

Priority Meaning

ABOVE_NORMAL_PRIORITY_CLASS Windows 2000: Indicates a process that has priority above
NORMAL_PRIORITY_CLASS but below
HIGH_PRIORITY_CLASS.

BELOW_NORMAL_PRIORITY_CLASS Windows 2000: Indicates a process that has priority above
IDLE_PRIORITY_CLASS but below
NORMAL_PRIORITY_CLASS.

HIGH_PRIORITY_CLASS Indicates a process that performs time-critical tasks that must be
executed immediately for it to run correctly. The threads of a
high-priority class process preempt the threads of normal or idle
priority class processes. An example is the Task List, which
must respond quickly when called by the user, regardless of the
load on the operating system. Use extreme care when using the
high-priority class, because a high-priority class CPU-bound
application can use nearly all available cycles.
Page 207



Volume 1
Remarks
Every thread has a base priority level determined by the thread's priority value and the priority class of its process.
The operating system uses the base priority level of all executable threads to determine which thread gets the next
slice of CPU time. Threads are scheduled in a round-robin fashion at each priority level, and only when there are no
executable threads at a higher level will scheduling of threads at a lower level take place.

For a table that shows the base priority levels for each combination of priority class and thread priority value, see the
SetPriorityClass function.

Windows NT 4.0 and earlier: Priority class is maintained by the Windows subsystem (csrss), so only Win-
dows-based application have a priority class that can be queried.

Windows 2000: Priority class is maintained by the executive, so all processes have a priority class that can be que-
ried.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, GetThreadPriority, SetPriorityClass, SetThreadPri-
ority

1.162 GetPrivateProfileInt

The GetPrivateProfileInt function retrieves an integer associated with a key in the specified section of an initializa-
tion file.

Note This function is provided only for compatibility with 16-bit Windows-based applications. Win32-based applica-
tions should store initialization information in the registry.

GetPrivateProfileInt: procedure
(

lpAppName: string;
lpKeyName: string;
nDefault: dword;
lpFileName: string

);
stdcall;
returns( "eax" );
external( "__imp__GetPrivateProfileIntA@16" );

IDLE_PRIORITY_CLASS Indicates a process whose threads run only when the system is
idle and are preempted by the threads of any process running in
a higher priority class. An example is a screen saver. The idle
priority class is inherited by child processes.

NORMAL_PRIORITY_CLASS Indicates a normal process with no special scheduling needs.

REALTIME_PRIORITY_CLASS Indicates a process that has the highest possible priority. The
threads of a real-time priority class process preempt the threads
of all other processes, including operating system processes
performing important tasks. For example, a real-time process
that executes for more than a very brief interval can cause disk
caches not to flush or cause the mouse to be unresponsive.
Page 208



Win32 API Reference
Parameters

lpAppName
[in] Pointer to a null-terminated string specifying the name of the section in the initialization file.

lpKeyName
[in] Pointer to the null-terminated string specifying the name of the key whose value is to be retrieved. This value
is in the form of a string; the GetPrivateProfileInt function converts the string into an integer and returns the
integer.

nDefault
[in] Specifies the default value to return if the key name cannot be found in the initialization file.

lpFileName
[in] Pointer to a null-terminated string that specifies the name of the initialization file. If this parameter does not
contain a full path to the file, the system searches for the file in the Windows directory.

Return Values
The return value is the integer equivalent of the string following the specified key name in the specified initialization
file. If the key is not found, the return value is the specified default value. If the value of the key is less than zero, the
return value is zero.

Remarks
The function searches the file for a key that matches the name specified by the lpKeyName parameter under the sec-
tion name specified by the lpAppName parameter. A section in the initialization file must have the following form:

[section]

key=value

.

.

.

The GetPrivateProfileInt function is not case-sensitive; the strings in lpAppName and lpKeyName can be a combi-
nation of uppercase and lowercase letters.

An application can use the GetProfileInt function to retrieve an integer value from the Win.ini file.

Windows NT/2000: Calls to private profile functions may be mapped to the registry instead of to the specified ini-
tialization files. This mapping occurs when the initialization file and section are specified in the registry under the fol-
lowing keys:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping

This mapping is likely if an application modifies system-component initialization files, such as Control.ini, Sys-
tem.ini, and Winfile.ini. In these cases, the GetPrivateProfileInt function retrieves information from the registry, not
from the initialization file; the change in the storage location has no effect on the function's behavior.

The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps to locate ini-
tialization information:

Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping\myfile.ini

Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
Page 209



Volume 1
registry you will find the keys for the section.

If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.

If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.

# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Registry Overview, Registry Functions, GetProfileInt, WritePrivateProfileString

1.163 GetPrivateProfileSection

The GetPrivateProfileSection function retrieves all the keys and values for the specified section of an initialization
file.

Windows 95: The specified profile section must not exceed 32K.

Windows NT/2000: The specified profile section has no size limit.

Note This function is provided only for compatibility with 16-bit applications written for Windows. Win32-based
applications should store initialization information in the registry.

GetPrivateProfileSection: procedure
(

lpAppName: string;
var lpReturnedString: var;

nSize: dword;
lpFileName: string

);
stdcall;
returns( "eax" );
external( "__imp__GetPrivateProfileSectionA@16" );
Page 210



Win32 API Reference
Parameters

lpAppName
[in] Pointer to a null-terminated string specifying the name of the section in the initialization file.

lpReturnedString
[out] Pointer to a buffer that receives the key name and value pairs associated with the named section. The buffer
is filled with one or more null-terminated strings; the last string is followed by a second null character.

nSize
[in] Specifies the size, in TCHARs, of the buffer pointed to by the lpReturnedString parameter.

Windows 95: The maximum buffer size is 32,767 characters.

lpFileName
[in] Pointer to a null-terminated string that specifies the name of the initialization file. If this parameter does not
contain a full path to the file, the system searches for the file in the Windows directory.

Return Values
The return value specifies the number of characters copied to the buffer, not including the terminating null character.
If the buffer is not large enough to contain all the key name and value pairs associated with the named section, the
return value is equal to nSize minus two.

Remarks
The data in the buffer pointed to by the lpReturnedString parameter consists of one or more null-terminated strings,
followed by a final null character. Each string has the following format:

key=string

The GetPrivateProfileSection function is not case-sensitive; the string pointed to by the lpAppName parameter can
be a combination of uppercase and lowercase letters.

This operation is atomic; no updates to the specified initialization file are allowed while the key name and value pairs
for the section are being copied to the buffer pointed to by the lpReturnedString parameter.

Windows NT/2000: Calls to private profile functions may be mapped to the registry instead of to the specified ini-
tialization files. This mapping occurs when the initialization file and section are specified in the registry under the fol-
lowing keys:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping

This mapping is likely if an application modifies system-component initialization files, such as Control.ini, Sys-
tem.ini, and Winfile.ini. In these cases, the GetPrivateProfileSection function retrieves information from the regis-
try, not from the initialization file; the change in the storage location has no effect on the function's behavior.

The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps to locate ini-
tialization information:

Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping\myfile.ini

Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
registry you will find the keys for the section.

If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.
Page 211



Volume 1
If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.

# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

Windows NT/2000: Comments (any line that starts with a semicolon) are stripped out and not returned in the lpRe-
turnedString buffer.

Windows 95/98: The lpReturnedString buffer receives a copy of the entire section, including comments.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Registry Overview, Registry Functions, GetProfileSection, WritePrivateProfileSection

1.164 GetPrivateProfileSectionNames

The GetPrivateProfileSectionNames function retrieves the names of all sections in an initialization file.

Note This function is provided only for compatibility with 16-bit Windows-based applications. Win32-based applica-
tions should store initialization information in the registry.

GetPrivateProfileSectionNames: procedure
(

var lpszReturnBuffer: var;
nSize: dword;
lpFileName: string

);
stdcall;
returns( "eax" );
external( "__imp__GetPrivateProfileSectionNamesA@12" );

Parameters

lpszReturnBuffer
[out] Pointer to a buffer that receives the section names associated with the named file. The buffer is filled with
one or more null-terminated strings; the last string is followed by a second null character.
Page 212



Win32 API Reference
nSize
[in] Specifies the size, in TCHARs, of the buffer pointed to by the lpszReturnBuffer parameter.

lpFileName
[in] Pointer to a null-terminated string that specifies the name of the initialization file. If this parameter is NULL,
the function searches the Win.ini file. If this parameter does not contain a full path to the file, the system searches
for the file in the Windows directory.

Return Values
The return value specifies the number of characters copied to the specified buffer, not including the terminating null
character. If the buffer is not large enough to contain all the section names associated with the specified initialization
file, the return value is equal to the length specified by nSize minus two.

Remarks
This operation is atomic; no updates to the initialization file are allowed while the section names are being copied to
the buffer.

Calls to profile functions might be mapped to the registry instead of to the initialization files. When the operation has
been mapped, the GetPrivateProfileSectionNames function retrieves information from the registry, not from the ini-
tialization file; the change in the storage location has no effect on the function's behavior.

The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps to locate ini-
tialization information:

Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping\myfile.ini

Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
registry you will find the keys for the section.

If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.

If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.

# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.
Page 213



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Registry Overview, Registry Functions, GetPrivateProfileSection, WritePrivateProfile-
Section

1.165 GetPrivateProfileString

The GetPrivateProfileString function retrieves a string from the specified section in an initialization file.

Note This function is provided only for compatibility with 16-bit Windows-based applications. Win32-based applica-
tions should store initialization information in the registry.

GetPrivateProfileString: procedure
(

lpAppName: string;
lpKeyName: string;
lpDefault: string;

var lpReturnedString: var;
nSize: dword;
lpFileName: string

);
stdcall;
returns( "eax" );
external( "__imp__GetPrivateProfileStringA@24" );

Parameters

lpAppName
[in] Pointer to a null-terminated string that specifies the name of the section containing the key name. If this
parameter is NULL, the GetPrivateProfileString function copies all section names in the file to the supplied
buffer.

lpKeyName
[in] Pointer to the null-terminated string specifying the name of the key whose associated string is to be retrieved.
If this parameter is NULL, all key names in the section specified by the lpAppName parameter are copied to the
buffer specified by the lpReturnedString parameter.

lpDefault
[in] Pointer to a null-terminated default string. If the lpKeyName key cannot be found in the initialization file,
GetPrivateProfileString copies the default string to the lpReturnedString buffer. This parameter cannot be
NULL.

Avoid specifying a default string with trailing blank characters. The function inserts a null character in the lpRe-
turnedString buffer to strip any trailing blanks.

Windows 95: Although lpDefault is declared as a constant parameter, the system strips any trailing blanks by
inserting a null character into the lpDefault string before copying it to the lpReturnedString buffer.

Windows NT/2000: The system does not modify the lpDefault string. This means that if the default string con-
tains trailing blanks, the lpReturnedString and lpDefault strings will not match when compared using the lstrcmp
function.
Page 214



Win32 API Reference
lpReturnedString
[out] Pointer to the buffer that receives the retrieved string.

nSize
[in] Specifies the size, in TCHARs, of the buffer pointed to by the lpReturnedString parameter.

lpFileName
[in] Pointer to a null-terminated string that specifies the name of the initialization file. If this parameter does not
contain a full path to the file, the system searches for the file in the Windows directory.

Return Values
The return value is the number of characters copied to the buffer, not including the terminating null character.

If neither lpAppName nor lpKeyName is NULL and the supplied destination buffer is too small to hold the requested
string, the string is truncated and followed by a null character, and the return value is equal to nSize minus one.

If either lpAppName or lpKeyName is NULL and the supplied destination buffer is too small to hold all the strings,
the last string is truncated and followed by two null characters. In this case, the return value is equal to nSize minus
two.

Remarks
The GetPrivateProfileString function searches the specified initialization file for a key that matches the name spec-
ified by the lpKeyName parameter under the section heading specified by the lpAppName parameter. If it finds the
key, the function copies the corresponding string to the buffer. If the key does not exist, the function copies the default
character string specified by the lpDefault parameter. A section in the initialization file must have the following form:

[section]

key=string

.

.

.

If lpAppName is NULL, GetPrivateProfileString copies all section names in the specified file to the supplied buffer.
If lpKeyName is NULL, the function copies all key names in the specified section to the supplied buffer. An applica-
tion can use this method to enumerate all of the sections and keys in a file. In either case, each string is followed by a
null character and the final string is followed by a second null character. If the supplied destination buffer is too small
to hold all the strings, the last string is truncated and followed by two null characters.

If the string associated with lpKeyName is enclosed in single or double quotation marks, the marks are discarded
when the GetPrivateProfileString function retrieves the string.

The GetPrivateProfileString function is not case-sensitive; the strings can be a combination of uppercase and lower-
case letters.

To retrieve a string from the Win.ini file, use the GetProfileString function.

Windows NT/2000: Calls to private profile functions may be mapped to the registry instead of to the specified ini-
tialization files. This mapping occurs when the initialization file and section are specified in the registry under the fol-
lowing keys:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping

This mapping is likely if an application modifies system-component initialization files, such as Control.ini, Sys-
tem.ini, and Winfile.ini. In these cases, the GetPrivateProfileString function retrieves information from the registry,
not from the initialization file; the change in the storage location has no effect on the function's behavior.

The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps to locate ini-
tialization information:
Page 215



Volume 1
Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping\myfile.ini

Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
registry you will find the keys for the section.

If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.

If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.

# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Registry Overview, Registry Functions, GetProfileString, WritePrivateProfileString

1.166 GetPrivateProfileStruct

The GetPrivateProfileStruct function retrieves the data associated with a key in the specified section of an initializa-
tion file. As it retrieves the data, the function calculates a checksum and compares it with the checksum calculated by
the WritePrivateProfileStruct function when the data was added to the file.

Note This function is provided only for compatibility with 16-bit Windows-based applications. Win32-based applica-
tions should store initialization information in the registry.

GetPrivateProfileStruct: procedure
(

lpszSection: string;
lpszKey: string;
Page 216



Win32 API Reference
var lpStruct: var;
uSizeStruct: dword;
szFile: string

);
stdcall;
returns( "eax" );
external( "__imp__GetPrivateProfileStructA@20" );

Parameters

lpszSection
[in] Pointer to a null-terminated string specifying the name of the section in the initialization file.

lpszKey
[in] Pointer to the null-terminated string specifying the name of the key whose data is to be retrieved.

lpStruct
[out] Pointer to the buffer that receives the data associated with the file, section, and key names.

uSizeStruct
[in] Specifies the size, in bytes, of the buffer pointed to by the lpStruct parameter.

szFile
[in] Pointer to a null-terminated string that specifies the name of the initialization file. If this parameter does not
contain a full path to the file, the system searches for the file in the Windows directory.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Remarks
A section in the initialization file must have the following form:

[section]

key=data

.

.

.

Calls to private profile functions might be mapped to the registry instead of to the specified initialization files. This
mapping is likely if an application modifies system-component initialization files, such as Control.ini, System.ini,
and Winfile.ini. In these cases, the GetPrivateProfileStruct function retrieves information from the registry, not
from the initialization file; the change in the storage location has no effect on the function's behavior.

The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps to locate ini-
tialization information:

Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping\myfile.ini

Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
registry you will find the keys for the section.
Page 217



Volume 1
If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.

If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.

# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Registry Overview, Registry Functions, WritePrivateProfileStruct

1.167 GetProcAddress

The GetProcAddress function retrieves the address of the specified exported dynamic-link library (DLL) function.

GetProcAddress: procedure
(

hModule: dword;
lpProcName: string

);
stdcall;
returns( "eax" );
external( "__imp__GetProcAddress@8" );

Parameters

hModule
[in] Handle to the DLL module that contains the function. The LoadLibrary or GetModuleHandle function
returns this handle.

lpProcName
[in] Pointer to a null-terminated string containing the function name, or specifies the function's ordinal value. If
Page 218



Win32 API Reference
this parameter is an ordinal value, it must be in the low-order word; the high-order word must be zero.

Return Values
If the function succeeds, the return value is the address of the DLL's exported function.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The GetProcAddress function is used to retrieve addresses of exported functions in DLLs.

The spelling and case of the function name pointed to by lpProcName must be identical to that in the EXPORTS
statement of the source DLL's module-definition (.DEF) file. The exported names of Win32 API functions may differ
from the names you use when calling these functions in your code. This difference is hidden by macros used in the
SDK header files. For more information, see Win32 Function Prototypes.

The lpProcName parameter can identify the DLL function by specifying an ordinal value associated with the function
in the EXPORTS statement. GetProcAddress verifies that the specified ordinal is in the range 1 through the highest
ordinal value exported in the .DEF file. The function then uses the ordinal as an index to read the function's address
from a function table. If the .DEF file does not number the functions consecutively from 1 to N (where N is the num-
ber of exported functions), an error can occur where GetProcAddress returns an invalid, non-NULL address, even
though there is no function with the specified ordinal.

In cases where the function may not exist, the function should be specified by name rather than by ordinal value.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Dynamic-Link Libraries Overview, Dynamic-Link Library Functions, FreeLibrary, GetModuleHandle, LoadLibrary

1.168 GetProcessAffinityMask

The GetProcessAffinityMask function retrieves the process affinity mask for the specified process and the system
affinity mask for the system.

A process affinity mask is a bit vector in which each bit represents the processors that a process is allowed to run on.
A system affinity mask is a bit vector in which each bit represents the processors that are configured into a system.

A process affinity mask is a proper subset of a system affinity mask. A process is only allowed to run on the proces-
sors configured into a system.

GetProcessAffinityMask: procedure
(

hProcess: dword;
var lpProcessAffinityMask: dword;
var lpSystemAffinityMask: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetProcessAffinityMask@12" );

Parameters

hProcess
[in] Handle to the process whose affinity mask is desired.
Page 219



Volume 1
Windows NT/2000: This handle must have PROCESS_QUERY_INFORMATION access. For more informa-
tion, see Process Security and Access Rights.

lpProcessAffinityMask
[out] Pointer to a variable that receives the affinity mask for the specified process.

lpSystemAffinityMask
[out] Pointer to a variable that receives the affinity mask for the system.

Return Values
If the function succeeds, the return value is nonzero.

Windows NT/2000: Upon success, the function sets the DWORD variables pointed to by lpProcessAffinityMask and
lpSystemAffinityMask to the appropriate affinity masks.

Windows 95/98: Upon success, the function sets the DWORD variables pointed to by lpProcessAffinityMask and
lpSystemAffinityMask to the value one.

If the function fails, the return value is zero, and the values of the DWORD variables pointed to by lpProcessAffinity-
Mask and lpSystemAffinityMask are undefined. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, SetProcessAffinityMask, SetThreadAffinityMask

1.169 GetProcessHeap

The GetProcessHeap function obtains a handle to the heap of the calling process. This handle can then be used in
subsequent calls to the HeapAlloc, HeapReAlloc, HeapFree, and HeapSize functions.

GetProcessHeap: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetProcessHeap@0" );

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is a handle to the calling process's heap.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The GetProcessHeap function allows you to allocate memory from the process heap without having to first create a
heap with the HeapCreate function, as shown in this example:

HeapAlloc(GetProcessHeap(), 0, dwBytes);

Note The handle obtained by calling this function should not be used in calls to the HeapDestroy function.

To guard against an access violation, use structured exception handling to protect any code that writes to or reads
Page 220



Win32 API Reference
from a heap. For more information on structured exception handling with memory accesses, see Reading and Writing
and Structured Exception Handling.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, HeapAlloc, HeapCreate, HeapDestroy, Heap-
Free, HeapReAlloc, HeapSize

1.170 GetProcessHeaps

The GetProcessHeaps function obtains handles to all of the heaps that are valid for the calling process.

GetProcessHeaps: procedure
(

NumberOfHeaps: dword;
var ProcessHeaps: var

);
stdcall;
returns( "eax" );
external( "__imp__GetProcessHeaps@8" );

Parameters

NumberOfHeaps
[in] Specifies the maximum number of heap handles that can be stored into the buffer pointed to by Pro-
cessHeaps.

ProcessHeaps
[out] Pointer to a buffer to receive an array of heap handles.

Return Values
The return value is the number of heap handles that are valid for the calling process.

If the return value is less than or equal to NumberOfHeaps, it is also the number of heap handles stored into the buffer
pointed to by ProcessHeaps.

If the return value is greater than NumberOfHeaps, the buffer pointed to by ProcessHeaps is too small to hold all the
valid heap handles of the calling process.The function will have stored no handles into that buffer. In this situation,
use the return value to allocate a buffer that is large enough to receive the handles, and call the function again.

If the return value is zero, the function has failed, because every process has at least one valid heap, the process heap.
To get extended error information, call GetLastError.

Remarks
Use the GetProcessHeap function to obtain a handle to the process heap of the calling process. The GetPro-
cessHeaps function obtains a handle to that heap, plus handles to any additional private heaps created by calling the
HeapCreate function.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Page 221



Volume 1
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GetProcessHeap, HeapCreate

1.171 GetProcessPriorityBoost

The GetProcessPriorityBoost function retrieves the priority boost control state of the specified process.

GetProcessPriorityBoost: procedure
(

hProcess: dword;
var pDisablePriorityBoost: boolean

);
stdcall;
returns( "eax" );
external( "__imp__GetProcessPriorityBoost@8" );

Parameters

hProcess
[in] Handle to the process. This handle must have the PROCESS_QUERY_INFORMATION access right. For
more information, see Process Security and Access Rights.

pDisablePriorityBoost
[out] Pointer to a variable that receives the priority boost control state. A value of TRUE indicates that dynamic
boosting is disabled. A value of FALSE indicates normal behavior.

Return Values
If the function succeeds, the return value is nonzero. In that case, the variable pointed to by the pDisablePriorityBoost
parameter receives the priority boost control state.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, SetProcessPriorityBoost

1.172 GetProcessShutdownParameters

The GetProcessShutdownParameters function retrieves shutdown parameters for the currently calling process.

BOOL GetProcessShutdownParameters(
LPDWORD lpdwLevel, // shutdown priority
LPDWORD lpdwFlags // shutdown flag

);
Page 222



Win32 API Reference
Parameters

lpdwLevel
[out] Pointer to a variable that receives the shutdown priority level. Higher levels shut down first. System level
shutdown orders are reserved for system components. Higher numbers shut down first. Following are the level
conventions.

All processes start at shutdown level 0x280.

lpdwFlags
[out] Pointer to a variable that receives the shutdown flags. This parameter can be the following value.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, SetProcessShutdownParameters

1.173 GetProcessTimes

The GetProcessTimes function retrieves timing information for the specified process.

GetProcessTimes: procedure

(

hProcess: dword;

var lpCreationTime: FILETIME;

var lpExitTime: FILETIME;

var lpKernelTime: FILETIME;

Value Meaning

000–0FF System reserved last shutdown range.

100–1FF Application reserved last shutdown range.

200–2FF Application reserved "in between" shutdown range.

300–3FF Application reserved first shutdown range.

400–4FF System reserved first shutdown range.

Value Meaning

SHUTDOWN_NORETRY If this process takes longer than the specified timeout to shut down,
do not display a retry dialog box for the user. Instead, just cause the
process to directly exit.
Page 223



Volume 1
var lpUserTime: FILETIME

);

stdcall;

returns( "eax" );

external( "__imp__GetProcessTimes@20" );

Parameters

hProcess
[in] Handle to the process whose timing information is sought. This handle must be created with
PROCESS_QUERY_INFORMATION access. For more information, see Process Security and Access Rights.

lpCreationTime
[out] Pointer to a FILETIME structure that receives the creation time of the process.

lpExitTime
[out] Pointer to a FILETIME structure that receives the exit time of the process. If the process has not exited,
the content of this structure is undefined.

lpKernelTime
[out] Pointer to a FILETIME structure that receives the amount of time that the process has executed in kernel
mode. The time that each of the threads of the process has executed in kernel mode is determined, and then all of
those times are summed together to obtain this value.

lpUserTime
[out] Pointer to a FILETIME structure that receives the amount of time that the process has executed in user
mode. The time that each of the threads of the process has executed in user mode is determined, and then all of
those times are summed together to obtain this value.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
All times are expressed using FILETIME data structures. Such a structure contains two 32-bit values that combine
to form a 64-bit count of 100-nanosecond time units.

Process creation and exit times are points in time expressed as the amount of time that has elapsed since midnight on
January 1, 1601 at Greenwich, England. The Win32 API provides several functions that an application can use to
convert such values to more generally useful forms.

Process kernel mode and user mode times are amounts of time. For example, if a process has spent one second in ker-
nel mode, this function will fill the FILETIME structure specified by lpKernelTime with a 64-bit value of ten million.
That is the number of 100-nanosecond units in one second.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, FILETIME, FileTimeToDosDateTime, FileTime-
ToLocalFileTime, FileTimeToSystemTime
Page 224



Win32 API Reference
1.174 GetProcessVersion

The GetProcessVersion function retrieves the major and minor version numbers of the system on which the specified
process expects to run.

GetProcessVersion: procedure
(

ProcessId:dword
);

stdcall;
returns( "eax" );
external( "__imp__GetProcessVersion@4" );

Parameters

ProcessId
[in] Process identifier that specifies the process of interest. A value of zero specifies the calling process.

Return Values
If the function succeeds, the return value is the version of the system on which the process expects to run. The high
word of the return value contains the major version number. The low word of the return value contains the minor ver-
sion number.

If the function fails, the return value is zero. To get extended error information, call GetLastError. The function
fails if ProcessId is an invalid value.

Remarks
The GetProcessVersion function performs less quickly when ProcessId is nonzero, specifying a process other than
the calling process.

The version number returned by this function is the version number stamped in the image header of the .exe file the
process is running. Linker programs set this value.

Requirements
Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions

1.175 GetProcessWorkingSetSize

The GetProcessWorkingSetSize function retrieves the minimum and maximum working set sizes of the specified
process.

The "working set" of a process is the set of memory pages currently visible to the process in physical RAM memory.
These pages are resident and available for an application to use without triggering a page fault. The size of a process'
working set is specified in bytes. The minimum and maximum working set sizes affect the virtual memory paging
behavior of a process.

GetProcessWorkingSetSize: procedure
Page 225



Volume 1
(
hProcess: dword;

var lpMinimumWorkingSetSize: SIZE_T;
var lpMaximumWorkingSetSize: SIZE_T

);
stdcall;
returns( "eax" );
external( "__imp__GetProcessWorkingSetSize@12" );

Parameters

hProcess
[in] Handle to the process whose working set sizes will be obtained. The handle must have the
PROCESS_QUERY_INFORMATION access right. For more information, see Process Security and Access
Rights.

lpMinimumWorkingSetSize
[out] Pointer to a variable that receives the minimum working set size of the specified process. The virtual mem-
ory manager attempts to keep at least this much memory resident in the process whenever the process is active.

lpMaximumWorkingSetSize
[out] Pointer to a variable that receives the maximum working set size of the specified process. The virtual mem-
ory manager attempts to keep no more than this much memory resident in the process whenever the process is
active when memory is in short supply.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, SetProcessWorkingSetSize

1.176 GetProfileInt

The GetProfileInt function retrieves an integer from a key in the specified section of the Win.ini file.

Note This function is provided only for compatibility with 16-bit Windows-based applications. Win32-based applica-
tions should store initialization information in the registry.

GetProfileInt: procedure
(

lpAppName: string;
lpKeyName: string;
nDefault: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetProfileIntA@12" );
Page 226



Win32 API Reference
Parameters

lpAppName
[in] Pointer to a null-terminated string that specifies the name of the section containing the key name.

lpKeyName
[in] Pointer to the null-terminated string specifying the name of the key whose value is to be retrieved. This value
is in the form of a string; the GetProfileInt function converts the string into an integer and returns the integer.

nDefault
[in] Specifies the default value to return if the key name cannot be found in the initialization file.

Return Values
The return value is the integer equivalent of the string following the key name in Win.ini. If the function cannot find
the key, the return value is the default value. If the value of the key is less than zero, the return value is zero.

Remarks
If the key name consists of digits followed by characters that are not numeric, the function returns only the value of
the digits. For example, the function returns 102 for the following line: KeyName=102abc.

Windows NT/2000: Calls to profile functions may be mapped to the registry instead of to the initialization files. This
mapping occurs when the initialization file and section are specified in the registry under the following keys:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping

When the operation has been mapped, the GetProfileInt function retrieves information from the registry, not from
the initialization file; the change in the storage location has no effect on the function's behavior.

The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps to locate ini-
tialization information:

Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping\myfile.ini

Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
registry you will find the keys for the section.

If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.

If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.

# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.
Page 227



Volume 1
USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Registry Overview, Registry Functions, GetPrivateProfileInt, WriteProfileString

1.177 GetProfileSection

The GetProfileSection function retrieves all the keys and values for the specified section of the Win.ini file.

Windows 95: The specified profile section must not exceed 32K.

Windows NT/2000: The specified profile section has no size limit.

Note This function is provided only for compatibility with 16-bit Windows-based applications. Win32-based applica-
tions should store initialization information in the registry.

GetProfileSection: procedure
(

lpAppName: string;
lpReturnedString: string;
nSize: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetProfileSectionA@12" );

Parameters

lpAppName
[in] Pointer to a null-terminated string specifying the name of the section in the Win.ini file.

lpReturnedString
[out] Pointer to a buffer that receives the keys and values associated with the named section. The buffer is filled
with one or more null-terminated strings; the last string is followed by a second null character.

nSize
[in] Specifies the size, in TCHARs, of the buffer pointed to by the lpReturnedString parameter.

Windows 95: The maximum buffer size is 32,767 characters.

Return Values
The return value specifies the number of characters copied to the specified buffer, not including the terminating null
character. If the buffer is not large enough to contain all the keys and values associated with the named section, the
return value is equal to the length specified by nSize minus two.

Remarks
The format of the returned keys and values is one or more null-terminated strings, followed by a final null character.
Page 228



Win32 API Reference
Each string has the following form:

key=string

The GetProfileSection function is not case-sensitive; the strings can be a combination of uppercase and lowercase
letters.

This operation is atomic; no updates to the Win.ini file are allowed while the keys and values for the section are being
copied to the buffer.

Windows NT/2000: Calls to profile functions may be mapped to the registry instead of to the initialization files. This
mapping occurs when the initialization file and section are specified in the registry under the following keys:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping

When the operation has been mapped, the GetProfileSection function retrieves information from the registry, not
from the initialization file; the change in the storage location has no effect on the function's behavior.

The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps to locate ini-
tialization information:

Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping\myfile.ini

Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
registry you will find the keys for the section.

If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.

If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.

# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.
Page 229



Volume 1
See Also
Registry Overview, Registry Functions, GetPrivateProfileSection, WriteProfileSection

1.178 GetProfileString

The GetProfileString function retrieves the string associated with a key in the specified section of the Win.ini file.

Note This function is provided only for compatibility with 16-bit Windows-based applications. Win32-based applica-
tions should store initialization information in the registry.

GetProfileString: procedure
(

lpAppName: string;
lpKeyName: string;
lpDefault: string;

var lpReturnedString: var;
nSize: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetProfileStringA@20" );

Parameters

lpAppName
[in] Pointer to a null-terminated string that specifies the name of the section containing the key. If this parameter
is NULL, the function copies all section names in the file to the supplied buffer.

lpKeyName
[in] Pointer to a null-terminated string specifying the name of the key whose associated string is to be retrieved.
If this parameter is NULL, the function copies all keys in the given section to the supplied buffer. Each string is
followed by a null character, and the final string is followed by a second null character.

lpDefault
[in] Pointer to a null-terminated default string. If the lpKeyName key cannot be found in the initialization file,
GetProfileString copies the default string to the lpReturnedString buffer. This parameter cannot be NULL.

Avoid specifying a default string with trailing blank characters. The function inserts a null character in the lpRe-
turnedString buffer to strip any trailing blanks.

Windows 95: Although lpDefault is declared as a constant parameter, the system strips any trailing blanks by
inserting a null character into the lpDefault string before copying it to the lpReturnedString buffer.

Windows NT/2000: The system does not modify the lpDefault string. This means that if the default string con-
tains trailing blanks, the lpReturnedString and lpDefault strings will not match when compared using the lstrcmp
function.

lpReturnedString
[out] Pointer to a buffer that receives the character string.

nSize
[in] Specifies the size, in TCHARs, of the buffer pointed to by the lpReturnedString parameter.

Return Values
The return value is the number of characters copied to the buffer, not including the null-terminating character.

If neither lpAppName nor lpKeyName is NULL and the supplied destination buffer is too small to hold the requested
Page 230



Win32 API Reference
string, the string is truncated and followed by a null character, and the return value is equal to nSize minus one.

If either lpAppName or lpKeyName is NULL and the supplied destination buffer is too small to hold all the strings,
the last string is truncated and followed by two null characters. In this case, the return value is equal to nSize minus
two.

Remarks
If the string associated with the lpKeyName parameter is enclosed in single or double quotation marks, the marks are
discarded when the GetProfileString function returns the string.

The GetProfileString function is not case-sensitive; the strings can contain a combination of uppercase and lower-
case letters.

A section in the Win.ini file must have the following form:

[section]

key=string

.

.

.

An application can use the GetPrivateProfileString function to retrieve a string from a specified initialization
file.

The lpDefault parameter must point to a valid string, even if the string is empty (that is, even if its first character is a
null character).

Windows NT/2000: Calls to profile functions may be mapped to the registry instead of to the initialization files. This
mapping occurs when the initialization file and section are specified in the registry under the following keys:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping

When the operation has been mapped, the GetProfileString function retrieves information from the registry, not from
the initialization file; the change in the storage location has no effect on the function's behavior.

The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps to locate ini-
tialization information:

Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping\myfile.ini

Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
registry you will find the keys for the section.

If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.

If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.
Page 231



Volume 1
# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Registry Overview, Registry Functions, GetPrivateProfileString, WriteProfileString

1.179 GetQueuedCompletionStatus

The GetQueuedCompletionStatus function attempts to dequeue an I/O completion packet from a specified I/O com-
pletion port. If there is no completion packet queued, the function waits for a pending I/O operation associated with
the completion port to complete.

GetQueuedCompletionStatus: procedure
(

CompletionPort: dword;
var lpNumberOfBytes: dword;
var lpCompletionKey: dword;
var lpOverlapped: OVERLAPPED;

dwMilliseconds: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetQueuedCompletionStatus@20" );

Parameters

CompletionPort
[in] Handle to the completion port of interest. To create a completion port, use the CreateIoCompletionPort
function.

lpNumberOfBytes
[out] Pointer to a variable that receives the number of bytes transferred during an I/O operation that has com-
pleted.

lpCompletionKey
[out] Pointer to a variable that receives the completion key value associated with the file handle whose I/O oper-
ation has completed. A completion key is a per-file key that is specified in a call to CreateIoCompletion-

Port.

lpOverlapped
[out] Pointer to a variable that receives the address of the OVERLAPPED structure that was specified when the
Page 232



Win32 API Reference
completed I/O operation was started.

The following functions can be used to start I/O operations that complete using completion ports. You must pass
the function an OVERLAPPED structure and a file handle associated with an completion port (by a call to Cre-
ateIoCompletionPort) to invoke the I/O completion port mechanism:

ConnectNamedPipe

DeviceIoControl

LockFileEx

ReadDirectoryChangesW

ReadFile

TransactNamedPipe

WaitCommEvent

WriteFile

Even if you have passed the function a file handle associated with a completion port and a valid OVERLAPPED

structure, an application can prevent completion port notification. This is done by specifying a valid event handle
for the hEvent member of the OVERLAPPED structure, and setting its low-order bit. A valid event handle
whose low-order bit is set keeps I/O completion from being queued to the completion port.

dwMilliseconds
[in] Specifies the number of milliseconds that the caller is willing to wait for an completion packet to appear at
the completion port. If a completion packet doesn't appear within the specified time, the function times out,
returns FALSE, and sets *lpOverlapped to NULL.

If dwMilliseconds is INFINITE, the function will never time out. If dwMilliseconds is zero and there is no I/O
operation to dequeue, the function will time out immediately.

Return Values
If the function dequeues a completion packet for a successful I/O operation from the completion port, the return value
is nonzero. The function stores information in the variables pointed to by the lpNumberOfBytesTransferred, lpCom-
pletionKey, and lpOverlapped parameters.

If *lpOverlapped is NULL and the function does not dequeue a completion packet from the completion port, the
return value is zero. The function does not store information in the variables pointed to by the lpNumberOf-
BytesTransferred and lpCompletionKey parameters. To get extended error information, call GetLastError. If the
function did not dequeue a completion packet because the wait timed out, GetLastError returns WAIT_TIMEOUT.

If *lpOverlapped is not NULL and the function dequeues a completion packet for a failed I/O operation from the
completion port, the return value is zero. The function stores information in the variables pointed to by lpNumberOf-
BytesTransferred, lpCompletionKey, and lpOverlapped. To get extended error information, call GetLastError.

Remarks
This function associates a thread with the specified completion port. A thread can be associated with at most one
completion port.

The I/O system can be instructed to send completion notification packets to completion ports, where they are queued.
The CreateIoCompletionPort function provides a mechanism for this.

When you perform an input/output operation with a file handle that has an associated input/output completion port,
the I/O system sends a completion notification packet to the completion port when the I/O operation completes. The
completion port places the completion packet in a first-in-first-out queue. The GetQueuedCompletionStatus func-
tion retrieves these queued completion packets.

A server application may have several threads calling GetQueuedCompletionStatus for the same completion port.
As input operations complete, the operating system queues completion packets to the completion port. If threads are
actively waiting in a call to this function, queued requests complete their call. For more information, see I/O Comple-
tion Ports.

You can call the PostQueuedCompletionStatus function to post an completion packet to an completion port. The
Page 233



Volume 1
completion packet will satisfy an outstanding call to the GetQueuedCompletionStatus function.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, ConnectNamedPipe, CreateIoCompletionPort, DeviceIoControl, LockFileEx,
OVERLAPPED, ReadFile, PostQueuedCompletionStatus, TransactNamedPipe, WaitCommEvent, WriteFile

1.180 GetShortPathName

The GetShortPathName function retrieves the short path form of a specified input path.

GetShortPathName: procedure

(

lpszLongPath: string;

var lpszShortPath: var;

cchBuffer: dword

);

stdcall;

returns( "eax" );

external( "__imp__GetShortPathNameA@12" );

Parameters

lpszLongPath
[in] Pointer to a null-terminated path string. The function retrieves the short form of this path.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

lpszShortPath
[out] Pointer to a buffer to receive the null-terminated short form of the path specified by lpszLongPath.

cchBuffer
[in] Specifies the size, in TCHARs, of the buffer pointed to by lpszShortPath.

Return Values
If the function succeeds, the return value is the length, in TCHARs, of the string copied to lpszShortPath, not includ-
ing the terminating null character.

If the function fails due to the lpszShortPath buffer being too small to contain the short path string, the return value is
the size, in TCHARs, of the short path string, including a terminating null. In this event, call the function again with
a short path buffer that is at least as large as the return value times the size of a TCHAR.

If the function fails for any other reason, the return value is zero. To get extended error information, call GetLastEr-
ror.
Page 234



Win32 API Reference
Remarks
When an application calls this function and specifies a path on a volume that does not support 8.3 aliases, the function
fails with ERROR_INVALID_PARAMETER if the path is longer than 67 bytes.

The path specified by lpszLongPath does not have to be a full or a long path. The short form may be longer than the
specifed path.

If the specified path is already in its short form, there is no need for any conversion, and the function simply copies
the specified path to the buffer for the short path.

You can set lpszShortPath to the same value as lpszLongPath; in other words, you can set the buffer for the short path
to the address of the input path string.

You can obtain the long name of a file from the short name by calling the GetLongPathName function. Alternatively,
where GetLongPathName is not available, you can call FindFirstFile on each component of the path to get the
corresponding long name.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetFullPathName, GetLongPathName, FindFirstFile

1.181 GetStartupInfo

The GetStartupInfo function retrieves the contents of the STARTUPINFO structure that was specified when the call-
ing process was created.

GetStartupInfo: procedure
(

var lpStartupInfo: STARTUPINFO
);

stdcall;
returns( "eax" );
external( "__imp__GetStartupInfoA@4" );

Parameters

lpStartupInfo
[out] Pointer to a STARTUPINFO structure that receives the startup information.

Return Values
This function does not return a value.

Remarks
The STARTUPINFO structure was specified by the process that created the calling process. It can be used to specify
properties associated with the main window of the calling process.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Page 235



Volume 1
See Also
Processes and Threads Overview, Process and Thread Functions, CreateProcess, STARTUPINFO

1.182 GetStdHandle

The GetStdHandle function retrieves a handle for the standard input, standard output, or standard error device.

GetStdHandle: procedure
(

nStdHandle:dword
);

stdcall;
returns( "eax" );
external( "__imp__GetStdHandle@4" );

Parameters

nStdHandle
[in] Specifies the standard device for which to return the handle. This parameter can be one of the following val-
ues.

Return Values
If the function succeeds, the return value is a handle to the specified device.

If the function fails, the return value is the INVALID_HANDLE_VALUE flag. To get extended error information,
call GetLastError.

Remarks
Handles returned by GetStdHandle can be used by applications that need to read from or write to the console. When
a console is created, the standard input handle is a handle to the console's input buffer, and the standard output and
standard error handles are handles of the console's active screen buffer. These handles can be used by the ReadFile
and WriteFile functions, or by any of the console functions that access the console input buffer or a screen buffer (for
example, the ReadConsoleInput, WriteConsole, or GetConsoleScreenBufferInfo functions).

All handles returned by this function have GENERIC_READ and GENERIC_WRITE access unless the SetStdHan-
dle function has been used to set a standard handle to be some handle with a lesser access.

The standard handles of a process may be redirected by a call to SetStdHandle, in which case GetStdHandle returns
the redirected handle. If the standard handles have been redirected, you can specify the CONIN$ value in a call to the
CreateFile function to get a handle to a console's input buffer. Similarly, you can specify the CONOUT$ value to get
a handle to a console's active screen buffer.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

Value Meaning

STD_INPUT_HANDLE Standard input handle

STD_OUTPUT_HANDLE Standard output handle

STD_ERROR_HANDLE Standard error handle
Page 236



Win32 API Reference
See Also
Consoles and Character-Mode Support Overview, Console Functions, CreateFile, GetConsoleScreenBufferInfo,
ReadConsoleInput, ReadFile, SetStdHandle, WriteConsole, WriteFile

1.183 GetStringType

The GetStringType function retrieves character-type information for the characters in the specified source string. For
each character in the string, the function sets one or more bits in the corresponding 16-bit element of the output array.
Each bit identifies a given character type, such as whether the character is a letter, a digit, or neither.

GetStringType: procedure
(

Locale: LCID;
dwInfoType: dword;
lpSrcStr: string;
cchSrc: dword;

var lpCharType: var
);

stdcall;
returns( "eax" );
external( "__imp__GetStringTypeA@20" );

Parameters

Locale
[in] Specifies the locale identifier. This value uniquely defines the ANSI code page to use to translate the string
pointed to by lpSrcStr from ANSI to Unicode. The function then analyzes each Unicode character for character
type information.

This parameter can be a locale identifier created by the MAKELCID macro, or one of the following predefined val-
ues.

Note that the Locale parameter does not exist in the GetStringTypeW function. Because of that parameter differ-
ence, an application cannot automatically invoke the proper A or W version of GetStringType* through the use of
the #define UNICODE switch. An application can circumvent this limitation by using GetStringTypeEx, which is
the recommended function.

dwInfoType
[in] Specifies the type of character information the user wants to retrieve. The various types are divided into dif-
ferent levels (see the following Remarks section for a list of the information included in each type). This param-
eter can specify one of the following character type flags.

Value Meaning

LOCALE_SYSTEM_DEFAULT Default system locale

LOCALE_USER_DEFAULT Default user locale

Flag Meaning

CT_CTYPE1 Retrieve character type information.

CT_CTYPE2 Retrieve bidirectional layout information.

CT_CTYPE3 Retrieve text processing information.
Page 237



Volume 1
lpSrcStr
[in] Pointer to the string for which character types are requested. If cchSrc is –1, the string is assumed to be null
terminated. This must be an ANSI string. Note that this can be a double-byte character set (DBCS) string if the
locale is appropriate for DBCS.

cchSrc
[in] Specifies the size, in characters, of the string pointed to by the lpSrcStr parameter. If this count includes a
null terminator, the function returns character type information for the null terminator. If this value is –1, the
string is assumed to be null terminated and the length is calculated automatically.

lpCharType
[out] Pointer to an array of 16-bit values. The length of this array must be large enough to receive one 16-bit
value for each character in the source string. When the function returns, this array contains one word correspond-
ing to each character in the source string.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INVALID_FLAGS
ERROR_INVALID_PARAMETER

Remarks
The lpSrcStr and lpCharType pointers must not be the same. If they are the same, the function fails and GetLastEr-
ror returns ERROR_INVALID_PARAMETER.

The Locale parameter is only used to perform string conversion to Unicode. It has nothing to do with the CTYPEs the
function returns. The CTYPEs are solely determined by Unicode code points, and do not vary on a locale basis. For
example, Greek letters are C1_ALPHA for any Locale value.

The character-type bits are divided into several levels. The information for one level can be retrieved by a single call
to this function. Each level is limited to 16 bits of information so that the other mapping routines, which are limited to
16 bits of representation per character, can also return character-type information.

The character types supported by this function include the following.

Ctype 1
These types support ANSI C and POSIX (LC_CTYPE) character-typing functions. A bitwise-OR of these values
is returned in the array pointed to by the lpCharType parameter when the dwInfoType parameter is set to
CT_CTYPE1. For DBCS locales, the Ctype 1 attributes apply to both narrow characters and wide characters.
The Japanese hiragana and katakana characters, and the kanji ideograph characters all have the C1_ALPHA
attribute.

Name Value Meaning

C1_UPPER 0x0001 Uppercase

C1_LOWER 0x0002 Lowercase

C1_DIGIT 0x0004 Decimal digits

C1_SPACE 0x0008 Space characters

C1_PUNCT 0x0010 Punctuation

C1_CNTRL 0x0020 Control characters
Page 238



Win32 API Reference
The following character types are either constant or computable from basic types and do not need to be supported by
this function.

The Windows version 3.1 functions IsCharUpper and IsCharLower do not always produce correct results for char-
acters in the range 0x80-0x9f, so they may produce different results than this function for characters in that range.
(For example, the German Windows version 3.1 language driver incorrectly reports 0x9a, lowercase s hacek, as
uppercase).

Ctype 2
These types support proper layout of Unicode text. For DBCS locales, Ctype 2 applies to both narrow and wide
characters. The direction attributes are assigned so that the bidirectional layout algorithm standardized by Uni-
code produces accurate results. These types are mutually exclusive. For more information about the use of these
attributes, see The Unicode Standard: Worldwide Character Encoding, Volumes 1 and 2, Addison Wesley Pub-
lishing Company: 1991, 1992, ISBN 0201567881.

C1_BLANK 0x0040 Blank characters

C1_XDIGIT 0x0080 Hexadecimal digits

C1_ALPHA 0x0100 Any linguistic character: alphabetic, syllabary, or ideographic

Type Description

Alphanumeric Alphabetic characters and digits (C1_ALPHA and C1_DIGIT).

Printable Graphic characters and blanks (all C1_* types except C1_CNTRL).

Name Value Meaning

Strong

C2_LEFTTORIGHT 0x0001 Left to right

C2_RIGHTTOLEFT 0x0002 Right to left

Weak

C2_EUROPENUMBER 0x0003 European number, European digit

C2_EUROPESEPARATOR 0x0004 European numeric separator

C2_EUROPETERMINATOR 0x0005 European numeric terminator

C2_ARABICNUMBER 0x0006 Arabic number

C2_COMMONSEPARATOR 0x0007 Common numeric separator

Neutral

C2_BLOCKSEPARATOR 0x0008 Block separator

C2_SEGMENTSEPARATOR 0x0009 Segment separator

C2_WHITESPACE 0x000A White space

C2_OTHERNEUTRAL 0x000B Other neutrals

Not applicable

C2_NOTAPPLICABLE 0x0000 No implicit directionality (for example, control codes)
Page 239



Volume 1
Ctype 3
These types are intended to be placeholders for extensions to the POSIX types required for general text process-
ing or for the standard C library functions. A bitwise-OR of these values is returned when dwInfoType is set to
CT_CTYPE3. For DBCS locales, the Cypte 3 attributes apply to both narrow characters and wide characters.
The Japanese hiragana and katakana characters, and the kanji ideograph characters all have the C3_ALPHA
attribute.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Strings Overview, String Functions, GetLocaleInfo, GetStringTypeEx, GetStringTypeW

1.184 GetSystemDefaultLCID

The GetSystemDefaultLCID function retrieves the system default locale identifier.

GetSystemDefaultLCID: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetSystemDefaultLCID@0" );

Name Value Meaning

C3_NONSPACING 0x0001 Nonspacing mark.

C3_DIACRITIC 0x0002 Diacritic nonspacing mark.

C3_VOWELMARK 0x0004 Vowel nonspacing mark.

C3_SYMBOL 0x0008 Symbol.

C3_KATAKANA 0x0010 Katakana character.

C3_HIRAGANA 0x0020 Hiragana character.

C3_HALFWIDTH 0x0040 Half-width (narrow) character.

C3_FULLWIDTH 0x0080 Full-width (wide) character.

C3_IDEOGRAPH 0x0100 Ideographic character.

C3_KASHIDA 0x0200 Arabic Kashida character.

C3_LEXICAL 0x0400 Punctuation which is counted as part of the word (Kashida,
hyphen, feminine/masculine ordinal indicators, equal sign,
and so forth).

C3_ALPHA 0x8000 All linguistic characters (alphabetic, syllabary, and ideo-
graphic).

Not applicable

C3_NOTAPPLICABLE 0x0000 Not applicable.
Page 240



Win32 API Reference
Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is the system default locale identifier. If the function fails, the return value is
zero.

Remarks
For more information about locale identifiers, see Locales.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winnls.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, ConvertDefaultLocale, GetLocaleInfo,
GetUserDefaultLCID, MAKELCID

1.185 GetSystemDefaultLangID

The GetSystemDefaultLangID function retrieves the language identifier of the system locale.

GetSystemDefaultLangID: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetSystemDefaultLangID@0" );

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is the language identifier of the system locale. If the function fails, the return
value is zero.

Remarks
For more information about language identifiers, see Language Identifiers and Locale Information.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, GetSystemDefaultLCID, GetUserDe-
faultLangID, MAKELANGID
Page 241



Volume 1
1.186 GetSystemDirectory

The GetSystemDirectory function retrieves the path of the system directory. The system directory contains such files
as dynamic-link libraries, drivers, and font files.

GetSystemDirectory: procedure
(

var lpBuffer: var;
uSize: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetSystemDirectoryA@8" );

Parameters

lpBuffer
[out] Pointer to the buffer to receive the null-terminated string containing the path. This path does not end with a
backslash unless the system directory is the root directory. For example, if the system directory is named WIN-
DOWS\SYSTEM on drive C, the path of the system directory retrieved by this function is C:\WINDOWS\SYS-
TEM.

uSize
[in] Specifies the maximum size of the buffer, in TCHARs. This value should be set to at least MAX_PATH.

Return Values
If the function succeeds, the return value is the length, in TCHARs, of the string copied to the buffer, not including
the terminating null character. If the length is greater than the size of the buffer, the return value is the size of the
buffer required to hold the path.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Applications should not create files in the system directory. If the user is running a shared version of the operating
system, the application does not have write access to the system directory. Applications should create files only in the
directory returned by the GetWindowsDirectory function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
System Information Overview, System Information Functions, GetCurrentDirectory, GetWindowsDirectory, SetCur-
rentDirectory

1.187 GetSystemInfo

The GetSystemInfo function returns information about the current system.

GetSystemInfo: procedure
(

var lpSystemInfo: var
Page 242



Win32 API Reference
);
stdcall;
returns( "eax" );
external( "__imp__GetSystemInfo@4" );

Parameters

lpSystemInfo
[out] Pointer to a SYSTEM_INFO structure that receives the information.

Return Values
This function does not return a value.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
System Information Overview, System Information Functions, SYSTEM_INFO

1.188 GetSystemPowerStatus

The GetSystemPowerStatus function retrieves the power status of the system. The status indicates whether the sys-
tem is running on AC or DC power, whether the battery is currently charging, and how much battery life remains.

GetSystemPowerStatus: procedure
(

var lpSystemPowerStatus: SYSTEM_POWER_STATUS
);

stdcall;
returns( "eax" );
external( "__imp__GetSystemPowerStatus@4" );

Parameters

lpSystemPowerStatus
[out] Pointer to a SYSTEM_POWER_STATUS structure that receives status information.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Power Management Overview, Power Management Functions, SYSTEM_POWER_STATUS
Page 243



Volume 1
1.189 GetSystemTime

The GetSystemTime function retrieves the current system date and time. The system time is expressed in Coordi-
nated Universal Time (UTC).

GetSystemTime: procedure
(

var lpSystemTime: SYSTEMTIME
);

stdcall;
returns( "eax" );
external( "__imp__GetSystemTime@4" );

Parameters

lpSystemTime
[out] Pointer to a SYSTEMTIME structure to receive the current system date and time.

Return Values
This function does not return a value.

Remarks
MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, GetLocalTime, GetSystemTimeAdjustment, SetSystemTime, SYSTEMTIME

1.190 GetSystemTimeAdjustment

The GetSystemTimeAdjustment function determines whether the system is applying periodic time adjustments to
its time-of-day clock at each clock interrupt, along with the value and period of any such adjustments. Note that the
period of such adjustments is equivalent to the time period between clock interrupts.

GetSystemTimeAdjustment: procedure
(

var lpTimeAdjustment: dword;
var lpTimeIncrement: dword;
var lpTimeAdjustmentDisabled: boolean

);
stdcall;
returns( "eax" );
external( "__imp__GetSystemTimeAdjustment@12" );
Page 244



Win32 API Reference
Parameters

lpTimeAdjustment
[out] Pointer to a DWORD that the function sets to the number of 100-nanosecond units added to the
time-of-day clock at each periodic time adjustment.

lpTimeIncrement
[out] Pointer to a DWORD that the function sets to the interval, counted in 100-nanosecond units, between peri-
odic time adjustments. This interval is the time period between a system's clock interrupts.

lpTimeAdjustmentDisabled
[out] Pointer to a BOOL that the function sets to indicate whether periodic time adjustment is in effect.

A value of TRUE indicates that periodic time adjustment is disabled. At each clock interrupt, the system merely
adds the interval between clock interrupts to the time-of-day clock. The system is free, however, to adjust its
time-of-day clock using other techniques. Such other techniques may cause the time-of-day clock to noticeably
jump when adjustments are made.

A value of FALSE indicates that periodic time adjustment is being used to adjust the time-of-day clock. At each
clock interrupt, the system adds the time increment specified by SetSystemTimeAdjustment's dwTimeIncre-
ment parameter to the time-of-day clock. The system will not interfere with the time adjustment scheme, and will
not attempt to synchronize time of day on its own via other techniques.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetSystemTimeAdjustment and SetSystemTimeAdjustment functions support algorithms that want to syn-
chronize the time-of-day clock, reported by GetSystemTime and GetLocalTime, with another time source using a
periodic time adjustment applied at each clock interrupt.

When periodic time adjustment is in effect, the system adds an adjusting value to the time-of-day clock at a periodic
interval, at each clock interrupt. The GetSystemTimeAdjustment function lets a caller determine whether periodic
time adjustment is enabled, and if it is, obtain the amount of each adjustment and the time between adjustments. The
SetSystemTimeAdjustment function lets a caller enable or disable periodic time adjustment, and set the value of the
adjusting increment.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, SetSystemTimeAdjustment, GetSystemTime, GetLocalTime

1.191 GetSystemTimeAsFileTime

The GetSystemTimeAsFileTime function retrieves the current system date and time. The information is in Coordi-
nated Universal Time (UTC) format.

GetSystemTimeAsFileTime: procedure
(

var lpSystemTimeAsFileTime: FILETIME
Page 245



Volume 1
);
stdcall;
returns( "eax" );
external( "__imp__GetSystemTimeAsFileTime@4" );

Parameters

lpSystemTimeAsFileTime
[out] Pointer to a FILETIME structure to receive the current system date and time in UTC format.

Return Values
This function does not return a value.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, FILETIME, GetSystemTime, SYSTEMTIME, SystemTimeToFile-
Time

1.192 GetTapeParameters

The GetTapeParameters function retrieves information that describes the tape or the tape drive.

GetTapeParameters: procedure
(

hDevice: dword;
dwOperation: dword;

var lpdwSize: dword;
var lpTapeInformation: var

);
stdcall;
returns( "eax" );
external( "__imp__GetTapeParameters@16" );

Parameters

hDevice
[in] Handle to the device about which information is sought. This handle is created by using the CreateFile
function.

dwOperation
[in] Specifies the type of information requested. This parameter must be one of the following values.

Value Description

GET_TAPE_MEDIA_INFORMATION Retrieves information about the tape in the tape
device.

GET_TAPE_DRIVE_INFORMATION Retrieves information about the tape device.
Page 246



Win32 API Reference
lpdwSize
[out] Pointer to a variable that receives the size, in bytes, of the buffer specified by the lpTapeInformation param-
eter. If the buffer is too small, this parameter receives the required size.

lpTapeInformation
[out] Pointer to a structure that contains the requested information. If the dwOperation parameter is
GET_TAPE_MEDIA_INFORMATION, lpTapeInformation points to a TAPE_GET_MEDIA_PARAMETERS struc-
ture.

If dwOperation is GET_TAPE_DRIVE_INFORMATION, lpTapeInformation points to a
TAPE_GET_DRIVE_PARAMETERS structure.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Remarks
The block size range values (maximum and minimum) returned by the GetTapeParameters function called with the
dwOperation parameter set to the GET_TAPE_DRIVE_INFORMATION value will indicate system limits, not drive
limits. However, it is the tape drive device and the media present in the drive that determine the true block size limits.
Thus, an application may not be able to set all the block sizes mentioned in the range obtained by specifying
GET_TAPE_DRIVE_INFORMATION in dwOperation.

Error code Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data before the begin-
ning-of-medium marker failed.

ERROR_BUS_RESET A reset condition was detected on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was reached during an opera-
tion.

ERROR_FILEMARK_DETECTED A filemark was reached during an operation.

ERROR_SETMARK_DETECTED A setmark was reached during an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was reached during an opera-
tion.

ERROR_PARTITION_FAILURE The tape could not be partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on a new tape in a multivol-
ume partition.

ERROR_DEVICE_NOT_PARTITIONED The partition information could not be found when a
tape was being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.

ERROR_NOT_SUPPORTED The tape driver does not support a requested function.

ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection mechanism failed.

ERROR_UNABLE_TO_UNLOAD_MEDIA An attempt to unload the tape failed.

ERROR_WRITE_PROTECT The media is write protected.
Page 247



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tape Backup Overview, Tape Backup Functions, CreateFile, SetTapeParameters,
TAPE_GET_DRIVE_PARAMETERS, TAPE_GET_MEDIA_PARAMETERS

1.193 GetTapePosition

The GetTapePosition function retrieves the current address of the tape, in logical or absolute blocks.

GetTapePosition: procedure
(

hDevice: dword;
dwPositionType: dword;

var lpdwPartition: dword;
var lpdwOffsetLow: dword;
var lpdwOffsetHigh: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetTapePosition@20" );

Parameters

hDevice
[in] Handle to the device on which to get the tape position. This handle is created by using CreateFile.

dwPositionType
[in] Specifies the type of address to obtain. This parameter can be one of the following values.

lpdwPartition
[out] Pointer to a variable that receives the number of the current tape partition. Partitions are numbered logically
from 1 through n, where 1 is the first partition on the tape and n is the last. When a device-specific block address
is retrieved, or if the device supports only one partition, this parameter receives zero.

lpdwOffsetLow
[out] Pointer to a variable that receives the low-order bits of the current tape position.

lpdwOffsetHigh
[out] Pointer to a variable that receives the high-order bits of the current tape position. This parameter can be

Value Description

TAPE_ABSOLUTE_POSITION The lpdwOffsetLow and lpdwOffsetHigh parameters receive
the device-specific block address. The dwPartition parame-
ter receives zero.

TAPE_LOGICAL_POSITION The lpdwOffsetLow and lpdwOffsetHigh parameters receive
the logical block address. The dwPartition parameter
receives the logical tape partition.
Page 248



Win32 API Reference
NULL if the high-order bits are not required.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Remarks
A logical block address is relative to a partition. The first logical block address on each partition is zero.

Call the GetTapeParameters function to obtain information about the status, capabilities, and capacities of tape
drives and media.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tape Backup Overview, Tape Backup Functions, CreateFile, GetTapeParameters, SetTapePosition

Error code Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data before the begin-
ning-of-medium marker failed.

ERROR_BUS_RESET A reset condition was detected on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was reached during an opera-
tion.

ERROR_FILEMARK_DETECTED A filemark was reached during an operation.

ERROR_SETMARK_DETECTED A setmark was reached during an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was reached during an opera-
tion.

ERROR_PARTITION_FAILURE The tape could not be partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on a new tape in a multivol-
ume partition.

ERROR_DEVICE_NOT_PARTITIONED The partition information could not be found when a
tape was being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.

ERROR_NOT_SUPPORTED The tape driver does not support a requested function.

ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection mechanism failed.

ERROR_UNABLE_TO_UNLOAD_MEDIA An attempt to unload the tape failed.

ERROR_WRITE_PROTECT The media is write protected.
Page 249



Volume 1
1.194 GetTapeStatus

The GetTapeStatus function determines whether the tape device is ready to process tape commands.

GetTapeStatus: procedure
(

hDevice: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetTapeStatus@4" );

Parameters

hDevice
[in] Handle to the device for which to get the device status. This handle is created by using the CreateFile
function.

Return Values
If the tape device is ready to accept appropriate tape-access commands without returning errors, the return value is
NO_ERROR.

If the function fails, the return value is one of the following error codes:

Error code Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data before the begin-
ning-of-medium marker failed.

ERROR_BUS_RESET A reset condition was detected on the bus.

ERROR_DEVICE_NOT_PARTITIONED The partition information could not be found when a
tape was being loaded.

ERROR_DEVICE_REQUIRES_CLEANING The tape drive is capable of reporting that it requires
cleaning, and reports that it does require cleaning.

ERROR_END_OF_MEDIA The end-of-tape marker was reached during an opera-
tion.

ERROR_FILEMARK_DETECTED A filemark was reached during an operation.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on a new tape in a multivol-
ume partition.

ERROR_MEDIA_CHANGED The tape that was in the drive has been replaced or
removed.

ERROR_NO_DATA_DETECTED The end-of-data marker was reached during an opera-
tion.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.

ERROR_NOT_SUPPORTED The tape driver does not support a requested function.

ERROR_PARTITION_FAILURE The tape could not be partitioned.

ERROR_SETMARK_DETECTED A setmark was reached during an operation.

ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection mechanism failed.
Page 250



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tape Backup Overview, Tape Backup Functions, CreateFile

1.195 GetTempFileName

The GetTempFileName function creates a name for a temporary file. The file name is the concatenation of specified
path and prefix strings, a hexadecimal string formed from a specified integer, and the .tmp extension.

The specified integer can be nonzero, in which case, the function creates the file name but does not create the file. If
you specify zero for the integer, the function creates a unique file name and creates the file in the specified directory.

GetTempFileName: procedure

(

lpPathName: string;

lpPrefixString: string;

uUnique: dword;

var lpTempFileName: var

);

stdcall;

returns( "eax" );

external( "__imp__GetTempFileNameA@16" );

Parameters

lpPathName
[in] Pointer to a null-terminated string that specifies the directory path for the file name. This string must consist
of characters in the ANSI character set. Applications typically specify a period (.) or the result of the GetTemp-
Path function for this parameter. If this parameter is NULL, the function fails.

lpPrefixString
[in] Pointer to a null-terminated prefix string. The function uses the first three characters of this string as the pre-
fix of the file name. This string must consist of characters in the ANSI character set.

uUnique
[in] Specifies an unsigned integer that the function converts to a hexadecimal string for use in creating the tem-
porary file name.

If uUnique is nonzero, the function appends the hexadecimal string to lpPrefixString to form the temporary file
name. In this case, the function does not create the specified file, and does not test whether the file name is
unique.

If uUnique is zero, the function uses a hexadecimal string derived from the current system time. In this case, the
function uses different values until it finds a unique file name, and then it creates the file in the lpPathName
directory.

ERROR_UNABLE_TO_UNLOAD_MEDIA An attempt to unload the tape failed.

ERROR_WRITE_PROTECT The media is write protected.
Page 251



Volume 1
lpTempFileName
[out] Pointer to the buffer that receives the temporary file name. This null-terminated string consists of characters
in the ANSI character set. This buffer should be at least the length, in bytes, specified by MAX_PATH to accom-
modate the path.

Return Values
If the function succeeds, the return value specifies the unique numeric value used in the temporary file name. If the
uUnique parameter is nonzero, the return value specifies that same number.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetTempFileName function creates a temporary file name of the following form:

path\preuuuu.TMP

The following table describes the file name syntax.

When the system shuts down, temporary files whose names have been created by this function are not automatically
deleted.

To avoid problems resulting when converting an ANSI string, an application should call the CreateFile function to
create a temporary file.

If the uUnique parameter is zero, GetTempFileName attempts to form a unique number based on the current system
time. If a file with the resulting file name exists, the number is increased by one and the test for existence is repeated.
Testing continues until a unique file name is found. GetTempFileName then creates a file by that name and closes it.
When uUnique is nonzero, no attempt is made to create and open the file.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CreateFile, GetTempPath

1.196 GetTempPath

The GetTempPath function retrieves the path of the directory designated for temporary files.

GetTempPath: procedure
(

nBufferLength: dword;
var lpBuffer: dword

);
stdcall;

Component Meaning

path Path specified by the lpPathName parameter

pre First three letters of the lpPrefixString string

uuuu Hexadecimal value of uUnique
Page 252



Win32 API Reference
returns( "eax" );
external( "__imp__GetTempPathA@8" );

Parameters

nBufferLength
[in] Specifies the size, in TCHARs, of the string buffer identified by lpBuffer.

lpBuffer
[out] Pointer to a string buffer that receives the null-terminated string specifying the temporary file path. The
returned string ends with a backslash, for example, C:\TEMP\.

Return Values
If the function succeeds, the return value is the length, in TCHARs, of the string copied to lpBuffer, not including the
terminating null character. If the return value is greater than nBufferLength, the return value is the size of the buffer
required to hold the path.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Windows 95/98: The GetTempPath function gets the temporary file path as follows:

The path specified by the TMP environment variable.

The path specified by the TEMP environment variable, if TMP is not defined or if TMP specifies a directory that does
not exist.

The current directory, if both TMP and TEMP are not defined or specify nonexistent directories.

Windows NT/2000: The GetTempPath function does not verify that the directory specified by the TMP or TEMP
environment variables exists. The function gets the temporary file path as follows:

The path specified by the TMP environment variable.

The path specified by the TEMP environment variable, if TMP is not defined.

The Windows directory, if both TMP and TEMP are not defined.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetTempFileName

1.197 GetThreadContext

The GetThreadContext function retrieves the context of the specified thread.

GetThreadContext: procedure
(

hThread: dword;
var lpContext: var

);
stdcall;
returns( "eax" );
Page 253



Volume 1
external( "__imp__GetThreadContext@8" );

Parameters

hThread
[in] Handle to the thread whose context is to be retrieved.

Windows NT/ 2000: The handle must have THREAD_GET_CONTEXT access to the thread. For more infor-
mation, see Thread Security and Access Rights.

lpContext
[in/out] Pointer to the CONTEXT structure that receives the appropriate context of the specified thread. The value
of the ContextFlags member of this structure specifies which portions of a thread's context are retrieved. The
CONTEXT structure is highly computer specific. Currently, there are CONTEXT structures defined for Intel,
MIPS, Alpha, and PowerPC processors. Refer to the WinNt.h header file for definitions of these structures.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The GetThreadContext function is used to retrieve the context of the specified thread. The function allows a selec-
tive context to be retrieved based on the value of the ContextFlags member of the CONTEXT structure. The thread
handle identified by the hThread parameter is typically being debugged, but the function can also operate when it is
not being debugged.

You cannot get a valid context for a running thread. Use the SuspendThread function to suspend the thread before
calling GetThreadContext.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Debugging Overview, Debugging Functions, CONTEXT, SetThreadContext, SuspendThread

1.198 GetThreadLocale

The GetThreadLocale function retrieves the calling thread's current locale.

GetThreadLocale: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetThreadLocale@0" );

Parameters
This function has no parameters.

Return Values
The function returns the calling thread's locale identifier.
Page 254



Win32 API Reference
Remarks
When a thread is created, it uses the system default–thread locale. The system reads the system default–thread locale
from the registry when the system boots. This system default can be modified for future process and thread creation
using Control Panel's International application.

For more information about locale identifiers, see Locales.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, SetThreadLocale, GetSystemDefault-
LCID, GetUserDefaultLCID

1.199 GetThreadPriority

The GetThreadPriority function retrieves the priority value for the specified thread. This value, together with the
priority class of the thread's process, determines the thread's base-priority level.

GetThreadPriority: procedure
(

hThread: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetThreadPriority@4" );

Parameters

hThread
[in] Handle to the thread.

Windows NT/2000: The handle must have THREAD_QUERY_INFORMATION access. For more information,
see Thread Security and Access Rights.

Return Values
If the function succeeds, the return value is the thread's priority level.

If the function fails, the return value is THREAD_PRIORITY_ERROR_RETURN. To get extended error informa-
tion, call GetLastError.

The thread's priority level is one of the following values:

Priority Meaning

THREAD_PRIORITY_ABOVE_NORMAL Indicates 1 point above normal priority for the prior-
ity class.

THREAD_PRIORITY_BELOW_NORMAL Indicates 1 point below normal priority for the prior-
ity class.

THREAD_PRIORITY_HIGHEST Indicates 2 points above normal priority for the prior-
ity class.
Page 255



Volume 1
Remarks
Every thread has a base-priority level determined by the thread's priority value and the priority class of its process.
The operating system uses the base-priority level of all executable threads to determine which thread gets the next
slice of CPU time. Threads are scheduled in a round-robin fashion at each priority level, and only when there are no
executable threads at a higher level will scheduling of threads at a lower level take place.

For a table that shows the base-priority levels for each combination of priority class and thread priority value, refer to
the SetPriorityClass function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, GetPriorityClass, OpenThread, SetPriorityClass,
SetThreadPriority

1.200 GetThreadPriorityBoost

The GetThreadPriorityBoost function retrieves the priority boost control state of the specified thread.

GetThreadPriorityBoost: procedure
(

hThread: dword;
var pDisablePriorityBoost: boolean

);
stdcall;
returns( "eax" );
external( "__imp__GetThreadPriorityBoost@8" );

THREAD_PRIORITY_IDLE Indicates a base-priority level of 1 for
IDLE_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS,
NORMAL_PRIORITY_CLASS,
ABOVE_NORMAL_PRIORITY_CLASS, or
HIGH_PRIORITY_CLASS processes, and a
base-priority level of 16 for
REALTIME_PRIORITY_CLASS processes.

THREAD_PRIORITY_LOWEST Indicates 2 points below normal priority for the prior-
ity class.

THREAD_PRIORITY_NORMAL Indicates normal priority for the priority class.

THREAD_PRIORITY_TIME_CRITICAL Indicates a base-priority level of 15 for
IDLE_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS,
NORMAL_PRIORITY_CLASS,
ABOVE_NORMAL_PRIORITY_CLASS, or
HIGH_PRIORITY_CLASS processes, and a
base-priority level of 31 for
REALTIME_PRIORITY_CLASS processes.
Page 256



Win32 API Reference
Parameters

hThread
[in] Handle to the thread. This thread must have THREAD_QUERY_INFORMATION access. For more infor-
mation, see Thread Security and Access Rights.

pDisablePriorityBoost
[out] Pointer to a variable that receives the priority boost control state. A value of TRUE indicates that dynamic
boosting is disabled. A value of FALSE indicates normal behavior.

Return Values
If the function succeeds, the return value is nonzero. In that case, the variable pointed to by the pDisablePriorityBoost
parameter receives the priority boost control state.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, OpenThread, SetThreadPriorityBoost

1.201 GetThreadSelectorEntry

The GetThreadSelectorEntry function retrieves a descriptor table entry for the specified selector and thread.

GetThreadSelectorEntry: procedure
(

hThread: dword;
dwSelector: dword;

var lpSelectorEntry: LDT_ENTRY
);

stdcall;
returns( "eax" );
external( "__imp__GetThreadSelectorEntry@12" );

Parameters

hThread
[in] Handle to the thread containing the specified selector.

Windows NT/ 2000: The handle must have THREAD_QUERY_INFORMATION access. For more informa-
tion, see Thread Security and Access Rights.

dwSelector
[in] Specifies the global or local selector value to look up in the thread's descriptor tables.

lpSelectorEntry
[out] Pointer to an LDT_ENTRY structure that receives a copy of the descriptor table entry if the specified selec-
tor has an entry in the specified thread's descriptor table. This information can be used to convert a segment-rela-
tive address to a linear virtual address.
Page 257



Volume 1
Return Values
If the function succeeds, the return value is nonzero. In that case, the structure pointed to by the lpSelectorEntry
parameter receives a copy of the specified descriptor table entry.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
GetThreadSelectorEntry is only functional on x86-based systems. For systems that are not x86-based, the function
returns FALSE.

Debuggers use this function to convert segment-relative addresses to linear virtual addresses. The ReadProcess-
Memory and WriteProcessMemory functions use linear virtual addresses.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Debugging Overview, Debugging Functions, LDT_ENTRY, ReadProcessMemory, WriteProcessMemory

1.202 GetThreadTimes

The GetThreadTimes function retrieves timing information for the specified thread.

GetThreadTimes: procedure
(

hThread: dword;
var lpCreationTime: FILETIME;
var lpExitTime: FILETIME;
var lpKernelTime: FILETIME;
var lpUserTime: FILETIME

);
stdcall;
returns( "eax" );
external( "__imp__GetThreadTimes@20" );

Parameters

hThread
[in] Handle to the thread whose timing information is sought. This handle must be created with
THREAD_QUERY_INFORMATION access. For more information, see Thread Security and Access Rights.

lpCreationTime
[out] Pointer to a FILETIME structure that receives the creation time of the thread.

lpExitTime
[out] Pointer to a FILETIME structure that receives the exit time of the thread. If the thread has not exited, the
content of this structure is undefined.

lpKernelTime
[out] Pointer to a FILETIME structure that receives the amount of time that the thread has executed in kernel
Page 258



Win32 API Reference
mode.

lpUserTime
[out] Pointer to a FILETIME structure that receives the amount of time that the thread has executed in user
mode.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
All times are expressed using FILETIME data structures. Such a structure contains two 32-bit values that combine to
form a 64-bit count of 100-nanosecond time units.

Thread creation and exit times are points in time expressed as the amount of time that has elapsed since midnight on
January 1, 1601 at Greenwich, England. The Win32 API provides several functions that an application can use to
convert such values to more generally useful forms; see Time Functions, particularly those noted in the following See
Also section.

Thread kernel mode and user mode times are amounts of time. For example, if a thread has spent one second in kernel
mode, this function will fill the FILETIME structure specified by lpKernelTime with a 64-bit value of ten million.
That is the number of 100-nanosecond units in one second.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, FILETIME, FileTimeToDosDateTime, FileTime-
ToLocalFileTime, FileTimeToSystemTime, OpenThread

1.203 GetTickCount

The GetTickCount function retrieves the number of milliseconds that have elapsed since the system was started. It is
limited to the resolution of the system timer. To obtain the system timer resolution, use the GetSystemTimeAdjust-
ment function.

GetTickCount: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetTickCount@0" );

Parameters
This function has no parameters.

Return Values
The return value is the number of milliseconds that have elapsed since the system was started.

Remarks
The elapsed time is stored as a DWORD value. Therefore, the time will wrap around to zero if the system is run con-
tinuously for 49.7 days.
Page 259



Volume 1
If you need a higher resolution timer, use a multimedia timer or a high-resolution timer.

Windows NT/2000: To obtain the time elapsed since the computer was started, retrieve the System Up Time counter
in the performance data in the registry key HKEY_PERFORMANCE_DATA. The value returned is an 8-byte
value. For more information, see Performance Monitoring.

Example
The following example demonstrates how to handle timer wrap around.

DWORD dwStart = GetTickCount();

// Stop if this has taken too long

if( GetTickCount() - dwStart >= TIMELIMIT )

Cancel();

Where TIMELIMIT is the time interval of interest to the application.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions

1.204 GetTimeFormat

The GetTimeFormat function formats time as a time string for a specified locale. The function formats either a spec-
ified time or the local system time.

GetTimeFormat: procedure
(

Locale: LCID;
dwFlags: dword;

var lpTime: SYSTEMTIME;
lpFormat: string;

var lpTimeStr: var;
cchTime: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetTimeFormatA@24" );

Parameters

Locale
[in] Specifies the locale for which the time string is to be formatted. If lpFormat is NULL, the function formats
the string according to the time format for this locale. If lpFormat is not NULL, the function uses the locale only
for information not specified in the format picture string (for example, the locale's time markers).

This parameter can be a locale identifier created by the MAKELCID macro, or one of the following predefined val-
ues.
Page 260



Win32 API Reference
dwFlags
[in] Specifies various function options. You can specify a combination of the following values.

lpTime
[in] Pointer to a SYSTEMTIME structure that contains the time information to be formatted. If this pointer is
NULL, the function uses the current local system time.

lpFormat
[in] Pointer to a format picture to use to form the time string. If lpFormat is NULL, the function uses the time
format of the specified locale.

Use the following elements to construct a format picture string. If you use spaces to separate the elements in the
format string, these spaces will appear in the same location in the output string. The letters must be in uppercase
or lowercase as shown (for example, "ss", not "SS"). Characters in the format string that are enclosed in single
quotation marks will appear in the same location and unchanged in the output string.

Value Meaning

LOCALE_SYSTEM_DEFAULT Default system locale.

LOCALE_USER_DEFAULT Default user locale.

Value Meaning

LOCALE_NOUSEROVERRIDE If set, the function formats the string using the system default time
format for the specified locale. If not set, the function formats the
string using any user overrides to the locale's default time format.
This flag cannot be set if lpFormat is non-NULL.

LOCALE_USE_CP_ACP Uses the system ANSI code page for string translation instead of
the locale code page.

TIME_NOMINUTESORSECONDS Does not use minutes or seconds.

TIME_NOSECONDS Does not use seconds.

TIME_NOTIMEMARKER Does not use a time marker.

TIME_FORCE24HOURFORMAT Always uses a 24-hour time format.

Picture Meaning

h Hours with no leading zero for single-digit hours; 12-hour clock.

hh Hours with leading zero for single-digit hours; 12-hour clock.

H Hours with no leading zero for single-digit hours; 24-hour clock.

HH Hours with leading zero for single-digit hours; 24-hour clock.

m Minutes with no leading zero for single-digit minutes.

mm Minutes with leading zero for single-digit minutes.

s Seconds with no leading zero for single-digit seconds.

ss Seconds with leading zero for single-digit seconds.

t One character time-marker string, such as A or P.
Page 261



Volume 1
For example, to get the time string

"11:29:40 PM"

use the following picture string:

"hh':'mm':'ss tt"

lpTimeStr
[out] Pointer to a buffer that receives the formatted time string.

cchTime
[in] Specifies the size, in TCHARs, of the lpTimeStr buffer. If cchTime is zero, the function returns the number
of bytes or characters required to hold the formatted time string, and the buffer pointed to by lpTimeStr is not
used.

Return Values
If the function succeeds, the return value is the number of TCHARs written to the buffer pointed to by lpTimeStr. If
the cchTime parameter is zero, the return value is the number of bytes or characters required to hold the formatted
time string. The count includes the terminating null.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER

ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETER

Remarks
If a time marker exists and the TIME_NOTIMEMARKER flag is not set, the function localizes the time marker
based on the specified locale identifier. Examples of time markers are "AM" and "PM" for US English.

The time values in the SYSTEMTIME structure pointed to by lpTime must be valid. The function checks each of the
time values to determine that it is within the appropriate range of values. If any of the time values are outside the cor-
rect range, the function fails, and sets the last-error to ERROR_INVALID_PARAMETER.

The function ignores the date portions of the SYSTEMTIME structure pointed to by lpTime: wYear, wMonth,
wDayOfWeek, and wDay.

If TIME_NOMINUTESORSECONDS or TIME_NOSECONDS is specified, the function removes the separator(s)
preceding the minutes and/or seconds element(s).

If TIME_NOTIMEMARKER is specified, the function removes the separator(s) preceding and following the time
marker.

If TIME_FORCE24HOURFORMAT is specified, the function displays any existing time marker, unless the
TIME_NOTIMEMARKER flag is also set.

The function does not include milliseconds as part of the formatted time string.

To use LOCALE_NOUSEROVERRIDE, lpFormat must be NULL.

No errors are returned for a bad format string. The function simply forms the best time string that it can. If more than
two hour, minute, second, or time marker format pictures are passed in, then the function defaults to two. For exam-
ple, the only time marker pictures that are valid are L"t" and L"tt" (the 'L' indicates a Unicode (16-bit characters)
string). If L"ttt" is passed in, the function assumes L"tt".

To obtain the time format without performing any actual formatting, use the GetLocaleInfo function with the
LOCALE_STIMEFORMAT parameter.

Windows 2000: The ANSI version of this function will fail if it is used with a Unicode-only locale. See Language
Identifiers.

tt Multicharacter time-marker string, such as AM or PM.
Page 262



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
National Language Support Overview, National Language Support Functions, GetDateFormat, GetLocaleInfo, SYS-
TEMTIME

1.205 GetTimeZoneInformation

The GetTimeZoneInformation function retrieves the current time-zone parameters. These parameters control the
translations between Coordinated Universal Time (UTC) and local time.

GetTimeZoneInformation: procedure
(

var lpTimeZoneInformation: TIME_ZONE_INFORMATION
);

stdcall;
returns( "eax" );
external( "__imp__GetTimeZoneInformation@4" );

Parameters

lpTimeZoneInformation
[out] Pointer to a TIME_ZONE_INFORMATION structure to receive the current time-zone parameters.

Return Values
If the function succeeds, the return value is one of the following values:

If the function fails, the return value is TIME_ZONE_ID_INVALID. To get extended error information, call Get-
LastError.

Value Meaning

TIME_ZONE_ID_UNKNOWN The system cannot determine the current time zone. This error is
also returned if you call the SetTimeZoneInformation function
and supply the bias values but no transition dates.

Windows NT/2000: This value is returned if daylight saving time
is not used in the current time zone, because there are no transition
dates.

TIME_ZONE_ID_STANDARD The system is operating in the range covered by the StandardDate
member of the TIME_ZONE_INFORMATION structure.

Windows 95: This value is returned if daylight saving time is not
used in the current time zone, because there are no transition dates.

TIME_ZONE_ID_DAYLIGHT The system is operating in the range covered by the DaylightDate
member of the TIME_ZONE_INFORMATION structure.
Page 263



Volume 1
Remarks
All translations between UTC time and local time are based on the following formula:

UTC = local time + bias

The bias is the difference, in minutes, between UTC time and local time.

Remarks
MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, SetTimeZoneInformation, TIME_ZONE_INFORMATION

1.206 GetUserDefaultLCID

The GetUserDefaultLCID function retrieves the user default–locale identifier.

GetUserDefaultLCID: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetUserDefaultLCID@0" );

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is the user default–locale identifier. If the function fails, the return value is
zero.

Remarks
On single-user systems, the return value is the same as that returned by GetSystemDefaultLCID.

For more information about locale identifiers, see Locales.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, ConvertDefaultLocale, GetLocaleInfo,
GetSystemDefaultLCID, MAKELCID
Page 264



Win32 API Reference
1.207 GetUserDefaultLangID

The GetUserDefaultLangID function retrieves the language identifier of the current user locale.

GetUserDefaultLangID: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetUserDefaultLangID@0" );

Parameters
This function has no parameters.

Return Values
If the function is successful, the return value is the language identifier of the current user locale. If the function fails,
the return value is zero.

Remarks
The return value is not necessarily the same as that returned by GetSystemDefaultLangID, even if the computer is a
single-user system.

For more information about language identifiers, see Language Identifiers and Locale Information.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, GetSystemDefaultLangID, MAKE-
LANGID

1.208 GetVersion

The GetVersion function returns the current version number of the operating system.

Note This function has been superseded by GetVersionEx. New applications should use GetVersionEx or Veri-
fyVersionInfo.

GetVersion: procedure;
stdcall;
returns( "eax" );
external( "__imp__GetVersion@0" );

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is a DWORD value that contains the major and minor version numbers of
the operating system in the low order word, and information about the operating system platform in the high order
word.

For all platforms, the low order word contains the version number of the operating system. The low-order byte of this
word specifies the major version number, in hexadecimal notation. The high-order byte specifies the minor version
Page 265



Volume 1
(revision) number, in hexadecimal notation.

To distinguish between operating system platforms, use the high order bit and the low order byte, as shown in the fol-
lowing table:

Windows NT/2000: The remaining bits in the high-order word specify the build number.

Windows 95/98: The remaining bits of the high-order word are reserved.

Remarks
The GetVersionEx function was developed because many existing applications err when examining the packed
DWORD value returned by GetVersion, transposing the major and minor version numbers. GetVersionEx forces
applications to explicitly examine each element of version information. VerifyVersionInfo eliminates further
potential for error by comparing the required system version with the current system version for you.

The following code fragment illustrates how to extract information from the GetVersion return value:

dwVersion = GetVersion();

// Get the Windows version.

dwWindowsMajorVersion = (DWORD)(LOBYTE(LOWORD(dwVersion)));

dwWindowsMinorVersion = (DWORD)(HIBYTE(LOWORD(dwVersion)));

// Get the build number for Windows NT/Windows 2000 or Win32s.

if (dwVersion < 0x80000000) // Windows NT/2000

dwBuild = (DWORD)(HIWORD(dwVersion));

else if (dwWindowsMajorVersion < 4) // Win32s

dwBuild = (DWORD)(HIWORD(dwVersion) & ~0x8000);

else // Windows 95/98 -- No build number

dwBuild = 0;

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
System Information Overview, System Information Functions, GetVersionEx, VerifyVersionInfo

Platform High-order bit Low-order byte (major version)

Windows NT/2000 0 3, 4, or 5

Windows 95/98 1 4

Win32s with
Windows 3.1

1 3
Page 266



Win32 API Reference
1.209 GetVersionEx

The GetVersionEx function obtains extended information about the version of the operating system that is currently
running.

Windows 2000: To compare the current system version to a required version, use the VerifyVersionInfo function
instead of using GetVersionEx to perform the comparison yourself.

GetVersionEx: procedure
(

var lpVersionInfo: OSVERSIONINFO
);

stdcall;
returns( "eax" );
external( "__imp__GetVersionExA@4" );

Parameters

lpVersionInfo
[in/out] Pointer to an OSVERSIONINFO data structure that the function fills with operating system version infor-
mation.

Before calling the GetVersionEx function, set the dwOSVersionInfoSize member of the OSVERSIONINFO
data structure to sizeof(OSVERSIONINFO).

Windows NT 4.0 SP6 and Windows 2000: This member can be a pointer to an OSVERSIONINFOEX structure.
Set the dwOSVersionInfoSize member to sizeof(OSVERSIONINFOEX) to identify the structure type.

Return Values
If the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError. The function
fails if you specify an invalid value for the dwOSVersionInfoSize member of the OSVERSIONINFO or OSVERSION-
INFOEX structure.

Remarks
When using the GetVersionEx function to determine whether your application is running on a particular version of
the operating system, check for version numbers that are greater than or equal to the desired version numbers. This
ensures that the test succeeds for later versions of the operating system. For example, if your application requires
Windows 98, use the following test:

osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO)

GetVersionEx (&osvi);

bIsWindows98orLater =

(osvi.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS) &&

( (osvi.dwMajorVersion > 4) ||

( (osvi.dwMajorVersion == 4) && (osvi.dwMinorVersion > 0) ) );

Identifying the current operating system is usually not the best way to determine whether a particular operating sys-
tem feature is present. This is because the operating system may have had new features added in a redistributable
DLL. Rather than using GetVersionEx to determine the operating system platform or version number, test for the
presence of the feature itself. For more information, see Operating System Version.

Example
See Getting the System Version.
Page 267



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
System Information Overview, System Information Functions, GetVersion, OSVERSIONINFO, OSVERSIONIN-
FOEX, VerifyVersionInfo

1.210 GetVolumeInformation

The GetVolumeInformation function retrieves information about a file system and volume whose root directory is
specified.

GetVolumeInformation: procedure
(

lpRootPathName: string;
var lpVolumeNameBuffer: var;

nVolumeNameSize: dword;
var lpVolumeSerialNumber: dword;
var lpMaximumComponentLength: dword;
var lpFileSystemFlags: dword;
var lpFileSystemNameBuffer: var;

nFileSystemNameSize: dword
);

stdcall;
returns( "eax" );
external( "__imp__GetVolumeInformationA@32" );

Parameters

lpRootPathName
[in] Pointer to a string that contains the root directory of the volume to be described. If this parameter is NULL,
the root of the current directory is used. A trailing backslash is required. For example, you would specify
\\MyServer\MyShare as \\MyServer\MyShare\, or the C drive as "C:\".

lpVolumeNameBuffer
[out] Pointer to a buffer that receives the name of the specified volume.

nVolumeNameSize
[in] Specifies the length, in TCHARs, of the volume name buffer. This parameter is ignored if the volume name
buffer is not supplied.

lpVolumeSerialNumber
[out] Pointer to a variable that receives the volume serial number. This parameter can be NULL if the serial num-
ber is not required.

Windows 95/98: If the queried volume is a network drive, the serial number will not be returned.

lpMaximumComponentLength
[out] Pointer to a variable that receives the maximum length, in TCHARs, of a file name component supported
by the specified file system. A file name component is that portion of a file name between backslashes.

The value stored in variable pointed to by *lpMaximumComponentLength is used to indicate that long names are
Page 268



Win32 API Reference
supported by the specified file system. For example, for a FAT file system supporting long names, the function
stores the value 255, rather than the previous 8.3 indicator. Long names can also be supported on systems that use
the NTFS file system.

lpFileSystemFlags
[out] Pointer to a variable that receives flags associated with the specified file system. This parameter can be any
combination of the following flags; however, FS_FILE_COMPRESSION and FS_VOL_IS_COMPRESSED are
mutually exclusive.

lpFileSystemNameBuffer
[out] Pointer to a buffer that receives the name of the file system (such as FAT or NTFS).

nFileSystemNameSize
[in] Specifies the length, in TCHARs, of the file system name buffer. This parameter is ignored if the file system
name buffer is not supplied.

Return Values
If all the requested information is retrieved, the return value is nonzero.

If not all the requested information is retrieved, the return value is zero. To get extended error information, call Get-
LastError.

Remarks
If you are attempting to obtain information about a floppy drive that does not have a floppy disk or a CD-ROM drive
that does not have a compact disc, the system displays a message box asking the user to insert a floppy disk or a com-
pact disc, respectively. To prevent the system from displaying this message box, call the SetErrorMode function
with SEM_FAILCRITICALERRORS.

The FS_VOL_IS_COMPRESSED flag is the only indicator of volume-based compression. The file system name is

Value Meaning

FS_CASE_IS_PRESERVED The file system preserves the case of file names when it
places a name on disk.

FS_CASE_SENSITIVE The file system supports case-sensitive file names.

FS_UNICODE_STORED_ON_DISK The file system supports Unicode in file names as they
appear on disk.

FS_PERSISTENT_ACLS The file system preserves and enforces ACLs. For example,
NTFS preserves and enforces ACLs, and FAT does not.

FS_FILE_COMPRESSION The file system supports file-based compression.

FS_VOL_IS_COMPRESSED The specified volume is a compressed volume; for example, a
DoubleSpace volume.

FILE_NAMED_STREAMS The file system supports named streams.

FILE_READ_ONLY_VOLUME The specified volume is read-only.

FILE_SUPPORTS_ENCRYPTION The file system supports the Encrypted File System (EFS).

FILE_SUPPORTS_OBJECT_IDS The file system supports object identifiers.

FILE_SUPPORTS_REPARSE_POINTS The file system supports reparse points.

FILE_SUPPORTS_SPARSE_FILES The file system supports sparse files.

FILE_VOLUME_QUOTAS The file system supports disk quotas.
Page 269



Volume 1
not altered to indicate compression. This flag comes back set on a DoubleSpace volume, for example. With vol-
ume-based compression, an entire volume is either compressed or not compressed.

The FS_FILE_COMPRESSION flag indicates whether a file system supports file-based compression. With
file-based compression, individual files can be compressed or not compressed.

The FS_FILE_COMPRESSION and FS_VOL_IS_COMPRESSED flags are mutually exclusive; both bits cannot
come back set.

The maximum component length value, stored in lpMaximumComponentLength, is the only indicator that a volume
supports longer-than-normal FAT (or other file system) file names. The file system name is not altered to indicate
support for long file names.

The GetCompressedFileSize function obtains the compressed size of a file. The GetFileAttributes function
can determine whether an individual file is compressed.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File Systems Overview, File System Functions, GetCompressedFileSize, GetFileAttributes, SetErrorMode, SetVol-
umeLabel

1.211 GetWindowsDirectory

The GetWindowsDirectory function retrieves the path of the Windows directory. The Windows directory contains
such files as applications, initialization files, and help files.

GetWindowsDirectory: procedure
(

var lpBuffer: var;
uSize: dword

);
stdcall;
returns( "eax" );
external( "__imp__GetWindowsDirectoryA@8" );

Parameters

lpBuffer
[out] Pointer to the buffer to receive the null-terminated string containing the path. This path does not end with a
backslash unless the Windows directory is the root directory. For example, if the Windows directory is named
WINDOWS on drive C, the path of the Windows directory retrieved by this function is C:\WINDOWS. If the
system was installed in the root directory of drive C, the path retrieved is C:\.

uSize
[in] Specifies the maximum size, in TCHARs, of the buffer specified by the lpBuffer parameter. This value
should be set to MAX_PATH to allow sufficient room for the path.

Return Values
If the function succeeds, the return value is the length, in TCHARs, of the string copied to the buffer, not including
the terminating null character.

If the length is greater than the size of the buffer, the return value is the size of the buffer required to hold the path.
Page 270



Win32 API Reference
If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The Windows directory is the directory where an application should store initialization and help files. If the user is
running a shared version of the system, the Windows directory is guaranteed to be private for each user.

If an application creates other files that it wants to store on a per-user basis, it should place them in the directory spec-
ified by the HOMEPATH environment variable. This directory will be different for each user, if so specified by an
administrator, through the User Manager administrative tool. HOMEPATH always specifies either the user's home
directory, which is guaranteed to be private for each user, or a default directory (for example, C:\USERS\DEFAULT)
where the user will have all access.

Terminal Services: If the application is running in a Terminal Services environment, each user has a unique Win-
dows directory. If an application that is not Terminal-Services-aware calls this function, it retrieves the path of the
Windows directory on the client, not the Windows directory on the server.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
System Information Overview, System Information Functions, GetCurrentDirectory, GetSystemDirectory, GetSys-
temWindowsDirectory

1.212 GlobalAddAtom

The GlobalAddAtom function adds a character string to the global atom table and returns a unique value (an atom)
identifying the string.

GlobalAddAtom: procedure
(

lpString: string
);

stdcall;
returns( "eax" );
external( "__imp__GlobalAddAtomA@4" );

Parameters

lpString
[in] Pointer to the null-terminated string to be added. The string can have a maximum size of 255 bytes. Strings
that differ only in case are considered identical. The case of the first string of this name added to the table is pre-
served and returned by the GlobalGetAtomName function.

Alternatively, you can use an integer atom that has been converted using the MAKEINTATOM macro. See the
Remarks for more information.

Return Values
If the function succeeds, the return value is the newly created atom.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
Page 271



Volume 1
Remarks
If the string already exists in the global atom table, the atom for the existing string is returned and the atom's reference
count is incremented.

The string associated with the atom is not deleted from memory until its reference count is zero. For more informa-
tion, see the GlobalDeleteAtom function.

Global atoms are not deleted automatically when the application terminates. For every call to the GlobalAddAtom
function, there must be a corresponding call to the GlobalDeleteAtom function.

If the lpString parameter has the form "#1234", GlobalAddAtom returns an integer atom whose value is the 16-bit
representation of the decimal number specified in the string (0x04D2, in this example). If the decimal value specified
is 0x0000 or is greater than or equal to 0xC000, the return value is zero, indicating an error. If lpString was created by
the MAKEINTATOM macro, the low-order word must be in the range 0x0001 through 0xBFFF. If the low-order word is
not in this range, the function fails.

If lpString has any other form, GlobalAddAtom returns a string atom.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Atoms Overview, Atom Functions, AddAtom, DeleteAtom, FindAtom, GetAtomName, GlobalDeleteAtom, Glo-
balFindAtom, GlobalGetAtomName, MAKEINTATOM

1.213 GlobalAlloc

The GlobalAlloc function allocates the specified number of bytes from the heap. Win32 memory management does
not provide a separate local heap and global heap.

Note The global functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions. However, the global functions are still used with DDE and
the clipboard functions.

GlobalAlloc: procedure
(

uFlags: uns32;
dwBytes: SIZE_T

);
stdcall;
returns( "eax" );
external( "__imp__GlobalAlloc@8" );

Parameters

uFlags
[in] Specifies how to allocate memory. If zero is specified, the default is GMEM_FIXED. This parameter can be
one or more of the following values, except for the incompatible combinations that are specifically noted.

Value Meaning

GHND Combines GMEM_MOVEABLE and GMEM_ZEROINIT.
Page 272



Win32 API Reference
The following values are obsolete.

dwBytes
[in] Specifies the number of bytes to allocate. If this parameter is zero and the uFlags parameter specifies
GMEM_MOVEABLE, the function returns a handle to a memory object that is marked as discarded.

Return Values
If the function succeeds, the return value is a handle to the newly allocated memory object.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
If the heap does not contain sufficient free space to satisfy the request, GlobalAlloc returns NULL. Because NULL is
used to indicate an error, virtual address zero is never allocated. It is, therefore, easy to detect the use of a NULL
pointer.

Memory allocated with this function is guaranteed to be aligned on an 8-byte boundary. All memory is created with
execute access; no special function is required to execute dynamically generated code.

GMEM_FIXED Allocates fixed memory. The return value is a pointer.

GMEM_MOVEABLE Allocates movable memory. In Win32, memory blocks are never moved in
physical memory, but they can be moved within the default heap.

The return value is a handle to the memory object. To translate the handle
into a pointer, use the GlobalLock function.

This value cannot be combined with GMEM_FIXED.

GMEM_ZEROINIT Initializes memory contents to zero.

GPTR Combines GMEM_FIXED and GMEM_ZEROINIT.

Value Meaning

GMEM_DDESHARE Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

GMEM_DISCARDABLE Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

In Win32, you must explicitly call the GlobalDiscard function to dis-
card a block.

This value cannot be combined with GMEM_FIXED.

GMEM_LOWER Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

GMEM_NOCOMPACT Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

GMEM_NODISCARD Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

GMEM_NOT_BANKED Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

GMEM_NOTIFY Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

GMEM_SHARE Ignored. This value is provided only for compatibility with 16-bit Win-
dows.
Page 273



Volume 1
If this function succeeds, it allocates at least the amount of memory requested. If the actual amount allocated is
greater than the amount requested, the process can use the entire amount. To determine the actual number of bytes
allocated, use the GlobalSize function.

To free the memory, use the GlobalFree function.

Windows 95/98: The heap managers are designed for memory blocks smaller than four megabytes. If you expect
your memory blocks to be larger than one or two megabytes, you can avoid significant performance degradation by
using the VirtualAlloc or VirtualAllocEx function instead.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GlobalDiscard, GlobalFree, GlobalLock, Global-
Size

1.214 GlobalDeleteAtom

The GlobalDeleteAtom function decrements the reference count of a global string atom. If the atom's reference
count reaches zero, GlobalDeleteAtom removes the string associated with the atom from the global atom table.

GlobalDeleteAtom: procedure
(

nAtom: dword
);

stdcall;
returns( "eax" );
external( "__imp__GlobalDeleteAtom@4" );

Parameters

nAtom
[in] Identifies the atom and character string to be deleted.

Return Values
If the function succeeds, the return value is zero.

If the function fails, the return value is the nAtom parameter. To get extended error information, call GetLastError.

Remarks
A string atom's reference count specifies the number of times the string has been added to the atom table. The Glo-
balAddAtom function increments the reference count of a string that already exists in the global atom table each time
it is called.

Each call to GlobalAddAtom should have a corresponding call to GlobalDeleteAtom. Do not call GlobalDeleteA-
tom more times than you call GlobalAddAtom, or you may delete the atom while other clients are using it. Applica-
tions using DDE should follow the rules on global atom management to prevent leaks and premature deletion.

GlobalDeleteAtom has no effect on an integer atom (an atom whose value is in the range 0x0001 to 0xBFFF). The
function always returns zero for an integer atom.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Page 274



Win32 API Reference
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Atoms Overview, Atom Functions, AddAtom, DeleteAtom, FindAtom, GlobalAddAtom, GlobalFindAtom,
MAKEINTATOM

1.215 GlobalFindAtom

The GlobalFindAtom function searches the global atom table for the specified character string and retrieves the glo-
bal atom associated with that string.

GlobalFindAtom: procedure
(

lpString: string
);

stdcall;
returns( "eax" );
external( "__imp__GlobalFindAtomA@4" );

Parameters

lpString
[in] Pointer to the null-terminated character string for which to search.

Alternatively, you can use an integer atom that has been converted using the MAKEINTATOM macro. See the
Remarks for more information.

Return Values
If the function succeeds, the return value is the global atom associated with the given string.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Even though the system preserves the case of a string in an atom table as it was originally entered, the search per-
formed by GlobalFindAtom is not case sensitive.

If lpString was created by the MAKEINTATOM macro, the low-order word must be in the range 0x0001 through
0xBFFF. If the low-order word is not in this range, the function fails.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Atoms Overview, Atom Functions, AddAtom, DeleteAtom, FindAtom, GetAtomName, GlobalAddAtom, Glo-
balDeleteAtom, GlobalGetAtomName
Page 275



Volume 1
1.216 GlobalFlags

The GlobalFlags function returns information about the specified global memory object.

Note This function is provided only for compatibility with 16-bit versions of Windows.

GlobalFlags: procedure
(

hMem: dword
);

stdcall;
returns( "eax" );
external( "__imp__GlobalFlags@4" );

Parameters

hMem
[in] Handle to the global memory object. This handle is returned by either the GlobalAlloc or GlobalReAl-
loc function.

Return Values
If the function succeeds, the return value specifies the allocation values and the lock count for the memory object.

If the function fails, the return value is GMEM_INVALID_HANDLE, indicating that the global handle is not valid.
To get extended error information, call GetLastError.

Remarks
The low-order byte of the low-order word of the return value contains the lock count of the object. To retrieve the
lock count from the return value, use the GMEM_LOCKCOUNT mask with the bitwise AND (&) operator. The lock
count of memory objects allocated with GMEM_FIXED is always zero.

The high-order byte of the low-order word of the return value indicates the allocation values of the memory object. It
can be zero or any combination of the following values.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GlobalAlloc, GlobalDiscard, GlobalReAlloc

Value Meaning

GMEM_DDESHARE Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

GMEM_DISCARDABLE Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

In Win32, you must explicitly call the GlobalDiscard function to dis-
card a block.

GMEM_DISCARDED The object's memory block has been discarded.
Page 276



Win32 API Reference
1.217 GlobalFree

The GlobalFree function frees the specified global memory object and invalidates its handle.

Note The global functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions. However, the global functions are still used with DDE and
the clipboard functions.

GlobalFree: procedure
(

hMem: dword
);

stdcall;
returns( "eax" );
external( "__imp__GlobalFree@4" );

Parameters

hMem
[in] Handle to the global memory object. This handle is returned by either the GlobalAlloc or GlobalReAl-
loc function.

Return Values
If the function succeeds, the return value is NULL.

If the function fails, the return value is equal to a handle to the global memory object. To get extended error informa-
tion, call GetLastError.

Remarks
If the process examines or modifies the memory after it has been freed, heap corruption may occur or an access viola-
tion exception (EXCEPTION_ACCESS_VIOLATION) may be generated.

If the hgblMem parameter is NULL, GlobalFree fails and the system generates an access violation exception.

The GlobalFree function will free a locked memory object. A locked memory object has a lock count greater than
zero. The GlobalLock function locks a global memory object and increments the lock count by one. The Global-
Unlock function unlocks it and decrements the lock count by one. To get the lock count of a global memory object,
use the GlobalFlags function.

If an application is running under a debug version of the system, GlobalFree will issue a message that tells you that a
locked object is being freed. If you are debugging the application, GlobalFree will enter a breakpoint just before
freeing a locked object. This allows you to verify the intended behavior, then continue execution.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GlobalAlloc, GlobalFlags, Glo-
balLock, GlobalReAlloc, GlobalUnlock

1.218 GlobalGetAtomName

The GlobalGetAtomName function retrieves a copy of the character string associated with the specified global
Page 277



Volume 1
atom.

GlobalGetAtomName: procedure
(

nAtom: dword;
var lpBuffer: var;

nSize: dword
);

stdcall;
returns( "eax" );
external( "__imp__GlobalGetAtomNameA@12" );

Parameters

nAtom
[in] Identifies the global atom associated with the character string to be retrieved.

lpBuffer
[out] Pointer to the buffer for the character string.

nSize
[in] Specifies the size, in TCHARs, of the buffer. For ANSI versions of the function this is the number of bytes,
while for wide-character (Unicode) versions this is the number of characters.

Return Values
If the function succeeds, the return value is the length of the string copied to the buffer, in TCHARs, not including
the terminating null character.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The string returned for an integer atom (an atom whose value is in the range 0x0001 to 0xBFFF) is a null-terminated
string in which the first character is a pound sign (#) and the remaining characters represent the unsigned integer atom
value.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Atoms Overview, Atom Functions, AddAtom, DeleteAtom, FindAtom, GlobalAddAtom, GlobalDeleteAtom, Glo-
balFindAtom, MAKEINTATOM

1.219 GlobalHandle

The GlobalHandle function retrieves the handle associated with the specified pointer to a global memory block.

Note The global functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions. However, the global functions are still used with DDE and
the clipboard functions.

GlobalHandle: procedure
(

Page 278



Win32 API Reference
var pMem: var
);

stdcall;
returns( "eax" );
external( "__imp__GlobalHandle@4" );

Parameters

pMem
[in] Pointer to the first byte of the global memory block. This pointer is returned by the GlobalLock function.

Return Values
If the function succeeds, the return value is a handle to the specified global memory object.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
When the GlobalAlloc function allocates a memory object with GMEM_MOVEABLE, it returns a handle to the
object. The GlobalLock function converts this handle into a pointer to the memory block, and GlobalHandle con-
verts the pointer back into a handle.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GlobalAlloc, GlobalLock

1.220 GlobalLock

The GlobalLock function locks a global memory object and returns a pointer to the first byte of the object's memory
block.

Note The global functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions. However, the global functions are still used with DDE and
the clipboard functions.

GlobalLock: procedure
(

hMem: dword
);

stdcall;
returns( "eax" );
external( "__imp__GlobalLock@4" );

Parameters

hMem
[in] Handle to the global memory object. This handle is returned by either the GlobalAlloc or GlobalReAl-
loc function.

Return Values
If the function succeeds, the return value is a pointer to the first byte of the memory block.
Page 279



Volume 1
If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The internal data structures for each memory object include a lock count that is initially zero. For movable memory
objects, GlobalLock increments the count by one, and the GlobalUnlock function decrements the count by one. For
each call that a process makes to GlobalLock for an object, it must eventually call GlobalUnlock. Locked memory
will not be moved or discarded, unless the memory object is reallocated by using the GlobalReAlloc function. The
memory block of a locked memory object remains locked until its lock count is decremented to zero, at which time it
can be moved or discarded.

Memory objects allocated with GMEM_FIXED always have a lock count of zero. For these objects, the value of the
returned pointer is equal to the value of the specified handle.

If the specified memory block has been discarded or if the memory block has a zero-byte size, this function returns
NULL.

Discarded objects always have a lock count of zero.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GlobalAlloc, GlobalReAlloc, GlobalUnlock

1.221 GlobalMemoryStatus

The GlobalMemoryStatus function obtains information about the system's current usage of both physical and virtual
memory.

To obtain information about the extended portion of the virtual address space, or if your application may run on com-
puters with more than 4 GB of main memory, use the GlobalMemoryStatusEx function.

GlobalMemoryStatus: procedure
(

var lpBuffer: MEMORYSTATUS
);

stdcall;
external( "__imp__GlobalMemoryStatus@4" );

Parameters

lpBuffer
[out] Pointer to a MEMORYSTATUS structure. The GlobalMemoryStatus function stores information about cur-
rent memory availability into this structure.

Return Values
This function does not return a value.

Remarks
You can use the GlobalMemoryStatus function to determine how much memory your application can allocate with-
out severely impacting other applications.

The information returned by the GlobalMemoryStatus function is volatile. There is no guarantee that two sequential
calls to this function will return the same information.
Page 280



Win32 API Reference
On computers with more than 4 GB of memory, the GlobalMemoryStatus function can return incorrect information.
Windows 2000 reports a value of -1 to indicate an overflow. Earlier versions of Windows NT report a value that is the
real amount of memory, modulo 4 GB. For this reason, on Windows 2000, use the GlobalMemoryStatusEx func-
tion instead.

On Intel x86 computers with more than 2 GB and less than 4 GB of memory, the GlobalMemoryStatus function will
always return 2 GB in the dwTotalPhys member of the MEMORYSTATUS structure. Similarly, if the total avail-
able memory is between 2 and 4 GB, the dwAvailPhys member of the MEMORYSTATUS structure will be rounded
down to 2 GB. If the executable is linked using the /LARGEADDRESSWARE linker option, then the GlobalMemo-
ryStatus function will return the correct amount of physical memory in both members.

Example
The program following shows a simple use of the GlobalMemoryStatus function.

// Sample output:

// c:\>global

// The MemoryStatus structure is 32 bytes long.

// It should be 32.

// 78 percent of memory is in use.

// There are 65076 total Kbytes of physical memory.

// There are 13756 free Kbytes of physical memory.

// There are 150960 total Kbytes of paging file.

// There are 87816 free Kbytes of paging file.

// There are 1fff80 total Kbytes of virtual memory.

// There are 1fe770 free Kbytes of virtual memory.

#include <windows.h>

// Use to change the divisor from Kb to Mb.

#define DIV 1024

// #define DIV 1

char *divisor = "K";

// char *divisor = "";

// Handle the width of the field in which to print numbers this way to

// make changes easier. The asterisk in the print format specifier

// "%*ld" takes an int from the argument list, and uses it to pad and

// right-justify the number being formatted.

#define WIDTH 7

void main(int argc, char *argv[])

{

MEMORYSTATUS stat;

GlobalMemoryStatus (&stat);

printf ("The MemoryStatus structure is %ld bytes long.\n",

stat.dwLength);

printf ("It should be %d.\n", sizeof (stat));
Page 281



Volume 1
printf ("%ld percent of memory is in use.\n",

stat.dwMemoryLoad);

printf ("There are %*ld total %sbytes of physical memory.\n",

WIDTH, stat.dwTotalPhys/DIV, divisor);

printf ("There are %*ld free %sbytes of physical memory.\n",

WIDTH, stat.dwAvailPhys/DIV, divisor);

printf ("There are %*ld total %sbytes of paging file.\n",

WIDTH, stat.dwTotalPageFile/DIV, divisor);

printf ("There are %*ld free %sbytes of paging file.\n",

WIDTH, stat.dwAvailPageFile/DIV, divisor);

printf ("There are %*lx total %sbytes of virtual memory.\n",

WIDTH, stat.dwTotalVirtual/DIV, divisor);

printf ("There are %*lx free %sbytes of virtual memory.\n",

WIDTH, stat.dwAvailVirtual/DIV, divisor);

}

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GlobalMemoryStatusEx, MEMORYSTATUS

1.222 GlobalMemoryStatusEx

The GlobalMemoryStatusEx function obtains information about the system's current usage of both physical and vir-
tual memory.

GlobalMemoryStatusVlm: procedure
(

var lpBuffer: MEMORYSTATUSEX
);

stdcall;
returns( "eax" );
external( "__imp__GlobalMemoryStatusVlm@4" );

Parameters

lpBuffer
[in/out] Pointer to a MEMORYSTATUSEX structure. GlobalMemoryStatusEx stores information about current
memory availability in this structure.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
Page 282



Win32 API Reference
Remarks
You can use the GlobalMemoryStatusEx function to determine how much memory your application can allocate
without severely impacting other applications.

The information returned by the GlobalMemoryStatusEx function is volatile. There is no guarantee that two sequen-
tial calls to this function will return the same information.

Example
The program following shows a simple use of the GlobalMemoryStatusEx function.

// Sample output:

// c:\>globalex

// 78 percent of memory is in use.

// There are 65076 total Kbytes of physical memory.

// There are 14248 free Kbytes of physical memory.

// There are 150960 total Kbytes of paging file.

// There are 88360 free Kbytes of paging file.

// There are 1fff80 total Kbytes of virtual memory.

// There are 1fe770 free Kbytes of virtual memory.

// There are 0 free Kbytes of extended memory.

#define _WIN32_WINNT 0x0500

#include <windows.h>

// Use to change the divisor from Kb to Mb.

#define DIV 1024

// #define DIV 1

char *divisor = "K";

// char *divisor = "";

// Handle the width of the field in which to print numbers this way to

// make changes easier. The asterisk in the print format specifier

// "%*I64d" takes an int from the argument list, and uses it to pad

// and right-justify the number being formatted.

#define WIDTH 7

void main(int argc, char *argv[])

{

MEMORYSTATUSEX statex;

statex.dwLength = sizeof (statex);

GlobalMemoryStatusEx (&statex);

printf ("%ld percent of memory is in use.\n",

statex.dwMemoryLoad);
Page 283



Volume 1
printf ("There are %*I64d total %sbytes of physical memory.\n",

WIDTH, statex.ullTotalPhys/DIV, divisor);

printf ("There are %*I64d free %sbytes of physical memory.\n",

WIDTH, statex.ullAvailPhys/DIV, divisor);

printf ("There are %*I64d total %sbytes of paging file.\n",

WIDTH, statex.ullTotalPageFile/DIV, divisor);

printf ("There are %*I64d free %sbytes of paging file.\n",

WIDTH, statex.ullAvailPageFile/DIV, divisor);

printf ("There are %*I64x total %sbytes of virtual memory.\n",

WIDTH, statex.ullTotalVirtual/DIV, divisor);

printf ("There are %*I64x free %sbytes of virtual memory.\n",

WIDTH, statex.ullAvailVirtual/DIV, divisor);

// Show the amount of extended memory available.

printf ("There are %*I64x free %sbytes of extended memory.\n",

WIDTH, statex.ullAvailExtendedVirtual/DIV, divisor);

}

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, MEMORYSTATUSEX

1.223 GlobalReAlloc

The GlobalReAlloc function changes the size or attributes of a specified global memory object. The size can increase
or decrease.

Note The global functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions. However, the global functions are still used with DDE and
the clipboard functions.

GlobalReAlloc: procedure
(

hMem: dword;
dwBytes: SIZE_T;
uFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__GlobalReAlloc@12" );

Parameters

hMem
Page 284



Win32 API Reference
[in] Handle to the global memory object to be reallocated. This handle is returned by either the GlobalAlloc or
GlobalReAlloc function.

dwBytes
[in] Specifies the new size, in bytes, of the memory block. If uFlags specifies GMEM_MODIFY, this parameter
is ignored.

uFlags
[in] Specifies how to reallocate the global memory object. If GMEM_MODIFY is specified, this parameter mod-
ifies the attributes of the memory object, and the dwBytes parameter is ignored. Otherwise, this parameter con-
trols the reallocation of the memory object.

You can combine GMEM_MODIFY with one or both of the following values.

If this parameter does not specify GMEM_MODIFY, it can also be any combination of the following values.

Return Values
If the function succeeds, the return value is a handle to the reallocated memory object.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
If GlobalReAlloc reallocates a movable object, the return value is a handle to the memory object. To convert the han-
dle to a pointer, use the GlobalLock function.

If GlobalReAlloc reallocates a fixed object, the value of the handle returned is the address of the first byte of the
memory block. To access the memory, a process can simply cast the return value to a pointer.

If GlobalReAlloc fails, the original memory is not freed, and the original handle and pointer are still valid.

Windows 95/98: The heap managers are designed for memory blocks smaller than four megabytes. If you expect

Value Meaning

GMEM_DISCARDABLE Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

In Win32, you must explicitly call the GlobalDiscard function to dis-
card a block.

In 16-bit Windows, allocates discardable memory, if GMEM_MODIFY
is also specified. This value is ignored if the object was not previously
allocated as movable or if GMEM_MOVEABLE is not specified.

GMEM_MOVEABLE If GMEM_MODIFY is also specified, GMEM_MOVEABLE changes a
fixed memory object to a movable memory object.

If GMEM_MODIFY is not specified, then GMEM_MOVEABLE allows
a locked GMEM_MOVEABLE memory block or a GMEM_FIXED
memory block to be moved to a new fixed location. If neither
GMEM_MODIFY nor GMEM_MOVEABLE is set, then fixed memory
blocks and locked movable memory blocks will only be reallocated in
place.

Value Meaning

GMEM_NOCOMPACT Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

GMEM_ZEROINIT Causes the additional memory contents to be initialized to zero if the
memory object is growing in size.
Page 285



Volume 1
your memory blocks to be larger than one or two megabytes, you can avoid significant performance degradation by
using the VirtualAlloc or VirtualAllocEx function instead.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GlobalAlloc, GlobalDiscard, GlobalLock

1.224 GlobalSize

The GlobalSize function retrieves the current size, in bytes, of the specified global memory object.

Note The global functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions. However, the global functions are still used with DDE and
the clipboard functions.

GlobalSize: procedure
(

hMem: dword
);

stdcall;
returns( "eax" );
external( "__imp__GlobalSize@4" );

Parameters

hMem
[in] Handle to the global memory object. This handle is returned by either the GlobalAlloc or GlobalReAl-
loc function.

Return Values
If the function succeeds, the return value is the size, in bytes, of the specified global memory object.

If the specified handle is not valid or if the object has been discarded, the return value is zero. To get extended error
information, call GetLastError.

Remarks
The size of a memory block may be larger than the size requested when the memory was allocated.

To verify that the specified object's memory block has not been discarded, use the GlobalFlags function before
calling GlobalSize.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GlobalAlloc, GlobalFlags, GlobalReAlloc
Page 286



Win32 API Reference
1.225 GlobalUnlock

The GlobalUnlock function decrements the lock count associated with a memory object that was allocated with
GMEM_MOVEABLE. This function has no effect on memory objects allocated with GMEM_FIXED.

Note The global functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions. However, the global functions are still used with DDE and
the clipboard functions.

GlobalUnlock: procedure
(

hMem:dword
);

stdcall;
returns( "eax" );
external( "__imp__GlobalUnlock@4" );

Parameters

hMem
[in] Handle to the global memory object. This handle is returned by either the GlobalAlloc or GlobalReAlloc
function.

Return Values
If the memory object is still locked after decrementing the lock count, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError. If GetLastEr-
ror returns NO_ERROR, the memory object is unlocked.

Remarks
The internal data structures for each memory object include a lock count that is initially zero. For movable memory
objects, the GlobalLock function increments the count by one, and GlobalUnlock decrements the count by one. For
each call that a process makes to GlobalLock for an object, it must eventually call GlobalUnlock. Locked memory
will not be moved or discarded, unless the memory object is reallocated by using the GlobalReAlloc function. The
memory block of a locked memory object remains locked until its lock count is decremented to zero, at which time it
can be moved or discarded.

Memory objects allocated with GMEM_FIXED always have a lock count of zero. If the specified memory block is
fixed memory, this function returns TRUE.

If the memory object is already unlocked, GlobalUnlock returns FALSE and GetLastError reports
ERROR_NOT_LOCKED.

A process should not rely on the return value to determine the number of times it must subsequently call GlobalUn-
lock for a memory object.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GlobalAlloc, GlobalLock, Glo-
balReAlloc
Page 287



Volume 1
1.226 Heap32First

Retrieves information about the first block of a heap that has been allocated by a process.

Heap32First: procedure
(

var lphe: HEAPENTRY32;
th32ProcessID: dword;

var th32HeapID: dword
);

stdcall;
returns( "eax" );
external( "__imp__Heap32First@12" );

Parameters

lphe
[in/out] Pointer to a HEAPENTRY32 structure.

th32ProcessID
[in] Identifier of the process context that owns the heap.

th32HeapID
[in] Identifier of the heap to enumerate.

Return Values
Returns TRUE if information for the first heap block has been copied to the buffer or FALSE otherwise. The
ERROR_NO_MORE_FILES error value is returned by the GetLastError function if the heap is invalid or empty.

Remarks
The calling application must set the dwSize member of HEAPENTRY32 to the size, in bytes, of the structure.
Heap32First changes dwSize to the number of bytes written to the structure. This will never be greater than the ini-
tial value of dwSize, but it may be smaller. If the value is smaller, do not rely on the values of any members whose
offsets are greater than this value.

To access subsequent blocks of the same heap, use the Heap32Next function.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tool Help Library Overview, Tool Help Functions, , Heap32Next, HEAPENTRY32

1.227 Heap32ListFirst

Retrieves information about the first heap that has been allocated by a specified process.

Heap32ListFirst: procedure
(

hSnapshot: dword;
Page 288



Win32 API Reference
var lphl: HEAPLIST32
);

stdcall;
returns( "eax" );
external( "__imp__Heap32ListFirst@8" );

Parameters

hSnapshot
[in] Handle to the snapshot returned from a previous call to the CreateToolhelp32Snapshot function.

lphl
[in/out] Pointer to a HEAPLIST32 structure.

Return Values
Returns TRUE if the first entry of the heap list has been copied to the buffer or FALSE otherwise. The
ERROR_NO_MORE_FILES error value is returned by the GetLastError function when no heap list exists or the
snapshot does not contain heap list information.

Remarks
The calling application must set the dwSize member of HEAPLIST32 to the size, in bytes, of the structure.
Heap32ListFirst changes dwSize to the number of bytes written to the structure. This will never be greater than the
initial value of dwSize, but it may be smaller. If the value is smaller, do not rely on the values of any members whose
offsets are greater than this value.

To retrieve information about other heaps in the heap list, use the Heap32ListNext function.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tool Help Library Overview, Tool Help Functions, , CreateToolhelp32Snapshot, HEAPLIST32, Heap32ListNext

1.228 Heap32ListNext

Retrieves information about the next heap that has been allocated by a process.

Heap32ListNext: procedure
(

hSnapshot: dword;
var lphl: HEAPLIST32

);
stdcall;
returns( "eax" );
external( "__imp__Heap32ListNext@8" );

Parameters

hSnapshot
[in] Handle to the snapshot returned from a previous call to the CreateToolhelp32Snapshot function.
Page 289



Volume 1
lphl
[out] Pointer to a HEAPLIST32 structure.

Return Values
Returns TRUE if the next entry of the heap list has been copied to the buffer or FALSE otherwise. The
ERROR_NO_MORE_FILES error value is returned by the GetLastError function when no more entries in the
heap list exist.

Remarks
To retrieve information about the first heap in a heap list, use the Heap32ListFirst function.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tool Help Library Overview, Tool Help Functions

1.229 Heap32Next

Retrieves information about the next block of a heap that has been allocated by a process.

Heap32Next: procedure
(

var lphe: HEAPENTRY32
);

stdcall;
returns( "eax" );
external( "__imp__Heap32Next@4" );

Parameters

lphe
[out] Pointer to a HEAPENTRY32 structure.

Return Values
Returns TRUE if information about the next block in the heap has been copied to the buffer or FALSE otherwise. The
GetLastError function returns ERROR_NO_MORE_FILES when no more objects in the heap exist and
ERROR_INVALID_DATA if the heap appears to be corrupt or is modified during the walk in such a way that
Heap32Next cannot continue.

Remarks
To retrieve information for the first block of a heap, use the Heap32First function.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Page 290



Win32 API Reference
See Also
Tool Help Library Overview, Tool Help Functions

1.230 HeapAlloc

The HeapAlloc function allocates a block of memory from a heap. The allocated memory is not movable.

HeapAlloc: procedure
(

hHeap: dword;
dwFlags: dword;
dwBytes: SIZE_T

);
stdcall;
returns( "eax" );
external( "__imp__HeapAlloc@12" );

Parameters

hHeap
[in] Specifies the heap from which the memory will be allocated. This parameter is a handle returned by the
HeapCreate or GetProcessHeap function.

dwFlags
[in] Specifies several controllable aspects of heap allocation. Specifying any of these values will override the
corresponding value specified when the heap was created with HeapCreate. This parameter can be one or more
of the following values.

dwBytes
[in] Specifies the number of bytes to be allocated.

If the heap specified by the hHeap parameter is a "non-growable" heap, dwBytes must be less than 0x7FFF8.
You create a non-growable heap by calling the HeapCreate function with a nonzero value.

Return Values
If the function succeeds, the return value is a pointer to the allocated memory block.

If the function fails and you have not specified HEAP_GENERATE_EXCEPTIONS, the return value is NULL.

Value Meaning

HEAP_GENERATE_EXCEPTIONS Specifies that the system will raise an exception to indicate a func-
tion failure, such as an out-of-memory condition, instead of return-
ing NULL.

HEAP_NO_SERIALIZE Specifies that mutual exclusion will not be used while the HeapAl-
loc function is accessing the heap.

This value should not be specified when accessing the process
heap. The system may create additional threads within the applica-
tion's process, such as a CTRL+C handler, that simultaneously
access the process heap.

HEAP_ZERO_MEMORY Specifies that the allocated memory will be initialized to zero. Oth-
erwise, the memory is not initialized to zero.
Page 291



Volume 1
If the function fails and you have specified HEAP_GENERATE_EXCEPTIONS, the function may generate the fol-
lowing exceptions:

Note Heap corruption can lead to either exception. It depends upon the nature of the heap corruption.

If the function fails, it does not call SetLastError. An application cannot call GetLastError for extended error infor-
mation.

Remarks
If HeapAlloc succeeds, it allocates at least the amount of memory requested. If the actual amount allocated is greater
than the amount requested, the process can use the entire amount. To determine the actual size of the allocated block,
use the HeapSize function.

To free a block of memory allocated by HeapAlloc, use the HeapFree function.

Memory allocated by HeapAlloc is not movable. Since the memory is not movable, it is possible for the heap to
become fragmented.

Serialization ensures mutual exclusion when two or more threads attempt to simultaneously allocate or free blocks
from the same heap. There is a small performance cost to serialization, but it must be used whenever multiple threads
allocate and free memory from the same heap. Setting the HEAP_NO_SERIALIZE value eliminates mutual exclu-
sion on the heap. Without serialization, two or more threads that use the same heap handle might attempt to allocate
or free memory simultaneously, likely causing corruption in the heap. The HEAP_NO_SERIALIZE value can, there-
fore, be safely used only in the following situations:

The process has only one thread.

The process has multiple threads, but only one thread calls the heap functions for a specific heap.

The process has multiple threads, and the application provides its own mechanism for mutual
exclusion to a specific heap.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a heap. For more information on structured exception handling with memory accesses, see Reading and
Writing and Structured Exception Handling.

Windows 95/98: The heap managers are designed for memory blocks smaller than four megabytes. If you expect
your memory blocks to be larger than one or two megabytes, you can avoid significant performance degradation by
using the VirtualAlloc or VirtualAllocEx function instead.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GetProcessHeap, HeapCreate,
HeapDestroy, HeapFree, HeapReAlloc, HeapSize, SetLastError

Value Meaning

STATUS_NO_MEMORY The allocation attempt failed because of a lack of available
memory or heap corruption.

STATUS_ACCESS_VIOLATION The allocation attempt failed because of heap corruption or
improper function parameters.
Page 292



Win32 API Reference
1.231 HeapCompact

The HeapCompact function attempts to compact a specified heap. It compacts the heap by coalescing adjacent free
blocks of memory and decommitting large free blocks of memory.

HeapCompact: procedure
(

hHeap: dword;
dwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__HeapCompact@8" );

Parameters

hHeap
[in] Handle to the heap that the function will attempt to compact.

dwFlags
[in] Specifies heap access during function operation. This parameter can be the following value.

Return Values
If the function succeeds, the return value is the size, in bytes, of the largest committed free block in the heap. This is
an unsigned integer value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

In the unlikely case that there is absolutely no space available in the heap, the function return value is zero, and Get-
LastError returns the value NO_ERROR.

Remarks
There is no guarantee that an application can successfully allocate a memory block of the size returned by HeapCom-
pact. Other threads or the commit threshold might prevent such an allocation.

Serialization ensures mutual exclusion when two or more threads attempt to simultaneously allocate or free blocks
from the same heap. There is a small performance cost to serialization, but it must be used whenever multiple threads
allocate and free memory from the same heap. Setting the HEAP_NO_SERIALIZE value eliminates mutual exclu-
sion on the heap. Without serialization, two or more threads that use the same heap handle might attempt to allocate
or free memory simultaneously, likely causing corruption in the heap. The HEAP_NO_SERIALIZE value can, there-
fore, be safely used only in the following situations:

The process has only one thread.

The process has multiple threads, but only one thread calls the heap functions for a specific heap.

The process has multiple threads, and the application provides its own mechanism for mutual
exclusion to a specific heap.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a heap. For more information on structured exception handling with memory accesses, see Reading and
Writing and Structured Exception Handling.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.

Value Meaning

HEAP_NO_SERIALIZE Specifies that mutual exclusion will not be used while the HeapCompact
function accesses the heap.
Page 293



Volume 1
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, HeapCreate, HeapValidate

1.232 HeapCreate

The HeapCreate function creates a heap object that can be used by the calling process. The function reserves space
in the virtual address space of the process and allocates physical storage for a specified initial portion of this block.

HeapCreate: procedure
(

flOptions: dword;
dwInitialSize: SIZE_T;
dwMaximumSize: SIZE_T

);
stdcall;
returns( "eax" );
external( "__imp__HeapCreate@12" );

Parameters

flOptions
[in] Specifies optional attributes for the new heap. These options affect subsequent access to the new heap
through calls to the heap functions (HeapAlloc, HeapFree, HeapReAlloc, and HeapSize). You can specify
one or more of the following values.

dwInitialSize
[in] Specifies the initial size, in bytes, of the heap. This value determines the initial amount of physical storage
that is allocated for the heap. The value is rounded up to the next page boundary. To determine the size of a page
on the host computer, use the GetSystemInfo function.

dwMaximumSize
[in] If dwMaximumSize is a nonzero value, it specifies the maximum size, in bytes, of the heap. The HeapCreate
function rounds dwMaximumSize up to the next page boundary, and then reserves a block of that size in the pro-
cess's virtual address space for the heap. If allocation requests made by the HeapAlloc or HeapReAlloc func-
tions exceed the initial amount of physical storage specified by dwInitialSize, the system allocates additional
pages of physical storage for the heap, up to the heap's maximum size.

In addition, if dwMaximumSize is nonzero, the heap cannot grow, and an absolute limitation arises: the maximum

Value Meaning

HEAP_GENERATE_EXCEPTIONS Specifies that the system will raise an exception to indicate a
function failure, such as an out-of-memory condition, instead of
returning NULL.

HEAP_NO_SERIALIZE Specifies that mutual exclusion will not be used when the heap
functions allocate and free memory from this heap. The default,
when HEAP_NO_SERIALIZE is not specified, is to serialize
access to the heap. Serialization of heap access allows two or
more threads to simultaneously allocate and free memory from
the same heap.
Page 294



Win32 API Reference
size of a memory block in the heap is a bit less than 0x7FFF8 bytes. Requests to allocate larger blocks will fail,
even if the maximum size of the heap is large enough to contain the block.

If dwMaximumSize is zero, it specifies that the heap is growable. The heap's size is limited only by available
memory. Requests to allocate blocks larger than 0x7FFF8 bytes do not automatically fail; the system calls Vir-
tualAlloc to obtain the memory needed for such large blocks. Applications that need to allocate large memory
blocks should set dwMaximumSize to zero.

Return Values
If the function succeeds, the return value is a handle to the newly created heap.

If the function fails, the return value is is NULL. To get extended error information, call GetLastError.

Remarks
The HeapCreate function creates a private heap object from which the calling process can allocate memory blocks
by using the HeapAlloc function. The initial size determines the number of committed pages that are initially allo-
cated for the heap. The maximum size determines the total number of reserved pages. These pages create a block in
the process's virtual address space into which the heap can grow. If requests by HeapAlloc exceed the current size of
committed pages, additional pages are automatically committed from this reserved space, assuming that the physical
storage is available.

The memory of a private heap object is accessible only to the process that created it. If a dynamic-link library (DLL)
creates a private heap, the heap is created in the address space of the process that called the DLL, and it is accessible
only to that process.

The system uses memory from the private heap to store heap support structures, so not all of the specified heap size is
available to the process. For example, if the HeapAlloc function requests 64 kilobytes (K) from a heap with a maxi-
mum size of 64K, the request may fail because of system overhead.

If HEAP_NO_SERIALIZE is not specified (the simple default), the heap will serialize access within the calling pro-
cess. Serialization ensures mutual exclusion when two or more threads attempt to simultaneously allocate or free
blocks from the same heap. There is a small performance cost to serialization, but it must be used whenever multiple
threads allocate and free memory from the same heap.

Setting HEAP_NO_SERIALIZE eliminates mutual exclusion on the heap. Without serialization, two or more threads
that use the same heap handle might attempt to allocate or free memory simultaneously, likely causing corruption in
the heap. Therefore, HEAP_NO_SERIALIZE can safely be used only in the following situations:

The process has only one thread.

The process has multiple threads, but only one thread calls the heap functions for a specific heap.

The process has multiple threads, and the application provides its own mechanism for mutual
exclusion to a specific heap.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a heap. For more information on structured exception handling with memory accesses, see Reading and
Writing and Structured Exception Handling.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GetProcessHeap, GetProcessHeaps, GetSystem-
Info, HeapAlloc, HeapDestroy, HeapFree, HeapReAlloc, HeapSize, HeapValidate, VirtualAlloc
Page 295



Volume 1
1.233 HeapDestroy

The HeapDestroy function destroys the specified heap object. HeapDestroy decommits and releases all the pages of
a private heap object, and it invalidates the handle to the heap.

HeapDestroy: procedure
(

hHeap: dword
);

stdcall;
returns( "eax" );
external( "__imp__HeapDestroy@4" );

Parameters

hHeap
[in] Specifies the heap to be destroyed. This parameter should be a heap handle returned by the HeapCreate
function. Do not use the handle to the process heap returned by the GetProcessHeap function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Processes can call HeapDestroy without first calling the HeapFree function to free memory allocated from the heap.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GetProcessHeap, HeapAlloc, HeapCreate, Heap-
Free, HeapReAlloc, HeapSize

1.234 HeapFree

The HeapFree function frees a memory block allocated from a heap by the HeapAlloc or HeapReAlloc function.

HeapFree: procedure
(

hHeap: dword;
dwFlags: dword;

var lpMem: var
);

stdcall;
returns( "eax" );
external( "__imp__HeapFree@12" );

Parameters

hHeap
Page 296



Win32 API Reference
[in] Specifies the heap whose memory block the function frees. This parameter is a handle returned by the
HeapCreate or GetProcessHeap function.

dwFlags
[in] Specifies several controllable aspects of freeing a memory block. Specifying the following value overrides
the corresponding value specified in the flOptions parameter when the heap was created by using the HeapCre-
ate function.

lpMem
[in] Pointer to the memory block to free. This pointer is returned by the HeapAlloc or HeapReAlloc function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. An application can call GetLastError for extended error information.

Remarks
Serialization ensures mutual exclusion when two or more threads attempt to simultaneously allocate or free blocks
from the same heap. There is a small performance cost to serialization, but it must be used whenever multiple threads
allocate and free memory from the same heap. Setting the HEAP_NO_SERIALIZE value eliminates mutual exclu-
sion on the heap. Without serialization, two or more threads that use the same heap handle might attempt to allocate
or free memory simultaneously, likely causing corruption in the heap. The HEAP_NO_SERIALIZE value can, there-
fore, be safely used only in the following situations:

The process has only one thread.

The process has multiple threads, but only one thread calls the heap functions for a specific heap.

The process has multiple threads, and the application provides its own mechanism for mutual
exclusion to a specific heap.

You should not refer in any way to memory that has been freed by HeapFree. Once that memory is freed, any infor-
mation that may have been in it is gone forever. If you require information, do not free memory containing the infor-
mation. Function calls that return information about memory (such as HeapSize) may not be used with freed
memory, as they may return bogus data.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a heap. For more information on structured exception handling with memory accesses, see Reading and
Writing and Structured Exception Handling.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GetProcessHeap, HeapAlloc, HeapCreate, Heap-
Destroy, HeapReAlloc, HeapSize, SetLastError

Value Meaning

HEAP_NO_SERIALIZE Specifies that mutual exclusion will not be used while HeapFree is access-
ing the heap.

Do not specify this value when accessing the process heap. The system may
create additional threads within the application's process, such as a
CTRL+C handler, that simultaneously access the process heap.
Page 297



Volume 1
1.235 HeapLock

The HeapLock function attempts to acquire the critical section object, or lock, that is associated with a specified
heap.

If the function succeeds, the calling thread owns the heap lock. Only the calling thread will be able to allocate or
release memory from the heap. The execution of any other thread of the calling process will be blocked if that thread
attempts to allocate or release memory from the heap. Such threads will remain blocked until the thread that owns the
heap lock calls the HeapUnlock function.

HeapLock: procedure
(

hHeap: dword
);

stdcall;
returns( "eax" );
external( "__imp__HeapLock@4" );

Parameters

hHeap
[in] Handle to the heap to lock for exclusive access by the calling thread.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The HeapLock function is primarily useful for preventing the allocation and release of heap memory by other threads
while the calling thread uses the HeapWalk function.

Each call to HeapLock must be matched by a corresponding call to the HeapUnlock function. Failure to call
HeapUnlock will block the execution of any other threads of the calling process that attempt to access the heap.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a heap. For more information on structured exception handling with memory accesses, see Reading and
Writing and Structured Exception Handling.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, HeapUnlock, HeapWalk

1.236 HeapReAlloc

The HeapReAlloc function reallocates a block of memory from a heap. This function enables you to resize a memory
block and change other memory block properties. The allocated memory is not movable.

HeapReAlloc: procedure
(

hHeap: dword;
Page 298



Win32 API Reference
dwFlags: dword;
var lpMem: var;

dwBytes: SIZE_T
);

stdcall;
returns( "eax" );
external( "__imp__HeapReAlloc@16" );

Parameters

hHeap
[in] Heap from which the memory will be reallocated. This is a handle returned by the HeapCreate or GetPro-
cessHeap function.

dwFlags
[in] Specifies several controllable aspects of heap reallocation. Specifying a value overrides the corresponding
value specified in the flOptions parameter when the heap was created by using the HeapCreate function. This
parameter can be one or more of the following values.

lpMem
[in] Pointer to the block of memory that the function reallocates. This pointer is returned by an earlier call to the
HeapAlloc or HeapReAlloc function.

dwBytes
[in] New size of the memory block, in bytes. A memory block's size can be increased or decreased by using this
function.

If the heap specified by the hHeap parameter is a "non-growable" heap, dwBytes must be less than 0x7FFF8. You
create a non-growable heap by calling the HeapCreate function with a nonzero value.

Return Values
If the function succeeds, the return value is a pointer to the reallocated memory block.

Value Meaning

HEAP_GENERATE_EXCEPTIONS Specifies that the operating-system raises an exception to indicate a
function failure, such as an out-of-memory condition, instead of return-
ing NULL.

HEAP_NO_SERIALIZE Specifies that mutual exclusion is not used while HeapReAlloc is
accessing the heap.

This value should not be specified when accessing the process heap.
The system may create additional threads within the application's pro-
cess, such as a CTRL+C handler, that simultaneously access the process
heap.

HEAP_REALLOC_IN_PLACE_ONL
Y

Specifies that there can be no movement when reallocating a memory
block to a larger size. If this value is not specified and the reallocation
request is for a larger size, the function may move the block to a new
location. If this value is specified and the block cannot be enlarged with-
out moving, the function fails, leaving the original memory block
unchanged.

HEAP_ZERO_MEMORY If the reallocation request is for a larger size, this value specifies that the
additional region of memory beyond the original size be initialized to
zero. The contents of the memory block up to its original size are unaf-
fected.
Page 299



Volume 1
If the function fails and you have not specified HEAP_GENERATE_EXCEPTIONS, the return value is NULL.

If the function fails and you have specified HEAP_GENERATE_EXCEPTIONS, the function may generate the fol-
lowing exceptions:

If the function fails, it calls SetLastError. An application can call GetLastError for extended error information.

Remarks
If HeapReAlloc succeeds, it allocates at least the amount of memory requested. If the actual amount allocated is
greater than the amount requested, the process can use the entire amount. To determine the actual size of the reallo-
cated block, use the HeapSize function.

If HeapReAlloc fails, the original memory is not freed, and the original handle and pointer are still valid.

To free a block of memory allocated by HeapReAlloc, use the HeapFree function.

Serialization ensures mutual exclusion when two or more threads attempt to simultaneously allocate or free blocks
from the same heap. There is a small performance cost to serialization, but it must be used whenever multiple threads
allocate and free memory from the same heap. Setting the HEAP_NO_SERIALIZE value eliminates mutual exclu-
sion on the heap. Without serialization, two or more threads that use the same heap handle might attempt to allocate
or free memory simultaneously, likely causing corruption in the heap. The HEAP_NO_SERIALIZE value can, there-
fore, be safely used only in the following situations:

The process has only one thread.

The process has multiple threads, but only one thread calls the heap functions for a specific heap.

The process has multiple threads, and the application provides its own mechanism for mutual
exclusion to a specific heap.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a heap. For more information on structured exception handling with memory accesses, see Reading and
Writing and Structured Exception Handling.

Windows 95/98: The heap managers are designed for memory blocks smaller than four megabytes. If you expect
your memory blocks to be larger than one or two megabytes, you can avoid significant performance degradation by
using the VirtualAlloc or VirtualAllocEx function instead.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GetProcessHeap, HeapAlloc, HeapCreate, Heap-
Destroy, HeapFree, HeapSize, SetLastError

1.237 HeapSize

The HeapSize function returns the size, in bytes, of a memory block allocated from a heap by the HeapAlloc or
HeapReAlloc function.

Value Meaning

STATUS_NO_MEMORY The reallocation attempt failed for lack of available memory.

STATUS_ACCESS_VIOLATION The reallocation attempt failed because of heap corruption or
improper function parameters.
Page 300



Win32 API Reference
HeapSize: procedure
(

hHeap: dword;
dwFlags: dword;

var lpMem: var
);

stdcall;
returns( "eax" );
external( "__imp__HeapSize@12" );

Parameters

hHeap
[in] Specifies the heap in which the memory block resides. This handle is returned by the HeapCreate or Get-
ProcessHeap function.

dwFlags
[in] Specifies several controllable aspects of accessing the memory block. Specifying the following value over-
rides the corresponding value specified in the flOptions parameter when the heap was created by using the
HeapCreate function.

lpMem
[in] Pointer to the memory block whose size the function will obtain. This is a pointer returned by the HeapAl-
loc or HeapReAlloc function.

Return Values
If the function succeeds, the return value is the size, in bytes, of the allocated memory block.

If the function fails, the return value is -1. The function does not call SetLastError. An application cannot call Get-
LastError for extended error information.

Remarks
Serialization ensures mutual exclusion when two or more threads attempt to simultaneously allocate or free blocks
from the same heap. There is a small performance cost to serialization, but it must be used whenever multiple threads
allocate and free memory from the same heap. Setting the HEAP_NO_SERIALIZE value eliminates mutual exclu-
sion on the heap. Without serialization, two or more threads that use the same heap handle might attempt to allocate
or free memory simultaneously, likely causing corruption in the heap. The HEAP_NO_SERIALIZE value can, there-
fore, be safely used only in the following situations:

The process has only one thread.

The process has multiple threads, but only one thread calls the heap functions for a specific heap.

The process has multiple threads, and the application provides its own mechanism for mutual
exclusion to a specific heap.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a heap. For more information on structured exception handling with memory accesses, see Reading and
Writing and Structured Exception Handling.

Value Meaning

HEAP_NO_SERIALIZE Specifies that mutual exclusion will not be used while HeapSize is
accessing the heap.

This value should not be specified when accessing the process heap. The
system may create additional threads within the application's process,
such as a CTRL+C handler, that simultaneously access the process heap.
Page 301



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GetProcessHeap, HeapAlloc, HeapCreate, Heap-
Destroy, HeapFree, HeapReAlloc, SetLastError

1.238 HeapUnlock

The HeapUnlock function releases ownership of the critical section object, or lock, that is associated with a specified
heap. The HeapUnlock function reverses the action of the HeapLock function.

HeapUnlock: procedure
(

hHeap:dword
);

stdcall;
returns( "eax" );
external( "__imp__HeapUnlock@4" );

Parameters

hHeap
[in] Handle to the heap to unlock.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The HeapLock function is primarily useful for preventing the allocation and release of heap memory by other threads
while the calling thread uses the HeapWalk function. The HeapUnlock function is the inverse of HeapLock.

Each call to HeapLock must be matched by a corresponding call to the HeapUnlock function. Failure to call
HeapUnlock will block the execution of any other threads of the calling process that attempt to access the heap.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a heap. For more information on structured exception handling with memory accesses, see Reading and
Writing and Structured Exception Handling.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, HeapLock, HeapWalk
Page 302



Win32 API Reference
1.239 HeapValidate

The HeapValidate function attempts to validate a specified heap. The function scans all the memory blocks in the
heap, and verifies that the heap control structures maintained by the heap manager are in a consistent state. You can
also use the HeapValidate function to validate a single memory block within a specified heap, without checking the
validity of the entire heap.

HeapValidate: procedure
(

hHeap: dword;
dwFlags: dword;

var lpMem: var
);

stdcall;
returns( "eax" );
external( "__imp__HeapValidate@12" );

Parameters

hHeap
[in] Handle to the heap of interest. The HeapValidate function attempts to validate this heap, or a single memory
block within this heap.

dwFlags
[in] Specifies heap access during function operation. This parameter can be the following value.

lpMem
[in] Pointer to a memory block within the specified heap. This parameter may be NULL.

If this parameter is NULL, the function attempts to validate the entire heap specified by hHeap.

If this parameter is not NULL, the function attempts to validate the memory block pointed to by lpMem. It does
not attempt to validate the rest of the heap.

Return Values
If the specified heap or memory block is valid, the return value is nonzero.

If the specified heap or memory block is invalid, the return value is zero. On a system set up for debugging, the
HeapValidate function then displays debugging messages that describe the part of the heap or memory block that is
invalid, and stops at a hard-coded breakpoint so that you can examine the system to determine the source of the inval-
idity. The HeapValidate function does not set the thread's last error value. There is no extended error information for
this function; do not call GetLastError.

Remarks
There are heap control structures for each memory block in a heap, and for the heap as a whole. When you use the
HeapValidate function to validate a complete heap, it checks all of these control structures for consistency.

When you use HeapValidate to validate a single memory block within a heap, it checks only the control structures
pertaining to that element. HeapValidate can only validate allocated memory blocks. Calling HeapValidate on a
freed memory block will return FALSE because there are no control structures to validate.

If you want to validate the heap elements enumerated by the HeapWalk function, you should only call HeapValidate
on the elements that have PROCESS_HEAP_ENTRY_BUSY in the wFlags member of the

Value Meaning

HEAP_NO_SERIALIZE Specifies that mutual exclusion is not used while the HeapValidate func-
tion accesses the heap.
Page 303



Volume 1
PROCESS_HEAP_ENTRY structure. HeapValidate returns FALSE for all heap elements that do not have this bit
set.

Serialization ensures mutual exclusion when two or more threads attempt to simultaneously allocate or free blocks
from the same heap. There is a small performance cost to serialization, but it must be used whenever multiple threads
allocate and free memory from the same heap. Setting the HEAP_NO_SERIALIZE value eliminates mutual exclu-
sion on the heap. Without serialization, two or more threads that use the same heap handle might attempt to allocate
or free memory simultaneously, likely causing corruption in the heap. The HEAP_NO_SERIALIZE value can, there-
fore, be safely used only in the following situations:

The process has only one thread.

The process has multiple threads, but only one thread calls the heap functions for a specific heap.

The process has multiple threads, and the application provides its own mechanism for mutual
exclusion to a specific heap.

Validating a heap may degrade performance, especially on symmetric multiprocessing (SMP) computers. The side
effects may last until the process ends.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a heap. For more information on structured exception handling with memory accesses, see Reading and
Writing and Structured Exception Handling.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, HeapCreate, HeapWalk,
PROCESS_HEAP_ENTRY

1.240 HeapWalk

The HeapWalk function enumerates the memory blocks in a specified heap created or manipulated by Win32 heap
memory allocators such as HeapAlloc, HeapReAlloc, and HeapFree.

HeapWalk: procedure
(

hHeap: dword;
var lpEntry: PROCESS_HEAP_ENTRY

);
stdcall;
returns( "eax" );
external( "__imp__HeapWalk@8" );

Parameters

hHeap
[in] Handle to the heap whose memory blocks you wish to enumerate.

lpEntry
[in/out] Pointer to a PROCESS_HEAP_ENTRY structure that maintains state information for a particular heap enu-
meration.

If the HeapWalk function succeeds, returning the value TRUE, this structure's members contain information
about the next memory block in the heap.
Page 304



Win32 API Reference
To initiate a heap enumeration, set the lpData field of the PROCESS_HEAP_ENTRY structure to NULL. To
continue a particular heap enumeration, call the HeapWalk function repeatedly, with no changes to hHeap,
lpEntry, or any of the members of the PROCESS_HEAP_ENTRY structure.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

If the heap enumeration terminates successfully by reaching the end of the heap, the function returns FALSE, and
GetLastError returns the error code ERROR_NO_MORE_ITEMS.

Remarks
To initiate a heap enumeration, call HeapWalk with the lpData field of the PROCESS_HEAP_ENTRY structure
pointed to by lpEntry set to NULL.

To continue a heap enumeration, call HeapWalk with the same hHeap and lpEntry values, and with the
PROCESS_HEAP_ENTRY structure unchanged from the preceding call to HeapWalk. Repeat this process until
you have no need for further enumeration, or until the function returns FALSE and GetLastError returns
ERROR_NO_MORE_ITEMS, indicating that all of the heap's memory blocks have been enumerated.

No special call of HeapWalk is needed to terminate the heap enumeration, since no enumeration state data is main-
tained outside the contents of the PROCESS_HEAP_ENTRY structure.

HeapWalk can fail in a multithreaded application if the heap is not locked during the heap enumeration. Use the
HeapLock and HeapUnlock functions to control heap locking during heap enumeration.

Walking a heap may degrade performance, especially on symmetric multiprocessing (SMP) computers. The side
effects may last until the process ends.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a heap. For more information on structured exception handling with memory accesses, see Reading and
Writing and Structured Exception Handling.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, HeapAlloc, HeapReAlloc, HeapFree, HeapLock,
HeapUnlock, HeapValidate, PROCESS_HEAP_ENTRY

1.241 InitAtomTable

The InitAtomTable function initializes the local atom table and sets the number of hash buckets to the specified size.

InitAtomTable: procedure
(

nSize: dword
);

stdcall;
returns( "eax" );
external( "__imp__InitAtomTable@4" );

Parameters

nSize
Page 305



Volume 1
[in] Specifies the number of hash buckets to use for the atom table. If this parameter is zero, the default number
of hash buckets are created.

To achieve better performance, specify a prime number in nSize.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Remarks
An application need not use this function to use a local atom table. The default number of hash buckets used is 37. If
an application does use InitAtomTable, however, it should call the function before any other atom-management
function.

If an application uses a large number of local atoms, it can reduce the time required to add an atom to the local atom
table or to find an atom in the table by increasing the size of the table. However, this increases the amount of memory
required to maintain the table.

The number of buckets in the global atom table cannot be changed. If the atom table has already been initialized,
either explicitly by a prior call to InitAtomTable, or implicitly by the use of any atom-management function, Ini-
tAtomTable returns success without changing the number of hash buckets.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Atoms Overview, Atom Functions, AddAtom, DeleteAtom, FindAtom, GetAtomName, GlobalAddAtom, Glo-
balDeleteAtom, GlobalFindAtom, GlobalGetAtomName

1.242 InitializeCriticalSection

The InitializeCriticalSection function initializes a critical section object.

InitializeCriticalSection: procedure
(

var lpCriticalSection: CRITICAL_SECTION
);

stdcall;
returns( "eax" );
external( "__imp__InitializeCriticalSection@4" );

Parameters

lpCriticalSection
[out] Pointer to the critical section object.

Return Values
This function does not return a value.

In low memory situations, InitializeCriticalSection can raise a STATUS_NO_MEMORY exception.

Remarks
The threads of a single process can use a critical section object for mutual-exclusion synchronization. There is no
Page 306



Win32 API Reference
guarantee about the order in which threads will obtain ownership of the critical section, however, the system will be
fair to all threads.

The process is responsible for allocating the memory used by a critical section object, which it can do by declaring a
variable of type CRITICAL_SECTION. Before using a critical section, some thread of the process must call the
InitializeCriticalSection or InitializeCriticalSectionAndSpinCount function to initialize the object.

After a critical section object has been initialized, the threads of the process can specify the object in the EnterCriti-
calSection, TryEnterCriticalSection, or LeaveCriticalSection function to provide mutually exclusive access to a
shared resource. For similar synchronization between the threads of different processes, use a mutex object.

A critical section object cannot be moved or copied. The process must also not modify the object, but must treat it as
logically opaque. Use only the critical section functions provided by the Win32 API to manage critical section
objects.

Example
For an example that uses InitializeCriticalSection, see Using Critical Section Objects.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CreateMutex, DeleteCriticalSection, EnterCriticalSection,
InitializeCriticalSectionAndSpinCount, LeaveCriticalSection, TryEnterCriticalSection

1.243 InitializeCriticalSectionAndSpinCount

The InitializeCriticalSectionAndSpinCount function initializes a critical section object and sets the spin count for
the critical section.

InitializeCriticalSectionAndSpinCount: procedure
(

var lpCriticalSection: CRITICAL_SECTION;
dwSpinCount: dword

);
stdcall;
returns( "eax" );
external( "__imp__InitializeCriticalSectionAndSpinCount@8" );

Parameters

lpCriticalSection
[in/out] Pointer to the critical section object.

dwSpinCount
[in] Specifies the spin count for the critical section object. On single-processor systems, the spin count is ignored
and the critical section spin count is set to 0. On multiprocessor systems, if the critical section is unavailable, the
calling thread will spin dwSpinCount times before performing a wait operation on a semaphore associated with
the critical section. If the critical section becomes free during the spin operation, the calling thread avoids the
wait operation.

Windows 2000: If the high-order bit is set, the function preallocates the event used by the EnterCritical-
Section function. Do not set this bit if you are creating a large number of critical section objects, because it will
Page 307



Volume 1
consume a significant amount of nonpaged pool.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

In low memory situations, InitializeCriticalSectionAndSpinCount can raise a STATUS_NO_MEMORY exception.

Remarks
The threads of a single process can use a critical section object for mutual-exclusion synchronization. There is no
guarantee about the order in which threads will obtain ownership of the critical section, however, the system will be
fair to all threads.

The process is responsible for allocating the memory used by a critical section object, which it can do by declaring a
variable of type CRITICAL_SECTION. Before using a critical section, some thread of the process must call the
InitializeCriticalSection or InitializeCriticalSectionAndSpinCount function to initialize the object. You
can subsequently modify the spin count by calling the SetCriticalSectionSpinCount function.

After a critical section object has been initialized, the threads of the process can specify the object in the EnterCriti-
calSection, TryEnterCriticalSection, or LeaveCriticalSection function to provide mutually exclusive access to a
shared resource. For similar synchronization between the threads of different processes, use a mutex object.

A critical section object cannot be moved or copied. The process must also not modify the object, but must treat it as
logically opaque. Use only the critical section functions provided by the Win32 API to manage critical section
objects.

The spin count is useful for critical sections of short duration that can experience high levels of contention. Consider
a worst-case scenario, in which an application on an SMP system has two or three threads constantly allocating and
releasing memory from the heap. The application serializes the heap with a critical section. In the worst-case sce-
nario, contention for the critical section is constant, and each thread makes an expensive call to the WaitForSingle-
Object function. However, if the spin count is set properly, the calling thread will not immediately call
WaitForSingleObject when contention occurs. Instead, the calling thread can acquire ownership of the critical sec-
tion if it is released during the spin operation.

You can improve performance significantly by choosing a small spin count for a critical section of short duration. The
heap manager uses a spin count of roughly 4000 for its per-heap critical sections. This gives great performance and
scalability in almost all worst-case scenarios.

Requirements
Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, InitializeCriticalSection, SetCriticalSectionSpinCount, Wait-
ForSingleObject

1.244 InterlockedCompareExchange

The InterlockedCompareExchange function performs an atomic comparison of the specified values and exchanges
the values, based on the outcome of the comparison. The function prevents more than one thread from using the same
variable simultaneously.

If you are exchanging pointer values, this function has been superseded by the InterlockedCompareExchange-
Pointer function.

InterlockedCompareExchange: procedure
Page 308



Win32 API Reference
(
var Destination: LONG;

Exchange: LONG;
Comperand: LONG

);
stdcall;
returns( "eax" );
external( "__imp__InterlockedCompareExchange@12" );

Parameters

Destination
[in/out] Specifies the address of the destination value. The sign is ignored.

Exchange
[in] Specifies the exchange value. The sign is ignored.

Comperand
[in] Specifies the value to compare to Destination. The sign is ignored.

Return Values
The return value is the initial value of the destination.

Remarks
The functions InterlockedCompareExchange, InterlockedDecrement, InterlockedExchange, InterlockedExchange-
Add, and InterlockedIncrement provide a simple mechanism for synchronizing access to a variable that is shared by
multiple threads. The threads of different processes can use this mechanism if the variable is in shared memory.

The InterlockedCompareExchange function performs an atomic comparison of the Destination value with the
Comperand value. If the Destination value is equal to the Comperand value, the Exchange value is stored in the
address specified by Destination. Otherwise, no operation is performed.

The variables for InterlockedCompareExchange must be aligned on a 32-bit boundary; otherwise, this function will
fail on multiprocessor x86 systems and any non-x86 systems.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, Interlocked Variable Access, InterlockedCompareExchange-
Pointer, InterlockedDecrement, InterlockedExchange, InterlockedExchangeAdd, InterlockedIncrement

1.245 InterlockedDecrement

The InterlockedDecrement function decrements (decreases by one) the value of the specified variable and checks
the resulting value. The function prevents more than one thread from using the same variable simultaneously.

InterlockedDecrement: procedure
(

var lpAddend: LONG
);

stdcall;
Page 309



Volume 1
returns( "eax" );
external( "__imp__InterlockedDecrement@4" );

Parameters

lpAddend
[in/out] Pointer to the variable to decrement.

Return Values
Windows 98, Windows NT 4.0 and later: The return value is the resulting decremented value.

Windows 95, Windows NT 3.51 and earlier: If the result of the operation is zero, the return value is zero. If the
result of the operation is less than zero, the return value is negative, but it is not necessarily equal to the result. If the
result of the operation is greater than zero, the return value is positive, but it is not necessarily equal to the result.

Remarks
The functions InterlockedDecrement, InterlockedCompareExchange, InterlockedExchange, InterlockedEx-
changeAdd, and InterlockedIncrement provide a simple mechanism for synchronizing access to a variable that is
shared by multiple threads. The threads of different processes can use this mechanism if the variable is in shared
memory.

The variable pointed to by the lpAddend parameter must be aligned on a 32-bit boundary; otherwise, this function
will fail on multiprocessor x86 systems and any non-x86 systems.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, Interlocked Variable Access, InterlockedCompareExchange,
InterlockedExchange, InterlockedExchangeAdd, InterlockedIncrement

1.246 InterlockedExchange

The InterlockedExchange function atomically exchanges a pair of values. The function prevents more than one
thread from using the same variable simultaneously.

If you are exchanging pointer values, this function has been superseded by the InterlockedExchangePointer
function.

InterlockedExchange: procedure
(

var Target: LONG;
Value: LONG

);
stdcall;
returns( "eax" );
external( "__imp__InterlockedExchange@8" );

Parameters

Target
Page 310



Win32 API Reference
[in/out] Pointer to the value to exchange. The function sets this variable to Value, and returns its prior value.

Value
[in] Specifies a new value for the variable pointed to by Target.

Return Values
The function returns the initial value pointed to by Target.

Remarks
The functions InterlockedExchange, InterlockedCompareExchange, InterlockedDecrement, InterlockedEx-
changeAdd, and InterlockedIncrement provide a simple mechanism for synchronizing access to a variable that is
shared by multiple threads. The threads of different processes can use this mechanism if the variable is in shared
memory.

The variable pointed to by the Target parameter must be aligned on a 32-bit boundary; otherwise, this function will
fail on multiprocessor x86 systems and any non-x86 systems.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, Interlocked Variable Access, InterlockedCompareExchange,
InterlockedDecrement, InterlockedExchangeAdd, InterlockedExchangePointer, InterlockedIncrement

1.247 InterlockedExchangeAdd

The InterlockExchangeAdd function performs an atomic addition of an increment value to an addend variable. The
function prevents more than one thread from using the same variable simultaneously.

InterlockedExchangeAdd: procedure
(

var Addend: LONG;
Increment: LONG

);
stdcall;
returns( "eax" );
external( "__imp__InterlockedExchangeAdd@8" );

Parameters

Addend
[in/out] Pointer to the number that will have the Increment number added to it.

Increment
[in] Specifies the number to be added to the variable pointed to by the Addend parameter.

Return Values
The return value is the initial value of the variable pointed to by the Addend parameter.

Remarks
The functions InterlockedExchangeAdd, InterlockedCompareExchange, InterlockedDecrement,
Page 311



Volume 1
InterlockedExchange, and InterlockedIncrement provide a simple mechanism for synchronizing access to a
variable that is shared by multiple threads. The threads of different processes can use this mechanism if the variable is
in shared memory.

The InterlockedExchangeAdd function performs an atomic addition of the Increment value to the value pointed to
by Addend. The result is stored in the address specified by Addend. The initial value of the variable pointed to by
Addend is returned as the function value.

The variables for InterlockedExchangeAdd must be aligned on a 32-bit boundary; otherwise, this function will fail
on multiprocessor x86 systems and any non-x86 systems.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, Interlocked Variable Access, InterlockedCompareExchange,
InterlockedDecrement, InterlockedExchange, InterlockedIncrement

1.248 InterlockedIncrement

The InterlockedIncrement function increments (increases by one) the value of the specified variable and checks the
resulting value. The function prevents more than one thread from using the same variable simultaneously.

InterlockedIncrement: procedure
(

var lpAddend: LONG
);

stdcall;
returns( "eax" );
external( "__imp__InterlockedIncrement@4" );

Parameters

lpAddend
[in/out] Pointer to the variable to increment.

Return Values
Windows 98, Windows NT 4.0 and later: The return value is the resulting incremented value.

Windows 95, Windows NT 3.51 and earlier: If the result of the operation is zero, the return value is zero. If the
result of the operation is less than zero, the return value is negative, but it is not necessarily equal to the result. If the
result of the operation is greater than zero, the return value is positive, but it is not necessarily equal to the result.

Remarks
The functions InterlockedIncrement, InterlockedCompareExchange, InterlockedDecrement, InterlockedEx-
change, and InterlockedExchangeAdd provide a simple mechanism for synchronizing access to a variable that is
shared by multiple threads. The threads of different processes can use this mechanism if the variable is in shared
memory.

The variable pointed to by the lpAddend parameter must be aligned on a 32-bit boundary; otherwise, this function
will fail on multiprocessor x86 systems and any non-x86 systems.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.
Page 312



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, Interlocked Variable Access, InterlockedCompareExchange,
InterlockedDecrement, InterlockedExchange, InterlockedExchangeAdd

1.249 IsBadCodePtr

The IsBadCodePtr function determines whether the calling process has read access to the memory at the specified
address.

IsBadCodePtr: procedure
(

lpfn: procedure
);

stdcall;
returns( "eax" );
external( "__imp__IsBadCodePtr@4" );

Parameters

lpfn
[in] Pointer to an address in memory.

Return Values
If the calling process has read access to the specified memory, the return value is zero.

If the calling process does not have read access to the specified memory, the return value is nonzero. To get extended
error information, call GetLastError.

If the application is compiled as a debugging version, and the process does not have read access to all bytes in the
specified memory range, the function causes an assertion and breaks into the debugger. Leaving the debugger, the
function continues as usual, and returns a nonzero value This behavior is by design, as a debugging aid.

Remarks
IsBadCodePtr checks the read access only at the specified address and does not guarantee read access to a range of
memory.

In a preemptive multitasking environment, it is possible for some other thread to change the process's access to the
memory being tested. Even when the function indicates that the process has read access to the specified memory, you
should use structured exception handling when attempting to access the memory. Use of structured exception han-
dling enables the system to notify the process if an access violation exception occurs, giving the process an opportu-
nity to handle the exception.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, IsBadReadPtr, IsBadStringPtr, IsBadWritePtr
Page 313



Volume 1
1.250 IsBadReadPtr

The IsBadReadPtr function verifies that the calling process has read access to the specified range of memory.

IsBadReadPtr: procedure
(

var lp: var;
var ucb: uns32

);
stdcall;
returns( "eax" );
external( "__imp__IsBadReadPtr@8" );

Parameters

lp
[in] Pointer to the first byte of the memory block.

ucb
[in] Specifies the size, in bytes, of the memory block. If this parameter is zero, the return value is zero.

Return Values
If the calling process has read access to all bytes in the specified memory range, the return value is zero.

If the calling process does not have read access to all bytes in the specified memory range, the return value is nonzero.

If the application is compiled as a debugging version, and the process does not have read access to all bytes in the
specified memory range, the function causes an assertion and breaks into the debugger. Leaving the debugger, the
function continues as usual, and returns a nonzero value This behavior is by design, as a debugging aid.

Remarks
This function is typically used when working with pointers returned from third-party libraries, where you cannot
determine the memory management behavior in the third-party DLL.

Threads in a process are expected to cooperate in such a way that one will not free memory that the other needs. Use
of this function does not negate the need to do this. If this is not done, the application may fail in an unpredictable
manner.

Dereferencing potentially invalid pointers can disable stack expansion in other threads. A thread exhausting its stack,
when stack expansion has been disabled, results in the immediate termination of the parent process, with no pop-up
error window or diagnostic information.

If the calling process has read access to some, but not all, of the bytes in the specified memory range, the return value
is nonzero.

In a preemptive multitasking environment, it is possible for some other thread to change the process's access to the
memory being tested. Even when the function indicates that the process has read access to the specified memory, you
should use structured exception handling when attempting to access the memory. Use of structured exception han-
dling enables the system to notify the process if an access violation exception occurs, giving the process an opportu-
nity to handle the exception.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Page 314



Win32 API Reference
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, IsBadCodePtr, IsBadStringPtr, IsBadWritePtr

1.251 IsBadStringPtr

The IsBadStringPtr function verifies that the calling process has read access to a range of memory pointed to by a
string pointer.

IsBadStringPtr: procedure
(

lpsz: string;
ucchMax: dword

);
stdcall;
returns( "eax" );
external( "__imp__IsBadStringPtrA@8" );

Parameters

lpsz
[in] Pointer to a null-terminated string, either Unicode or ASCII.

ucchMax
[in] Specifies the maximum size, in TCHARs, of the string. The function checks for read access in all bytes up to
the string's terminating null character or up to the number of bytes specified by this parameter, whichever is
smaller. If this parameter is zero, the return value is zero.

Return Values
If the calling process has read access to all characters up to the string's terminating null character or up to the number
of characters specified by ucchMax, the return value is zero.

If the calling process does not have read access to all characters up to the string's terminating null character or up to
the number of characters specified by ucchMax, the return value is nonzero.

If the application is compiled as a debugging version, and the process does not have read access to the entire memory
range specified, the function causes an assertion and breaks into the debugger. Leaving the debugger, the function
continues as usual, and returns a nonzero value This behavior is by design, as a debugging aid.

Remarks
This function is typically used when working with pointers returned from third-party libraries, where you cannot
determine the memory management behavior in the third-party DLL.

Threads in a process are expected to cooperate in such a way that one will not free memory that the other needs. Use
of this function does not negate the need to do this. If this is not done, the application may fail in an unpredictable
manner.

Dereferencing potentially invalid pointers can disable stack expansion in other threads. A thread exhausting its stack,
when stack expansion has been disabled, results in the immediate termination of the parent process, with no pop-up
error window or diagnostic information.

If the calling process has read access to some, but not all, of the specified memory range, the return value is nonzero.

In a preemptive multitasking environment, it is possible for some other thread to change the process's access to the
memory being tested. Even when the function indicates that the process has read access to the specified memory, you
should use structured exception handling when attempting to access the memory. Use of structured exception han-
dling enables the system to notify the process if an access violation exception occurs, giving the process an opportu-
Page 315



Volume 1
nity to handle the exception.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hff
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, IsBadCodePtr, IsBadReadPtr, IsBadWritePtr

1.252 IsBadWritePtr

The IsBadWritePtr function verifies that the calling process has write access to the specified range of memory.

IsBadWritePtr: procedure
(

var lp: var;
ucb: dword

);
stdcall;
returns( "eax" );
external( "__imp__IsBadWritePtr@8" );

Parameters

lp
[in] Pointer to the first byte of the memory block.

ucb
[in] Specifies the size, in bytes, of the memory block. If this parameter is zero, the return value is zero.

Return Values
If the calling process has write access to all bytes in the specified memory range, the return value is zero.

If the calling process does not have write access to all bytes in the specified memory range, the return value is non-
zero.

If the application is compiled as a debugging version, and the process does not have write access to all bytes in the
specified memory range, the function causes an assertion and breaks into the debugger. Leaving the debugger, the
function continues as usual, and returns a nonzero value This behavior is by design, as a debugging aid.

Remarks
This function is typically used when working with pointers returned from third-party libraries, where you cannot
determine the memory management behavior in the third-party DLL.

Threads in a process are expected to cooperate in such a way that one will not free memory that the other needs. Use
of this function does not negate the need to do this. If this is not done, the application may fail in an unpredictable
manner.

Dereferencing potentially invalid pointers can disable stack expansion in other threads. A thread exhausting its stack,
when stack expansion has been disabled, results in the immediate termination of the parent process, with no pop-up
error window or diagnostic information.

If the calling process has write access to some, but not all, of the bytes in the specified memory range, the return value
is nonzero.

In a preemptive multitasking environment, it is possible for some other thread to change the process's access to the
Page 316



Win32 API Reference
memory being tested. Even when the function indicates that the process has write access to the specified memory, you
should use structured exception handling when attempting to access the memory. Use of structured exception han-
dling enables the system to notify the process if an access violation exception occurs, giving the process an opportu-
nity to handle the exception.

IsBadWritePtr is not multithread safe. To use it properly on a pointer shared by multiple threads, call it inside a crit-
ical region of code that allows only one thread to access the memory being checked. Use operating system–level
objects such as critical sections or mutexes or the interlocked functions to create the critical region of code.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, IsBadCodePtr,
IsBadHugeReadPtr, IsBadHugeWritePtr, IsBadReadPtr

1.253 IsDBCSLeadByte

The IsDBCSLeadByte function determines whether a specified byte is a lead byte—that is, the first byte of a charac-
ter in a double-byte character set (DBCS).

IsDBCSLeadByte: procedure
(

TestChar: byte
);

stdcall;
returns( "eax" );
external( "__imp__IsDBCSLeadByte@4" );

Parameters

TestChar
[in] Specifies the byte to be tested.

Return Values
If the byte is a lead byte, it returns a nonzero value.

If the byte is not a lead byte, the return value is zero. To get extended error information, call GetLastError.

Remarks
Lead bytes are unique to double-byte character sets. A lead byte introduces a double-byte character. Lead bytes
occupy a specific range of byte values. The IsDBCSLeadByte function uses the ANSI code page to check lead-byte
ranges. To specify a different code page, use the IsDBCSLeadByteEx function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Unicode and Character Sets Overview, Unicode and Character Set Functions, IsDBCSLeadByteEx, MultiByteToW-
Page 317



Volume 1
ideChar

1.254 IsDBCSLeadByteEx

The IsDBCSLeadByteEx function determines whether a specified byte is a lead byte that is, the first byte of a char-
acter in a double-byte character set (DBCS).

IsDBCSLeadByteEx: procedure
(

CodePage: dword;
TestChar: byte

);
stdcall;
returns( "eax" );
external( "__imp__IsDBCSLeadByteEx@8" );

Parameters

CodePage
[in] Identifier of the code page to use to check lead-byte ranges. Can be one of the values given in the
"Code-Page Identifiers" table in Unicode and Character Set Constants or one of the following predefined values.

TestChar
[in] Byte to test.

Return Values
If the byte is a lead byte, it returns a nonzero value.

If the byte is not a lead byte, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Unicode and Character Sets Overview, Unicode and Character Set Functions

1.255 IsDebuggerPresent

The IsDebuggerPresent function determines whether the calling process is running under the context of a debugger.

IsDebuggerPresent: procedure;
stdcall;
returns( "eax" );
external( "__imp__IsDebuggerPresent@0" );

Value Meaning

0 Use system default ANSI code page.

CP_ACP Use system default ANSI code page.

CP_OEMCP Use system default OEM code page.
Page 318



Win32 API Reference
Parameters
This function has no parameters.

Return Value
If the current process is running in the context of a debugger, the return value is nonzero.

If the current process is not running in the context of a debugger, the return value is zero.

Remarks
This function allows an application to determine whether or not it is being debugged, so that it can modify its behav-
ior. For example, an application could provide additional information using the OutputDebugString function if it is
being debugged.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Debugging Overview, Debugging Functions, OutputDebugString

1.256 IsProcessorFeaturePresent

The IsProcessorFeaturePresent function determines whether the specified processor feature is supported by the cur-
rent computer.

IsProcessorFeaturePresent: procedure
(

ProcessorFeature: dword
);

stdcall;
returns( "eax" );
external( "__imp__IsProcessorFeaturePresent@4" );

Parameters

ProcessorFeature
[in] Specifies the processor feature to be tested. This parameter can be one of the following values.

Value Meaning

PF_FLOATING_POINT_PRECISIO
N_ERRATA

In rare circumstances, a floating-point precision error can occur (Pen-
tium).
Page 319



Volume 1
Return Values
If feature is supported, the return value is a nonzero value.

If the feature is not supported, the return value is zero.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
System Information Overview, System Information Functions

1.257 IsValidCodePage

The IsValidCodePage determines whether a specified code page is valid.

IsValidCodePage: procedure
(

CodePage: dword
);

stdcall;
returns( "eax" );
external( "__imp__IsValidCodePage@4" );

Parameters

CodePage
[in] Specifies the code page to check. Each code page is identified by a unique number.

PF_FLOATING_POINT_EMULATE
D

Floating-point operations are emulated using a software emulator.

Windows 2000: This function returns a nonzero value if floating-point
operations are emulated; otherwise, it returns zero.

Windows NT 4.0: This function returns zero if floating-point operations
are emulated; otherwise, it returns a nonzero value. This behavior is a
bug that is fixed in later versions.

PF_COMPARE_EXCHANGE_DOU
BLE

The compare and exchange double operation is available (Pentium,
MIPS, and Alpha).

PF_MMX_INSTRUCTIONS_AVAIL
ABLE

The MMX instruction set is available.

PF_XMMI_INSTRUCTIONS_AVAI
LABLE

The XMMI instruction set is available.

PF_3DNOW_INSTRUCTIONS_AV
AILABLE

The 3D-Now instruction set is available.

PF_RDTSC_INSTRUCTION_AVAI
LABLE

The RDTSC instruction is available.

PF_PAE_ENABLED The processor is PAE-enabled.
Page 320



Win32 API Reference
Return Values
If the code page is valid, the return values is a nonzero value.

If the code page is not valid, the return value is zero.

Remarks
A code page is considered valid only if it is installed in the system.

The following are the code-page identifiers.

Identifier Meaning

037 EBCDIC

437 MS-DOS United States

500 EBCDIC "500V1"

708 Arabic (ASMO 708)

709 Arabic (ASMO 449+, BCON V4)

710 Arabic (Transparent Arabic)

720 Arabic (Transparent ASMO)

737 Greek (formerly 437G)

775 Baltic

850 MS-DOS Multilingual (Latin I)

852 MS-DOS Slavic (Latin II)

855 IBM Cyrillic (primarily Russian)

857 IBM Turkish

860 MS-DOS Portuguese

861 MS-DOS Icelandic

862 Hebrew

863 MS-DOS Canadian-French

864 Arabic

865 MS-DOS Nordic

866 MS-DOS Russian

869 IBM Modern Greek

874 Thai

875 EBCDIC

932 Japan

936 Chinese (PRC, Singapore)

949 Korean
Page 321



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, GetACP, GetCPInfo, GetOEMCP

1.258 IsValidLocale

The IsValidLocale function determines whether a specified locale identifier is valid. Currently, the function tests
whether a locale identifier is installed or supported on the calling system, based on the specified validity test.

IsValidLocale: procedure
(

Locale: LCID;
dwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__IsValidLocale@8" );

950 Chinese (Taiwan; Hong Kong SAR, PRC)

1026 EBCDIC

1250 Windows 3.1 Eastern European

1251 Windows 3.1 Cyrillic

1252 Windows 3.1 US (ANSI)

1253 Windows 3.1 Greek

1254 Windows 3.1 Turkish

1255 Hebrew

1256 Arabic

1257 Baltic

1361 Korean (Johab)

10000 Macintosh Roman

10001 Macintosh Japanese

10006 Macintosh Greek I

10007 Macintosh Cyrillic

10029 Macintosh Latin 2

10079 Macintosh Icelandic

10081 Macintosh Turkish
Page 322



Win32 API Reference
Parameters

Locale
[in] Specifies the locale identifier to be validated. You can use the MAKELCID macro to create a locale identifier.

dwFlags
[in] Specifies the validity test to apply to the locale identifier. This parameter can be one of the following values.

Return Values
If the locale identifier passes the specified validity test, the return values is a nonzero value.

If the locale identifier does not pass the specified validity test, the return value is zero.

Remarks
If the LCID_INSTALLED flag is specified and this function returns a nonzero value, the locale identifier is both sup-
ported and installed on the system. Having an LCID installed implies that the full level of language support is avail-
able for this locale. This includes code page translation tables, keyboard layouts, fonts, sorting and locale data.

If LCID_SUPPORTED is specified and this function returns zero, the locale identifier is supported in the release, but
not necessarily installed on the system.

For more information, see Locales.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, GetLocaleInfo

1.259 LCMapString

The LCMapString function either maps an input character string to another using a specified transformation or gen-
erates a sort key for the input string.

LCMapString: procedure
(

Locale: LCID;
dwMapFlags: dword;
lpSrcStr: string;
cchSrc: dword;

var lpDestStr: var;
cchDest: dword

);
stdcall;
returns( "eax" );
external( "__imp__LCMapStringA@24" );

Value Meaning

LCID_INSTALLED Test whether the locale identifier is both supported and installed.

LCID_SUPPORTED Test whether the locale identifier is supported.
Page 323



Volume 1
Parameters

Locale
[in] Specifies a locale identifier. The locale provides a context for the string mapping or sort key generation. An
application can use the MAKELCID macro to create a locale identifier.

dwMapFlags
[in] Specifies the type of transformation used during string mapping or the type of sort key generated. An appli-
cation can specify one or more of the following options. Restrictions are noted following the table.

The following flags are used only with the LCMAP_SORTKEY flag.

If the LCMAP_SORTKEY flag is not specified, the LCMapString function performs string mapping. In this
case the following restrictions apply:

Option Meaning

LCMAP_BYTEREV Windows NT/2000: Use byte reversal. For example, if you pass in 0x3450
0x4822 the result is 0x5034 0x2248.

LCMAP_FULLWIDTH Uses wide characters (where applicable).

LCMAP_HALFWIDTH Uses narrow characters (where applicable).

LCMAP_HIRAGANA Hiragana.

LCMAP_KATAKANA Katakana.

LCMAP_LINGUISTIC_CASING Uses linguistic rules for casing, rather than file system rules (the default).
Valid with LCMAP_LOWERCASE or LCMAP_UPPERCASE only.

LCMAP_LOWERCASE Uses lowercase.

LCMAP_SIMPLIFIED_CHINESE Windows NT 4.0 and later: Maps traditional Chinese characters to simpli-
fied Chinese characters.

LCMAP_SORTKEY Produces a normalized wide character–sort key. For more information, see
lpDestStr and Remarks.

LCMAP_TRADITIONAL_CHINE
SE

Windows NT 4.0 and later: Maps simplified Chinese characters to tradi-
tional Chinese characters.

LCMAP_UPPERCASE Uses uppercase.

Flag Meaning

NORM_IGNORECASE Ignores case.

NORM_IGNOREKANATYPE Does not differentiate between Hiragana and Katakana characters.
Corresponding Hiragana and Katakana will compare as equal.

NORM_IGNORENONSPACE Ignores nonspacing. This flag also removes Japanese accent char-
acters.

NORM_IGNORESYMBOLS Ignores symbols.

NORM_IGNOREWIDTH Does not differentiate between a single-byte character and the
same character as a double-byte character.

SORT_STRINGSORT Treats punctuation the same as symbols.
Page 324



Win32 API Reference
LCMAP_LOWERCASE and LCMAP_UPPERCASE are mutually exclusive.

LCMAP_HIRAGANA and LCMAP_KATAKANA are mutually exclusive.

LCMAP_HALFWIDTH and LCMAP_FULLWIDTH are mutually exclusive.

LCMAP_TRADITIONAL_CHINESE and LCMAP_SIMPLIFIED_CHINESE are mutually exclusive.

LCMAP_LOWERCASE and LCMAP_UPPERCASE are not valid in combination with any of these flags:
LCMAP_HIRAGANA, LCMAP_KATAKANA, LCMAP_HALFWIDTH, LCMAP_FULLWIDTH.

When the LCMAP_SORTKEY flag is specified, the LCMapString function generates a sort key. In this case the
following restriction applies:

LCMAP_SORTKEY is mutually exclusive with all other LCMAP_* flags, with the sole exception of
LCMAP_BYTEREV.

lpSrcStr
[in] Pointer to a source string that the function maps or uses for sort key generation.

cchSrc
[in] Specifies the number of TCHARs in the string pointed to by the lpSrcStr parameter.

This count can include the NULL terminator, or not include it. If the NULL terminator is included in the charac-
ter count, it does not greatly affect the mapping behavior. That is because NULL is considered to be unsortable,
and always maps to itself.

A cchSrc value of –1 specifies that the string pointed to by lpSrcStr is null-terminated. If this is the case, and
LCMapString is being used in its string-mapping mode, the function calculates the string's length itself, and
null-terminates the mapped string stored into *lpDestStr.

lpDestStr
[out] Pointer to a buffer that receives the mapped string or sort key.

If LCMAP_SORTKEY is specified, LCMapString stores a sort key into the buffer. The sort key is stored as an
array of byte values in the following format:

[all Unicode sort weights] 0x01 [all Diacritic weights] 0x01 [all Case

weights] 0x01 [all Special weights] 0x00

Note that the sort key is null-terminated. This is true regardless of the value of cchSrc. Also note that, even if
some of the sort weights are absent from the sort key, due to the presence of one or more ignore flags in dwMap-
Flags, the 0x01 separators and the 0x00 terminator are still present.

cchDest
[in] Specifies the size, in TCHARs, of the buffer pointed to by lpDestStr.

If the function is being used for string mapping, the size is a character count. If space for a NULL terminator is
included in cchSrc, then cchDest must also include space for a NULL terminator.

If the function is being used to generate a sort key, the size is a byte count. This byte count must include space for
the sort key 0x00 terminator.

If cchDest is zero, the function's return value is the number of characters, or bytes if LCMAP_SORTKEY is
specified, required to hold the mapped string or sort key. In this case, the buffer pointed to by lpDestStr is not
used.

Return Values
If the function succeeds, and the value of cchDest is nonzero, the return value is the number of characters, or bytes if
LCMAP_SORTKEY is specified, written to the buffer. This count includes room for a NULL terminator.

If the function succeeds, and the value of cchDest is zero, the return value is the size of the buffer in characters, or
bytes if LCMAP_SORTKEY is specified, required to receive the translated string or sort key. This size includes room
for a NULL terminator.

If the function fails, the return value is 0. To get extended error information, call GetLastError. GetLastError may
Page 325



Volume 1
return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER

ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETER

Remarks
The mapped string is null terminated if the source string is null terminated.

The ANSI version of this function maps strings to and from Unicode based on the specified LCID's default ANSI
code page.

For the ANSI version of this function, the LCMAP_UPPERCASE flag produces the same result as AnsiUpper in the
locale. Likewise, the LCMAP_LOWERCASE flag produces the same result as AnsiLower. This function always
maps a single character to a single character.

If LCMAP_UPPERCASE or LCMAP_LOWERCASE is set and if LCMAP_SORTKEY is not set, the lpSrcStr and
lpDestStr pointers can be the same. Otherwise, the lpSrcStr and lpDestStr pointers must not be the same. If they are
the same, the function fails, and GetLastError returns ERROR_INVALID_PARAMETER.

If the LCMAP_HIRAGANA flag is specified to map Katakana characters to Hiragana characters, and
LCMAP_FULLWIDTH is not specified, the function only maps full-width characters to Hiragana. In this case, any
half-width Katakana characters are placed as-is in the output string, with no mapping to Hiragana. An application
must specify LCMAP_FULLWIDTH if it wants half-width Katakana characters mapped to Hiragana.

Even if the Unicode version of this function is called, the output string is only in WCHAR or CHAR format if the
string mapping mode of LCMapString is used. If the sort key generation mode is used, specified by
LCMAP_SORTKEY, the output is an array of byte values. To compare sort keys, use a byte-by-byte comparison.

An application can call the function with the NORM_IGNORENONSPACE and NORM_IGNORESYMBOLS flags
set, and all other options flags cleared, in order to simply strip characters from the input string. If this is done with an
input string that is not null-terminated, it is possible for LCMapString to return an empty string and not return an
error.

The LCMapString function ignores the Arabic Kashida. If an application calls the function to create a sort key for a
string containing an Arabic Kashida, there will be no sort key value for the Kashida.

The function treats the hyphen and apostrophe a bit differently than other punctuation symbols, so that words like
coop and co-op stay together in a list. All punctuation symbols other than the hyphen and apostrophe sort before the
alphanumeric characters. An application can change this behavior by setting the SORT_STRINGSORT flag. See
CompareString for a more detailed discussion of this issue.

When LCMapString is used to generate a sort key, by setting the LCMAP_SORTKEY flag, the sort key stored into
*lpDestStr may contain an odd number of bytes. The LCMAP_BYTEREV option only reverses an even number of
bytes. If both options are chosen, the last (odd-positioned) byte in the sort key is not reversed. If the terminating 0x00
byte is an odd-positioned byte, then it remains the last byte in the sort key. If the terminating 0x00 byte is an
even-positioned byte, it exchanges positions with the byte that precedes it.

When LCMAP_SORTKEY flag is specified, the function generates a sort key that, when used in strcmp, produces
the same order as when the original string is used in CompareString. When LCMAP_SORTKEY flag is specified,
the output string is a string, but the character values are not meaningful display values.

Windows 2000: The ANSI version of this function will fail if it is used with a Unicode-only locale. See Language
Identifiers.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, AnsiLower, AnsiUpper, Compare-
Page 326



Win32 API Reference
String, FoldString, MAKELCID

1.260 LeaveCriticalSection

The LeaveCriticalSection function releases ownership of the specified critical section object.

LeaveCriticalSection: procedure
(

var lpCriticalSection: CRITICAL_SECTION
);

stdcall;
returns( "eax" );
external( "__imp__LeaveCriticalSection@4" );

Parameters

lpCriticalSection
[in/out] Pointer to the critical section object.

Return Values
This function does not return a value.

Remarks
The threads of a single process can use a critical-section object for mutual-exclusion synchronization. The process is
responsible for allocating the memory used by a critical-section object, which it can do by declaring a variable of type
CRITICAL_SECTION. Before using a critical section, some thread of the process must call the Initialize-
CriticalSection or InitializeCriticalSectionAndSpinCount function to initialize the object.

A thread uses the EnterCriticalSection or TryEnterCriticalSection function to acquire ownership of a
critical section object. To release its ownership, the thread must call LeaveCriticalSection once for each time that it
entered the critical section.

If a thread calls LeaveCriticalSection when it does not have ownership of the specified critical section object, an
error occurs that may cause another thread using EnterCriticalSection to wait indefinitely.

Any thread of the process can use the DeleteCriticalSection function to release the system resources that were allo-
cated when the critical section object was initialized. After this function has been called, the critical section object can
no longer be used for synchronization.

Example
For an example that uses LeaveCriticalSection, see Using Critical Section Objects.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, DeleteCriticalSection, EnterCriticalSection, InitializeCriti-
calSection, InitializeCriticalSectionAndSpinCount, TryEnterCriticalSection
Page 327



Volume 1
1.261 LoadLibrary

The LoadLibrary function maps the specified executable module into the address space of the calling process.

For additional load options, use the LoadLibraryEx function.

LoadLibrary: procedure
(

lpFileName: string
);

stdcall;
returns( "eax" );
external( "__imp__LoadLibraryA@4" );

Parameters

lpFileName
[in] Pointer to a null-terminated string that names the executable module (either a .dll or .exe file). The name
specified is the file name of the module and is not related to the name stored in the library module itself, as spec-
ified by the LIBRARY keyword in the module-definition (.def) file.

If the string specifies a path but the file does not exist in the specified directory, the function fails. When specify-
ing a path, be sure to use backslashes (\), not forward slashes (/).

If the string does not specify a path, the function uses a standard search strategy to find the file. See the Remarks
for more information.

Return Values
If the function succeeds, the return value is a handle to the module.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Windows 95: If you are using LoadLibrary to load a module that contains a resource whose numeric identifier is
greater than 0x7FFF, LoadLibrary fails. If you are attempting to load a 16-bit DLL directly from 32-bit code,
LoadLibrary fails. If you are attempting to load a DLL whose subsystem version is greater than 4.0, LoadLibrary
fails. If your DllMain function tries to call the Unicode version of a Win32 function, LoadLibrary fails.

Remarks
LoadLibrary can be used to map a DLL module and return a handle that can be used in GetProcAddress to get the
address of a DLL function. LoadLibrary can also be used to map other executable modules. For example, the func-
tion can specify an .exe file to get a handle that can be used in FindResource or LoadResource. However, do not
use LoadLibrary to run an .exe file, use the CreateProcess function.

If the module is a DLL not already mapped for the calling process, the system calls the DLL's DllMain function with
the DLL_PROCESS_ATTACH value. If the DLL's entry-point function does not return TRUE, LoadLibrary fails
and returns NULL. (The system immediately calls your entry-point function with DLL_PROCESS_DETACH and
unloads the DLL.)

It is not safe to call LoadLibrary from DllMain. For more information, see the Remarks section in DllMain.

Module handles are not global or inheritable. A call to LoadLibrary by one process does not produce a handle that
another process can use — for example, in calling GetProcAddress. The other process must make its own call to
LoadLibrary for the module before calling GetProcAddress.

If no file name extension is specified in the lpFileName parameter, the default library extension .dll is appended.
However, the file name string can include a trailing point character (.) to indicate that the module name has no exten-
sion. When no path is specified, the function searches for loaded modules whose base name matches the base name of
the module to be loaded. If the name matches, the load succeeds. Otherwise, the function searches for the file in the
following sequence:

The directory from which the application loaded.

The current directory.
Page 328



Win32 API Reference
Windows 95/98: The Windows system directory. Use the GetSystemDirectory function to get the path of this
directory.

Windows NT/ 2000: The 32-bit Windows system directory. Use the GetSystemDirectory function to get the path of
this directory. The name of this directory is SYSTEM32.

Windows NT/ 2000: The 16-bit Windows system directory. There is no function that obtains the path of this direc-
tory, but it is searched. The name of this directory is SYSTEM.

The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

The directories that are listed in the PATH environment variable.

The first directory searched is the one directory containing the image file used to create the calling process (for more
information, see the CreateProcess function). Doing this allows private dynamic-link library (DLL) files associ-
ated with a process to be found without adding the process's installed directory to the PATH environment variable.

Windows 2000: If a path is specified and there is a redirection file for the application, the function searches for the
module in the application's directory. If the module exists in the application's directory, the LoadLibrary function
ignores the specified path and loads the module from the application's directory. If the module does not exist in the
application's directory, LoadLibrary loads the module from the specified directory.

The Visual C++ compiler supports a syntax that enables you to declare thread-local variables: _declspec(thread). If
you use this syntax in a DLL, you will not be able to load the DLL explicitly using LoadLibrary or LoadLi-
braryEx. If your DLL will be loaded explicitly, you must use the thread local storage functions instead of
_declspec(thread).

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Dynamic-Link Libraries Overview, Dynamic-Link Library Functions, DllMain, FindResource, FreeLibrary, GetPro-
cAddress, GetSystemDirectory, GetWindowsDirectory, LoadLibraryEx, LoadResource

1.262 LoadLibraryEx

The LoadLibraryEx function maps the specified executable module into the address space of the calling process.
The executable module can be a .dll or an .exe file. The specified module may cause other modules to be mapped into
the address space.

LoadLibraryEx: procedure
(

lpFileName: string;
hFile: dword;
dwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__LoadLibraryExA@12" );

Parameters

lpFileName
[in] Pointer to a null-terminated string that names the executable module (either a .dll or an .exe file). The name
specified is the file name of the executable module. This name is not related to the name stored in a library mod-
ule itself, as specified by the LIBRARY keyword in the module-definition (.DEF) file.
Page 329



Volume 1
If the string specifies a path, but the file does not exist in the specified directory, the function fails. When speci-
fying a path, be sure to use backslashes (\), not forward slashes (/).

If the string does not specify a path, and the file name extension is omitted, the function appends the default
library extension .dll to the file name. However, the file name string can include a trailing point character (.) to
indicate that the module name has no extension.

If the string does not specify a path, the function uses a standard search strategy to find the file. See the Remarks
for more information.

If mapping the specified module into the address space causes the system to map in other, associated executable
modules, the function can use either the standard search strategy or an alternate search strategy to find those
modules. See the Remarks for more information.

hFile
This parameter is reserved for future use. It must be NULL.

dwFlags
[in] Specifies the action to take when loading the module. If no flags are specified, the behavior of this function is
identical to that of the LoadLibrary function. This parameter can be one of the following values.

Flag Meaning

DONT_RESOLVE_DLL_REFERENCES Windows NT/ 2000: If this value is used, and the executable mod-
ule is a DLL, the system does not call DllMain for process and
thread initialization and termination. Also, the system does not load
additional executable modules that are referenced by the specified
module.

If this value is not used, and the executable module is a DLL, the
system calls DllMain for process and thread initialization and termi-
nation. The system loads additional executable modules that are ref-
erenced by the specified module.

LOAD_LIBRARY_AS_DATAFILE If this value is used, the system maps the file into the calling pro-
cess's virtual address space as if it were a data file. Nothing is done
to execute or prepare to execute the mapped file. Use this flag when
you want to load a DLL only to extract messages or resources from
it.

Windows NT/ 2000: You can use the resulting module handle with
any Win32 functions that operate on resources.

Windows 95/98: You can use the resulting module handle only with
resource management functions such as EnumResourceLan-
guages, EnumResourceNames, EnumResourceTypes, Find-

Resource, FindResourceEx, LoadResource, and
SizeofResource. You cannot use this handle with specialized
resource management functions such as LoadBitmap, LoadCur-

sor, LoadIcon, LoadImage, and LoadMenu.

LOAD_WITH_ALTERED_SEARCH_PA
TH

If this value is used, and lpFileName specifies a path, the system
uses the alternate file search strategy discussed in the Remarks sec-
tion to find associated executable modules that the specified module
causes to be loaded.

If this value is not used, or if lpFileName does not specify a path, the
system uses the standard search strategy discussed in the Remarks
section to find associated executable modules that the specified
module causes to be loaded.
Page 330



Win32 API Reference
Return Values
If the function succeeds, the return value is a handle to the mapped executable module.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Windows 95: If you are using LoadLibraryEx to load a module that contains a resource whose numeric identifier is
greater than 0x7FFF, LoadLibraryEx fails. If you are attempting to load a 16-bit DLL directly from 32-bit code,
LoadLibraryEx fails. If you are attempting to load a DLL whose subsystem version is greater than 4.0, LoadLi-
braryEx fails. If your DllMain function tries to call the Unicode version of a Win32 function, LoadLibraryEx fails.

Remarks
The calling process can use the handle returned by this function to identify the module in calls to the GetProcAd-
dress, FindResource, and LoadResource functions.

The LoadLibraryEx function is very similar to the LoadLibrary function. The differences consist of a set of
optional behaviors that LoadLibraryEx provides. First, LoadLibraryEx can map a DLL module without calling the
DllMain function of the DLL. Second, LoadLibraryEx can use either of two file search strategies to find executable
modules that are associated with the specified module. Third, LoadLibraryEx can load a module in a way that is
optimized for the case where the module will never be executed, loading the module as if it were a data file. You
select these optional behaviors by setting the dwFlags parameter; if dwFlags is zero, LoadLibraryEx behaves iden-
tically to LoadLibrary.

It is not safe to call LoadLibraryEx from DllMain. For more information, see the Remarks section in DllMain.

If no path is specified in the lpFileName parameter, and the base file name does not match the base file name of a
loaded module, the LoadLibraryEx function uses the same standard file search strategy that LoadLibrary,
SearchPath, and OpenFile use to find the executable module and any associated executable modules that it
causes to be loaded. This standard strategy searches for a file in the following sequence:

The directory from which the application loaded.

The current directory.

Windows 95/98: The Windows system directory. Use the GetSystemDirectory function to get the path of this
directory.

Windows NT/ 2000: The 32-bit Windows system directory. Use the GetSystemDirectory function to get the path of
this directory. The name of this directory is SYSTEM32.

Windows NT/ 2000: The 16-bit Windows system directory. There is no function that obtains the path of this direc-
tory, but it is searched. The name of this directory is SYSTEM.

The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

The directories that are listed in the PATH environment variable.

If a path is specified, and the dwFlags parameter is set to LOAD_WITH_ALTERED_SEARCH_PATH, the LoadLi-
braryEx function uses an alternate file search strategy to find any executable modules that the specified module
causes to be loaded. This alternate strategy searches for a file in the following sequence:

The directory specified by the lpFileName path. In other words, the directory that the specified executable module is
in.

The current directory.

Windows 95/98: The Windows system directory. Use the GetSystemDirectory function to get the path of this
directory.

Windows NT/ 2000: The 32-bit Windows system directory. Use the GetSystemDirectory function to get the path of
this directory. The name of this directory is SYSTEM32.

Windows NT/ 2000: The 16-bit Windows system directory. There is no function that obtains the path of this direc-
tory, but it is searched. The name of this directory is SYSTEM.

The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

The directories that are listed in the PATH environment variable.
Page 331



Volume 1
Note that the standard file search strategy and the alternate search strategy differ in just one way: the standard strategy
starts its search in the calling application's directory, and the alternate strategy starts its search in the directory of the
executable module that LoadLibraryEx is loading.

If you specify the alternate search strategy, its behavior continues until all associated executable modules have been
located. After the system starts processing DLL initialization routines, the system reverts to the standard search strat-
egy.

Windows 2000: If a path is specified and there is a redirection file associated with the application, the LoadLi-
braryEx function searches for the module in the application directory. If the module exists in the application direc-
tory, LoadLibraryEx ignores the path specification and loads the module from the application directory. If the
module does not exist in the application directory, the function loads the module from the specified directory.

Visual C++: The Visual C++ compiler supports a syntax that enables you to declare thread-local variables:
_declspec(thread). If you use this syntax in a DLL, you will not be able to load the DLL explicitly using LoadLi-

brary or LoadLibraryEx. If your DLL will be loaded explicitly, you must use the thread local storage functions
instead of _declspec(thread).

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Dynamic-Link Libraries Overview, Dynamic-Link Library Functions, DllMain, FindResource,
FreeLibrary, GetProcAddress, GetSystemDirectory, GetWindowsDirectory, LoadLibrary, Loa-
dResource, OpenFile, SearchPath

1.263 LoadModule

The LoadModule function loads and executes an application or creates a new instance of an existing application.

Note This function is provided only for compatibility with 16-bit versions of Windows. Win32-based applications
should use the CreateProcess function.

LoadModule: procedure
(

lpModuleName: string;
var lpParameterBlock: var

);
stdcall;
returns( "eax" );
external( "__imp__LoadModule@8" );

Parameters

lpModuleName
[in] Pointer to a null-terminated string that contains the file name of the application to run. When specifying a
path, be sure to use backslashes (\), not forward slashes (/). If the lpModuleName parameter does not contain a
directory path, the system searches for the executable file in this order:

The directory from which the application loaded.

The current directory.

Windows 95/98: The Windows system directory. Use the GetSystemDirectory function to get the path of this
directory.

Windows NT/ 2000: The 32-bit Windows system directory. Use the GetSystemDirectory function to get the
Page 332



Win32 API Reference
path of this directory. The name of this directory is SYSTEM32.

Windows NT/ 2000: The 16-bit Windows system directory. There is no Win32 function that obtains the path of
this directory, but it is searched. The name of this directory is SYSTEM.

The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

The directories that are listed in the PATH environment variable.

lpParameterBlock
[in] Pointer to an application-defined LOADPARMS32 structure that defines the new application's parameter
block.

The LOADPARMS32 structure has the following form:

typedef struct tagLOADPARMS32 {

LPSTR lpEnvAddress; // address of environment strings

LPSTR lpCmdLine; // address of command line

LPSTR lpCmdShow; // how to show new program

DWORD dwReserved; // must be zero

} LOADPARMS32;

Set all unused members to NULL, except for lpCmdLine, which must point to a null-terminated string if it is not
used.

Return Values
If the function succeeds, the return value is greater than 31.

If the function fails, the return value is an error value, which may be one of the following values.

Member Description

lpEnvAddress Pointer to an array of null-terminated strings that supply the environment strings for
the new process. The array has a value of NULL as its last entry. A value of NULL
for this parameter causes the new process to start with the same environment as the
calling process.

lpCmdLine Pointer to a Pascal-style string that contains a correctly formed command line. The
first byte of the string contains the number of bytes in the string. The remainder of
the string contains the command line arguments, excluding the name of the child pro-
cess. If there are no command line arguments, this parameter must point to a zero
length string; it cannot be NULL.

lpCmdShow Pointer to a structure containing two WORD values. The first value must always be
set to two. The second value specifies how the application window is to be shown
and is used to supply the wShowWindow member of the STARTUPINFO structure to
the CreateProcess function. See the description of the nCmdShow parameter of
the ShowWindow function for a list of acceptable values.

dwReserved This parameter is reserved; it must be zero.

Value Meaning

0 The system is out of memory or resources.

ERROR_BAD_FORMAT The .exe file is invalid (non-Win32 .exe or error in .exe image).

ERROR_FILE_NOT_FOUND The specified file was not found.
Page 333



Volume 1
Remarks
Win32-based applications should use the CreateProcess function. In the Win32 API, the implementation of the
LoadModule function calls CreateProcess. The following table shows how each parameter for CreateProcess is
formed.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Dynamic-Link Libraries Overview, Dynamic-Link Library Functions, CreateProcess, GetSys-
temDirectory, GetWindowsDirectory, ShowWindow, STARTUPINFO, WinExec

1.264 LoadResource

The LoadResource function loads the specified resource into global memory.

LoadResource: procedure
(

hModule: dword;
hResInfo: dword

);
stdcall;
returns( "eax" );
external( "__imp__LoadResource@8" );

ERROR_PATH_NOT_FOUND The specified path was not found.

CreateProcess parameter Value

lpszApplicationName lpModuleName

lpszCommandLine lpParameterBlock->lpCmdLine

lpProcessAttributes NULL

lpThreadAttributes NULL

bInheritHandles FALSE

dwCreationFlags 0

lpEnvironment lpParameterBlock->lpEnvAddress

lpCurrentDirectory NULL

lpStartupInfo The structure is initialized to zero. The cb member is set to the
size of the structure, and the wShowWindow member is set to
the value of the second word of the LoadModule lpParameter-
Block->lpCmdShow parameter.

lpProcessInformation.hProcess The handle is immediately closed.

lpProcessInformation.hThread The handle is immediately closed.
Page 334



Win32 API Reference
Parameters

hModule
[in] Handle to the module whose executable file contains the resource. If hModule is NULL, the system loads the
resource from the module that was used to create the current process.

hResInfo
[in] Handle to the resource to be loaded. This handle is returned by the FindResource or FindResourceEx
function.

Return Values
If the function succeeds, the return value is a handle to the data associated with the resource.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The return type of LoadResource is HGLOBAL for backward compatibility, not because the function returns a han-
dle to a global memory block. Do not pass this handle to the GlobalLock or GlobalFree function. To obtain a
pointer to the resource data, call the LockResource function.

The LoadResource function is used to load an icon in order to copy its data to another application, followed by Fre-
eResource when done.

To use a resource immediately, an application should use the following resource-specific functions to find and load
the resource in one call.

For example, an application can use the LoadIcon function to load an icon for display on the screen, followed by
DestroyIcon when done.

The system automatically deletes these resources when the process that created them terminates, however, calling the
appropriate function saves memory and decreases the size of the process's working set.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Resources Overview, Resource Functions, FindResource, FindResourceEx, LoadLibrary,
LoadModule, LockResource

Function Action To remove resource

FormatMessage Loads and formats a message-table
entry

No action needed

LoadAccelerators Loads an accelerator table DestroyAcceleratorTable

LoadBitmap Loads a bitmap resource DeleteObject

LoadCursor Loads a cursor resource DestroyCursor

LoadIcon Loads an icon resource DestroyIcon

LoadMenu Loads a menu resource DestroyMenu

LoadString Loads a string resource No action needed
Page 335



Volume 1
1.265 LocalAlloc

The LocalAlloc function allocates the specified number of bytes from the heap. Win32 memory management does
not provide a separate local heap and global heap.

Note The local functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions.

LocalAlloc: procedure
(

uFlags: dword;
uBytes: SIZE_T

);
stdcall;
returns( "eax" );
external( "__imp__LocalAlloc@8" );

Parameters

uFlags
[in] Specifies how to allocate memory. If zero is specified, the default is the LMEM_FIXED value. Except for
the incompatible combinations that are specifically noted, this parameter can be any combination of the follow-
ing values.

The following values are obsolete.

Value Meaning

LHND Combines LMEM_MOVEABLE and LMEM_ZEROINIT.

LMEM_FIXED Allocates fixed memory. The return value is a pointer to the memory object.

LMEM_MOVEABLE Allocates movable memory. In Win32, memory blocks are never moved in
physical memory, but they can be moved within the default heap.

The return value is a handle to the memory object. To translate the handle to
a pointer, use the LocalLock function.

This value cannot be combined with LMEM_FIXED.

LMEM_ZEROINIT Initializes memory contents to zero.

LPTR Combines LMEM_FIXED and LMEM_ZEROINIT.

NONZEROLHND Same as LMEM_MOVEABLE.

NONZEROLPTR Same as LMEM_FIXED.

Value Meaning

LMEM_DISCARDABLE Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

In Win32, you must explicitly call the LocalDiscard function to dis-
card a block.

This value cannot be combined with LMEM_FIXED.
Page 336



Win32 API Reference
uBytes
[in] Specifies the number of bytes to allocate. If this parameter is zero and the uFlags parameter specifies
LMEM_MOVEABLE, the function returns a handle to a memory object that is marked as discarded.

Return Values
If the function succeeds, the return value is a handle to the newly allocated memory object.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
If the heap does not contain sufficient free space to satisfy the request, LocalAlloc returns NULL. Because NULL is
used to indicate an error, virtual address zero is never allocated. It is, therefore, easy to detect the use of a NULL
pointer.

If this function succeeds, it allocates at least the amount requested. If the amount allocated is greater than the amount
requested, the process can use the entire amount. To determine the actual number of bytes allocated, use the Local-
Size function.

To free the memory, use the LocalFree function.

Windows 95/98: The heap managers are designed for memory blocks smaller than four megabytes. If you expect
your memory blocks to be larger than one or two megabytes, you can avoid significant performance degradation by
using the VirtualAlloc or VirtualAllocEx function instead.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, LocalFree, LocalLock, LocalRe-
Alloc, LocalSize

1.266 LocalFileTimeToFileTime

The LocalFileTimeToFileTime function converts a local file time to a file time based on the Coordinated Universal
Time (UTC).

LocalFileTimeToFileTime: procedure
(

var lpLocalFileTime: FILETIME;
var lpFileTime: FILETIME

);
stdcall;
returns( "eax" );
external( "__imp__LocalFileTimeToFileTime@8" );

Parameters

lpLocalFileTime

LMEM_NOCOMPACT Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

LMEM_NODISCARD Ignored. This value is provided only for compatibility with 16-bit Win-
dows.
Page 337



Volume 1
[in] Pointer to a FILETIME structure that specifies the local file time to be converted into a UTC-based file time.

lpFileTime
[out] Pointer to a FILETIME structure to receive the converted UTC-based file time. This parameter cannot be
the same as the lpLocalFileTime parameter.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, use the GetLastError function.

Remarks
LocalFileTimeToFileTime uses the current settings for the time zone and daylight saving time. Therefore, if it is
daylight saving time, this function will take daylight saving time into account, even if the time you are converting is
in standard time.

Remarks
MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, FILETIME, FileTimeToLocalFileTime

1.267 LocalFlags

The LocalFlags function returns information about the specified local memory object.

Note This function is provided only for compatibility with 16-bit versions of Windows.

LocalFlags: procedure
(

hMem: dword
);

stdcall;
returns( "eax" );
external( "__imp__LocalFlags@4" );

Parameters

hMem
[in] Handle to the local memory object. This handle is returned by either the LocalAlloc or LocalReAlloc
function.

Return Values
If the function succeeds, the return value specifies the allocation values and the lock count for the memory object.

If the function fails, the return value is LMEM_INVALID_HANDLE, indicating that the local handle is not valid. To
get extended error information, call GetLastError.
Page 338



Win32 API Reference
Remarks
The low-order byte of the low-order word of the return value contains the lock count of the object. To retrieve the
lock count from the return value, use the LMEM_LOCKCOUNT mask with the bitwise AND (&) operator. The lock
count of memory objects allocated with LMEM_FIXED is always zero.

The high-order byte of the low-order word of the return value indicates the allocation values of the memory object. It
can be zero or a combination of the following values.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GlobalFlags, LocalAlloc,
LocalDiscard, LocalLock, LocalReAlloc, LocalUnlock

1.268 LocalFree

The LocalFree function frees the specified local memory object and invalidates its handle.

Note The local functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions.

LocalFree: procedure
(

hMem: dword
);

stdcall;
returns( "eax" );
external( "__imp__LocalFree@4" );

Parameters

hMem
[in] Handle to the local memory object. This handle is returned by either the LocalAlloc or LocalReAlloc
function.

Return Values
If the function succeeds, the return value is NULL.

If the function fails, the return value is equal to a handle to the local memory object. To get extended error informa-
tion, call GetLastError.

Value Description

LMEM_DISCARDABLE Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

In Win32, you must explicitly call the LocalDiscard function to discard
a block.

LMEM_DISCARDED The object's memory block has been discarded.
Page 339



Volume 1
Remarks
If the process tries to examine or modify the memory after it has been freed, heap corruption may occur or an access
violation exception (EXCEPTION_ACCESS_VIOLATION) may be generated.

If the hMem parameter is NULL, LocalFree ignores the parameter and returns NULL.

The LocalFree function will free a locked memory object. A locked memory object has a lock count greater than
zero. The LocalLock function locks a local memory object and increments the lock count by one. The LocalUn-
lock function unlocks it and decrements the lock count by one. To get the lock count of a local memory object, use
the LocalFlags function.

If an application is running under a debug version of the system, LocalFree will issue a message that tells you that a
locked object is being freed. If you are debugging the application, LocalFree will enter a breakpoint just before free-
ing a locked object. This allows you to verify the intended behavior, then continue execution.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GlobalFree, LocalAlloc,
LocalFlags, LocalLock, LocalReAlloc, LocalUnlock

1.269 LocalHandle

The LocalHandle function retrieves the handle associated with the specified pointer to a local memory object.

Note The local functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions.

LocalHandle: procedure
(

var pMem: var
);

stdcall;
returns( "eax" );
external( "__imp__LocalHandle@4" );

Parameters

pMem
[in] Pointer to the first byte of the local memory object. This pointer is returned by the LocalLock function.

Return Values
If the function succeeds, the return value is a handle to the specified local memory object.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
When the LocalAlloc function allocates a local memory object with LMEM_MOVEABLE, it returns a handle to
the object. The LocalLock function converts this handle into a pointer to the object's memory block, and LocalHan-
dle converts the pointer back into a handle.
Page 340



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, LocalAlloc, LocalLock

1.270 LocalLock

The LocalLock function locks a local memory object and returns a pointer to the first byte of the object's memory
block.

Note The local functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions.

LocalLock: procedure
(

hMem: dword
);

stdcall;
returns( "eax" );
external( "__imp__LocalLock@4" );

Parameters

hMem
[in] Handle to the local memory object. This handle is returned by either the LocalAlloc or LocalReAlloc
function.

Return Values
If the function succeeds, the return value is a pointer to the first byte of the memory block.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The internal data structures for each memory object include a lock count that is initially zero. For movable memory
objects, LocalLock increments the count by one, and the LocalUnlock function decrements the count by one. For
each call that a process makes to LocalLock for an object, it must eventually call LocalUnlock. Locked memory will
not be moved or discarded unless the memory object is reallocated by using the LocalReAlloc function. The memory
block of a locked memory object remains locked in memory until its lock count is decremented to zero, at which time
it can be moved or discarded.

Memory objects allocated with LMEM_FIXED always have a lock count of zero. For these objects, the value of the
returned pointer is equal to the value of the specified handle.

If the specified memory block has been discarded or if the memory block has a zero-byte size, this function returns
NULL.

Discarded objects always have a lock count of zero.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Page 341



Volume 1
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, LocalAlloc, LocalFlags, LocalReAlloc, LocalUn-
lock

1.271 LocalReAlloc

The LocalReAlloc function changes the size or the attributes of a specified local memory object. The size can
increase or decrease.

Note The local functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions.

LocalReAlloc: procedure
(

hMem: dword;
uBytes: SIZE_T;
uFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__LocalReAlloc@12" );

Parameters

hMem
[in] Handle to the local memory object to be reallocated. This handle is returned by either the LocalAlloc or
LocalReAlloc function.

uBytes
[in] New size, in bytes, of the memory block. If uFlags specifies LMEM_MODIFY, this parameter is ignored.

uFlags
[in] Specifies how to reallocate the local memory object. If LMEM_MODIFY is specified, this parameter modi-
fies the attributes of the memory object, and the uBytes parameter is ignored. Otherwise, this parameter controls
the reallocation of the memory object.

You can combine LMEM_MODIFY with the following value.

If this parameter does not specify LMEM_MODIFY, this parameter can be any combination of the following val-
ues.

Value Meaning

LMEM_DISCARDABLE Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

In Win32, you must explicitly call the LocalDiscard function to dis-
card a block.

Value Meaning
Page 342



Win32 API Reference
Return Values
If the function succeeds, the return value is a handle to the reallocated memory object.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
If LocalReAlloc fails, the original memory is not freed, and the original handle and pointer are still valid.

If LocalReAlloc reallocates a fixed object, the value of the handle returned is the address of the first byte of the mem-
ory block. To access the memory, a process can simply cast the return value to a pointer.

Windows 95/98: The heap managers are designed for memory blocks smaller than four megabytes. If you expect
your memory blocks to be larger than one or two megabytes, you can avoid significant performance degradation by
using the VirtualAlloc or VirtualAllocEx function instead.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, LocalAlloc, LocalFree, LocalLock

1.272 LocalSize

The LocalSize function returns the current size, in bytes, of the specified local memory object.

Note The local functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions.

LocalSize: procedure
(

hMem: dword
);

stdcall;
returns( "eax" );
external( "__imp__LocalSize@4" );

Parameters

hMem
[in] Handle to the local memory object. This handle is returned by the LocalAlloc, LocalReAlloc, or
LocalHandle function.

LMEM_MOVEABLE Allocates movable memory. Otherwise, the memory will only be reallo-
cated in place.

The return value is a handle to the memory object. To convert the handle
to a pointer, use the LocalLock function.

LMEM_NOCOMPACT Ignored. This value is provided only for compatibility with 16-bit Win-
dows.

LMEM_ZEROINIT Causes the additional memory contents to be initialized to zero if the
memory object is growing in size.
Page 343



Volume 1
Return Values
If the function succeeds, the return value is the size, in bytes, of the specified local memory object. If the specified
handle is not valid or if the object has been discarded, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The size of a memory block may be larger than the size requested when the memory was allocated.

To verify that the specified object's memory block has not been discarded, call the LocalFlags function before call-
ing LocalSize.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, LocalAlloc, LocalFlags, LocalHandle, LocalRe-
Alloc

1.273 LocalUnlock

The LocalUnlock function decrements the lock count associated with a memory object that was allocated with
LMEM_MOVEABLE. This function has no effect on memory objects allocated with LMEM_FIXED.

Note The local functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions.

LocalUnlock: procedure
(

hMem: dword
);

stdcall;
returns( "eax" );
external( "__imp__LocalUnlock@4" );

Parameters

hMem
[in] Handle to the local memory object. This handle is returned by either the LocalAlloc or LocalReAlloc
function.

Return Values
If the memory object is still locked after decrementing the lock count, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError. If GetLastEr-
ror returns NO_ERROR, the memory object is unlocked.

Remarks
The internal data structures for each memory object include a lock count that is initially zero. For movable memory
objects, the LocalLock function increments the count by one, and LocalUnlock decrements the count by one. For
each call that a process makes to LocalLock for an object, it must eventually call LocalUnlock. Locked memory will
not be moved or discarded unless the memory object is reallocated by using the LocalReAlloc function. The memory
block of a locked memory object remains locked until its lock count is decremented to zero, at which time it can be
Page 344



Win32 API Reference
moved or discarded.

If the memory object is already unlocked, LocalUnlock returns FALSE and GetLastError reports
ERROR_NOT_LOCKED. Memory objects allocated with LMEM_FIXED always have a lock count of zero and
cause the ERROR_NOT_LOCKED error.

A process should not rely on the return value to determine the number of times it must subsequently call LocalUn-
lock for the memory block.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, LocalAlloc, LocalFlags, LocalLock, LocalReAl-
loc

1.274 LockFile

The LockFile function locks a region in an open file. Locking a region prevents other processes from accessing the
region.

To specify additional options, use the LockFileEx function.

LockFile: procedure

(

hFile: dword;

dwFileOffsetLow: dword;

dwFileOffsetHigh: dword;

nNumberOfBytesToLockLow: dword;

nNumberOfBytesToLockHigh: dword

);

stdcall;

returns( "eax" );

external( "__imp__LockFile@20" );

Parameters

hFile
[in] Handle to the file with a region to be locked. The file handle must have been created with GENERIC_READ
or GENERIC_WRITE access to the file (or both).

dwFileOffsetLow
[in] Specifies the low-order word of the starting byte offset in the file where the lock should begin.

dwFileOffsetHigh
[in] Specifies the high-order word of the starting byte offset in the file where the lock should begin.

Windows 95/98: dwFileOffsetHigh must be 0, the sign extension of the value of dwFileOffsetLow. Any other
value will be rejected.
Page 345



Volume 1
nNumberOfBytesToLockLow
[in] Specifies the low-order word of the length of the byte range to be locked.

nNumberOfBytesToLockHigh
[in] Specifies the high-order word of the length of the byte range to be locked.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Locking a region of a file gives the locking process exclusive access to the specified region. File locks are not inher-
ited by processes created by the locking process.

Locking a region of a file denies all other processes both read and write access to the specified region. Locking a
region that goes beyond the current end-of-file position is not an error.

Locks may not overlap an existing locked region of the file.

If LockFile cannot lock a region of a file, it returns zero immediately. It does not block. To issue a file lock request
that will block until the lock is acquired, use LockFileEx without LOCKFILE_FAIL_IMMEDIATELY.

The UnlockFile function unlocks a file region locked by LockFile.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CreateFile, LockFileEx, UnlockFile

1.275 LockFileEx

The LockFileEx function locks a region in an open file for shared or exclusive access. Locking a region prevents
other processes from accessing the region.

LockFileEx: procedure
(

hFile: dword;
dwFlags: dword;
dwReserved: dword;
nNumberOfBytesToLockLow: dword;
nNumberOfBytesToLockHigh: dword;

var lpOverlapped: OVERLAPPED
);

stdcall;
returns( "eax" );
external( "__imp__LockFileEx@24" );

Parameters

hFile
[in] Handle to an open handle to a file that is to have a range of bytes locked for shared or exclusive access. The
handle must have been created with either GENERIC_READ or GENERIC_WRITE access to the file.
Page 346



Win32 API Reference
dwFlags
[in] Specifies flags that modify the behavior of this function. This parameter may be one or more of the following
values.

dwReserved
Reserved parameter; must be set to zero.

nNumberOfBytesToLockLow
[in] Specifies the low-order 32 bits of the length of the byte range to lock.

nNumberOfBytesToLockHigh
[in] Specifies the high-order 32 bits of the length of the byte range to lock.

lpOverlapped
[in] Pointer to an OVERLAPPED structure that the function uses with the locking request. This structure, which is
required, contains the file offset of the beginning of the lock range. You must initialize the hEvent member to a
valid handle or zero.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero or NULL. To get extended error information, call GetLastError.

Remarks
Locking a region of a file is used to acquire shared or exclusive access to the specified region of the file. File locks are
not inherited by a new process during process creation.

Locking a portion of a file for exclusive access denies all other processes both read and write access to the specified
region of the file. Locking a region that goes beyond the current end-of-file position is not an error.

Locking a portion of a file for shared access denies all processes write access to the specified region of the file,
including the process that first locks the region. All processes can read the locked region.

The LockFileEx function operates asynchronously if the file handle was opened for asynchronous I/O, unless the
LOCKFILE_FAIL_IMMEDIATELY flag is specified. If an exclusive lock is requested for a range of a file that
already has a shared or exclusive lock, the function returns the error ERROR_IO_PENDING. The system will signal
the event specified in the OVERLAPPED structure after the lock is granted. To determine when the lock has been
granted, use the GetOverlappedResult function or one of the wait functions.

If the file handle was not opened for asynchronous I/O and the lock is not available, this call waits until the lock is
granted or an error occurs, unless the LOCKFILE_FAIL_IMMEDIATELY flag is specified.

Locks may not overlap an existing locked region of the file.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

Value Meaning

LOCKFILE_FAIL_IMMEDIATELY If this value is specified, the function returns immediately if it is
unable to acquire the requested lock. Otherwise, it waits.

LOCKFILE_EXCLUSIVE_LOCK If this value is specified, the function requests an exclusive lock. Oth-
erwise, it requests a shared lock.
Page 347



Volume 1
See Also
File I/O Overview, File I/O Functions, CreateFile, LockFile, OVERLAPPED, UnlockFile, UnlockFileEx

1.276 LockResource

The LockResource function locks the specified resource in memory.

LockResource: procedure
(

hResData: dword
);

stdcall;
returns( "eax" );
external( "__imp__LockResource@4" );

Parameters

hResData
[in] Handle to the resource to be locked. The LoadResource function returns this handle. Note that this param-
eter is listed as an HGLOBAL variable only for backwards compatibility. Do not pass any value as a parameter
other than a successful return value from the LoadResource function.

Return Values
If the loaded resource is locked, the return value is a pointer to the first byte of the resource; otherwise, it is NULL.

Remarks
The pointer returned by LockResource is valid until the module containing the resource is unloaded. It is not neces-
sary to unlock resources because the system automatically deletes them when the process that created them termi-
nates.

Do not try to lock a resource by using the handle returned by the FindResource or FindResourceEx function. Such
a handle points to random data.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Resources Overview, Resource Functions, FindResource, FindResourceEx, LoadResource

1.277 lstrcat

The lstrcat function appends one string to another.

lstrcat: procedure
(

var lpString1: var;
var lpString2: var

);
stdcall;
returns( "eax" );
Page 348



Win32 API Reference
external( "__imp__lstrcat@8" );

Parameters

lpString1
[in/out] Pointer to a null-terminated string. The buffer must be large enough to contain both strings.

lpString2
[in] Pointer to the null-terminated string to be appended to the string specified in the lpString1 parameter.

Return Values
If the function succeeds, the return value is a pointer to the buffer.

If the function fails, the return value is NULL.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Strings Overview, String Functions, lstrcmp, lstrcmpi, lstrcpy, lstrlen

1.278 lstrcmp

The lstrcmp function compares two character strings. The comparison is case sensitive.

To perform a comparison that is not case sensitive, use the lstrcmpi function.

lstrcmp: procedure
(

var lpString1: var;
var lpString2: var

);
stdcall;
returns( "eax" );
external( "__imp__lstrcmp@8" );

Parameters

lpString1
[in] Pointer to the first null-terminated string to be compared.

lpString2
[in] Pointer to the second null-terminated string to be compared.

Return Values
If the string pointed to by lpString1 is less than the string pointed to by lpString2, the return value is negative. If the
string pointed to by lpString1 is greater than the string pointed to by lpString2, the return value is positive. If the
strings are equal, the return value is zero.

Remarks
The lstrcmp function compares two strings by checking the first characters against each other, the second characters
Page 349



Volume 1
against each other, and so on until it finds an inequality or reaches the ends of the strings.

The function returns the difference of the values of the first unequal characters it encounters. For example, lstrcmp
determines that "abcz" is greater than "abcdefg" and returns the difference of z and d.

The language (locale) selected by the user at setup time, or through Control Panel, determines which string is greater
(or whether the strings are the same). If no language (locale) is selected, the system performs the comparison by using
default values.

With a double-byte character set (DBCS) version of the system, this function can compare two DBCS strings.

The lstrcmp function uses a word sort, rather than a string sort. A word sort treats hyphens and apostrophes differ-
ently than it treats other symbols that are not alphanumeric, in order to ensure that words such as "coop" and "co-op"
stay together within a sorted list. Note that in 16-bit versions of Windows, lstrcmp uses a string sort. For a detailed
discussion of word sorts and string sorts, see the Remarks section of the reference page for the CompareString
function .

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Strings Overview, String Functions, CompareString, lstrcat, lstrcmpi, lstrcpy, lstrlen

1.279 lstrcmpi

The lstrcmpi function compares two character strings. The comparison is not case sensitive.

To perform a comparison that is case sensitive, use the lstrcmp function.

lstrcmpi: procedure
(

var lpString1: var;
var lpString2: var

);
stdcall;
returns( "eax" );
external( "__imp__lstrcmpi@8" );

Parameters

lpString1
[in] Pointer to the first null-terminated string to be compared.

lpString2
[in] Pointer to the second null-terminated string to be compared.

Return Values
If the string pointed to by lpString1 is less than the string pointed to by lpString2, the return value is negative. If the
string pointed to by lpString1 is greater than the string pointed to by lpString2, the return value is positive. If the
strings are equal, the return value is zero.

Remarks
The lstrcmpi function compares two strings by checking the first characters against each other, the second characters
against each other, and so on until it finds an inequality or reaches the ends of the strings.
Page 350



Win32 API Reference
The function returns the difference of the values of the first unequal characters it encounters. For example, lstrcmpi
determines that "abcz" is greater than "abcdefg" and returns the difference of z and d.

The language (locale) selected by the user at setup time, or through Control Panel, determines which string is greater
(or whether the strings are the same). If no language (locale) is selected, the system performs the comparison by using
default values.

For some locales, the lstrcmpi function may be insufficient. If this occurs, use CompareString to ensure proper
comparison. For example, in Japan call CompareString with the IGNORE_CASE, IGNORE_KANATYPE, and
IGNORE_WIDTH values to achieve the most appropriate non-exact string comparison. The IGNORE_KANATYPE
and IGNORE_WIDTH values are ignored in non-Asian locales, so you can set these values for all locales and be
guaranteed to have a culturally correct "insensitive" sorting regardless of the locale. Note that specifying these values
slows performance, so use them only when necessary.

With a double-byte character set (DBCS) version of the system, this function can compare two DBCS strings.

The lstrcmpi function uses a word sort, rather than a string sort. A word sort treats hyphens and apostrophes differ-
ently than it treats other symbols that are not alphanumeric, in order to ensure that words such as "coop" and "co-op"
stay together within a sorted list. Note that in 16-bit versions of Windows, lstrcmpi uses a string sort. For a detailed
discussion of word sorts and string sorts, see the Remarks section of the reference page for the CompareString
function .

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Strings Overview, String Functions, CompareString, lstrcat, lstrcmp, lstrcpy, lstrlen

1.280 lstrcpy

The lstrcpy function copies a string to a buffer.

To copy a specified number of characters, use the lstrcpyn function.

lstrcpy: procedure
(

var lpString1: var;
var lpString2: var

);
stdcall;
returns( "eax" );
external( "__imp__lstrcpy@8" );

Parameters

lpString1
[out] Pointer to a buffer to receive the contents of the string pointed to by the lpString2 parameter. The buffer
must be large enough to contain the string, including the terminating null character.

lpString2
[in] Pointer to the null-terminated string to be copied.

Return Values
If the function succeeds, the return value is a pointer to the buffer.
Page 351



Volume 1
If the function fails, the return value is NULL.

Remarks
With a double-byte character set (DBCS) version of the system, this function can be used to copy a DBCS string.

The lstrcpy function has an undefined behavior if source and destination buffers overlap.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Strings Overview, String Functions, lstrcat, lstrcmp, lstrcmpi, lstrlen

1.281 lstrcpyn

The lstrcpyn function copies a specified number of characters from a source string into a buffer.

lstrcpyn: procedure
(

var lpString1: var;
var lpString2: var

iMaxLength: dword
);

stdcall;
returns( "eax" );
external( "__imp__lstrcpyn@12" );

Parameters

lpString1
[out] Pointer to a buffer into which the function copies characters. The buffer must be large enough to contain the
number of TCHARs specified by iMaxLength, including room for a terminating null character.

lpString2
[in] Pointer to a null-terminated string from which the function copies characters.

iMaxLength
[in] Specifies the number of TCHARs to be copied from the string pointed to by lpString2 into the buffer pointed
to by lpString1, including a terminating null character. This refers to bytes for ANSI versions of the function or
characters for Unicode versions.

Return Values
If the function succeeds, the return value is a pointer to the buffer.

If the function fails, the return value is NULL.

Remarks
Note that the buffer pointed to by lpString1 must be large enough to include a terminating null character, and the
string length value specified by iMaxLength includes room for a terminating null character. Thus, the following code

TCHAR chBuffer[512] ;
Page 352



Win32 API Reference
lstrcpyn(chBuffer, "abcdefghijklmnop", 4) ;

copies the string "abc", followed by a terminating null character, to chBuffer.

The lstrcpyn function has an undefined behavior if source and destination buffers overlap.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Strings Overview, String Functions, lstrcat, lstrcmp, lstrcmpi, lstrcpy, lstrlen

1.282 lstrlen

The lstrlen function returns the length in bytes (ANSI version) or characters (Unicode version) of the specified string
(not including the terminating null character).

lstrlen: procedure
(

var lpString: var
);

stdcall;
returns( "eax" );
external( "__imp__lstrlen@4" );

Parameters

lpString
[in] Pointer to a null-terminated string.

Return Values
The return value specifies the length of the string, in TCHARs. This refers to bytes for ANSI versions of the function
or characters for Unicode versions.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Strings Overview, String Functions, lstrcat, lstrcmp, lstrcmpi, lstrcpy

1.283 MapViewOfFile

The MapViewOfFile function maps a view of a file into the address space of the calling process.

To specify a suggested base address, use the MapViewOfFileEx function.

MapViewOfFile: procedure
Page 353



Volume 1
(
hFileMappingObject: dword;
dwDesiredAccess: dword;
dwFileOffsetHigh: dword;
dwFileOffsetLow: dword;
dwNumberOfBytesToMap: SIZE_T

);
stdcall;
returns( "eax" );
external( "__imp__MapViewOfFile@20" );

Parameters

hFileMappingObject
[in] Handle to an open handle of a file-mapping object. The CreateFileMapping and OpenFileMapping

functions return this handle.

dwDesiredAccess
[in] Specifies the type of access to the file view and, therefore, the protection of the pages mapped by the file.
This parameter can be one of the following values.

dwFileOffsetHigh
[in] Specifies the high-order DWORD of the file offset where mapping is to begin.

dwFileOffsetLow
[in] Specifies the low-order DWORD of the file offset where mapping is to begin. The combination of the high
and low offsets must specify an offset within the file that matches the system's memory allocation granularity, or
the function fails. That is, the offset must be a multiple of the allocation granularity. Use the GetSystemInfo

Value Meaning

FILE_MAP_WRITE Read/write access. The hFileMappingObject parameter must have been cre-
ated with PAGE_READWRITE protection. A read/write view of the file is
mapped.

FILE_MAP_READ Read-only access. The hFileMappingObject parameter must have been cre-
ated with PAGE_READWRITE or PAGE_READONLY protection. A
read-only view of the file is mapped.

FILE_MAP_ALL_ACCESS Same as FILE_MAP_WRITE.

FILE_MAP_COPY Copy on write access. If you create the map with PAGE_WRITECOPY and
the view with FILE_MAP_COPY, you will receive a view to file. If you write
to it, the pages are automatically swappable and the modifications you make
will not go to the original data file.

Windows 95: You must pass PAGE_WRITECOPY to CreateFileMap-

ping; otherwise, an error will be returned.

If you share the mapping between multiple processes using DuplicateHan-

dle or OpenFileMapping and one process writes to a view, the modification
is propagated to the other process. The original file does not change.

Windows NT/2000: There is no restriction as to how the hFileMappingOb-
ject parameter must be created. Copy on write is valid for any type of view.

If you share the mapping between multiple processes using DuplicateHan-

dle or OpenFileMapping and one process writes to a view, the modification
is not propagated to the other process. The original file does not change.
Page 354



Win32 API Reference
function, which fills in the members of a SYSTEM_INFO structure, to obtain the system's memory allocation
granularity.

dwNumberOfBytesToMap
[in] Specifies the number of bytes of the file to map. If dwNumberOfBytesToMap is zero, the entire file is
mapped.

Return Values
If the function succeeds, the return value is the starting address of the mapped view.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
Mapping a file makes the specified portion of the file visible in the address space of the calling process.

Multiple views of a file (or a file-mapping object and its mapped file) are said to be "coherent" if they contain identi-
cal data at a specified time. This occurs if the file views are derived from the same file-mapping object. A process can
duplicate a file-mapping object handle into another process by using the DuplicateHandle function, or another
process can open a file-mapping object by name by using the OpenFileMapping function.

A mapped view of a file is not guaranteed to be coherent with a file being accessed by the ReadFile or WriteFile
function:

Windows 95: MapViewOfFile may require the swapfile to grow. If the swapfile cannot grow, the
function fails.

Windows NT/2000: If the file-mapping object is backed by the paging file (hFile is
INVALID_HANDLE_VALUE), the paging file must be large enough to hold the entire mapping. If it is not, Map-
ViewOfFile fails.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a memory mapped view. For more information, see Reading and Writing.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File Mapping Overview, File Mapping Functions, CreateFileMapping, DuplicateHandle, GetSystemInfo, Map-
ViewOfFileEx, OpenFileMapping, UnmapViewOfFile, SYSTEM_INFO

1.284 MapViewOfFileEx

The MapViewOfFileEx function maps a view of a file into the address space of the calling process. This extended
function allows the calling process to specify a suggested memory address for the mapped view.

MapViewOfFileEx: procedure
(

hFileMappingObject: dword;
dwDesiredAccess: dword;
dwFileOffsetHigh: dword;
dwFileOffsetLow: dword;
dwNumberOfBytesToMap: SIZE_T;

var lpBaseAddress: var
);

stdcall;
returns( "eax" );
Page 355



Volume 1
external( "__imp__MapViewOfFileEx@24" );

Parameters

hFileMappingObject
[in] Handle to an open handle to a file-mapping object. The CreateFileMapping and OpenFileMapping

functions return this handle.

dwDesiredAccess
[in] Specifies the type of access to the file-mapping object and, therefore, the page protection of the pages mapped by
the file. This parameter can be one of the following values.

dwFileOffsetHigh
[in] Specifies the high-order DWORD of the file offset where mapping is to begin.

dwFileOffsetLow
[in] Specifies the low-order DWORD of the file offset where mapping is to begin. The combination of the high
and low offsets must specify an offset within the file that matches the system's memory allocation granularity, or
the function fails. That is, the offset must be a multiple of the allocation granularity. Use the GetSystemInfo
function, which fills in the members of a SYSTEM_INFO structure, to obtain the system's memory allocation
granularity.

dwNumberOfBytesToMap
[in] Specifies the number of bytes of the file to map. If dwNumberOfBytesToMap is zero, the entire file is
mapped.

Value Meaning

FILE_MAP_WRITE Read-and-write access. The hFileMappingObject parameter must have been
created with PAGE_READWRITE protection. A read/write view of the file is
mapped.

FILE_MAP_READ Read-only access. The hFileMappingObject parameter must have been created
with PAGE_READWRITE or PAGE_READONLY protection. A read-only
view of the file is mapped.

FILE_MAP_ALL_ACCESS Same as FILE_MAP_WRITE.

FILE_MAP_COPY Copy on write access. If you create the map with PAGE_WRITECOPY and the
view with FILE_MAP_COPY, you will receive a view to the file. If you write
to it, the pages are automatically swappable and the modifications you make
will not go to the original data file.

Windows 95: You must pass PAGE_WRITECOPY to CreateFileMapping;
otherwise, an error will be returned.

If you share the mapping between multiple processes using DuplicateHan-

dle or OpenFileMapping and one process writes to a view, the modification
is propagated to the other process. The original file does not change.

Windows NT/2000: There is no restriction as to how the hFileMappingObject
parameter must be created. Copy on write is valid for any type of view.

If you share the mapping between multiple processes using DuplicateHan-

dle or OpenFileMapping and one process writes to a view, the modification
is not propagated to the other process. The original file does not change.
Page 356



Win32 API Reference
lpBaseAddress
[in] Pointer to the memory address in the calling process's address space where mapping should begin. This must
be a multiple of the system's memory allocation granularity, or the function fails. Use the GetSystemInfo func-
tion, which fills in the members of a SYSTEM_INFO structure, to obtain the system's memory allocation granular-
ity. If there is not enough address space at the specified address, the function fails.

If lpBaseAddress is NULL, the operating system chooses the mapping address. In this case, this function is
equivalent to the MapViewOfFile function.

Return Values
If the function succeeds, the return value is the starting address of the mapped view.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
Mapping a file makes the specified portion of the file visible in the address space of the calling process.

If a suggested mapping address is supplied, the file is mapped at the specified address (rounded down to the nearest
64K boundary) if there is enough address space at the specified address. If there is not, the function fails.

Typically, the suggested address is used to specify that a file should be mapped at the same address in multiple pro-
cesses. This requires the region of address space to be available in all involved processes. No other memory alloca-
tion, including use of the VirtualAlloc function to reserve memory, can take place in the region used for mapping:

Windows 95: If the lpBaseAddress parameter specifies a base offset, the function succeeds only if
the same memory region is available for the memory mapped file in all other 32-bit processes.

Windows NT/2000: If the lpBaseAddress parameter specifies a base offset, the function succeeds
if the given memory region is not already in use by the calling process. the system does not guarantee that the same
memory region is available for the memory mapped file in other 32-bit processes.

Multiple views of a file (or a file-mapping object and its mapped file) are said to be "coherent" if they contain identi-
cal data at a specified time. This occurs if the file views are derived from the same file-mapping object. A process can
duplicate a file-mapping object handle into another process by using the DuplicateHandle function, or another
process can open a file-mapping object by name by using the OpenFileMapping function.

A mapped view of a file is not guaranteed to be coherent with a file being accessed by the ReadFile or WriteFile
function.

Note To guard against an access violation, use structured exception handling to protect any code that writes to or
reads from a memory mapped view. For more information, see Reading and Writing.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File Mapping Overview, File Mapping Functions, CreateFileMapping, DuplicateHandle, GetSystemInfo, Open-
FileMapping, ReadFile, UnmapViewOfFile, SYSTEM_INFO, VirtualAlloc, WriteFile

1.285 Module32First

Retrieves information about the first module associated with a process.

Module32First: procedure
(

hSnapshot: dword;
Page 357



Volume 1
var lpme: MODULEENTRY32
);

stdcall;
returns( "eax" );
external( "__imp__Module32First@8" );

Parameters

hSnapshot
[in] Handle to the snapshot returned from a previous call to the CreateToolhelp32Snapshot function.

lpme
[in/out] Pointer to a MODULEENTRY32 structure.

Return Values
Returns TRUE if the first entry of the module list has been copied to the buffer or FALSE otherwise. The
ERROR_NO_MORE_FILES error value is returned by the GetLastError function if no modules exist or the snap-
shot does not contain module information.

Remarks
The calling application must set the dwSize member of MODULEENTRY32 to the size, in bytes, of the structure.
Module32First changes dwSize to the number of bytes written to the structure. This will never be greater than the
initial value of dwSize, but it may be smaller. If the value is smaller, do not rely on the values of any members whose
offsets are greater than this value.

To retrieve information about other modules associated with the specified process, use the Module32Next function.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tool Help Library Overview, Tool Help Functions, , CreateToolhelp32Snapshot, MODULEENTRY32,
Module32Next

1.286 Module32Next

Retrieves information about the next module associated with a process or thread.

Module32Next: procedure
(

hSnapshot: dword;
var lpme: MODULEENTRY32

);
stdcall;
returns( "eax" );
external( "__imp__Module32Next@8" );

Parameters

hSnapshot
[in] Handle to the snapshot returned from a previous call to the CreateToolhelp32Snapshot function.
Page 358



Win32 API Reference
lpme
[out] Pointer to a MODULEENTRY32 structure.

Return Values
Returns TRUE if the next entry of the module list has been copied to the buffer or FALSE otherwise. The
ERROR_NO_MORE_FILES error value is returned by the GetLastError function if no more modules exist.

Remarks
To retrieve information about first module associated with a process, use the Module32First function.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hff
Library: Use Kernel32.lib.

See Also
Tool Help Library Overview, Tool Help Functions

1.287 MoveFile

The MoveFile function moves an existing file or a directory, including its children.

To specify how to move the file, use the MoveFileEx function.

MoveFile: procedure
(

lpExistingFileName: string;
lpNewFileName: string

);
stdcall;
returns( "eax" );
external( "__imp__MoveFileA@8" );

Parameters

lpExistingFileName
[in] Pointer to a null-terminated string that names an existing file or directory.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

lpNewFileName
[in] Pointer to a null-terminated string that specifies the new name of a file or directory. The new name must not
already exist. A new file may be on a different file system or drive. A new directory must be on the same drive.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.
Page 359



Volume 1
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The MoveFile function will move (rename) either a file or a directory (including its children) either in the same direc-
tory or across directories. The one caveat is that the MoveFile function will fail on directory moves when the destina-
tion is on a different volume.

Windows 2000: The MoveFile function coordinates its operation with the link tracking service, so link sources can
be tracked as they are moved.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CopyFile, MoveFileEx, MoveFileWithProgress

1.288 MoveFileEx

The MoveFileEx function moves an existing file or directory.

The MoveFileWithProgress function is equivalent to the MoveFileEx function, except that MoveFileWith-
Progress allows you to provide a callback function that receives progress notifications.

MoveFileEx: procedure
(

lpExistingFileName: string;
lpNewFileName: string;
dwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__MoveFileExA@12" );

Parameters

lpExistingFileName
[in] Pointer to a null-terminated string that names an existing file or directory on the local machine. In the ANSI
version of this function, the name is limited to MAX_PATH characters. To extend this limit to nearly 32,000
wide characters, call the Unicode version of the function and prepend "\\?\" to the path. For more information,
see File Name Conventions.

If dwflags specifies MOVEFILE_DELAY_UNTIL_REBOOT, the file cannot have the read-only attribute.

lpNewFileName
[in] Pointer to a null-terminated string that specifies the new name of lpExistingFileName on the local machine.

When moving a file, the destination can be on a different file system or drive. If the destination is on another
drive, you must set the MOVEFILE_COPY_ALLOWED flag in dwFlags.
Page 360



Win32 API Reference
When moving a directory, the destination must be on the same drive.

If dwFlags specifies MOVEFILE_DELAY_UNTIL_REBOOT, lpNewFileName can be NULL. In this case,
MoveFileEx registers the lpExistingFileName file to be deleted when the system restarts. If lpExistingFileName
refers to a directory, the system removes the directory at restart only if the directory is empty.

dwFlags
[in] Specifies how to move the file. This parameter can be one or more of the following values.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the dwFlags parameter specifies MOVEFILE_DELAY_UNTIL_REBOOT, MoveFileEx stores the locations of the
files to be renamed at restart in the following registry value:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\PendingFileRenameOpera-
tions

The function fails if it cannot access the registry.

The PendingFileRenameOperations value is of type REG_MULTI_SZ. Each rename operation stores a pair of

Value Meaning

MOVEFILE_COPY_ALLOWED If the file is to be moved to a different volume, the function simulates the
move by using the CopyFile and DeleteFile functions.

This value cannot be used with MOVEFILE_DELAY_UNTIL_REBOOT.

MOVEFILE_CREATE_HARDLIN
K

Reserved for future use.

MOVEFILE_DELAY_UNTIL_RE
BOOT

The system does not move the file until the operating system is restarted.
The system moves the file immediately after AUTOCHK is executed, but
before creating any paging files. Consequently, this parameter enables the
function to delete paging files from previous startups.

This value can be used only if the process is in the context of a user who
belongs to the administrator group or the LocalSystem account.

This value cannot be used with MOVEFILE_COPY_ALLOWED.

MOVEFILE_FAIL_IF_NOT_TRA
CKABLE

Windows 2000: The function fails if the source file is a link source, but
the file cannot be tracked after the move. This situation can occur if the
destination is a volume formatted with the FAT file system.

MOVEFILE_REPLACE_EXISTIN
G

If a file named lpNewFileName exists, the function replaces its contents
with the contents of the lpExistingFileName file.

This value cannot be used if lpNewFileName or lpExistingFileName
names a directory.

MOVEFILE_WRITE_THROUGH The function does not return until the file has actually been moved on the
disk.

Setting this value guarantees that a move performed as a copy and delete
operation is flushed to disk before the function returns. The flush occurs at
the end of the copy operation.

This value has no effect if MOVEFILE_DELAY_UNTIL_REBOOT is
set.
Page 361



Volume 1
NULL-terminated strings. The system uses these registry entries to complete the operations at restart in the same
order that they were issued. For example, the following code fragment creates registry entries that delete szDstFile
and rename szSrcFile to be szDstFile at restart:

MoveFileEx(szDstFile, NULL, MOVEFILE_DELAY_UNTIL_REBOOT);

MoveFileEx(szSrcFile, szDstFile, MOVEFILE_DELAY_UNTIL_REBOOT);

The system stores the following entries in PendingFileRenameOperations:

szDstFile\0\0

szSrcFile\0szDstFile\0\0

Because the actual move and deletion operations specified with the MOVEFILE_DELAY_UNTIL_REBOOT flag
take place after the calling application has ceased running, the return value cannot reflect success or failure in moving
or deleting the file. Rather, it reflects success or failure in placing the appropriate entries into the registry.

The system deletes a directory tagged for deletion with the MOVEFILE_DELAY_UNTIL_REBOOT flag only if it is
empty. To ensure deletion of directories, move or delete all files from the directory before attempting to delete it.
Files may be in the directory at boot time, but they must be deleted or moved before the system can delete the direc-
tory.

The move and deletion operations are carried out at boot time in the same order they are specified in the calling appli-
cation. To delete a directory that has files in it at boot time, first delete the files.

Windows 2000: The MoveFileEx function coordinates its operation with the link tracking service, so link sources
can be tracked as they are moved.

Windows 95/98: The MoveFileEx function is not supported. To rename or delete a file at restart, use the following
procedure.

To rename or delete a file on Windows 95/98

Check for the existence of the WININIT.INI file in the Windows directory.

If WININIT.INI exists, open it and add new entries to the existing [rename] section. If the file does not exist, create
the file and create a [rename] section.

Add lines of the following format to the [rename] section:

DestinationFileName=SourceFileName

Both DestinationFileName and SourceFileName must be short file names. To delete a file, use NUL as the value for
DestinationFileName.

The system processes WININIT.INI during system boot. After WININIT.INI has been processed, the system names it
WININIT.BAK.

To delete or rename a file, you must have either delete permission on the file or delete child permission in the parent
directory. If you set up a directory with all access except delete and delete child and the ACLs of new files are inher-
ited, then you should be able to create a file without being able to delete it. However, you can then create a file, and
you will get all the access you request on the handle returned to you at the time you create the file. If you requested
delete permission at the time you created the file, you could delete or rename the file with that handle but not with any
other.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CopyFile, DeleteFile, GetWindowsDirectory, MoveFileWithProgress, WriteP-
rivateProfileString
Page 362



Win32 API Reference
1.289 MoveFileWithProgress

The MoveFileWithProgress function moves a file or directory. MoveFileWithProgress is equivalent to the Move-
FileEx function, except that MoveFileWithProgress allows you to provide a callback function that receives
progress notifications.

MoveFileWithProgress: procedure
(

lpExistingFileName: string;
lpNewFileName: string;
lpProgressRoutine: procedure;

var lpData: var;
dwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__MoveFileWithProgressA@20" );

Parameters

lpExistingFileName
[in] Pointer to a null-terminated string that names an existing file or directory on the local machine.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

lpNewFileName
[in] Pointer to a null-terminated string containing the new name of the file or directory.

When moving a file, lpNewFileName can be on a different file system or drive. If lpNewFileName is on another
drive, you must set the MOVEFILE_COPY_ALLOWED flag in dwFlags.

When moving a directory, lpExistingFileName and lpNewFileName must be on the same drive.

If dwFlags specifies MOVEFILE_DELAY_UNTIL_REBOOT, lpNewFileName can be NULL. In this case,
MoveFileEx registers lpExistingFileName to be deleted when the system restarts. The function fails if it cannot
access the registry to store the information about the delete operation. If lpExistingFileName refers to a directory,
the system removes the directory at restart only if the directory is empty.

lpProgressRoutine
[in] Pointer to a CopyProgressRoutine callback function that is called each time another portion of the file
has been moved. The callback function can be useful if you provide a user interface that displays the progress of
the operation. This parameter can be NULL.

lpData
[in] Specifies an argument that MoveFileWithProgress passes to the CopyProgressRoutine callback function.
This parameter can be NULL.

dwFlags
[in] Specifies how to move the file. This parameter can be one or more of the following values.

Value Meaning
Page 363



Volume 1
Return Value
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The MoveFileWithProgress function coordinates its operation with the link tracking service, so link sources can be
tracked as they are moved.

To delete or rename a file, you must have either delete permission on the file or delete child permission in the parent
directory. If you set up a directory with all access except delete and delete child and the ACLs of new files are inher-
ited, then you should be able to create a file without being able to delete it. However, you can then create a file, and
you will get all the access you request on the handle returned to you at the time you create the file. If you requested
delete permission at the time you created the file, you could delete or rename the file with that handle but not with any
other.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

MOVEFILE_COPY_ALLOWED If the file is to be moved to a different volume, the function simulates
the move by using the CopyFile and DeleteFile functions.

This value cannot be used with
MOVEFILE_DELAY_UNTIL_REBOOT.

MOVEFILE_CREATE_HARDLINK Reserved for future use.

MOVEFILE_DELAY_UNTIL_REBO
OT

The system does not move the file until the operating system is
restarted. The system moves the file immediately after AUTOCHK is
executed, but before creating any paging files. Consequently, this
parameter enables the function to delete paging files from previous star-
tups.

This value can only be used if the process is in the context of a user who
belongs to the administrator group or the LocalSystem account.

This value cannot be used with MOVEFILE_COPY_ALLOWED.

MOVEFILE_FAIL_IF_NOT_TRACK
ABLE

The function fails if the source file is a link source, but the file cannot be
tracked after the move. This situation can occur if the destination is a
volume formatted with the FAT file system.

MOVEFILE_REPLACE_EXISTING If a file named lpNewFileName exists, the function replaces its contents
with the contents of the lpExistingFileName file.

This value cannot be used if lpNewFileName or lpExistingFileName
names a directory.

MOVEFILE_WRITE_THROUGH The function does not return until the file has actually been moved on
the disk.

Setting this value guarantees that a move performed as a copy and
delete operation is flushed to disk before the function returns. The flush
occurs at the end of the copy operation.

This value has no effect if MOVEFILE_DELAY_UNTIL_REBOOT is
set.
Page 364



Win32 API Reference
See Also
File I/O Overview, File I/O Functions, CopyFileEx, CopyProgressRoutine, MoveFileEx

1.290 MulDiv

The MulDiv function multiplies two 32-bit values and then divides the 64-bit result by a third 32-bit value. The
return value is rounded up or down to the nearest integer.

MulDiv: procedure
(

nNumber: dword;
nNumerator: dword;
nDenominator: dword

);
stdcall;
returns( "eax" );
external( "__imp__MulDiv@12" );

Parameters

nNumber
[in] Specifies the multiplicand.

nNumerator
[in] Specifies the multiplier.

nDenominator
[in] Specifies the number by which the result of the multiplication (nNumber * nNumerator) is to be divided.

Return Values
If the function succeeds, the return value is the result of the multiplication and division. If either an overflow occurred
or nDenominator was 0, the return value is –1.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Int32x32To64, UInt32x32To64

1.291 MultiByteToWideChar

The MultiByteToWideChar function maps a character string to a wide-character (Unicode) string. The character
string mapped by this function is not necessarily from a multibyte character set.

MultiByteToWideChar: procedure
(

CodePage: dword;
dwFlags: dword;
Page 365



Volume 1
lpMultiByteStr: string;
cbMultiByte: dword;

var lpWideCharStr: var;
cchWideChar: dword

);
stdcall;
returns( "eax" );
external( "__imp__MultiByteToWideChar@24" );

Parameters

CodePage
[in] Specifies the code page to be used to perform the conversion. This parameter can be given the value of any
code page that is installed or available in the system. You can also specify one of the values shown in the follow-
ing table.

dwFlags
[in] Indicates whether to translate to precomposed or composite-wide characters (if a composite form exists),
whether to use glyph characters in place of control characters, and how to deal with invalid characters. You can
specify a combination of the following flag constants.

A composite character consists of a base character and a nonspacing character, each having different character
values. A precomposed character has a single character value for a base/nonspacing character combination. In
the character è, the e is the base character and the accent grave mark is the nonspacing character.

Value Meaning

CP_ACP ANSI code page

CP_MACCP Macintosh code page

CP_OEMCP OEM code page

CP_SYMBOL Windows 2000: Symbol code page (42)

CP_THREAD_ACP Windows 2000: The current thread's ANSI code page

CP_UTF7 Windows NT 4.0 and Windows 2000: Translate using UTF-7

CP_UTF8 Windows NT 4.0 and Windows 2000: Translate using UTF-8. When this is
set, dwFlags must be zero.

Value Meaning

MB_PRECOMPOSED Always use precomposed characters—that is, characters in
which a base character and a nonspacing character have a single
character value. This is the default translation option. Cannot be
used with MB_COMPOSITE.

MB_COMPOSITE Always use composite characters—that is, characters in which a
base character and a nonspacing character have different charac-
ter values. Cannot be used with MB_PRECOMPOSED.

MB_ERR_INVALID_CHARS If the function encounters an invalid input character, it fails and
GetLastError returns
ERROR_NO_UNICODE_TRANSLATION.

MB_USEGLYPHCHARS Use glyph characters instead of control characters.
Page 366



Win32 API Reference
The function's default behavior is to translate to the precomposed form. If a precomposed form does not exist, the
function attempts to translate to a composite form.

The flags MB_PRECOMPOSED and MB_COMPOSITE are mutually exclusive. The MB_USEGLYPHCHARS
flag and the MB_ERR_INVALID_CHARS can be set regardless of the state of the other flags.

lpMultiByteStr
[in] Points to the character string to be converted.

cbMultiByte
[in] Specifies the size in bytes of the string pointed to by the lpMultiByteStr parameter, or it can be -1 if the string
is null terminated.

If this parameter is -1, the function processes the entire input string including the null terminator. The resulting
wide character string therefore has a null terminator, and the returned length includes the null terminator.

If this parameter is a positive integer, the function processes exactly the specified number of bytes. If the given
length does not include a null terminator then the resulting wide character string will not be null terminated, and
the returned length does not include a null terminator.

lpWideCharStr
[out] Points to a buffer that receives the translated string.

cchWideChar
[in] Specifies the size, in wide characters, of the buffer pointed to by the lpWideCharStr parameter. If this value
is zero, the function returns the required buffer size, in wide characters, and makes no use of the lpWideCharStr
buffer.

Return Values
If the function succeeds, and cchWideChar is nonzero, the return value is the number of wide characters written to the
buffer pointed to by lpWideCharStr.

If the function succeeds, and cchWideChar is zero, the return value is the required size, in wide characters, for a
buffer that can receive the translated string.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER
ERROR_INVALID_FLAGS
ERROR_INVALID_PARAMETER
ERROR_NO_UNICODE_TRANSLATION

Remarks
The lpMultiByteStr and lpWideCharStr pointers must not be the same. If they are the same, the function fails, and
GetLastError returns the value ERROR_INVALID_PARAMETER.

The function fails if MB_ERR_INVALID_CHARS is set and encounters an invalid character in the source string. An
invalid character is either, a) a character that is not the default character in the source string but translates to the
default character when MB_ERR_INVALID_CHARS is not set, or b) for DBCS strings, a character which has a lead
byte but no valid trailing byte. When an invalid character is found, and MB_ERR_INVALID_CHARS is set, the
function returns 0 and sets GetLastError with the error ERROR_NO_UNICODE_TRANSLATION.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Page 367



Volume 1
See Also
Unicode and Character Sets Overview, Unicode and Character Set Functions, WideCharToMultiByte

1.292 OpenEvent

The OpenEvent function opens an existing named event object.

OpenEvent: procedure
(

dwDesiredAccess: dword;
bInheritHandle: boolean;
lpName: string

);
stdcall;
returns( "eax" );
external( "__imp__OpenEventA@12" );

Parameters

dwDesiredAccess
[in] Specifies the requested access to the event object. For systems that support object security, the function fails
if the security descriptor of the specified object does not permit the requested access for the calling process.

This parameter can be any combination of the following values.

bInheritHandle
[in] Specifies whether the returned handle is inheritable. If TRUE, a process created by the CreateProcess
function can inherit the handle; otherwise, the handle cannot be inherited.

lpName
[in] Pointer to a null-terminated string that names the event to be opened. Name comparisons are case sensitive.

Terminal Services: The name can have a "Global\" or "Local\" prefix to explicitly open an object in the global
or session name space. The remainder of the name can contain any character except the backslash character (\).
For more information, see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the "Global\" and "Local\" pre-
fixes are ignored. The remainder of the name can contain any character except the backslash character.

Windows NT 4.0 and earlier, Windows 95/98: The name can contain any character except the backslash char-
acter.

Return Values
If the function succeeds, the return value is a handle to the event object.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Access Description

EVENT_ALL_ACCESS Specifies all possible access flags for the event object.

EVENT_MODIFY_STATE Enables use of the event handle in the SetEvent and ResetEvent
functions to modify the event's state.

SYNCHRONIZE Windows NT/2000: Enables use of the event handle in any of the
wait functions to wait for the event's state to be signaled.
Page 368



Win32 API Reference
Remarks
The OpenEvent function enables multiple processes to open handles of the same event object. The function succeeds
only if some process has already created the event by using the CreateEvent function. The calling process can use
the returned handle in any function that requires a handle to an event object, subject to the limitations of the access
specified in the dwDesiredAccess parameter.

The handle can be duplicated by using the DuplicateHandle function. Use the CloseHandle function to close the
handle. The system closes the handle automatically when the process terminates. The event object is destroyed when
its last handle has been closed.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CloseHandle, CreateEvent, CreateProcess, DuplicateHandle,
PulseEvent, ResetEvent, SetEvent, Object Names

1.293 OpenFile

The OpenFile function creates, opens, reopens, or deletes a file.

Note This function is provided only for compatibility with 16-bit versions of Windows. Win32-based applications
should use the CreateFile function.

OpenFile: procedure
(

lpFileName: string;
var lpReOpenBuff: OFSTRUCT;

uStyle: dword
);

stdcall;
returns( "eax" );
external( "__imp__OpenFile@12" );

Parameters

lpFileName
[in] Pointer to a null-terminated string that names the file to be opened. The string must consist of characters
from the Windows 3.x character set. The OpenFile function does not support Unicode file names. Also, Open-
File does not support opening named pipes.

lpReOpenBuff
[out] Pointer to the OFSTRUCT structure that receives information about the file when it is first opened. The struc-
ture can be used in subsequent calls to the OpenFile function to refer to the open file.

The OFSTRUCT structure contains a pathname string member whose length is limited to
OFS_MAXPATHNAME characters. OFS_MAXPATHNAME is currently defined to be 128. Because of this,
you cannot use the OpenFile function to open a file whose path length exceeds 128 characters. The CreateFile
function does not have such a path length limitation.

uStyle
[in] Specifies the action to take. This parameter can be one or more of the following values.
Page 369



Volume 1
Return Values
If the function succeeds, the return value specifies a file handle.

Value Meaning

OF_CANCEL Ignored. In the Win32 API, OF_PROMPT produces a dialog box containing a Cancel
button.

OF_CREATE Creates a new file. If the file already exists, it is truncated to zero length.

OF_DELETE Deletes the file.

OF_EXIST Opens the file and then closes it. Used to test for a file's existence.

OF_PARSE Fills the OFSTRUCT structure but carries out no other action.

OF_PROMPT Displays a dialog box if the requested file does not exist. The dialog box informs the
user that the system cannot find the file, and it contains Retry and Cancel buttons.
Choosing the Cancel button directs OpenFile to return a file-not-found error message.

OF_READ Opens the file for reading only.

OF_READWRITE Opens the file for reading and writing.

OF_REOPEN Opens the file using information in the reopen buffer.

OF_SHARE_COMPAT For MS-DOS–based file systems using the Win32 API, opens the file with compatibil-
ity mode, allowing any process on a specified computer to open the file any number of
times. Other efforts to open with any other sharing mode fail.

Windows NT/2000: This flag is mapped to the CreateFile function's
FILE_SHARE_READ | FILE_SHARE_WRITE flags.

OF_SHARE_DENY_N
ONE

Opens the file without denying read or write access to other processes. On
MS-DOS-based file systems using the Win32 API, if the file has been opened in com-
patibility mode by any other process, the function fails.

Windows NT/2000: This flag is mapped to the CreateFile function's
FILE_SHARE_READ | FILE_SHARE_WRITE flags.

OF_SHARE_DENY_R
EAD

Opens the file and denies read access to other processes. On MS-DOS-based file sys-
tems using the Win32 API, if the file has been opened in compatibility mode or for read
access by any other process, the function fails.

Windows NT/2000: This flag is mapped to the CreateFile function's
FILE_SHARE_WRITE flag.

OF_SHARE_DENY_
WRITE

Opens the file and denies write access to other processes. On MS-DOS-based file sys-
tems using the Win32 API, if the file has been opened in compatibility mode or for
write access by any other process, the function fails.

Windows NT/2000: This flag is mapped to the CreateFile function's
FILE_SHARE_READ flag.

OF_SHARE_EXCLUS
IVE

Opens the file with exclusive mode, denying both read and write access to other pro-
cesses. If the file has been opened in any other mode for read or write access, even by
the current process, the function fails.

OF_VERIFY Verifies that the date and time of the file are the same as when it was previously
opened. This is useful as an extra check for read-only files.

OF_WRITE Opens the file for writing only.
Page 370



Win32 API Reference
If the function fails, the return value is HFILE_ERROR. To get extended error information, call GetLastError.

Remarks
If the lpFileName parameter specifies a file name and extension only, this function searches for a matching file in the
following directories, in the order shown:

The directory from which the application loaded.

The current directory.

Windows 95: The Windows system directory. Use the GetSystemDirectory function to get the path of this direc-
tory.

Windows NT/2000: The 32-bit Windows system directory. Use the GetSystemDirectory function to get the path of
this directory. The name of this directory is SYSTEM32.

Windows NT/2000: The 16-bit Windows system directory. There is no Win32 function that retrieves the path of this
directory, but it is searched. The name of this directory is SYSTEM.

The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

The directories that are listed in the PATH environment variable.

The lpFileName parameter cannot contain wildcard characters.

The 32-bit OpenFile function does not support the OF_SEARCH flag supported by the 16-bit Windows OpenFile
function. The OF_SEARCH flag directs the system to search for a matching file even when the file name includes a
full path. To search for a file in a Win32-based application, use the SearchPath function.

To close the file after use, call the _lclose function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CreateFile, GetSystemDirectory, GetWindowsDirectory, _lclose, OFSTRUCT,
SearchPath

1.294 OpenFileMapping

The OpenFileMapping function opens a named file-mapping object.

OpenFileMapping: procedure
(

dwDesiredAccess: dword;
bInheritHandle: boolean;
lpName: string

);
stdcall;
returns( "eax" );
external( "__imp__OpenFileMappingA@12" );

Parameters

dwDesiredAccess
[in] Specifies the access to the file-mapping object.

Windows NT/2000: This access is checked against any security descriptor on the target file-mapping object.
Page 371



Volume 1
Windows 95/98: Security descriptors on file-mapping objects are not supported.

This parameter can be one of the following values.

bInheritHandle
[in] Specifies whether the returned handle is to be inherited by a new process during process creation. A value of
TRUE indicates that the new process inherits the handle.

lpName
[in] Pointer to a string that names the file-mapping object to be opened. If there is an open handle to a file-map-
ping object by this name and the security descriptor on the mapping object does not conflict with the dwDesire-
dAccess parameter, the open operation succeeds.

Terminal Services: The name can have a "Global\" or "Local\" prefix to explicitly open an object in the global
or session name space. The remainder of the name can contain any character except the backslash character (\).
For more information, see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the "Global\" and "Local\" pre-
fixes are ignored. The remainder of the name can contain any character except the backslash character.

Windows NT 4.0 and earlier, Windows 95/98: The name can contain any character except the backslash char-
acter.

Return Values
If the function succeeds, the return value is an open handle to the specified file-mapping object.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The handle that OpenFileMapping returns can be used with any function that requires a handle to a file-mapping
object.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hfh
Library: Use Kernel32.lib.

See Also
File Mapping Overview, File Mapping Functions, CreateFileMapping

Value Meaning

FILE_MAP_WRITE Read-write access. The target file-mapping object must have been created
with PAGE_READWRITE or PAGE_WRITE protection. Allows a
read-write view of the file to be mapped.

FILE_MAP_READ Read-only access. The target file-mapping object must have been created
with PAGE_READWRITE or PAGE_READ protection. Allows a read-only
view of the file to be mapped.

FILE_MAP_ALL_ACCESS All access. The target file-mapping object must have been created with
PAGE_READWRITE protection. Allows a read-write view of the file to be
mapped.

FILE_MAP_COPY Copy-on-write access. The target file-mapping object must have been cre-
ated with PAGE_WRITECOPY protection. Allows a copy-on-write view of
the file to be mapped.
Page 372



Win32 API Reference
1.295 OpenJobObject

The OpenJobObject function opens an existing job object.

OpenJobObject: procedure
(

dwDesiredAccess: dword;
bInheritHandles: boolean;
lpName: string

);
stdcall;
returns( "eax" );
external( "__imp__OpenJobObjectA@12" );

Parameters

dwDesiredAccess
[in] Specifies the desired access mode to the job object. This parameter can be one or more of the following val-
ues.

bInheritHandles
[in] Specifies whether the returned handle is inherited when a new process is created. If this parameter is TRUE,
the new process inherits the handle.

lpName
[in] Pointer to a null-terminated string specifying the name of the job to be opened. Name comparisons are case
sensitive.

Return Values
If the function succeeds, the return value is a handle to the job. The handle provides the requested access to the job.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
To associate a process with a job, use the AssignProcessToJobObject function.

Value Meaning

MAXIMUM_ALLOWED Specifies maximum access rights to the job object that are valid for
the caller.

JOB_OBJECT_ASSIGN_PROCESS Specifies the assign process access right to the object. Allows pro-
cesses to be assigned to the job.

JOB_OBJECT_SET_ATTRIBUTES Specifies the set attribute access right to the object. Allows job
object attributes to be set.

JOB_OBJECT_QUERY Specifies the query access right to the object. Allows job object
attributes and accounting information to be queried.

JOB_OBJECT_TERMINATE Specifies the terminate access right to the object. Allows termination
of all processes in the job object.

JOB_OBJECT_SET_SECURITY_ATTRI
BUTES

Specifies the security attributes access right to the object. Allows
security limitations on all processes in the job object to be set.

JOB_OBJECT_ALL_ACCESS Specifies the full access right to the job object.
Page 373



Volume 1
Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, AssignProcessToJobObject

1.296 OpenMutex

The OpenMutex function opens an existing named mutex object.

OpenMutex: procedure
(

dwDesiredAccess: dword;
bInheritHandle: boolean;
lpName: string

);
stdcall;
returns( "eax" );
external( "__imp__OpenMutexA@12" );

Parameters

dwDesiredAccess
[in] Specifies the requested access to the mutex object. For systems that support object security, the function fails
if the security descriptor of the specified object does not permit the requested access for the calling process.

This parameter can be any combination of the following values.

bInheritHandle
[in] Specifies whether the returned handle is inheritable. If TRUE, a process created by the CreateProcess
function can inherit the handle; otherwise, the handle cannot be inherited.

lpName
[in] Pointer to a null-terminated string that names the mutex to be opened. Name comparisons are case sensitive.

Terminal Services: The name can have a "Global\" or "Local\" prefix to explicitly open an object in the global
or session name space. The remainder of the name can contain any character except the backslash character (\).
For more information, see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the "Global\" and "Local\" pre-
fixes are ignored. The remainder of the name can contain any character except the backslash character.

Windows NT 4.0 and earlier, Windows 95/98: The name can contain any character except the backslash char-
acter.

Access Description

MUTEX_ALL_ACCESS Specifies all possible access flags for the mutex object.

SYNCHRONIZE Windows NT/2000: Enables use of the mutex handle in any of the
wait functions to acquire ownership of the mutex, or in the Release-
Mutex function to release ownership.
Page 374



Win32 API Reference
Return Values
If the function succeeds, the return value is a handle to the mutex object.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The OpenMutex function enables multiple processes to open handles of the same mutex object. The function suc-
ceeds only if some process has already created the mutex by using the CreateMutex function. The calling process
can use the returned handle in any function that requires a handle to a mutex object, such as the wait functions, sub-
ject to the limitations of the access specified in the dwDesiredAccess parameter.

The handle can be duplicated by using the DuplicateHandle function. Use the CloseHandle function to close the
handle. The system closes the handle automatically when the process terminates. The mutex object is destroyed when
its last handle has been closed.

Example
For an example that uses OpenMutex, see Using Named Objects.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CloseHandle, CreateMutex, CreateProcess, DuplicateHan-
dle, ReleaseMutex, Object Names

1.297 OpenProcess

The OpenProcess function opens an existing process object.

OpenProcess: procedure
(

dwDesiredAccess: dword;
bInheritHandle: boolean;
dwProcessId: dword

);
stdcall;
returns( "eax" );
external( "__imp__OpenProcess@12" );

Parameters

dwDesiredAccess
[in] Specifies the access to the process object. For operating systems that support security checking, this access is
checked against any security descriptor for the target process. This parameter can be
STANDARD_RIGHTS_REQUIRED or one or more of the following values.

Value Description

PROCESS_ALL_ACCESS Specifies all possible access flags for the process
object.
Page 375



Volume 1
bInheritHandle

bInheritHandle
[in] Specifies whether the returned handle can be inherited by a new process created by the current process. If
TRUE, the handle is inheritable.

dwProcessId
[in] Specifies the identifier of the process to open.

Return Values
If the function succeeds, the return value is an open handle to the specified process.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The handle returned by the OpenProcess function can be used in any function that requires a handle to a process,
such as the wait functions, provided the appropriate access rights were requested.

PROCESS_CREATE_PROCESS Used internally.

PROCESS_CREATE_THREAD Enables using the process handle in the CreateRe-
moteThread function to create a thread in the pro-
cess.

PROCESS_DUP_HANDLE Enables using the process handle as either the source
or target process in the DuplicateHandle function
to duplicate a handle.

PROCESS_QUERY_INFORMATION Enables using the process handle in the GetExit-
CodeProcess and GetPriorityClass functions
to read information from the process object.

PROCESS_SET_QUOTA Enables using the process handle in the Assign-
ProcessToJobObject and SetProcessWork-

ingSetSize functions to set memory limits.

PROCESS_SET_INFORMATION Enables using the process handle in the SetPriori-
tyClass function to set the priority class of the pro-
cess.

PROCESS_TERMINATE Enables using the process handle in the Termi-
nateProcess function to terminate the process.

PROCESS_VM_OPERATION Enables using the process handle in the Virtual-
ProtectEx and WriteProcessMemory functions
to modify the virtual memory of the process.

PROCESS_VM_READ Enables using the process handle in the ReadPro-
cessMemory function to read from the virtual mem-
ory of the process.

PROCESS_VM_WRITE Enables using the process handle in the WritePro-
cessMemory function to write to the virtual memory
of the process.

SYNCHRONIZE Windows NT/2000: Enables using the process han-
dle in any of the wait functions to wait for the pro-
cess to terminate.
Page 376



Win32 API Reference
When you are finished with the handle, be sure to close it using the CloseHandle function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, AssignProcessToJobObject, CloseHandle, Cre-
ateProcess, CreateRemoteThread, DuplicateHandle, GetCurrentProcess, GetCurrentProcessId, GetExitCodeProcess,
GetPriorityClass, ReadProcessMemory, SetPriorityClass, SetProcessWorkingSetSize, TerminateProcess, VirtualPro-
tectEx, WriteProcessMemory

1.298 OpenSemaphore

The OpenSemaphore function opens an existing named semaphore object.

OpenSemaphore: procedure
(

dwDesiredAccess: dword;
bInheritHandles: boolean;
lpName: string

);
stdcall;
returns( "eax" );
external( "__imp__OpenSemaphoreA@12" );

Parameters

dwDesiredAccess
[in] Specifies the requested access to the semaphore object. For systems that support object security, the function
fails if the security descriptor of the specified object does not permit the requested access for the calling process.

This parameter can be any combination of the following values.

bInheritHandle
[in] Specifies whether the returned handle is inheritable. If TRUE, a process created by the CreateProcess
function can inherit the handle; otherwise, the handle cannot be inherited.

lpName
[in] Pointer to a null-terminated string that names the semaphore to be opened. Name comparisons are case sen-
sitive.

Access Description

SEMAPHORE_ALL_ACCESS Specifies all possible access flags for the semaphore
object.

SEMAPHORE_MODIFY_STATE Enables use of the semaphore handle in the Releas-
eSemaphore function to modify the semaphore's count.

SYNCHRONIZE Windows NT/2000: Enables use of the semaphore handle
in any of the wait functions to wait for the semaphore's
state to be signaled.
Page 377



Volume 1
Terminal Services: The name can have a "Global\" or "Local\" prefix to explicitly open an object in the global
or session name space. The remainder of the name can contain any character except the backslash character (\).
For more information, see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the "Global\" and "Local\" pre-
fixes are ignored. The remainder of the name can contain any character except the backslash character.

Windows NT 4.0 and earlier, Windows 95/98: The name can contain any character except the backslash char-
acter.

Return Values
If the function succeeds, the return value is a handle to the semaphore object.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The OpenSemaphore function enables multiple processes to open handles of the same semaphore object. The func-
tion succeeds only if some process has already created the semaphore by using the CreateSemaphore function. The
calling process can use the returned handle in any function that requires a handle to a semaphore object, such as the
wait functions, subject to the limitations of the access specified in the dwDesiredAccess parameter.

The handle can be duplicated by using the DuplicateHandle function. Use the CloseHandle function to close the
handle. The system closes the handle automatically when the process terminates. The semaphore object is destroyed
when its last handle has been closed.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CloseHandle, CreateSemaphore, DuplicateHandle, Releas-
eSemaphore, Object Names

1.299 OpenWaitableTimer

The OpenWaitableTimer function opens an existing named waitable timer object.

OpenWaitableTimer: procedure
(

dwDesiredAccess: dword;
bInheritHandles: boolean;
lpTimerName: string

);
stdcall;
returns( "eax" );
external( "__imp__OpenWaitableTimerA@12" );

Parameters

dwDesiredAccess
[in] Specifies the requested access to the timer object. For systems that support object security, the function fails
if the security descriptor of the specified object does not permit the requested access for the calling process.

This parameter can be any combination of the following values.
Page 378



Win32 API Reference
bInheritHandle
[in] Specifies whether the returned handle is inheritable. If TRUE, a process created by the CreateProcess
function can inherit the handle; otherwise, the handle cannot be inherited.

lpTimerName
[in] Pointer to a null-terminated string specifying the name of the timer object. The name is limited to
MAX_PATH characters. Name comparison is case sensitive.

Terminal Services: The name can have a "Global\" or "Local\" prefix to explicitly open an object in the global
or session name space. The remainder of the name can contain any character except the backslash character (\).
For more information, see Kernel Object Name Spaces.

Windows 2000: On Windows 2000 systems without Terminal Services running, the "Global\" and "Local\" pre-
fixes are ignored. The remainder of the name can contain any character except the backslash character.

Windows NT 4.0 and earlier, Windows 95/98: The name can contain any character except the backslash char-
acter.

Return Values
If the function succeeds, the return value is a handle to the timer object.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The OpenWaitableTimer function enables multiple processes to open handles to the same timer object. The function
succeeds only if some process has already created the timer using the CreateWaitableTimer function. The calling
process can use the returned handle in any function that requires the handle to a timer object, such as the wait func-
tions, subject to the limitations of the access specified in the dwDesiredAccess parameter.

The returned handle can be duplicated by using the DuplicateHandle function. Use the CloseHandle function to
close the handle. The system closes the handle automatically when the process terminates. The timer object is
destroyed when its last handle has been closed.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CancelWaitableTimer, CloseHandle, CreateProcess, Cre-
ateWaitableTimer, DuplicateHandle, SetWaitableTimer, Object Names

Value Meaning

TIMER_ALL_ACCESS Specifies all possible access rights for the timer object.

TIMER_MODIFY_STATE Enables use of the timer handle in the SetWaitableTimer and
CancelWaitableTimer functions to modify the timer's state.

TIMER_QUERY_STATE Reserved for future use.

SYNCHRONIZE Windows NT/2000: Enables use of the timer handle in any of the
wait functions to wait for the timer's state to be signaled.
Page 379



Volume 1
1.300 OutputDebugString

The OutputDebugString function sends a string to the debugger for display.

OutputDebugString: procedure
(

lpOutputString: string
);

stdcall;
returns( "eax" );
external( "__imp__OutputDebugStringA@4" );

Parameters

lpOutputString
[in] Pointer to the null-terminated string to be displayed.

Return Values
This function does not return a value.

Remarks
If the application has no debugger, the system debugger displays the string. If the application has no debugger and the
system debugger is not active, OutputDebugString does nothing.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hf
Library: Use Kernel32.lib.

See Also
Debugging Overview, Debugging Functions

1.301 PeekConsoleInput

The PeekConsoleInput function reads data from the specified console input buffer without removing it from the
buffer.

PeekConsoleInput: procedure
(

hConsoleInput: dword;
var lpBuffer: INPUT_RECORD;

nLength: dword;
var lpNumberOfEventsRead: dword

);
stdcall;
returns( "eax" );
external( "__imp__PeekConsoleInputA@16" );

Parameters

hConsoleInput
[in] Handle to the input buffer. The handle must have GENERIC_READ access.
Page 380



Win32 API Reference
lpBuffer
[out] Pointer to an INPUT_RECORD buffer that receives the input buffer data.

nLength
[in] Specifies the size, in records, of the buffer pointed to by the lpBuffer parameter.

lpNumberOfEventsRead
[out] Pointer to a variable that receives the number of input records read.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the number of records requested exceeds the number of records available in the buffer, the number available is read.
If no data is available, the function returns immediately.

Windows NT/2000: This function uses either Unicode characters or 8-bit characters from the console's current code
page. The console's code page defaults initially to the system's OEM code page. To change the console's code page,
use the SetConsoleCP or SetConsoleOutputCP functions, or use the chcp or mode con cp select= commands.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, INPUT_RECORD, ReadConsoleInput, Set-
ConsoleCP, SetConsoleOutputCP, WriteConsoleInput

1.302 PostQueuedCompletionStatus

The PostQueuedCompletionStatus function posts an I/O completion packet to an I/O completion port. The I/O
completion packet will satisfy an outstanding call to the GetQueuedCompletionStatus function. The Get-
QueuedCompletionStatus function returns with the three values passed as the second, third, and fourth parameters
of the call to PostQueuedCompletionStatus.

PostQueuedCompletionStatus: procedure
(

CompletionPort: dword;
dwNumberOfBytesTransferred: dword;
dwCompletionKey: dword;

var lpOverlapped: OVERLAPPED
);

stdcall;
returns( "eax" );
external( "__imp__PostQueuedCompletionStatus@16" );

Parameters

CompletionPort
[in] Handle to an I/O completion port to which the I/O completion packet is to be posted.
Page 381



Volume 1
dwNumberOfBytesTransferred
[in] Specifies a value to be returned through the lpNumberOfBytesTransferred parameter of the GetQueuedCom-
pletionStatus function.

dwCompletionKey
[in] Specifies a value to be returned through the lpCompletionKey parameter of the GetQueuedCompletionSta-
tus function.

lpOverlapped
[in] Specifies a value to be returned through the lpOverlapped parameter of the GetQueuedCompletionSta-
tus function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError .

Remarks
For more information concerning dwNumberOfBytesTransferred, dwCompletionKey, and lpOverlapped, see Get-
QueuedCompletionStatus and the descriptions of the parameters those values are returned through.

Requirements
Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CreateIoCompletionPort, GetQueuedCompletionStatus, OVERLAPPED

1.303 PrepareTape

The PrepareTape function prepares the tape to be accessed or removed.

PrepareTape: procedure
(

hDevice: dword;
dwOperation: dword;
bImmediate: dword

);
stdcall;
returns( "eax" );
external( "__imp__PrepareTape@12" );

Parameters

hDevice

[in] Handle to the device preparing the tape. This handle is created by using the CreateFile function.

dwOperation
[in] Specifies how the tape device is to be prepared. This parameter can be one of the following values.
Page 382



Win32 API Reference
bImmediate
[in] Specifies whether to return as soon as the preparation begins. If this parameter is TRUE, the function returns
immediately. If it is FALSE, the function does not return until the operation has been completed.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Value Meaning

TAPE_FORMAT Performs a low-level format of the tape. Currently, only the QIC117 device sup-
ports this feature.

TAPE_LOAD Loads the tape and moves the tape to the beginning.

TAPE_LOCK Locks the tape ejection mechanism so that the tape is not ejected accidentally.

TAPE_TENSION Adjusts the tension by moving the tape to the end of the tape and back to the
beginning. This option is not supported by all devices. This value is ignored if it
is not supported.

TAPE_UNLOAD Moves the tape to the beginning for removal from the device. After a successful
unload operation, the device returns errors to applications that attempt to access
the tape, until the tape is loaded again.

TAPE_UNLOCK Unlocks the tape ejection mechanism.

Error Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data before the beginning-of-medium marker
failed.

ERROR_BUS_RESET A reset condition was detected on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during an operation.

ERROR_SETMARK_DETECTED A setmark was reached during an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on a new tape in a multivolume parti-
tion.

ERROR_DEVICE_NOT_PARTITIONED The partition information could not be found when a tape was
being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive has been replaced or removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.

ERROR_NOT_SUPPORTED The tape driver does not support a requested function.

ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection mechanism failed.

ERROR_UNABLE_TO_UNLOAD_MEDI
A

An attempt to unload the tape failed.
Page 383



Volume 1
Remarks
Some tape devices do not support certain tape operations. See your tape device documentation and use the Get-
TapeParameters function to determine your tape device's capabilities.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tape Backup Overview, Tape Backup Functions, CreateFile, GetTapeParameters

1.304 Process32First

Retrieves information about the first process encountered in a system snapshot.

Process32First: procedure
(

hSnapshot: dword;
var lppe: PROCESSENTRY32

);
stdcall;
returns( "eax" );
external( "__imp__Process32First@8" );

Parameters

hSnapshot
[in] Handle to the snapshot returned from a previous call to the CreateToolhelp32Snapshot function.

lppe
[in/out] Pointer to a PROCESSENTRY32 structure.

Return Values
Returns TRUE if the first entry of the process list has been copied to the buffer or FALSE otherwise. The
ERROR_NO_MORE_FILES error value is returned by the GetLastError function if no processes exist or the
snapshot does not contain process information.

Remarks
The calling application must set the dwSize member of PROCESSENTRY32 to the size, in bytes, of the structure.
Process32First changes dwSize to the number of bytes written to the structure. This will never be greater than the
initial value of dwSize, but it may be smaller. If the value is smaller, do not rely on the values of any members whose
offsets are greater than this value.

To retrieve information about other processes recorded in the same snapshot, use the Process32Next function.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

ERROR_WRITE_PROTECT The media is write protected.
Page 384



Win32 API Reference
See Also
Tool Help Library Overview, Tool Help Functions, , CreateToolhelp32Snapshot, PROCESSENTRY32,
Process32Next

1.305 Process32Next

Retrieves information about the next process recorded in a system snapshot.

Process32Next: procedure
(

hSnapshot: dword;
var lppe: PROCESSENTRY32

);
stdcall;
returns( "eax" );
external( "__imp__Process32Next@8" );

Parameters

hSnapshot
[in] Handle to the snapshot returned from a previous call to the CreateToolhelp32Snapshot function.

lppe
[out] Pointer to a PROCESSENTRY32 structure.

Return Values
Returns TRUE if the next entry of the process list has been copied to the buffer or FALSE otherwise. The
ERROR_NO_MORE_FILES error value is returned by the GetLastError function if no processes exist or the
snapshot does not contain process information.

Remarks
To retrieve information about the first process recorded in a snapshot, use the Process32First function.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tool Help Library Overview, Tool Help Functions

1.306 PulseEvent

The PulseEvent function sets the specified event object to the signaled state and then resets it to the nonsignaled state
after releasing the appropriate number of waiting threads.

PulseEvent: procedure
(

hEvent: dword
);

stdcall;
Page 385



Volume 1
returns( "eax" );
external( "__imp__PulseEvent@4" );

Parameters

hEvent
[in] Handle to the event object. The CreateEvent or OpenEvent function returns this handle.

Windows NT/2000: The handle must have EVENT_MODIFY_STATE access. For more information, see Syn-
chronization Object Security and Access Rights.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
For a manual-reset event object, all waiting threads that can be released immediately are released. The function then
resets the event object's state to nonsignaled and returns.

For an auto-reset event object, the function resets the state to nonsignaled and returns after releasing a single waiting
thread, even if multiple threads are waiting.

If no threads are waiting, or if no thread can be released immediately, PulseEvent simply sets the event object's state
to nonsignaled and returns.

Note that for a thread using the multiple-object wait functions to wait for all specified objects to be signaled, Pul-
seEvent can set the event object's state to signaled and reset it to nonsignaled without causing the wait function to
return. This happens if not all of the specified objects are simultaneously signaled.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CreateEvent, OpenEvent, ResetEvent, SetEvent

1.307 PurgeComm

The PurgeComm function discards all characters from the output or input buffer of a specified communications
resource. It can also terminate pending read or write operations on the resource.

PurgeComm: procedure
(

hFile: dword;
dwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__PurgeComm@8" );

Parameters

hFile
[in] Handle to the communications resource. The CreateFile function returns this handle.
Page 386



Win32 API Reference
dwFlags
[in] Specifies the action to take. This parameter can be one or more of the following values.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If a thread uses PurgeComm to flush an output buffer, the deleted characters are not transmitted. To empty the output
buffer while ensuring that the contents are transmitted, call the FlushFileBuffers function (a synchronous opera-
tion). Note, however, that FlushFileBuffers is subject to flow control but not to write time-outs, and it will not return
until all pending write operations have been transmitted.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, CreateFile

1.308 QueryDosDevice

The QueryDosDevice function retrieves information about MS-DOS device names. The function can obtain the cur-
rent mapping for a particular MS-DOS device name. The function can also obtain a list of all existing MS-DOS
device names.

MS-DOS device names are stored as symbolic links in the object name space. The code that converts an MS-DOS
path into a corresponding path uses these symbolic links to map MS-DOS devices and drive letters. The QueryDos-
Device function provides a mechanism whereby a Win32-based application can query the names of the symbolic
links used to implement the MS-DOS device namespace as well as the value of each specific symbolic link.

QueryDosDevice: procedure
(

lpDeviceName: string;
lpTargetPath: string;
ucchMax: dword

);
stdcall;
returns( "eax" );
external( "__imp__QueryDosDeviceA@12" );

Value Meaning

PURGE_TXABORT Terminates all outstanding overlapped write operations and returns immedi-
ately, even if the write operations have not been completed.

PURGE_RXABORT Terminates all outstanding overlapped read operations and returns immedi-
ately, even if the read operations have not been completed.

PURGE_TXCLEAR Clears the output buffer (if the device driver has one).

PURGE_RXCLEAR Clears the input buffer (if the device driver has one).
Page 387



Volume 1
Parameters

lpDeviceName
[in] Pointer to an MS-DOS device name string specifying the target of the query. The device name cannot have a
trailing backslash.

This parameter can be NULL. In that case, the QueryDosDevice function will store a list of all existing
MS-DOS device names into the buffer pointed to by lpTargetPath.

lpTargetPath
[out] Pointer to a buffer that will receive the result of the query. The function fills this buffer with one or more
null-terminated strings. The final null-terminated string is followed by an additional NULL.

If lpDeviceName is non-NULL, the function retrieves information about the particular MS-DOS device specified
by lpDeviceName. The first null-terminated string stored into the buffer is the current mapping for the device.
The other null-terminated strings represent undeleted prior mappings for the device.

If lpDeviceName is NULL, the function retrieves a list of all existing MS-DOS device names. Each null-termi-
nated string stored into the buffer is the name of an existing MS-DOS device.

ucchMax
[in] Specifies the maximum number of TCHARs that can be stored into the buffer pointed to by lpTargetPath.

Return Values
If the function succeeds, the return value is the number of TCHARs stored into the buffer pointed to by lpTargetPath.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The DefineDosDevice function provides a means whereby a Win32-based application can create and modify the
symbolic links used to implement the MS-DOS device namespace.

MS-DOS device names are global. After is it defined, an MS-DOS device name remains visible to all processes until
either it is explicitly removed or the system restarts.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 98.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, DefineDosDevice

1.309 QueryInformationJobObject

The QueryInformationJobObject function retrieves limit and job state information from the job object.

QueryInformationJobObject: procedure
(

hJob: dword;
vJobObjectInfoClass: JOBOBJECTINFOCLASS;

var lpJobObjectInfo: var;
cbJobObjectInfoLength: dword;

var lpReturnLength: dword
);

stdcall;
Page 388



Win32 API Reference
returns( "eax" );
external( "__imp__QueryInformationJobObject@20" );

Parameters

hJob
[in] Handle to the job whose information is being queried. The CreateJobObject or OpenJobObject function
returns this handle. The handle must have the JOB_OBJECT_QUERY access right associated with it. For more
information, see Job Object Security and Access Rights.

If this value is NULL and the calling process is associated with a job, the job associated with the calling process
is used.

JobObjectInfoClass
[in] Specifies the information class for limits to be queried. This parameter can be one of the following values.

lpJobObjectInfo
[out] Receives the limit information. The format of this data depends on the value of the JobObjectInfoClass
parameter.

cbJobObjectInfoLength
[in] Specifies the count, in bytes, of the job information being queried.

lpReturnLength
[out] Pointer to a variable that receives the length of data written to the structure pointed to by the lpJobObject-
Info parameter. If you do not want to receive this information, specify NULL.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
You can use QueryInformationJobObject to obtain the current limits, modify them, then use the SetInforma-

Value Meaning

JobObjectBasicAccountingInformation The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_BASIC_ACCOUNTING_INFORMATION structure.

JobObjectBasicAndIoAccountingInforma-
tion

The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_BASIC_AND_IO_ACCOUNTING_INFORMATION struc-
ture.

JobObjectBasicLimitInformation The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_BASIC_LIMIT_INFORMATION structure.

JobObjectBasicProcessIdList The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_BASIC_PROCESS_ID_LIST structure.

JobObjectBasicUIRestrictions The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_BASIC_UI_RESTRICTIONS structure.

JobObjectExtendedLimitInformation The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_EXTENDED_LIMIT_INFORMATION structure.

JobObjectSecurityLimitInformation The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_SECURITY_LIMIT_INFORMATION structure.
Page 389



Volume 1
tionJobObject function to set new limits.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions,
JOBOBJECT_BASIC_ACCOUNTING_INFORMATION,
JOBOBJECT_BASIC_AND_IO_ACCOUNTING_INFORMATION,
JOBOBJECT_BASIC_LIMIT_INFORMATION, JOBOBJECT_BASIC_PROCESS_ID_LIST,
JOBOBJECT_BASIC_UI_RESTRICTIONS, JOBOBJECT_EXTENDED_LIMIT_INFORMATION,
JOBOBJECT_SECURITY_LIMIT_INFORMATION, SetInformationJobObject

1.310 QueryPerformanceCounter

The QueryPerformanceCounter function retrieves the current value of the high-resolution performance counter, if
one exists.

QueryPerformanceCounter: procedure
(

var lpPerformanceCount: qword
);

stdcall;
returns( "eax" );
external( "__imp__QueryPerformanceCounter@4" );

Parameters

lpPerformanceCount
[out] Pointer to a variable that receives the current performance-counter value, in counts. If the installed hard-
ware does not support a high-resolution performance counter, this parameter can be zero.

Return Values
If the installed hardware supports a high-resolution performance counter, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError. For example, if
the installed hardware does not support a high-resolution performance counter, the function fails.

Remarks
On a multiprocessor machine, it should not matter which processor is called. However, you can get different results
on different processors due to bugs in the BIOS or the HAL. To specify processor affinity for a thread, use the Set-
ThreadAffinityMask function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Timers Overview, Timer Functions, QueryPerformanceFrequency
Page 390



Win32 API Reference
1.311 QueryPerformanceFrequency

The QueryPerformanceFrequency function retrieves the frequency of the high-resolution performance counter, if
one exists. The frequency cannot change while the system is running.

QueryPerformanceFrequency: procedure
(

var lpPerformanceCount: qword
);

stdcall;
returns( "eax" );
external( "__imp__QueryPerformanceFrequency@4" );

Parameters

lpFrequency
[out] Pointer to a variable that receives the current performance-counter frequency, in counts per second. If the
installed hardware does not support a high-resolution performance counter, this parameter can be zero.

Return Values
If the installed hardware supports a high-resolution performance counter, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError. For example, if
the installed hardware does not support a high-resolution performance counter, the function fails.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Timers Overview, Timer Functions, QueryPerformanceCounter

1.312 QueueUserAPC

The QueueUserAPC function adds a user-mode asynchronous procedure call (APC) object to the APC queue of the
specified thread.

QueueUserAPC: procedure
(

pfnAPC: pointer;
hThread: dword;
dwData: dword

);
stdcall;
returns( "eax" );
external( "__imp__QueueUserAPC@12" );

Parameters

pfnAPC
Page 391



Volume 1
[in] Pointer to the application-supplied APC function to be called when the specified thread performs an alertable
wait operation. For more information, see APCProc.

hThread
[in] Specifies the handle to the thread. The handle must have THREAD_SET_CONTEXT access. For more
information, see Synchronization Object Security and Access Rights.

dwData
[in] Specifies a single value that is passed to the APC function pointed to by the pfnAPC parameter.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. There are no error values defined for this function that can be retrieved
by calling GetLastError.

Remarks
The APC support provided in the operating system allows an application to queue an APC object to a thread. Each
thread has its own APC queue. The queuing of an APC is a request for the thread to call the APC function. The oper-
ating system issues a software interrupt to direct the thread to call the APC function.

When a user-mode APC is queued, the thread is not directed to call the APC function unless it is in an alertable state.
After the thread is in an alertable state, the thread handles all pending APCs in first in, first out (FIFO) order, and the
wait operation returns WAIT_IO_COMPLETION. A thread enters an alertable state by using SleepEx, Sig-

nalObjectAndWait, WaitForSingleObjectEx, WaitForMultipleObjectsEx, or MsgWaitForMultip-
leObjectsEx to perform an alertable wait operation.

If an application queues an APC before the thread begins running, the thread begins by calling the APC function.
After the thread calls an APC function, it calls the APC functions for all APCs in its APC queue.

When the thread is terminated using the ExitThread or TerminateThread function, the APCs in its APC queue
are lost. The APC functions are not called.

Note that the ReadFileEx, SetWaitableTimer, and WriteFileEx functions are implemented using an APC as the
completion notification callback mechanism.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, APCProc, MsgWaitForMultipleObjectsEx, ReadFileEx, Set-
WaitableTimer, SleepEx, WaitForMultipleObjectsEx, WaitForSingleObjectEx, WriteFileEx

1.313 RaiseException

The RaiseException function raises an exception in the calling thread.

RaiseException: procedure
(

dwExceptionCode:dword;
dwExceptionFlags:dword;
nNumberOfArguments:dword;

var lpArguments:dword
);

stdcall;
Page 392



Win32 API Reference
returns( "eax" );
external( "__imp__RaiseException@16" );

Parameters

dwExceptionCode
[in] Specifies the application-defined exception code of the exception being raised. The filter expression and
exception-handler block of an exception handler can use the GetExceptionCode function to retrieve this value.

Note that the system will clear bit 28 of dwExceptionCode before displaying a message This bit is a reserved
exception bit, used by the system for its own purposes.

dwExceptionFlags
[in] Specifies the exception flags. This can be either zero to indicate a continuable exception, or
EXCEPTION_NONCONTINUABLE to indicate a noncontinuable exception. Any attempt to continue execu-
tion after a noncontinuable exception causes the EXCEPTION_NONCONTINUABLE_EXCEPTION exception.

nNumberOfArguments
[in] Specifies the number of arguments in the lpArguments array. This value must not exceed
EXCEPTION_MAXIMUM_PARAMETERS. This parameter is ignored if lpArguments is NULL.

lpArguments
[in] Pointer to an array of arguments. This parameter can be NULL. These arguments can contain any applica-
tion-defined data that needs to be passed to the filter expression of the exception handler.

Return Values
This function does not return a value.

Remarks
The RaiseException function enables a process to use structured exception handling to handle private, software-gen-
erated, application-defined exceptions.

Raising an exception causes the exception dispatcher to go through the following search for an exception handler:

The system first attempts to notify the process's debugger, if any.

If the process is not being debugged, or if the associated debugger does not handle the exception, the system attempts
to locate a frame-based exception handler by searching the stack frames of the thread in which the exception
occurred. The system searches the current stack frame first, then proceeds backward through preceding stack frames.

If no frame-based handler can be found, or no frame-based handler handles the exception, the system makes a second
attempt to notify the process's debugger.

If the process is not being debugged, or if the associated debugger does not handle the exception, the system provides
default handling based on the exception type. For most exceptions, the default action is to call the ExitProcess
function.

The values specified in the dwExceptionCode, dwExceptionFlags, nNumberOfArguments, and lpArguments parame-
ters can be retrieved in the filter expression of a frame-based exception handler by calling the GetExceptionIn-
formation function. A debugger can retrieve these values by calling the WaitForDebugEvent function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Structured Exception Handling Overview, Structured Exception Handling Functions, ExitProcess, GetException-
Page 393



Volume 1
Code, GetExceptionInformation, WaitForDebugEvent

1.314 ReadConsole

The ReadConsole function reads character input from the console input buffer and removes it from the buffer.

ReadConsole: procedure
(

hConsoleInput: dword;
var lpBuffer: var;

nNumberOfCharsToRead: dword;
var lpNumberOfCharsRead: dword;
var lpReserved: var

);
stdcall;
returns( "eax" );
external( "__imp__ReadConsoleA@20" );

Parameters

hConsoleInput
[in] Handle to the console input buffer. The handle must have GENERIC_READ access.

lpBuffer
[out] Pointer to a buffer that receives the data read from the console input buffer.

nNumberOfCharsToRead
[in] Specifies the number of TCHARs to read. Because the function can read either Unicode or ANSI characters,
the size of the buffer pointed to by the lpBuffer parameter should be at least nNumberOfCharsToRead *
sizeof(TCHAR) bytes.

lpNumberOfCharsRead
[out] Pointer to a variable that receives the number of TCHARs actually read.

lpReserved
[in] Reserved; must be NULL.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
ReadConsole reads keyboard input from a console's input buffer. It behaves like the ReadFile function, except that
it can read in either Unicode (wide-character) or ANSI mode. To have applications that maintain a single set of
sources compatible with both modes, use ReadConsole rather than ReadFile. Although ReadConsole can only be
used with a console input buffer handle, ReadFile can be used with other handles (such as files or pipes). ReadCon-
sole fails if used with a standard handle that has been redirected to be something other than a console handle.

All of the input modes that affect the behavior of ReadFile have the same effect on ReadConsole. To retrieve and set
the input modes of a console input buffer, use the GetConsoleMode and SetConsoleMode functions.

If the input buffer contains input events other than keyboard events (such as mouse events or window-resizing
events), they are discarded. Those events can only be read by using the ReadConsoleInput function.

Windows NT/2000: This function uses either Unicode characters or 8-bit characters from the console's current code
Page 394



Win32 API Reference
page. The console's code page defaults initially to the system's OEM code page. To change the console's code page,
use the SetConsoleCP or SetConsoleOutputCP functions, or use the chcp or mode con cp select= commands.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, GetConsoleMode, ReadConsoleInput, Read-
File, SetConsoleCP, SetConsoleMode, SetConsoleOutputCP, WriteConsole

1.315 ReadConsoleInput

The ReadConsoleInput function reads data from a console input buffer and removes it from the buffer.

ReadConsoleInput: procedure
(

hConsoleInput: dword;
var lpBuffer: INPUT_RECORD;

nLength: dword;
var lpNumberOfEventsRead: dword

);
stdcall;
returns( "eax" );
external( "__imp__ReadConsoleInputA@16" );

Parameters

hConsoleInput
[in] Handle to the input buffer. The handle must have GENERIC_READ access.

lpBuffer
[out] Pointer to an INPUT_RECORD buffer that receives the input buffer data.

nLength
[in] Specifies the size, in input records, of the buffer pointed to by the lpBuffer parameter.

lpNumberOfEventsRead
[out] Pointer to a variable that receives the number of input records read.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the number of records requested in the nLength parameter exceeds the number of records available in the buffer, the
number available is read. The function does not return until at least one input record has been read.

A process can specify a console input buffer handle in one of the wait functions to determine when there is unread
console input. When the input buffer is not empty, the state of a console input buffer handle is signaled.

To determine the number of unread input records in a console's input buffer, use the GetNumberOfConsoleIn-
putEvents function. To read input records from a console input buffer without affecting the number of unread
Page 395



Volume 1
records, use the PeekConsoleInput function. To discard all unread records in a console's input buffer, use the
FlushConsoleInputBuffer function.

Windows NT/2000: This function uses either Unicode characters or 8-bit characters from the console's current code
page. The console's code page defaults initially to the system's OEM code page. To change the console's code page,
use the SetConsoleCP or SetConsoleOutputCP functions, or use the chcp or mode con cp select= commands.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, FlushConsoleInputBuffer, GetNumberOfCon-
soleInputEvents, INPUT_RECORD, PeekConsoleInput, ReadConsole, ReadFile, SetConsoleCP, SetConsoleOut-
putCP, WriteConsoleInput

1.316 ReadConsoleOutput

The ReadConsoleOutput function reads character and color attribute data from a rectangular block of character cells
in a console screen buffer, and the function writes the data to a rectangular block at a specified location in the destina-
tion buffer.

ReadConsoleOutput: procedure
(

hConsoleOutput: dword;
var lpBuffer: CHAR_INFO;

dwBufferSize: COORD;
dwBufferCoord: COORD;

var lpReadRegion: SMALL_RECT
);

stdcall;
returns( "eax" );
external( "__imp__ReadConsoleOutputA@20" );

Parameters

hConsoleOutput
[in] Handle to the screen buffer. The handle must have GENERIC_READ access.

lpBuffer
[out] Pointer to a destination buffer that receives the data read from the screen buffer. This pointer is treated as
the origin of a two-dimensional array of CHAR_INFO structures whose size is specified by the dwBufferSize
parameter.

dwBufferSize
[in] Specifies the size, in character cells, of the lpBuffer parameter. The X member of the COORD structure is the
number of columns; the Y member is the number of rows.

dwBufferCoord
[in] Specifies the coordinates of the upper-left cell in the lpBuffer parameter that receives the data read from the
screen buffer. The X member of the COORD structure is the column, and the Y member is the row.

lpReadRegion
Page 396



Win32 API Reference
[in/out] Pointer to a SMALL_RECT structure. On input, the structure members specify the upper-left and
lower-right coordinates of the screen buffer rectangle from which the function is to read. On output, the structure
members specify the actual rectangle that the function copied from.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
ReadConsoleOutput treats the screen buffer and the destination buffer as two-dimensional arrays (columns and
rows of character cells). The rectangle pointed to by the lpReadRegion parameter specifies the size and location of the
block to be read from the screen buffer. A destination rectangle of the same size is located with its upper-left cell at
the coordinates of the dwBufferCoord parameter in the lpBuffer array. Data read from the cells in the screen buffer
source rectangle is copied to the corresponding cells in the destination buffer. If the corresponding cell is outside the
boundaries of the destination buffer rectangle (whose dimensions are specified by the dwBufferSize parameter), the
data is not copied.

Cells in the destination buffer corresponding to coordinates that are not within the boundaries of the screen buffer are
left unchanged. In other words, these are the cells for which no screen buffer data is available to be read.

Before ReadConsoleOutput returns, it sets the members of the structure pointed to by the lpReadRegion parameter
to the actual screen buffer rectangle whose cells were copied into the destination buffer. This rectangle reflects the
cells in the source rectangle for which there existed a corresponding cell in the destination buffer, because ReadCon-
soleOutput clips the dimensions of the source rectangle to fit the boundaries of the screen buffer.

If the rectangle specified by lpReadRegion lies completely outside the boundaries of the screen buffer, or if the corre-
sponding rectangle is positioned completely outside the boundaries of the destination buffer, no data is copied. In this
case, the function returns with the members of the structure pointed to by the lpReadRegion parameter set such that
the Right member is less than the Left, or the Bottom member is less than the Top. To determine the size of the
screen buffer, use the GetConsoleScreenBufferInfo function.

The ReadConsoleOutput function has no effect on the screen buffer's cursor position. The contents of the screen
buffer are not changed by the function.

Windows NT/2000: This function uses either Unicode characters or 8-bit characters from the console's current code
page. The console's code page defaults initially to the system's OEM code page. To change the console's code page,
use the SetConsoleCP or SetConsoleOutputCP functions, or use the chcp or mode con cp select= commands.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, CHAR_INFO, COORD, ReadConsoleOutpu-
tAttribute, ReadConsoleOutputCharacter, SetConsoleCP, SetConsoleOutputCP, SMALL_RECT, WriteConsoleOut-
put

1.317 ReadConsoleOutputAttribute

The ReadConsoleOutputAttribute function copies a specified number of foreground and background color
attributes from consecutive cells of a console screen buffer, beginning at a specified location.

ReadConsoleOutputAttribute: procedure
(

hConsoleOutput: dword;
Page 397



Volume 1
var lpAttribute: word;
nLength: dword;
dwReadCoord: COORD;

var lpNumberOfAttrsRead: dword
);

stdcall;
returns( "eax" );
external( "__imp__ReadConsoleOutputAttribute@20" );

Parameters

hConsoleOutput
[in] Handle to a console screen buffer. The handle must have GENERIC_READ access.

lpAttribute
[out] Pointer to a buffer that receives the attributes read from the screen buffer.

nLength
[in] Specifies the number of screen buffer character cells from which to read. The size of the buffer pointed to by
the lpAttribute parameter should be nLength * sizeof(WORD).

dwReadCoord
[in] Specifies the coordinates of the first cell in the screen buffer from which to read. The X member of the
COORD structure is the column, and the Y member is the row.

lpNumberOfAttrsRead
[out] Pointer to a variable that receives the number of attributes actually read.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the number of attributes to be read from extends beyond the end of the specified screen buffer row, attributes are
read from the next row. If the number of attributes to be read from extends beyond the end of the screen buffer,
attributes up to the end of the screen buffer are read.

Each attribute specifies the foreground (text) and background colors in which that character cell is drawn. The
attribute values are some combination of the following values: FOREGROUND_BLUE, FOREGROUND_GREEN,
FOREGROUND_RED, FOREGROUND_INTENSITY, BACKGROUND_BLUE, BACKGROUND_GREEN,
BACKGROUND_RED, and BACKGROUND_INTENSITY. For example, the following combination of values pro-
duces red text on a white background:

FOREGROUND_RED | BACKGROUND_RED | BACKGROUND_GREEN | BACKGROUND_BLUE

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, COORD, ReadConsoleOutput, ReadConso-
leOutputCharacter, WriteConsoleOutput, WriteConsoleOutputAttribute, WriteConsoleOutputCharacter
Page 398



Win32 API Reference
1.318 ReadConsoleOutputCharacter

The ReadConsoleOutputCharacter function copies a number of characters from consecutive cells of a console
screen buffer, beginning at a specified location.

ReadConsoleOutputCharacter: procedure
(

hConsoleOutput: dword;
lpCharacter: string;
nLength: dword;
dwReadCoord: COORD;

var lpNumberOfCharsRead: dword
);

stdcall;
returns( "eax" );
external( "__imp__ReadConsoleOutputCharacterA@20" );

Parameters

hConsoleOutput
[in] Handle to a console screen buffer. The handle must have GENERIC_READ access.

lpCharacter
[out] Pointer to a buffer that receives the characters read from the screen buffer.

nLength
[in] Specifies the number of screen buffer character cells from which to read. The size of the buffer pointed to by
the lpCharacter parameter should be nLength * sizeof(TCHAR).

dwReadCoord
[in] Specifies the coordinates of the first cell in the screen buffer from which to read. The X member of the
COORD structure is the column, and the Y member is the row.

lpNumberOfCharsRead
[out] Pointer to a variable that receives the number of characters actually read.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the number of characters to be read from extends beyond the end of the specified screen buffer row, characters are
read from the next row. If the number of characters to be read from extends beyond the end of the screen buffer, char-
acters up to the end of the screen buffer are read.

Windows NT/2000: This function uses either Unicode characters or 8-bit characters from the console's current code
page. The console's code page defaults initially to the system's OEM code page. To change the console's code page,
use the SetConsoleCP or SetConsoleOutputCP functions, or use the chcp or mode con cp select= commands.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Page 399



Volume 1
See Also
Consoles and Character-Mode Support Overview, Console Functions, COORD, ReadConsoleOutput, ReadConso-
leOutputAttribute, SetConsoleCP, SetConsoleOutputCP, WriteConsoleOutput, WriteConsoleOutputAttribute, Write-
ConsoleOutputCharacter

1.319 ReadFile

The ReadFile function reads data from a file, starting at the position indicated by the file pointer. After the read oper-
ation has been completed, the file pointer is adjusted by the number of bytes actually read, unless the file handle is
created with the overlapped attribute. If the file handle is created for overlapped input and output (I/O), the applica-
tion must adjust the position of the file pointer after the read operation.

This function is designed for both synchronous and asynchronous operation. The ReadFileEx function is designed
solely for asynchronous operation. It lets an application perform other processing during a file read operation.

ReadFile: procedure
(

hFile: dword;
var lpBuffer: var;

nNumberOfBytesToRead: dword;
var lpNumberOfBytesRead: dword;
var lpOverlapped: OVERLAPPED

);
stdcall;
returns( "eax" );
external( "__imp__ReadFile@20" );

Parameters

hFile
[in] Handle to the file to be read. The file handle must have been created with GENERIC_READ access to the
file.

Windows NT/2000: For asynchronous read operations, hFile can be any handle opened with the
FILE_FLAG_OVERLAPPED flag by the CreateFile function, or a socket handle returned by the socket or
accept function.

Windows 95/98: For asynchronous read operations, hFile can be a communications resource opened with the
FILE_FLAG_OVERLAPPED flag by CreateFile, or a socket handle returned by socket or accept. You cannot
perform asynchronous read operations on mailslots, named pipes, or disk files.

lpBuffer
[out] Pointer to the buffer that receives the data read from the file.

nNumberOfBytesToRead
[in] Specifies the number of bytes to be read from the file.

lpNumberOfBytesRead
[out] Pointer to the variable that receives the number of bytes read. ReadFile sets this value to zero before doing
any work or error checking. If this parameter is zero when ReadFile returns TRUE on a named pipe, the other
end of the message-mode pipe called the WriteFile function with nNumberOfBytesToWrite set to zero.

Windows NT/2000: If lpOverlapped is NULL, lpNumberOfBytesRead cannot be NULL. If lpOverlapped is not
NULL, lpNumberOfBytesRead can be NULL. If this is an overlapped read operation, you can get the number of
bytes read by calling GetOverlappedResult. If hFile is associated with an I/O completion port, you can get
the number of bytes read by calling GetQueuedCompletionStatus.
Page 400



Win32 API Reference
Windows 95/98: This parameter cannot be NULL.

lpOverlapped
[in] Pointer to an OVERLAPPED structure. This structure is required if hFile was created with
FILE_FLAG_OVERLAPPED.

If hFile was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped parameter must not be NULL. It must
point to a valid OVERLAPPED structure. If hFile was created with FILE_FLAG_OVERLAPPED and lpOver-
lapped is NULL, the function can incorrectly report that the read operation is complete.

If hFile was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL, the read operation starts
at the offset specified in the OVERLAPPED structure and ReadFile may return before the read operation has
been completed. In this case, ReadFile returns FALSE and the GetLastError function returns
ERROR_IO_PENDING. This allows the calling process to continue while the read operation finishes. The event
specified in the OVERLAPPED structure is set to the signaled state upon completion of the read operation.

If hFile was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the read operation starts
at the current file position and ReadFile does not return until the operation has been completed.

Windows NT/2000: If hFile is not opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL,
the read operation starts at the offset specified in the OVERLAPPED structure. ReadFile does not return until
the read operation has been completed.

Windows 95/98: For operations on files, disks, pipes, or mailslots, this parameter must be NULL; a pointer to an
OVERLAPPED structure causes the call to fail. However, Windows 95/98 supports overlapped I/O on serial and
parallel ports.

Return Values
The ReadFile function returns when one of the following is true: a write operation completes on the write end of the
pipe, the number of bytes requested has been read, or an error occurs.

If the function succeeds, the return value is nonzero.

If the return value is nonzero and the number of bytes read is zero, the file pointer was beyond the current end of the
file at the time of the read operation. However, if the file was opened with FILE_FLAG_OVERLAPPED and lpOver-
lapped is not NULL, the return value is FALSE and GetLastError returns ERROR_HANDLE_EOF when the file
pointer goes beyond the current end of file.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If part of the file is locked by another process and the read operation overlaps the locked portion, this function fails.

An application must meet certain requirements when working with files opened with
FILE_FLAG_NO_BUFFERING:

File access must begin at byte offsets within the file that are integer multiples of the volume's sector
size. To determine a volume's sector size, call the GetDiskFreeSpace function.

File access must be for numbers of bytes that are integer multiples of the volume's sector size. For
example, if the sector size is 512 bytes, an application can request reads and writes of 512, 1024, or 2048 bytes, but
not of 335, 981, or 7171 bytes.

Buffer addresses for read and write operations must be sector aligned (aligned on addresses in
memory that are integer multiples of the volume's sector size). One way to sector align buffers is to use the Virtu-
alAlloc function to allocate the buffers. This function allocates memory that is aligned on addresses that are integer
multiples of the system's page size. Because both page and volume sector sizes are powers of 2, memory aligned by
multiples of the system's page size is also aligned by multiples of the volume's sector size.

Accessing the input buffer while a read operation is using the buffer may lead to corruption of the data read into that
buffer. Applications must not read from, write to, reallocate, or free the input buffer that a read operation is using until
the read operation completes.

Characters can be read from the console input buffer by using ReadFile with a handle to console input. The console
Page 401



Volume 1
mode determines the exact behavior of the ReadFile function.

If a named pipe is being read in message mode and the next message is longer than the nNumberOfBytesToRead
parameter specifies, ReadFile returns FALSE and GetLastError returns ERROR_MORE_DATA. The remainder
of the message may be read by a subsequent call to the ReadFile or PeekNamedPipe function.

When reading from a communications device, the behavior of ReadFile is governed by the current communication
time-outs as set and retrieved using the SetCommTimeouts and GetCommTimeouts functions. Unpredictable results
can occur if you fail to set the time-out values. For more information about communication time-outs, see COMMTIM-
EOUTS.

If ReadFile attempts to read from a mailslot whose buffer is too small, the function returns FALSE and GetLastEr-
ror returns ERROR_INSUFFICIENT_BUFFER.

If the anonymous write pipe handle has been closed and ReadFile attempts to read using the corresponding anony-
mous read pipe handle, the function returns FALSE and GetLastError returns ERROR_BROKEN_PIPE.

The ReadFile function may fail and return ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY whenever there are too many outstanding asynchronous I/O requests.

The ReadFile code to check for the end-of-file condition (eof) differs for synchronous and asynchronous read opera-
tions.

When a synchronous read operation reaches the end of a file, ReadFile returns TRUE and sets *lpNumberOfBytes-
Read to zero. The following sample code tests for end-of-file for a synchronous read operation:

// Attempt a synchronous read operation.

bResult = ReadFile(hFile, &inBuffer, nBytesToRead, &nBytesRead, NULL) ;

// Check for end of file.

if (bResult && nBytesRead == 0, )

{

// we're at the end of the file

}

An asynchronous read operation can encounter the end of a file during the initiating call to ReadFile, or during sub-
sequent asynchronous operation.

If EOF is detected at ReadFile time for an asynchronous read operation, ReadFile returns FALSE and GetLastError
returns ERROR_HANDLE_EOF.

If EOF is detected during subsequent asynchronous operation, the call to GetOverlappedResult to obtain the results
of that operation returns FALSE and GetLastError returns ERROR_HANDLE_EOF.

To cancel all pending asynchronous I/O operations, use the CancelIo function. This function only cancels opera-
tions issued by the calling thread for the specified file handle. I/O operations that are canceled complete with the error
ERROR_OPERATION_ABORTED.

If you are attempting to read from a floppy drive that does not have a floppy disk, the system displays a message box
prompting the user to retry the operation. To prevent the system from displaying this message box, call the SetEr-
rorMode function with SEM_NOOPENFILEERRORBOX.

The following sample code illustrates testing for end-of-file for an asynchronous read operation:

// set up overlapped structure fields
gOverLapped.Offset = 0;
gOverLapped.OffsetHigh = 0;
gOverLapped.hEvent = hEvent;

// attempt an asynchronous read operation
bResult = ReadFile(hFile, &inBuffer, nBytesToRead, &nBytesRead,

&gOverlapped) ;

// if there was a problem, or the async. operation's still pending ...
Page 402



Win32 API Reference
if (!bResult)
{

// deal with the error code
switch (dwError = GetLastError())
{

case ERROR_HANDLE_EOF:
{

// we're reached the end of the file
// during the call to ReadFile

// code to handle that
}

case ERROR_IO_PENDING:
{

// asynchronous i/o is still in progress

// do something else for a while
GoDoSomethingElse() ;

// check on the results of the asynchronous read
bResult = GetOverlappedResult(hFile, &gOverlapped,

&nBytesRead, FALSE) ;

// if there was a problem ...
if (!bResult)
{

// deal with the error code
switch (dwError = GetLastError())
{

case ERROR_HANDLE_EOF:
{

// we're reached the end of the file
//during asynchronous operation

}

// deal with other error cases
}

}
} // end case

// deal with other error cases

} // end switch
} // end if

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CancelIo, CreateFile, GetCommTimeouts, GetOverlappedResult, GetQueued-
CompletionStatus, OVERLAPPED, PeekNamedPipe, ReadFileEx, SetCommTimeouts, SetErrorMode, WriteFile
Page 403



Volume 1
1.320 ReadFileEx

The ReadFileEx function reads data from a file asynchronously. It is designed solely for asynchronous operation,
unlike the ReadFile function, which is designed for both synchronous and asynchronous operation. ReadFileEx lets
an application perform other processing during a file read operation.

The ReadFileEx function reports its completion status asynchronously, calling a specified completion routine when
reading is completed or canceled and the calling thread is in an alertable wait state.

ReadFileEx: procedure
(

hFile: dword;
var lpBuffer: dword;

nNumberOfBytesToRead: dword;
var lpOverlapped: OVERLAPPED;

lpCompletionRoutine: procedure
);

stdcall;
returns( "eax" );
external( "__imp__ReadFileEx@20" );

Parameters

hFile
[in] Handle to the file to be read. This file handle must have been created with the FILE_FLAG_OVERLAPPED
flag and must have GENERIC_READ access to the file.

Windows NT/2000: This parameter can be any handle opened with the FILE_FLAG_OVERLAPPED flag by
the CreateFile function, or a socket handle returned by the socket or accept function.

Windows 95/98: This parameter can be a communications resource opened with the
FILE_FLAG_OVERLAPPED flag by CreateFile, or a socket handle returned by socket or accept. You cannot
perform asynchronous read operations on mailslots, named pipes, or disk files.

lpBuffer
[out] Pointer to a buffer that receives the data read from the file.

This buffer must remain valid for the duration of the read operation. The application should not use this buffer
until the read operation is completed.

nNumberOfBytesToRead
[in] Specifies the number of bytes to be read from the file.

lpOverlapped
[in] Pointer to an OVERLAPPED data structure that supplies data to be used during the asynchronous (overlapped)
file read operation.

If the file specified by hFile supports the concept of byte offsets, the caller of ReadFileEx must specify a byte
offset within the file at which reading should begin. The caller specifies the byte offset by setting the OVER-
LAPPED structure's Offset and OffsetHigh members.

The ReadFileEx function ignores the OVERLAPPED structure's hEvent member. An application is free to use that
member for its own purposes in the context of a ReadFileEx call. ReadFileEx signals completion of its read
operation by calling, or queuing a call to, the completion routine pointed to by lpCompletionRoutine, so it does
not need an event handle.

The ReadFileEx function does use the OVERLAPPED structure's Internal and InternalHigh members. An
application should not set these members.

The OVERLAPPED data structure pointed to by lpOverlapped must remain valid for the duration of the read
Page 404



Win32 API Reference
operation. It should not be a variable that can go out of scope while the file read operation is in progress.

lpCompletionRoutine
[in] Pointer to the completion routine to be called when the read operation is complete and the calling thread is in
an alertable wait state. For more information about the completion routine, see FileIOCompletionRoutine.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

If the function succeeds, the calling thread has an asynchronous input/output (I/O) operation pending: the overlapped
read operation from the file. When this I/O operation completes, and the calling thread is blocked in an alertable wait
state, the system calls the function pointed to by lpCompletionRoutine, and the wait state completes with a return
code of WAIT_IO_COMPLETION.

If the function succeeds, and the file reading operation completes, but the calling thread is not in an alertable wait
state, the system queues the completion routine call, holding the call until the calling thread enters an alertable wait
state. For information about alertable waits and overlapped input/output operations, see Synchronization and Over-
lapped Input and Output.

If ReadFileEx attempts to read past the end of the file, the function returns zero, and GetLastError returns
ERROR_HANDLE_EOF.

Remarks
When using ReadFileEx you should check GetLastError even when the function returns "success" to check for
conditions that are "successes" but have some outcome you might want to know about. For example, a buffer over-
flow when calling ReadFileEx will return TRUE, but GetLastError will report the overflow with
ERROR_MORE_DATA. If the function call is successful and there are no warning conditions, GetLastError will
return ERROR_SUCCESS.

An application must meet certain requirements when working with files opened with
FILE_FLAG_NO_BUFFERING:

File access must begin at byte offsets within the file that are integer multiples of the volume's sector
size. To determine a volume's sector size, call the GetDiskFreeSpace function.

File access must be for numbers of bytes that are integer multiples of the volume's sector size. For
example, if the sector size is 512 bytes, an application can request reads and writes of 512, 1024, or 2048 bytes, but
not of 335, 981, or 7171 bytes.

Buffer addresses for read and write operations must be sector aligned (aligned on addresses in
memory that are integer multiples of the volume's sector size). One way to sector align buffers is to use the Virtu-
alAlloc function to allocate the buffers. This function allocates memory that is aligned on addresses that are integer
multiples of the system's page size. Because both page and volume sector sizes are powers of 2, memory aligned by
multiples of the system's page size is also aligned by multiples of the volume's sector size.

If a portion of the file specified by hFile is locked by another process, and the read operation specified in a call to
ReadFileEx overlaps the locked portion, the call to ReadFileEx fails.

If ReadFileEx attempts to read data from a mailslot whose buffer is too small, the function returns FALSE, and Get-
LastError returns ERROR_INSUFFICIENT_BUFFER.

Accessing the input buffer while a read operation is using the buffer may lead to corruption of the data read into that
buffer. Applications must not read from, write to, reallocate, or free the input buffer that a read operation is using until
the read operation completes.

The ReadFileEx function may fail if there are too many outstanding asynchronous I/O requests. In the event of such
a failure, GetLastError can return ERROR_INVALID_USER_BUFFER or ERROR_NOT_ENOUGH_MEMORY.

To cancel all pending asynchronous I/O operations, use the CancelIo function. This function only cancels opera-
tions issued by the calling thread for the specified file handle. I/O operations that are canceled complete with the error
ERROR_OPERATION_ABORTED.

If you are attempting to read from a floppy drive that does not have a floppy disk, the system displays a message box
Page 405



Volume 1
prompting the user to retry the operation. To prevent the system from displaying this message box, call the SetEr-
rorMode function with SEM_NOOPENFILEERRORBOX.

An application uses the MsgWaitForMultipleObjectsEx, WaitForSingleObjectEx, WaitForMultiple-

ObjectsEx, and SleepEx functions to enter an alertable wait state. For more information about alertable waits and
overlapped input/output, refer to those functions' reference and Synchronization.

Windows 95/98: On this platform, neither ReadFileEx nor WriteFileEx can be used by the comm ports to commu-
nicate. However, you can use ReadFile and WriteFile to perform asynchronous communication.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CancelIo, CreateFile, FileIOCompletionRoutine, MsgWaitForMultipleObject-
sEx, OVERLAPPED, ReadFile, SetErrorMode, SleepEx, WaitForMultipleObjectsEx, WaitForSingleObjectEx,
WriteFileEx

1.321 ReadFileScatter

The ReadFileScatter function reads data from a file and stores the data into a set of buffers.

The function starts reading data from the file at a position specified by an OVERLAPPED structure. It operates asyn-
chronously.

ReadFileScatter: procedure
(

hFile: dword;
var aSegmentArray: FILE_SEGMENT_ELEMENT;

nNumberOfBytesToRead: dword;
var lpReserved: dword;
var lpOverlapped: OVERLAPPED

);
stdcall;
returns( "eax" );
external( "__imp__ReadFileScatter@20" );

Parameters

hFile
[in] Handle to the file to be read.

This file handle must have been created using GENERIC_READ to specify read access to the file,
FILE_FLAG_OVERLAPPED to specify asynchronous I/O, and FILE_FLAG_NO_BUFFERING to specify
non-cached I/O.

aSegmentArray
[in] Pointer to an array of FILE_SEGMENT_ELEMENT pointers to buffers. The function stores the data it
reads from the file into this set of buffers.

Each buffer must be at least the size of a system memory page and must be aligned on a system memory page
size boundary. The system will read one system memory page of data into each buffer that a
FILE_SEGMENT_ELEMENT pointer points to.

The function stores the data into the buffers in a sequential manner: it stores data into the first buffer, then into
Page 406



Win32 API Reference
the second buffer, then into the next, filling each buffer, until there is no more data or there are no more buffers.

The final element of the array must be a 64-bit NULL pointer.

Note The array must contain one member for each system memory page-sized chunk of the total number of bytes
to read from the file, plus one member for the final NULL pointer. For example, if the number of bytes to read is
40K, and the system page size is 4K, then this array must have 10 members for data, plus one member for the
final NULL member, for a total of 11 members.

nNumberOfBytesToRead
[in] Specifies the total number of bytes to read from the file; each element of aSegmentArray contains a 1-page
chunk of this total. Because the file must be opened with FILE_FLAG_NO_BUFFERING, the number of bytes
to write must be a multiple of the sector size of the file system on which the file resides.

lpReserved
[in] This parameter is reserved for future use. You must set it to NULL.

lpOverlapped
[in] Pointer to an OVERLAPPED data structure.

The ReadFileScatter function requires a valid OVERLAPPED structure. The lpOverlapped parameter cannot
be NULL.

The ReadFileScatter function starts reading data from the file at a position specified by the Offset and Off-
setHigh members of the OVERLAPPED structure.

The ReadFileScatter function may return before the read operation has completed. In that case, the ReadFileS-
catter function returns the value zero, and the GetLastError function returns the value
ERROR_IO_PENDING. This asynchronous operation of ReadFileScatter lets the calling process continue
while the read operation completes. You can call the GetOverlappedResult, HasOverlappedIoCom-

pleted, or GetQueuedCompletionStatus function to obtain information about the completion of the read
operation.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call the GetLastError function.

If the function attempts to read past the end of the file, the function returns zero, and GetLastError returns
ERROR_HANDLE_EOF.

If the function returns before the read operation has completed, the function returns zero, and GetLastError returns
ERROR_IO_PENDING.

Requirements
Windows NT/2000: Requires Windows NT 4.0 SP2 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CreateFile, GetOverlappedResult, GetQueuedCompletionStatus, HasOverlap-
pedIoCompleted, OVERLAPPED, ReadFile, ReadFileEx, WriteFileGather

1.322 ReadProcessMemory

The ReadProcessMemory function reads data from an area of memory in a specified process. The entire area to be
read must be accessible, or the operation fails.
Page 407



Volume 1
ReadProcessMemory: procedure
(

hProcess: dword;
var lpBaseAddress: var;
var lpBuffer: var;

nSize: dword;
var lpNumberOfBytesRead: dword

);
stdcall;
returns( "eax" );
external( "__imp__ReadProcessMemory@20" );

Parameters

hProcess
[in] Handle to the process whose memory is being read. The handle must have PROCESS_VM_READ access to
the process.

lpBaseAddress
[in] Pointer to the base address in the specified process from which to read. Before any data transfer occurs, the
system verifies that all data in the base address and memory of the specified size is accessible for read access. If
this is the case, the function proceeds; otherwise, the function fails.

lpBuffer
[out] Pointer to a buffer that receives the contents from the address space of the specified process.

nSize
[in] Specifies the requested number of bytes to read from the specified process.

lpNumberOfBytesRead
[out] Pointer to a variable that receives the number of bytes transferred into the specified buffer. If lpNumberOf-
BytesRead is NULL, the parameter is ignored.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

The function fails if the requested read operation crosses into an area of the process that is inaccessible.

Remarks
ReadProcessMemory copies the data in the specified address range from the address space of the specified process
into the specified buffer of the current process. Any process that has a handle with PROCESS_VM_READ access
can call the function. The process whose address space is read is typically, but not necessarily, being debugged.

The entire area to be read must be accessible. If it is not, the function fails as noted previously.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Debugging Overview, Debugging Functions, WriteProcessMemory
Page 408



Win32 API Reference
1.323 ReleaseMutex

The ReleaseMutex function releases ownership of the specified mutex object.

ReleaseMutex: procedure
(

hMutex: dword
);

stdcall;
returns( "eax" );
external( "__imp__ReleaseMutex@4" );

Parameters

hMutex
[in] Handle to the mutex object. The CreateMutex or OpenMutex function returns this handle.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The ReleaseMutex function fails if the calling thread does not own the mutex object.

A thread gets ownership of a mutex by specifying a handle to the mutex in one of the wait functions. The thread that
creates a mutex object can also get immediate ownership without using one of the wait functions. When the owning
thread no longer needs to own the mutex object, it calls the ReleaseMutex function.

While a thread has ownership of a mutex, it can specify the same mutex in additional wait-function calls without
blocking its execution. This prevents a thread from deadlocking itself while waiting for a mutex that it already owns.
However, to release its ownership, the thread must call ReleaseMutex once for each time that the mutex satisfied a
wait.

Example
For an example that uses ReleaseMutex, see Using Mutex Objects.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CreateMutex

1.324 ReleaseSemaphore

The ReleaseSemaphore function increases the count of the specified semaphore object by a specified amount.

ReleaseSemaphore: procedure
(

hSemaphore: dword;
lReleaseCount: dword;

var lpPreviousCount: dword
);
Page 409



Volume 1
stdcall;
returns( "eax" );
external( "__imp__ReleaseSemaphore@12" );

Parameters

hSemaphore
[in] Handle to the semaphore object. The CreateSemaphore or OpenSemaphore function returns this handle.

Windows NT/2000: This handle must have SEMAPHORE_MODIFY_STATE access. For more information,
see Synchronization Object Security and Access Rights.

lReleaseCount
[in] Specifies the amount by which the semaphore object's current count is to be increased. The value must be
greater than zero. If the specified amount would cause the semaphore's count to exceed the maximum count that
was specified when the semaphore was created, the count is not changed and the function returns FALSE.

lpPreviousCount
[out] Pointer to a variable to receive the previous count for the semaphore. This parameter can be NULL if the
previous count is not required.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The state of a semaphore object is signaled when its count is greater than zero and nonsignaled when its count is
equal to zero. The process that calls the CreateSemaphore function specifies the semaphore's initial count. Each
time a waiting thread is released because of the semaphore's signaled state, the count of the semaphore is decreased
by one.

Typically, an application uses a semaphore to limit the number of threads using a resource. Before a thread uses the
resource, it specifies the semaphore handle in a call to one of the wait functions. When the wait function returns, it
decreases the semaphore's count by one. When the thread has finished using the resource, it calls ReleaseSemaphore
to increase the semaphore's count by one.

Another use of ReleaseSemaphore is during an application's initialization. The application can create a semaphore
with an initial count of zero. This sets the semaphore's state to nonsignaled and blocks all threads from accessing the
protected resource. When the application finishes its initialization, it uses ReleaseSemaphore to increase the count to
its maximum value, to permit normal access to the protected resource.

Example
For an example that uses ReleaseSemaphore, see Using Semaphore Objects.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CreateSemaphore, OpenSemaphore
Page 410



Win32 API Reference
1.325 RemoveDirectory

The RemoveDirectory function deletes an existing empty directory.

RemoveDirectory: procedure

(

lpPathName: string

);

stdcall;

returns( "eax" );

external( "__imp__RemoveDirectoryA@4" );

Parameters

lpPathName
[in] Pointer to a null-terminated string that specifies the path of the directory to be removed. The path must spec-
ify an empty directory, and the calling process must have delete access to the directory.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CreateDirectory

1.326 RequestWakeupLatency

The RequestWakeupLatency function specifies roughly how quickly the computer should enter the working state.

RequestWakeupLatency: procedure
(

latency: LATENCY_TIME
);

stdcall;
returns( "eax" );
external( "__imp__RequestWakeupLatency@4" );
Page 411



Volume 1
Parameters

latency
[in] Specifies the latency requirement on the time is takes to wake the computer. This parameter can be one of the
following values.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. The function will fail if the device does not support wake-up operations
or if the system is entering the sleeping state.

Remarks
The system uses the wake-up latency requirement when choosing a sleeping state. The latency is not guaranteed,
because wake-up time is determined by the hardware design of the particular computer.

To cancel a latency request, call RequestWakeupLatency with LT_DONT_CARE.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Power Management Overview, Power Management Functions

1.327 ResetEvent

The ResetEvent function sets the specified event object to the nonsignaled state.

ResetEvent: procedure
(

hEvent: dword
);

stdcall;
returns( "eax" );
external( "__imp__ResetEvent@4" );

Parameters

hEvent
[in] Handle to the event object. The CreateEvent or OpenEvent function returns this handle.

Windows NT/2000: The handle must have EVENT_MODIFY_STATE access. For more information, see Syn-
chronization Object Security and Access Rights.

Value Description

LT_LOWEST_LATENCY PowerSystemSleeping1 state (equivalent to ACPI state S0 and APM
state Working).

LT_DONT_CARE Any latency (default).
Page 412



Win32 API Reference
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The state of an event object remains nonsignaled until it is explicitly set to signaled by the SetEvent or Pul-
seEvent function. This nonsignaled state blocks the execution of any threads that have specified the event object in
a call to one of the wait functions.

The ResetEvent function is used primarily for manual-reset event objects, which must be set explicitly to the nonsig-
naled state. Auto-reset event objects automatically change from signaled to nonsignaled after a single waiting thread
is released.

Example
For an example that uses ResetEvent, see Using Event Objects.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CreateEvent, OpenEvent, PulseEvent, SetEvent

1.328 ResumeThread

The ResumeThread function decrements a thread's suspend count. When the suspend count is decremented to zero,
the execution of the thread is resumed.

ResumeThread: procedure
(

hThread: dword
);

stdcall;
returns( "eax" );
external( "__imp__ResumeThread@4" );

Parameters

hThread
[in] Handle to the thread to be restarted.

Windows NT/2000: The handle must have THREAD_SUSPEND_RESUME access to the thread. For more
information, see Thread Security and Access Rights.

Return Values
If the function succeeds, the return value is the thread's previous suspend count.

If the function fails, the return value is -1. To get extended error information, call GetLastError.

Remarks
The ResumeThread function checks the suspend count of the subject thread. If the suspend count is zero, the thread
is not currently suspended. Otherwise, the subject thread's suspend count is decremented. If the resulting value is
Page 413



Volume 1
zero, then the execution of the subject thread is resumed.

If the return value is zero, the specified thread was not suspended. If the return value is 1, the specified thread was
suspended but was restarted. If the return value is greater than 1, the specified thread is still suspended.

Note that while reporting debug events, all threads within the reporting process are frozen. Debuggers are expected to
use the SuspendThread and ResumeThread functions to limit the set of threads that can execute within a process.
By suspending all threads in a process except for the one reporting a debug event, it is possible to "single step" a sin-
gle thread. The other threads are not released by a continue operation if they are suspended.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, OpenThread, SuspendThread

1.329 ScrollConsoleScreenBuffer

The ScrollConsoleScreenBuffer function moves a block of data in a screen buffer. The effects of the move can be
limited by specifying a clipping rectangle, so the contents of the screen buffer outside the clipping rectangle are
unchanged.

ScrollConsoleScreenBuffer: procedure
(

hConsoleOutput: dword;
var lpScrollRectangle: SMALL_RECT;
var lpClipRectangle: SMALL_RECT;

dwDestinationOrigin: COORD;
var lpFill: CHAR_INFO

);
stdcall;
returns( "eax" );
external( "__imp__ScrollConsoleScreenBufferA@20" );

Parameters

hConsoleOutput
[in] Handle to a console screen buffer. The handle must have GENERIC_WRITE access.

lpScrollRectangle
[in] Pointer to a SMALL_RECT structure whose members specify the upper-left and lower-right coordinates of the
screen buffer rectangle to be moved.

lpClipRectangle
[in] Pointer to a SMALL_RECT structure whose members specify the upper-left and lower-right coordinates of
the screen buffer rectangle that is affected by the scrolling. This pointer can be NULL.

dwDestinationOrigin
[in] Specifies the upper-left corner of the new location of the lpScrollRectangle contents.

lpFill
[in] Pointer to a CHAR_INFO structure that specifies the character and color attributes to be used in filling the
Page 414



Win32 API Reference
cells within the intersection of lpScrollRectangle and lpClipRectangle that were left empty as a result of the
move.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
ScrollConsoleScreenBuffer copies the contents of a rectangular region of a screen buffer, specified by the lpScroll-
Rectangle parameter, to another area of the screen buffer. The target rectangle has the same dimensions as the
lpScrollRectangle rectangle with its upper-left corner at the coordinates specified by the dwDestinationOrigin param-
eter. Those parts of lpScrollRectangle that do not overlap with the target rectangle are filled in with the character and
color attributes specified by the lpFill parameter.

The clipping rectangle applies to changes made in both the lpScrollRectangle rectangle and the target rectangle. For
example, if the clipping rectangle does not include a region that would have been filled by the contents of lpFill, the
original contents of the region are left unchanged.

If the scroll or target regions extend beyond the dimensions of the screen buffer, they are clipped. For example, if
lpScrollRectangle is the region contained by (0,0) and (19,19) and dwDestinationOrigin is (10,15), the target rectan-
gle is the region contained by (10,15) and (29,34). However, if the screen buffer is 50 characters wide and 30 charac-
ters high, the target rectangle is clipped to (10,15) and (29,29). Changes to the screen buffer are also clipped
according to lpClipRectangle, if the parameter specifies a SMALL_RECT structure. If the clipping rectangle is spec-
ified as (0,0) and (49,19), only the changes that occur in that region of the screen buffer are made.

Windows NT/2000: This function uses either Unicode characters or 8-bit characters from the console's current code
page. The console's code page defaults initially to the system's OEM code page. To change the console's code page,
use the SetConsoleCP or SetConsoleOutputCP functions, or use the chcp or mode con cp select= commands.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, CHAR_INFO, SetConsoleCP, SetConsoleOut-
putCP, SetConsoleWindowInfo, SMALL_RECT

1.330 SearchPath

The SearchPath function searches for the specified file.

SearchPath: procedure
(

lpPath: string;
lpFileName: string;
lpExtension: string;
nBufferLength: dword;

var lpBuffer: var;
var lpFilePart: var

);
stdcall;
returns( "eax" );
external( "__imp__SearchPathA@24" );
Page 415



Volume 1
Parameters

lpPath
[in] Pointer to a null-terminated string that specifies the path to be searched for the file. If this parameter is
NULL, the function searches for a matching file in the following directories in the following sequence:

The directory from which the application loaded.

The current directory.

Windows 95: The Windows system directory. Use the GetSystemDirectory function to get the path of this
directory.

Windows NT/2000: The 32-bit Windows system directory. Use the GetSystemDirectory function to get the
path of this directory. The name of this directory is SYSTEM32.

Windows NT/2000: The 16-bit Windows system directory. There is no Win32 function that retrieves the path of
this directory, but it is searched. The name of this directory is SYSTEM.

The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

The directories that are listed in the PATH environment variable.

lpFileName
[in] Pointer to a null-terminated string that specifies the name of the file to search for.

lpExtension
[in] Pointer to a null-terminated string that specifies an extension to be added to the file name when searching for
the file. The first character of the file name extension must be a period (.). The extension is added only if the
specified file name does not end with an extension.

If a file name extension is not required or if the file name contains an extension, this parameter can be NULL.

nBufferLength
[in] Specifies the length, in TCHARs, of the buffer that receives the valid path and file name.

lpBuffer
[out] Pointer to the buffer that receives the path and file name of the file found.

lpFilePart
[out] Pointer to the variable that receives the address (within lpBuffer) of the last component of the valid path and
file name, which is the address of the character immediately following the final backslash (\) in the path.

Return Values
If the function succeeds, the value returned is the length, in TCHARs, of the string copied to the buffer, not including
the terminating null character. If the return value is greater than nBufferLength, the value returned is the size of the
buffer required to hold the path.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, FindFirstFile, FindNextFile, GetSystemDirectory, GetWindowsDirectory
Page 416



Win32 API Reference
SetCommBreak
The SetCommBreak function suspends character transmission for a specified communications device and places the
transmission line in a break state until the ClearCommBreak function is called.

SetCommBreak: procedure
(

hFile: dword
);

stdcall;
returns( "eax" );
external( "__imp__SetCommBreak@4" );

Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, ClearCommBreak, CreateFile

1.331 SetCommConfig

The SetCommConfig function sets the current configuration of a communications device.

SetCommConfig: procedure
(

hCommDev: dword;
var lpCC: COMMCONFIG;

dwSize: dword
);

stdcall;
returns( "eax" );
external( "__imp__SetCommConfig@12" );

Parameters

hCommDev
[in] Handle to the open communications device.

lpCC
[in] Pointer to a COMMCONFIG structure.

dwSize
Page 417



Volume 1
[in] Specifies the size, in bytes, of the structure pointed to by lpCC.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, GetCommConfig, COMMCONFIG

1.332 SetCommMask

The SetCommMask function specifies a set of events to be monitored for a communications device.

SetCommMask: procedure
(

hFile: dword;
dwEvtMask: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetCommMask@8" );

Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

dwEvtMask
[in] Specifies the events to be enabled. A value of zero disables all events. This parameter can be one or more of
the following values.

Value Meaning

EV_BREAK A break was detected on input.

EV_CTS The CTS (clear-to-send) signal changed state.

EV_DSR The DSR (data-set-ready) signal changed state.

EV_ERR A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN,
and CE_RXPARITY.

EV_RING A ring indicator was detected.

EV_RLSD The RLSD (receive-line-signal-detect) signal changed state.

EV_RXCHAR A character was received and placed in the input buffer.
Page 418



Win32 API Reference
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The SetCommMask function specifies the set of events that can be monitored for a particular communications
resource. A handle to the communications resource can be specified in a call to the WaitCommEvent function, which
waits for one of the events to occur. To get the current event mask of a communications resource, use the GetCom-
mMask function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, CreateFile, DCB, GetCommMask, SetCommState, Wait-
CommEvent

1.333 SetCommState

The SetCommState function configures a communications device according to the specifications in a device-control
block (a DCB structure). The function reinitializes all hardware and control settings, but it does not empty output or
input queues.

SetCommState: procedure
(

hFile: dword;
var lpDCB: DCB

);
stdcall;
returns( "eax" );
external( "__imp__SetCommState@8" );

Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

lpDCB
[in] Pointer to a DCB structure that contains the configuration information for the specified communications
device.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

EV_RXFLAG The event character was received and placed in the input buffer. The event charac-
ter is specified in the device's DCB structure, which is applied to a serial port by
using the SetCommState function.

EV_TXEMPTY The last character in the output buffer was sent.
Page 419



Volume 1
Remarks
The SetCommState function uses a DCB structure to specify the desired configuration. The GetCommState function
returns the current configuration.

To set only a few members of the DCB structure, you should modify a DCB structure that has been filled in by a call
to GetCommState. This ensures that the other members of the DCB structure have appropriate values.

The SetCommState function fails if the XonChar member of the DCB structure is equal to the XoffChar member.

When SetCommState is used to configure the 8250, the following restrictions apply to the values for the DCB struc-
ture's ByteSize and StopBits members:

The number of data bits must be 5 to 8 bits.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, BuildCommDCB, CreateFile, DCB, GetCommState

1.334 SetCommTimeouts

The SetCommTimeouts function sets the time-out parameters for all read and write operations on a specified com-
munications device.

SetCommTimeouts: procedure
(

hFile: dword;
var lpCommTimeouts: COMMTIMEOUTS

);
stdcall;
returns( "eax" );
external( "__imp__SetCommTimeouts@8" );

Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

lpCommTimeouts
[in] Pointer to a COMMTIMEOUTS structure that contains the new time-out values.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Page 420



Win32 API Reference
See Also
Communications Overview, Communication Functions, COMMTIMEOUTS, GetCommTimeouts, ReadFile, Read-
FileEx, WriteFile, WriteFileEx

1.335 SetComputerName

The SetComputerName function stores a new NetBIOS name for the local computer. The name is stored in the reg-
istry and takes effect the next time the user restarts the computer.

If the local computer is a node in a cluster, SetComputerName sets NetBIOS name of the local computer, not that of
the cluster.

Windows 2000: To set the DNS host name or the DNS domain name, call the SetComputerNameEx function.

SetComputerName: procedure
(

lpComputerName: string
);

stdcall;
returns( "eax" );
external( "__imp__SetComputerNameA@4" );

Parameters

lpComputerName
[in] Pointer to a null-terminated character string that specifies the name that will be the computer name the next
time the computer is started. The name must not be longer than MAX_COMPUTERNAME_LENGTH charac-
ters.

Windows 95/98: If this string contains one or more characters that are outside the standard character set, those
characters are coerced into standard characters.

Windows NT/2000: If this string contains one or more characters that are outside the standard character set, Set-
ComputerName returns ERROR_INVALID_PARAMETER. It does not coerce the characters outside the stan-
dard set.

The standard character set includes letters, numbers, and the following symbols: ! @ # $ % ^ & ' ) ( . - _ { } ~ .

Return Values
If the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Applications using this function must have administrator rights.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
System Information Overview, System Information Functions, GetComputerName, GetComputerNameEx, SetCom-
puterNameEx
Page 421



Volume 1
1.336 SetConsoleActiveScreenBuffer

The SetConsoleActiveScreenBuffer function sets the specified screen buffer to be the currently displayed console
screen buffer.

SetConsoleActiveScreenBuffer: procedure
(

hConsoleOutput: dword
);

stdcall;
returns( "eax" );
external( "__imp__SetConsoleActiveScreenBuffer@4" );

Parameters

hConsoleOutput
[in] Handle to a console screen buffer.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
A console can have multiple screen buffers. SetConsoleActiveScreenBuffer determines which one is displayed. You
can write to an inactive screen buffer and then use SetConsoleActiveScreenBuffer to display the buffer's contents.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, CreateConsoleScreenBuffer

1.337 SetConsoleCP

The SetConsoleCP function sets the input code page used by the console associated with the calling process. A con-
sole uses its input code page to translate keyboard input into the corresponding character value.

SetConsoleCP: procedure
(

wCodePageID: dword
);

stdcall;
returns( "eax" );
external( "__imp__SetConsoleCP@4" );

Parameters

wCodePageID
[in] Specifies the identifier of the code page to set. The identifiers of the code pages available on the local com-
puter are stored in the registry under the following key.
Page 422



Win32 API Reference
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\CodePage

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
A code page maps 256 character codes to individual characters. Different code pages include different special charac-
ters, typically customized for a language or a group of languages.

To determine a console's current input code page, use the GetConsoleCP function. To set and retrieve a console's out-
put code page, use the SetConsoleOutputCP and GetConsoleOutputCP functions.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, GetConsoleCP, GetConsoleOutputCP, SetCon-
soleOutputCP

1.338 SetConsoleCtrlHandler

The SetConsoleCtrlHandler function adds or removes an application-defined HandlerRoutine function from the
list of handler functions for the calling process.

Windows NT/2000: If no handler function is specified, the function sets an inheritable attribute that determines
whether the calling process ignores CTRL+C signals.

SetConsoleCtrlHandler: procedure
(

HandlerRoutine: procedure;
Add: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetConsoleCtrlHandler@8" );

Parameters

HandlerRoutine
[in] Pointer to the application-defined HandlerRoutine function to add or remove.

Windows NT/2000: This parameter can be NULL.

Add
[in] Specifies whether to add or remove the function pointed to by the HandlerRoutine parameter from the han-
dler list. If this parameter is TRUE, the handler is added; if it is FALSE, the handler is removed.

Windows NT/2000: If the HandlerRoutine parameter is NULL, a TRUE value causes the calling process to
ignore CTRL+C input, and a FALSE value restores normal processing of CTRL+C input. This attribute of ignor-
ing or processing CTRL+C is inherited by child processes.
Page 423



Volume 1
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Each console process has its own list of application-defined HandlerRoutine functions that handle CTRL+C and
CTRL+BREAK signals. The handler functions also handle signals generated by the system when the user closes the
console, logs off, or shuts down the system. Initially, the handler list for each process contains only a default handler
function that calls the ExitProcess function. A console process adds or removes additional handler functions by
calling the SetConsoleCtrlHandler function, which does not affect the list of handler functions for other processes.
When a console process receives any of the control signals, its handler functions are called on a last-registered,
first-called basis until one of the handlers returns TRUE. If none of the handlers returns TRUE, the default handler is
called.

For console processes, the CTRL+C and CTRL+BREAK key combinations are typically treated as signals
(CTRL_C_EVENT and CTRL_C_BREAK_EVENT). When a console window with the keyboard focus receives
CTRL+C or CTRL+BREAK, the signal is typically passed to all processes sharing that console.

CTRL+BREAK is always treated as a signal, but typical CTRL+C behavior can be changed in three ways that pre-
vent the handler functions from being called:

The SetConsoleMode function can disable the ENABLE_PROCESSED_INPUT mode for a
console's input buffer, so CTRL+C is reported as keyboard input rather than as a signal.

Windows NT/2000: Calling SetConsoleCtrlHandler with the NULL and TRUE arguments
causes the calling process to ignore CTRL+C signals. This attribute is inherited by child processes, but it can be
enabled or disabled by any process without affecting existing processes.

If a console process is being debugged and CTRL+C signals have not been disabled, the system
generates a DBG_CONTROL_C exception. This exception is raised only for the benefit of the debugger, and an
application should never use an exception handler to deal with it. If the debugger handles the exception, an applica-
tion will not notice the CTRL+C, with one exception: alertable waits will terminate. If the debugger passes the excep-
tion on unhandled, CTRL+C is passed to the console process and treated as a signal, as previously discussed.

A console process can use the GenerateConsoleCtrlEvent function to send a CTRL+C or CTRL+BREAK signal to
a console process group.

The system generates CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and CTRL_SHUTDOWN_EVENT sig-
nals when the user closes the console, logs off, or shuts down the system so that the process has an opportunity to
clean up before termination. Console functions, or any C run-time functions that call console functions, may not work
reliably during processing of any of the three signals mentioned previously. The reason is that some or all of the inter-
nal console cleanup routines may have been called before executing the process signal handler.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, ExitProcess, GenerateConsoleCtrlEvent, Get-
ConsoleMode, HandlerRoutine, SetConsoleMode

1.339 SetConsoleCursorInfo

The SetConsoleCursorInfo function sets the size and visibility of the cursor for the specified console screen buffer.

SetConsoleCursorInfo: procedure
Page 424



Win32 API Reference
(
hConsoleOutput: dword;

var lpConsoleCursorInfo: CONSOLE_CURSOR_INFO
);

stdcall;
returns( "eax" );
external( "__imp__SetConsoleCursorInfo@8" );

Parameters

hConsoleOutput
[in] Handle to a console screen buffer. The handle must have GENERIC_WRITE access.

lpConsoleCursorInfo
[in] Pointer to a CONSOLE_CURSOR_INFO structure containing the new specifications for the screen buffer's cur-
sor.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
When a screen buffer's cursor is visible, its appearance can vary, ranging from completely filling a character cell to
showing up as a horizontal line at the bottom of the cell. The dwSize member of the CONSOLE_CURSOR_INFO struc-
ture specifies the percentage of a character cell that is filled by the cursor. If this member is less than 1 or greater than
100, SetConsoleCursorInfo fails.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wincon.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, CONSOLE_CURSOR_INFO, GetConsole-
CursorInfo, SetConsoleCursorPosition

1.340 SetConsoleCursorPosition

The SetConsoleCursorPosition function sets the cursor position in the specified console screen buffer.

SetConsoleCursorPosition: procedure
(

hConsoleOutput: dword;
dwCursorPosition: COORD

);
stdcall;
returns( "eax" );
external( "__imp__SetConsoleCursorPosition@8" );

Parameters

hConsoleOutput
Page 425



Volume 1
[in] Handle to a console screen buffer. The handle must have GENERIC_WRITE access.

dwCursorPosition
[in] Specifies a COORD structure containing the new cursor position. The coordinates are the column and row of a
screen buffer character cell. The coordinates must be within the boundaries of the screen buffer.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The cursor position determines where characters written by the WriteFile or WriteConsole function, or echoed by
the ReadFile or ReadConsole function, are displayed. To determine the current position of the cursor, use the Get-
ConsoleScreenBufferInfo function.

If the new cursor position is not within the boundaries of the screen buffer's window, the window origin changes to
make the cursor visible.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, GetConsoleCursorInfo, GetConsoleScreen-
BufferInfo, ReadConsole, ReadFile, SetConsoleCursorInfo, WriteConsole, WriteFile

1.341 SetConsoleMode

The SetConsoleMode function sets the input mode of a console's input buffer or the output mode of a console screen
buffer.

SetConsoleMode: procedure
(

hConsoleHandle: dword;
dwMode: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetConsoleMode@8" );

Parameters

hConsoleHandle
[in] Handle to a console input buffer or a screen buffer. The handle must have GENERIC_WRITE access.

dwMode
[in] Specifies the input or output mode to set. If the hConsoleHandle parameter is an input handle, the mode can
be a combination of the following values. When a console is created, all input modes except
ENABLE_WINDOW_INPUT are enabled by default.

Value Meaning
Page 426



Win32 API Reference
If the hConsoleHandle parameter is a screen buffer handle, the mode can be a combination of the following val-
ues. When a screen buffer is created, both output modes are enabled by default.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
A console consists of an input buffer and one or more screen buffers. The mode of a console buffer determines how
the console behaves during input and output (I/O) operations. One set of flag constants is used with input handles, and
another set is used with screen buffer (output) handles. Setting the output modes of one screen buffer does not affect
the output modes of other screen buffers.

The ENABLE_LINE_INPUT and ENABLE_ECHO_INPUT modes only affect processes that use ReadFile or

ENABLE_LINE_INPUT The ReadFile or ReadConsole function returns only when a carriage
return character is read. If this mode is disabled, the functions return when
one or more characters are available.

ENABLE_ECHO_INPUT Characters read by the ReadFile or ReadConsole function are written to
the active screen buffer as they are read. This mode can be used only if the
ENABLE_LINE_INPUT mode is also enabled.

ENABLE_PROCESSED_INPUT CTRL+C is processed by the system and is not placed in the input buffer. If
the input buffer is being read by ReadFile or ReadConsole, other con-
trol keys are processed by the system and are not returned in the ReadFile
or ReadConsole buffer. If the ENABLE_LINE_INPUT mode is also
enabled, backspace, carriage return, and linefeed characters are handled by
the system.

ENABLE_WINDOW_INPUT User interactions that change the size of the console screen buffer are
reported in the console's input buffer. Information about these events can
be read from the input buffer by applications using the ReadConsoleIn-
put function, but not by those using ReadFile or ReadConsole.

ENABLE_MOUSE_INPUT If the mouse pointer is within the borders of the console window and the
window has the keyboard focus, mouse events generated by mouse move-
ment and button presses are placed in the input buffer. These events are dis-
carded by ReadFile or ReadConsole, even when this mode is enabled.

Value Meaning

ENABLE_PROCESSED_OUTPUT Characters written by the WriteFile or WriteConsole function
or echoed by the ReadFile or ReadConsole function are exam-
ined for ASCII control sequences and the correct action is per-
formed. Backspace, tab, bell, carriage return, and linefeed
characters are processed.

ENABLE_WRAP_AT_EOL_OUTPUT When writing with WriteFile or WriteConsole or echoing with
ReadFile or ReadConsole, the cursor moves to the beginning
of the next row when it reaches the end of the current row. This
causes the rows displayed in the console window to scroll up auto-
matically when the cursor advances beyond the last row in the
window. It also causes the contents of the screen buffer to scroll
up (discarding the top row of the screen buffer) when the cursor
advances beyond the last row in the screen buffer. If this mode is
disabled, the last character in the row is overwritten with any sub-
sequent characters.
Page 427



Volume 1
ReadConsole to read from the console's input buffer. Similarly, the ENABLE_PROCESSED_INPUT mode prima-
rily affects ReadFile and ReadConsole users, except that it also determines whether Ctrl+C input is reported in the
input buffer (to be read by the ReadConsoleInput function) or is passed to a HandlerRoutine function defined
by the application.

The ENABLE_WINDOW_INPUT and ENABLE_MOUSE_INPUT modes determine whether user interactions
involving window resizing and mouse actions are reported in the input buffer or discarded. These events can be read
by ReadConsoleInput, but they are always filtered by ReadFile and ReadConsole.

The ENABLE_PROCESSED_OUTPUT and ENABLE_WRAP_AT_EOL_OUTPUT modes only affect processes
using ReadFile or ReadConsole and WriteFile or WriteConsole.

To determine the current mode of a console input buffer or a screen buffer, use the GetConsoleMode function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, GetConsoleMode, HandlerRoutine, ReadCon-
sole, ReadConsoleInput, ReadFile, WriteConsole, WriteFile

1.342 SetConsoleOutputCP

The SetConsoleOutputCP function sets the output code page used by the console associated with the calling pro-
cess. A console uses its output code page to translate the character values written by the various output functions into
the images displayed in the console window.

SetConsoleOutputCP: procedure
(

wCodePageID: dword
);

stdcall;
returns( "eax" );
external( "__imp__SetConsoleOutputCP@4" );

Parameters

wCodePageID
[in] Specifies the identifier of the code page to set. The identifiers of the code pages available on the local com-
puter are stored in the registry under the following key.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Nls\CodePage

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
A code page maps 256 character codes to individual characters. Different code pages include different special charac-
ters, typically customized for a language or a group of languages.

To determine a console's current output code page, use the GetConsoleOutputCP function. To set and retrieve a con-
sole's input code page, use the SetConsoleCP and GetConsoleCP functions.
Page 428



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, GetConsoleCP, GetConsoleOutputCP, SetCon-
soleCP

1.343 SetConsoleScreenBufferSize

The SetConsoleScreenBufferSize function changes the size of the specified console screen buffer.

SetConsoleScreenBufferSize: procedure
(

hConsoleOutput: dword;
dwSize: COORD

);
stdcall;
returns( "eax" );
external( "__imp__SetConsoleScreenBufferSize@8" );

Parameters

hConsoleOutput
[in] Handle to a console screen buffer. The handle must have GENERIC_WRITE access.

dwSize
[in] Specifies a COORD structure containing the new size, in rows and columns, of the screen buffer. The specified
width and height cannot be less than the width and height of the screen buffer's window. The specified dimen-
sions also cannot be less than the minimum size allowed by the system. This minimum depends on the current
font size for the console (selected by the user) and the SM_CXMIN and SM_CYMIN values returned by the
GetSystemMetrics function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, COORD, GetConsoleScreenBufferInfo, Set-
ConsoleWindowInfo
Page 429



Volume 1
1.344 SetConsoleTextAttribute

The SetConsoleTextAttribute function sets the foreground (text) and background color attributes of characters writ-
ten to the screen buffer by the WriteFile or WriteConsole function, or echoed by the ReadFile or ReadCon-
sole function. This function affects only text written after the function call.

SetConsoleTextAttribute: procedure
(

hConsoleOutput: dword;
wAttributes: word

);
stdcall;
returns( "eax" );
external( "__imp__SetConsoleTextAttribute@8" );

Parameters

hConsoleOutput
[in] Handle to a console screen buffer. The handle must have GENERIC_READ access.

wAttributes
[in] Specifies the foreground and background color attributes. Any combination of the following values can be
specified: FOREGROUND_BLUE, FOREGROUND_GREEN, FOREGROUND_RED,
FOREGROUND_INTENSITY, BACKGROUND_BLUE, BACKGROUND_GREEN, BACKGROUND_RED,
and BACKGROUND_INTENSITY. For example, the following combination of values produces white text on a
black background:

FOREGROUND_RED | FOREGROUND_GREEN | FOREGROUND_BLUE

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
To determine the current color attributes of a screen buffer, call the GetConsoleScreenBufferInfo function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, GetConsoleScreenBufferInfo, ReadConsole,
ReadFile, WriteConsole, WriteFile

1.345 SetConsoleTitle

The SetConsoleTitle function sets the title bar string for the current console window.

SetConsoleTitle: procedure
(

lpConsoleTitle: string
Page 430



Win32 API Reference
);
stdcall;
returns( "eax" );
external( "__imp__SetConsoleTitleA@4" );

Parameters

lpConsoleTitle
[in] Pointer to a null-terminated string that contains the string to appear in the title bar of the console window.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Windows NT/2000: This function uses either Unicode characters or 8-bit characters from the console's current code
page. The console's code page defaults initially to the system's OEM code page. To change the console's code page,
use the SetConsoleCP or SetConsoleOutputCP functions, or use the chcp or mode con cp select= commands.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, GetConsoleTitle, SetConsoleCP, SetConso-
leOutputCP

1.346 SetConsoleWindowInfo

The SetConsoleWindowInfo function sets the current size and position of a console screen buffer's window.

SetConsoleWindowInfo: procedure
(

hConsoleOutput: dword;
bAbsolute: dword;

var lpConsoleWindow: SMALL_RECT
);

stdcall;
returns( "eax" );
external( "__imp__SetConsoleWindowInfo@12" );

Parameters

hConsoleOutput
[in] Handle to a console screen buffer. The handle must have GENERIC_WRITE access.

bAbsolute
[in] Specifies how the coordinates in the structure pointed to by the lpConsoleWindow parameter are used. If
bAbsolute is TRUE, the coordinates specify the new upper-left and lower-right corners of the window. If it is
FALSE, the coordinates are offsets to the current window-corner coordinates.
Page 431



Volume 1
lpConsoleWindow
[in] Pointer to a SMALL_RECT structure that contains values that determine the new upper-left and lower-right
corners of the window.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The function fails if the specified window rectangle extends beyond the boundaries of the screen buffer. This means
that the Top and Left members of the lpConsoleWindow rectangle (or the calculated top and left coordinates, if bAb-
solute is FALSE) cannot be less than zero. Similarly, the Bottom and Right members (or the calculated bottom and
right coordinates) cannot be greater than (screen buffer height – 1) and (screen buffer width – 1), respectively. The
function also fails if the Right member (or calculated right coordinate) is less than or equal to the Left member (or
calculated left coordinate) or if the Bottom member (or calculated bottom coordinate) is less than or equal to the Top
member (or calculated top coordinate).

For consoles with more than one screen buffer, changing the window location for one screen buffer does not affect the
window locations of the other screen buffers.

To determine the current size and position of a screen buffer's window, use the GetConsoleScreenBufferInfo func-
tion. This function also returns the maximum size of the window, given the current screen buffer size, the current font
size, and the screen size. The GetLargestConsoleWindowSize function returns the maximum window size given
the current font and screen sizes, but it does not consider the size of the screen buffer.

SetConsoleWindowInfo can be used to scroll the contents of the screen buffer by shifting the position of the window
rectangle without changing its size.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, GetConsoleScreenBufferInfo, GetLargestCon-
soleWindowSize, SMALL_RECT, ScrollConsoleScreenBuffer

1.347 SetCriticalSectionSpinCount

The SetCriticalSectionSpinCount function sets the spin count for the specified critical section.

SetCriticalSectionSpinCount: procedure
(

var lpCriticalSection: CRITICAL_SECTION;
dwSpinCount: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetCriticalSectionSpinCount@8" );

Parameters

lpCriticalSection
Page 432



Win32 API Reference
[in/out] Pointer to the critical section object.

dwSpinCount
[in] Specifies the spin count for the critical section object. On single-processor systems, the spin count is ignored
and the critical section spin count is set to 0. On multiprocessor systems, if the critical section is unavailable, the
calling thread will spin dwSpinCount times before performing a wait operation on a semaphore associated with
the critical section. If the critical section becomes free during the spin operation, the calling thread avoids the
wait operation.

Return Values
The function returns the previous spin count for the critical section.

Remarks
The threads of a single process can use a critical section object for mutual-exclusion synchronization. The process is
responsible for allocating the memory used by a critical section object, which it can do by declaring a variable of type
CRITICAL_SECTION. Before using a critical section, some thread of the process must call the Initialize-
CriticalSection or InitializeCriticalSectionAndSpinCount function to initialize the object. You can
subsequently modify the spin count by calling the SetCriticalSectionSpinCount function.

The spin count is useful for critical sections of short duration that can experience high levels of contention. Consider
a worst-case scenario, in which an application on an SMP system has two or three threads constantly allocating and
releasing memory from the heap. The application serializes the heap with a critical section. In the worst-case sce-
nario, contention for the critical section is constant, and each thread makes an expensive call to the WaitForSingle-
Object function. However, if the spin count is set properly, the calling thread will not immediately call
WaitForSingleObject when contention occurs. Instead, the calling thread can acquire ownership of the critical sec-
tion if it is released during the spin operation.

You can improve performance significantly by choosing a small spin count for a critical section of short duration. The
heap manager uses a spin count of roughly 4000 for its per-heap critical sections. This gives great performance and
scalability in almost all worst-case scenarios.

Requirements
Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, InitializeCriticalSection, InitializeCriticalSectionAndSpin-
Count, WaitForSingleObject

1.348 SetCurrentDirectory

The SetCurrentDirectory function changes the current directory for the current process.

SetCurrentDirectory: procedure
(

lpPathName: string
);

stdcall;
returns( "eax" );
external( "__imp__SetCurrentDirectoryA@4" );
Page 433



Volume 1
Parameters

lpPathName
[in] Pointer to a null-terminated string that specifies the path to the new current directory. This parameter may be
a relative path or a full path. In either case, the full path of the specified directory is calculated and stored as the
current directory.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Each process has a single current directory made up of two parts:

A disk designator that is either a drive letter followed by a colon, or a server name and share name
(\\servername\sharename)

A directory on the disk designator

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetCurrentDirectory

1.349 SetDefaultCommConfig

The SetDefaultCommConfig function sets the default configuration for a communications device.

SetDefaultCommConfig: procedure
(

lpszName: string;
var lpCC: COMMCONFIG;

dwSize: dword
);

stdcall;
returns( "eax" );
external( "__imp__SetDefaultCommConfigA@12" );

Parameters

lpszName
[in] Pointer to a null-terminated string specifying the name of the device.

lpCC
[in] Pointer to a COMMCONFIG structure.
Page 434



Win32 API Reference
dwSize
[in] Specifies the size, in bytes, of the structure pointed to by lpCC.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, GetDefaultCommConfig, COMMCONFIG

SetEndOfFile
The SetEndOfFile function moves the end-of-file (EOF) position for the specified file to the current position of the
file pointer.

SetEndOfFile: procedure
(

hFile: dword
);

stdcall;
returns( "eax" );
external( "__imp__SetEndOfFile@4" );

Parameters

hFile
[in] Handle to the file to have its EOF position moved. The file handle must have been created with
GENERIC_WRITE access to the file.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
This function can be used to truncate or extend a file. If the file is extended, the contents of the file between the old
EOF position and the new position are not defined.

If you called CreateFileMapping to create a file-mapping object for hFile, you must first call UnmapViewOfFile
to unmap all views and call CloseHandle to close the file-mapping object before you can call SetEndOfFile.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Page 435



Volume 1
See Also
File I/O Overview, File I/O Functions, CloseHandle, CreateFile, CreateFileMapping, UnmapViewOfFile

1.350 SetEnvironmentVariable

The SetEnvironmentVariable function sets the value of an environment variable for the current process.

SetEnvironmentVariable: procedure
(

lpName: string;
lpValue: string

);
stdcall;
returns( "eax" );
external( "__imp__SetEnvironmentVariableA@8" );

Parameters

lpName
[in] Pointer to a null-terminated string that specifies the environment variable whose value is being set. The oper-
ating system creates the environment variable if it does not exist and lpValue is not NULL.

lpValue
[in] Pointer to a null-terminated string containing the new value of the specified environment variable. If this
parameter is NULL, the variable is deleted from the current process's environment.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
This function has no effect on the system environment variables or the environment variables of other processes.

To add or modify system environment variables, the user selects System from the Control Panel, then selects the
Environment tab. The user can also add or modify environment variables at a command prompt using the set com-
mand. Environment variables created with the set command apply only to the command window in which they are
set, and to its child processes. For more information, type set /? at a command prompt.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, GetEnvironmentVariable

1.351 SetErrorMode

The SetErrorMode function controls whether the system will handle the specified types of serious errors, or whether
the process will handle them.
Page 436



Win32 API Reference
SetErrorMode: procedure
(

uMode: dword
);

stdcall;
returns( "eax" );
external( "__imp__SetErrorMode@4" );

Parameters

uMode
[in] Specifies the process error mode. This parameter can be one or more of the following values.

Return Values
The return value is the previous state of the error-mode bit flags.

Remarks
Each process has an associated error mode that indicates to the system how the application is going to respond to seri-
ous errors. A child process inherits the error mode of its parent process.

Itanium: An application must explicitly call SetErrorMode with SEM_NOALIGNMENTFAULTEXCEPT to have
the system automatically fix alignment faults. The default setting is for the system to make alignment faults visible to
an application

x86: The system does not make alignment faults visible to an application. Therefore, specifying
SEM_NOALIGNMENTFAULTEXCEPT is not an error, but the system is free to silently ignore the request. This
means that code sequences such as the following are not always valid on x86 computers:

SetErrorMode(SEM_NOALIGNMENTFAULTEXCEPT);

fuOldErrorMode = SetErrorMode(0);

ASSERT(fuOldErrorMode == SEM_NOALIGNMENTFAULTEXCEPT);

RISC: Misaligned memory references cause an alignment fault exception. To control whether the system automati-
cally fixes such alignment faults or makes them visible to an application, use
SEM_NOALIGNMENTFAULTEXCEPT.

MIPS: An application must explicitly call SetErrorMode with SEM_NOALIGNMENTFAULTEXCEPT to have the
system automatically fix alignment faults. The default setting is for the system to make alignment faults visible to an

Value Action

0 Use the system default, which is to display all error dialog boxes.

SEM_FAILCRITICALERRORS The system does not display the critical-error-handler message box.
Instead, the system sends the error to the calling process.

SEM_NOALIGNMENTFAULTEXCEPT Itanium or RISC: The system automatically fixes memory align-
ment faults and makes them invisible to the application. It does this
for the calling process and any descendant processes.

This value has no effect on x86 processors.

SEM_NOGPFAULTERRORBOX The system does not display the general-protection-fault message
box. This flag should only be set by debugging applications that
handle general protection (GP) faults themselves with an exception
handler.

SEM_NOOPENFILEERRORBOX The system does not display a message box when it fails to find a
file. Instead, the error is returned to the calling process.
Page 437



Volume 1
application.

Alpha: To control the alignment fault behavior, set the EnableAlignmentFaultExceptions value in the
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager registry key as follows.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Error Handling Overview, Error Handling Functions

1.352 SetEvent

The SetEvent function sets the specified event object to the signaled state.

SetEvent: procedure
(

hEvent: dword
);

stdcall;
returns( "eax" );
external( "__imp__SetEvent@4" );

Parameters

hEvent
[in] Handle to the event object. The CreateEvent or OpenEvent function returns this handle.

Windows NT/2000: The handle must have EVENT_MODIFY_STATE access. For more information, see Syn-
chronization Object Security and Access Rights.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The state of a manual-reset event object remains signaled until it is set explicitly to the nonsignaled state by the
ResetEvent function. Any number of waiting threads, or threads that subsequently begin wait operations for the spec-
ified event object by calling one of the wait functions, can be released while the object's state is signaled.

The state of an auto-reset event object remains signaled until a single waiting thread is released, at which time the
system automatically sets the state to nonsignaled. If no threads are waiting, the event object's state remains signaled.

Example
For an example that uses SetEvent, see Using Event Objects.

Value Meaning

0 Automatically fix alignment faults. This is the default.

1 Make alignment faults visible to the application. You must call SetErrorMode with
SEM_NOALIGNMENTFAULTEXCEPT to have the system automatically fix alignment faults.
Page 438



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CreateEvent, OpenEvent, PulseEvent, ResetEvent

1.353 SetFileApisToANSI

The SetFileApisToANSI function causes the file I/O functions to use the ANSI character set code page. This func-
tion is useful for 8-bit console input and output operations.

SetFileApisToANSI: procedure;
stdcall;
returns( "eax" );
external( "__imp__SetFileApisToANSI@0" );

Parameters
This function has no parameters.

Return Values
This function has no return value.

Remarks
The file I/O functions whose code page is set by SetFileApisToANSI are those functions exported by
KERNEL32.DLL that accept or return a file name. SetFileApisToANSI sets the code page per process, rather than
per thread or per computer.

The SetFileApisToANSI function complements the SetFileApisToOEM function, which causes the same set of file
I/O functions to use the OEM character set code page.

The 8-bit console functions use the OEM code page by default. All other functions use the ANSI code page by
default. This means that strings returned by the console functions may not be processed correctly by other functions,
and vice versa. For example, if the FindFirstFileA function returns a string that contains certain extended ANSI
characters, and the 8-bit console functions are set to use the OEM code page, then the WriteConsoleA function does
not display the string properly.

Use the AreFileApisANSI function to determine which code page the set of file I/O functions is currently using.
Use the SetConsoleCP and SetConsoleOutputCP functions to set the code page for the 8-bit console functions.

To solve the problem of code page incompatibility, it is best to use Unicode for console applications. Console applica-
tions that use Unicode are much more versatile than those that use 8-bit console functions. Barring that solution, a
console application can call the SetFileApisToOEM function to cause the set of file I/O functions to use OEM char-
acter set strings rather than ANSI character set strings. Use the SetFileApisToANSI function to set those functions
back to the ANSI code page.

When dealing with command lines, a console application should obtain the command line in Unicode form and then
convert it to OEM form using the relevant character-to-OEM functions. Note also that the array in the argv parameter
of the command-line main function contains ANSI character set strings in this case.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Page 439



Volume 1
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, AreFileApisANSI, FindFirstFileA, SetFileApisToOEM, SetConsoleCP, Set-
ConsoleOutputCP, WriteConsoleA

1.354 SetFileApisToOEM

The SetFileApisToOEM function causes the file I/O functions to use the OEM character set code page. This function
is useful for 8-bit console input and output operations.

SetFileApisToOEM: procedure;
stdcall;
returns( "eax" );
external( "__imp__SetFileApisToOEM@0" );

Parameters
This function has no parameters.

Return Values
This function has no return value.

Remarks
The file I/O functions whose code page is set by SetFileApisToOEM are those functions exported by
KERNEL32.DLL that accept or return a file name. SetFileApisToOEM sets the code page per process, rather than
per thread or per computer.

The SetFileApisToOEM function is complemented by the SetFileApisToANSI function, which causes the same
set of file I/O functions to use the ANSI character set code page.

The 8-bit console functions use the OEM code page by default. All other functions use the ANSI code page by
default. This means that strings returned by the console functions may not be processed correctly by other functions,
and vice versa. For example, if the FindFirstFileA function returns a string that contains certain extended ANSI
characters, and the 8-bit console functions are set to use the OEM code page, then the WriteConsoleA function will
not display the string properly.

Use the AreFileApisANSI function to determine which code page the set of file I/O functions is currently using.
Use the SetConsoleCP and SetConsoleOutputCP functions to set the code page for the 8-bit console functions.

To solve the problem of code page incompatibility, it is best to use Unicode for console applications. Console applica-
tions that use Unicode are much more versatile than those that use 8-bit console functions. Barring that solution, a
console application can call the SetFileApisToOEM function to cause the set of file I/O functions to use OEM char-
acter set strings rather than ANSI character set strings. Use the SetFileApisToANSI function to set those functions
back to the ANSI code page.

When dealing with command lines, a console application should obtain the command line in Unicode form and then
convert it to OEM form using the relevant character-to-OEM functions. Note also that the array in the argv parameter
of the command-line main function contains ANSI character set strings in this case.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Page 440



Win32 API Reference
See Also
File I/O Overview, File I/O Functions, AreFileApisANSI, FindFirstFileA, SetConsoleCP, SetConsoleCP, SetConso-
leOutputCP, SetFileApisToANSI, WriteConsoleA

1.355 SetFileAttributes

The SetFileAttributes function sets a file's attributes.

SetFileAttributes: procedure
(

lpFileName: string;
dwFileAttributes: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetFileAttributesA@8" );

Parameters

lpFileName
[in] Pointer to a string that specifies the name of the file whose attributes are to be set.

Windows NT/2000: In the ANSI version of this function, the name is limited to MAX_PATH characters. To
extend this limit to nearly 32,000 wide characters, call the Unicode version of the function and prepend "\\?\" to
the path. For more information, see File Name Conventions.

Windows 95/98: This string must not exceed MAX_PATH characters.

dwFileAttributes
[in] Specifies the file attributes to set for the file. This parameter can be one or more of the following values.
However, all other values override FILE_ATTRIBUTE_NORMAL.

Attribute Meaning

FILE_ATTRIBUTE_ARCHIVE The file is an archive file. Applications use this attribute
to mark files for backup or removal.

FILE_ATTRIBUTE_HIDDEN The file is hidden. It is not included in an ordinary direc-
tory listing.

FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This attribute is valid
only if used alone.

FILE_ATTRIBUTE_NOT_CONTENT_INDEXED The file will not be indexed by the content indexing ser-
vice.

FILE_ATTRIBUTE_OFFLINE The data of the file is not immediately available. This
attribute indicates that the file data has been physically
moved to offline storage. This attribute is used by Remote
Storage, the hierarchical storage management software in
Windows 2000. Applications should not arbitrarily
change this attribute.

FILE_ATTRIBUTE_READONLY The file is read-only. Applications can read the file but
cannot write to it or delete it.
Page 441



Volume 1
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The following table describes how to set the attributes that cannot be set using SetFileAttributes.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
File I/O Overview, File I/O Functions, GetFileAttributes

1.356 SetFilePointer

The SetFilePointer function moves the file pointer of an open file.

This function stores the file pointer in two DWORD values. To more easily work with file pointers that are larger
than a single DWORD value, use the SetFilePointerEx function.

SetFilePointer: procedure
(

FILE_ATTRIBUTE_SYSTEM The file is part of the operating system or is used exclu-
sively by it.

FILE_ATTRIBUTE_TEMPORARY The file is being used for temporary storage. File systems
attempt to keep all of the data in memory for quicker
access rather than flushing the data back to mass storage.
A temporary file should be deleted by the application as
soon as it is no longer needed.

Attribute How to Set

FILE_ATTRIBUTE_COMPRESSED To set a file's compression state, use the DeviceIoControl
function with the FSCTL_SET_COMPRESSION operation.

FILE_ATTRIBUTE_DEVICE Reserved; do not use.

FILE_ATTRIBUTE_DIRECTORY Files cannot be converted into directories. To create a directory,
use the CreateDirectory or CreateDirectoryEx function.

FILE_ATTRIBUTE_ENCRYPTED To create an encrypted file, use the CreateFile function with the
FILE_ATTRIBUTE_ENCRYPTED attribute. To convert an exist-
ing file into an encrypted file, use the EncryptFile function.

FILE_ATTRIBUTE_REPARSE_POINT To associate a reparse point with a file, use the DeviceIoCon-
trol function with the FSCTL_SET_REPARSE_POINT oper-
ation.

FILE_ATTRIBUTE_SPARSE_FILE To set a file's sparse attribute, use the DeviceIoControl func-
tion with the FSCTL_SET_SPARSE operation.
Page 442



Win32 API Reference
hFile: dword;
lDistanceToMove: dword;

var lpDistanceToMoveHigh: dword;
dwMoveMethod: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetFilePointer@16" );

Parameters

hFile
[in] Handle to the file whose file pointer is to be moved. The file handle must have been created with
GENERIC_READ or GENERIC_WRITE access to the file.

lDistanceToMove
[in] Low-order 32 bits of a signed value that specifies the number of bytes to move the file pointer. If lpDistanc-
eToMoveHigh is not NULL, lpDistanceToMoveHigh and lDistanceToMove form a single 64-bit signed value that
specifies the distance to move. If lpDistanceToMoveHigh is NULL, lDistanceToMove is a 32-bit signed value. A
positive value for lDistanceToMove moves the file pointer forward in the file, and a negative value moves the file
pointer backward.

lpDistanceToMoveHigh
[in] Pointer to the high-order 32 bits of the signed 64-bit distance to move. If you do not need the high-order 32
bits, this pointer may be NULL. When non-NULL, this parameter also receives the high-order DWORD of the
new value of the file pointer. For more information, see the Remarks section later in this topic.

Windows 95/98: If the pointer lpDistanceToMoveHigh is not NULL, then it must point to either 0,
INVALID_SET_FILE_POINTER, or the sign extension of the value of lDistanceToMove. Any other value will
be rejected.

dwMoveMethod
[in] Starting point for the file pointer move. This parameter can be one of the following values.

Return Values
If the SetFilePointer function succeeds and lpDistanceToMoveHigh is NULL, the return value is the low-order
DWORD of the new file pointer. If lpDistanceToMoveHigh is not NULL, the function returns the low order
DWORD of the new file pointer, and puts the high-order DWORD of the new file pointer into the LONG pointed to
by that parameter.

If the function fails and lpDistanceToMoveHigh is NULL, the return value is INVALID_SET_FILE_POINTER. To
get extended error information, call GetLastError.

If the function fails, and lpDistanceToMoveHigh is non-NULL, the return value is INVALID_SET_FILE_POINTER.
However, because INVALID_SET_FILE_POINTER is a valid value for the low-order DWORD of the new file
pointer, you must check GetLastError to determine whether an error occurred. If an error occurred, GetLastError
returns a value other than NO_ERROR. For a code example that illustrates this point, see the Remarks section later in
this topic.

If the new file pointer would have been a negative value, the function fails, the file pointer is not moved, and the code
returned by GetLastError is ERROR_NEGATIVE_SEEK.

Value Meaning

FILE_BEGIN The starting point is zero or the beginning of the file.

FILE_CURRENT The starting point is the current value of the file pointer.

FILE_END The starting point is the current end-of-file position.
Page 443



Volume 1
Remarks
You cannot use the SetFilePointer function with a handle to a nonseeking device such as a pipe or a communications
device. To determine the file type for hFile, use the GetFileType function.

To determine the present position of a file pointer, see Retrieving a File Pointer.

Use caution when setting the file pointer in a multithreaded application. You must synchronize access to shared
resources. For example, an application whose threads share a file handle, update the file pointer, and read from the
file must protect this sequence by using a critical section object or mutex object. For more information about these
objects, see Critical Section Objects and Mutex Objects.

If the hFile file handle was opened with the FILE_FLAG_NO_BUFFERING flag set, an application can move the
file pointer only to sector-aligned positions. A sector-aligned position is a position that is a whole number multiple of
the volume's sector size. An application can obtain a volume's sector size by calling the GetDiskFreeSpace func-
tion. If an application calls SetFilePointer with distance-to-move values that result in a position that is not sec-
tor-aligned and a handle that was opened with FILE_FLAG_NO_BUFFERING, the function fails, and GetLastError
returns ERROR_INVALID_PARAMETER.

Note that it is not an error to set the file pointer to a position beyond the end of the file. The size of the file does not
increase until you call the SetEndOfFile, WriteFile, or WriteFileEx function. A write operation increases the
size of the file to the file pointer position plus the size of the buffer written, leaving the intervening bytes uninitial-
ized.

If the return value is INVALID_SET_FILE_POINTER and if lpDistanceToMoveHigh is non-NULL, an application
must call GetLastError to determine whether the function has succeeded or failed. The following sample code
illustrates this point:

// Case One: calling the function with lpDistanceToMoveHigh == NULL

// Try to move hFile's file pointer some distance.
dwPtr = SetFilePointer (hFile, lDistance, NULL, FILE_BEGIN) ;

if (dwPtr == INVALID_SET_FILE_POINTER) // Test for failure
{

// Obtain the error code.
dwError = GetLastError() ;

// Deal with failure.
// . . .

} // End of error handler

//
// Case Two: calling the function with lpDistanceToMoveHigh != NULL

// Try to move hFile's file pointer some huge distance.
dwPtrLow = SetFilePointer (hFile, lDistLow, & lDistHigh, FILE_BEGIN) ;

// Test for failure
if (dwPtrLow == INVALID_SET_FILE_POINTER && (dwError = GetLastError()) != NO_ERROR )
{

// Deal with failure.
// . . .

} // End of error handler

The parameter lpDistanceToMoveHigh is used to manipulate huge files. If it is set to NULL, then lDistanceToMove
has a maximum value of 2^31–2, or 2 gigabytes less two. This is because all file pointer values are signed values.
Therefore if there is even a small chance that the file will grow to that size, you should treat the file as a huge file and
work with 64-bit file pointers. With file compression on NTFS, and sparse files, it is possible to have files that are
large even if the underlying volume is not very large.
Page 444



Win32 API Reference
If lpDistanceToMoveHigh is not NULL, then lpDistanceToMoveHigh and lDistanceToMove form a single 64-bit
signed value. The lDistanceToMove parameter is treated as the low-order 32 bits of the value, and lpDistanceToMove-
High as the upper 32 bits. Thus, lpDistanceToMoveHigh is a sign extension of lDistanceToMove.

To move the file pointer from zero to 2 gigabytes, lpDistanceToMoveHigh can be either NULL or a sign extension of
lDistanceToMove. To move the pointer more than 2 gigabytes, use lpDistanceToMoveHigh and lDistanceToMove as a
single 64-bit quantity. For example, to move in the range from 2 gigabytes to 4 gigabytes set the contents of lpDistan-
ceToMoveHigh to zero, or to –1 for a negative sign extension of lDistanceToMove.

To work with 64-bit file pointers, you can declare a LONG, treat it as the upper half of the 64-bit file pointer, and pass
its address in lpDistanceToMoveHigh. This means you have to treat two different variables as a logical unit, which is
error-prone. The problems can be ameliorated by using the LARGE_INTEGER structure to create a 64-bit value
and passing the two 32-bit values by means of the appropriate elements of the union.

It is conceptually simpler and better design to use a function to hide the interface to SetFilePointer. To do so, use
something like this:

__int64 myFileSeek (HANDLE hf, __int64 distance, DWORD MoveMethod)
{

LARGE_INTEGER li;

li.QuadPart = distance;

li.LowPart = SetFilePointer (hf, li.LowPart, &li.HighPart, MoveMethod);

if (li.LowPart == INVALID_SET_FILE_POINTER && GetLastError() != NO_ERROR)
{

li.QuadPart = -1;
}

return li.QuadPart;
}

Note You can use SetFilePointer to determine the length of a file. To do this, use FILE_END for dwMoveMethod
and seek to location zero. The file offset returned is the length of the file. However, this practice can have unintended
side effects, such as failure to save the current file pointer so that the program can return to that location. It is simpler
and safer to use GetFileSize instead.

You can also use the SetFilePointer function to query the current file pointer position. To do this, specify a move
method of FILE_CURRENT and a distance of zero.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetDiskFreeSpace, GetFileSize, GetFileType, ReadFile, ReadFileEx, SetEnd-
OfFile, SetFilePointerEx, WriteFile, WriteFileEx

1.357 SetFileTime

The SetFileTime function sets the date and time that a file was created, last accessed, or last modified.

SetFileTime: procedure
(

hFile: dword;
Page 445



Volume 1
var lpCreationTime: FILETIME;
var lpLastAccessTime: FILETIME;
var lpLastWriteTime: FILETIME

);
stdcall;
returns( "eax" );
external( "__imp__SetFileTime@16" );

Parameters

hFile
[in] Handle to the file for which to set the dates and times. The file handle must have been created with
GENERIC_WRITE access to the file.

lpCreationTime
[in] Pointer to a FILETIME structure that contains the date and time the file was created. This parameter can be
NULL if the application does not need to set this information.

lpLastAccessTime
[in] Pointer to a FILETIME structure that contains the date and time the file was last accessed. The last access
time includes the last time the file was written to, read from, or (in the case of executable files) run. This param-
eter can be NULL if the application does not need to set this information.

lpLastWriteTime
[in] Pointer to a FILETIME structure that contains the date and time the file was last written to. This parameter
can be NULL if the application does not want to set this information.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Not all file systems can record creation and last access time and not all file systems record them in the same manner.
For example, on Windows NT FAT, create time has a resolution of 10 milliseconds, write time has a resolution of 2
seconds, and access time has a resolution of 1 day (really, the access date). On NTFS, access time has a resolution of
1 hour. Therefore, the GetFileTime function may not return the same file time information set using SetFileTime.
Furthermore, FAT records times on disk in local time. However, NTFS records times on disk in UTC, so it is not
affected by changes in time zone or daylight saving time.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, FILETIME, GetFileSize, GetFileTime, GetFileType

1.358 SetHandleCount

The SetHandleCount function sets the number of file handles available to a process.

Windows NT/2000 and Windows 95/98: This function has no effect, because there is no explicit file handle limit for
Page 446



Win32 API Reference
applications on these platforms.

Win32s: There are only 20 file handles available to a process by default; however you could use SetHandleCount to
allow a process to use up to 255 file handles.

SetHandleCount: procedure
(

uNumber: dword
);

stdcall;
returns( "eax" );
external( "__imp__SetHandleCount@4" );

Parameters

uNumber
[in] Specifies the number of file handles needed by the application.

Return Values
Windows NT/2000 and Windows 95/98: This function simply returns the value specified in the uNumber parameter.

Win32s: The return value specifies the number of file handles actually available to the application. It may be fewer
than the number specified by the uNumber parameter.

Remarks
Windows NT/2000 and Windows 95/98: The maximum number of files that an application can open is determined
by the amount of available non-paged memory pool, because each open file handle requires non-paged memory.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions

1.359 SetHandleInformation

The SetHandleInformation function sets certain properties of an object handle. The information is specified as a set
of bit flags.

SetHandleInformation: procedure
(

hObject: dword;
dwMask: dword;
dwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetHandleInformation@12" );

Parameters

hObject
Page 447



Volume 1
[in] Handle to an object. The SetHandleInformation function sets information associated with this object han-
dle.

You can specify a handle to one of the following types of objects: access token, event, file, file mapping, job,
mailslot, mutex, pipe, printer, process, registry key, semaphore, serial communication device, socket, thread, or
waitable timer.

Windows 2000: This parameter can also be a handle to a console input buffer or a console screen buffer.

dwMask
[in] A mask that specifies the bit flags to be changed. Use the same flag constants shown in the description of
dwFlags.

dwFlags
[in] A set of bit flags that specify properties of the object handle. This parameter can be one of the following val-
ues.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
To set or clear the associated bit flag in dwFlags, you must set a change mask bit flag in dwMask.

Requirements
Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Handles and Objects Overview, Handle and Object Functions, CreateProcess, CloseHandle,
GetHandleInformation

1.360 SetInformationJobObject

The SetInformationJobObject function sets limits for a job object.

SetInformationJobObject: procedure
(

hJob: dword;
JobObjectInfoClass: JOBOBJECTINFOCLASS;

var lpJobObjectInfo: var;
cbJobObjectInfoLength: dword

);
stdcall;

Value Meaning

HANDLE_FLAG_INHERIT If this flag is set, a child process created with the bInheritHan-
dles parameter of CreateProcess set to TRUE will inherit the
object handle.

HANDLE_FLAG_PROTECT_FROM_CLO
SE

If this flag is set, calling the CloseHandle function will not
close the object handle.
Page 448



Win32 API Reference
returns( "eax" );
external( "__imp__SetInformationJobObject@16" );

Parameters

hJob
[in] Handle to the job whose limits are being set. The CreateJobObject or OpenJobObject function returns
this handle. The handle must have the JOB_OBJECT_SET_ATTRIBUTES access right associated with it. For
more information, see Job Object Security and Access Rights.

JobObjectInfoClass
[in] Specifies the information class for limits to be set. This parameter can be one of the following values.

lpJobObjectInfo
[in] Specifies the limits to be set for the job. The format of this data depends on the value of JobObjectInfoClass.

cbJobObjectInfoLength
[in] Specifies the count, in bytes, of the job information being set.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
You can use the SetInformationJobObject function to set several limits in a single call. If you want to establish the
limits one at a time or change a subset of the limits, call the QueryInformationJobObject function to obtain the
current limits, modify these limits, and then call SetInformationJobObject.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

Value Meaning

JobObjectAssociateCompletionPortInforma-
tion

The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_ASSOCIATE_COMPLETION_PORT structure.

JobObjectBasicLimitInformation The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_BASIC_LIMIT_INFORMATION structure.

JobObjectBasicUIRestrictions The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_BASIC_UI_RESTRICTIONS structure.

JobObjectEndOfJobTimeInformation The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_END_OF_JOB_TIME_INFORMATION structure.

JobObjectExtendedLimitInformation The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_EXTENDED_LIMIT_INFORMATION structure.

JobObjectSecurityLimitInformation The lpJobObjectInfo parameter is a pointer to a
JOBOBJECT_SECURITY_LIMIT_INFORMATION structure. The
hJob handle must have the
JOB_OBJECT_SET_SECURITY_ATTRIBUTES access right
associated with it.
Page 449



Volume 1
See Also
Processes and Threads Overview, Process and Thread Functions,
JOBOBJECT_ASSOCIATE_COMPLETION_PORT, JOBOBJECT_BASIC_LIMIT_INFORMATION,
JOBOBJECT_BASIC_UI_RESTRICTIONS, JOBOBJECT_END_OF_JOB_TIME_INFORMATION,
JOBOBJECT_EXTENDED_LIMIT_INFORMATION, JOBOBJECT_SECURITY_LIMIT_INFORMATION , Que-
ryInformationJobObject

1.361 SetLastError

The SetLastError function sets the last-error code for the calling thread.

SetLastError: procedure
(

dwErrCode: dword
);

stdcall;
returns( "eax" );
external( "__imp__SetLastError@4" );

Parameters

dwErrCode
[in] Specifies the last-error code for the thread.

Return Values
This function does not return a value.

Remarks
Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved for application-defined error codes;
no system error code has this bit set. If you are defining an error code for your application, set this bit to indicate that
the error code has been defined by your application and to ensure that your error code does not conflict with any sys-
tem-defined error codes.

This function is intended primarily for dynamic-link libraries (DLL). Calling this function after an error occurs lets
the DLL emulate the behavior of the Win32 API.

Most Win32 functions call SetLastError when they fail. Function failure is typically indicated by a return value
error code such as zero, NULL, or –1. Some functions call SetLastError under conditions of success; those cases are
noted in each function's reference topic.

Applications can retrieve the value saved by this function by using the GetLastError function. The use of GetLas-
tError is optional; an application can call it to find out the specific reason for a function failure.

The last-error code is kept in thread local storage so that multiple threads do not overwrite each other's values.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Error Handling Overview, Error Handling Functions, GetLastError, SetLastErrorEx
Page 450



Win32 API Reference
1.362 SetLocalTime

The SetLocalTime function sets the current local time and date.

SetLocalTime: procedure
(

var lpSystemTime: SYSTEMTIME
);

stdcall;
returns( "eax" );
external( "__imp__SetLocalTime@4" );

Parameters

lpSystemTime
[in] Pointer to a SYSTEMTIME structure that contains the current local date and time.

The wDayOfWeek member of the SYSTEMTIME structure is ignored.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Windows NT/2000: The system uses UTC internally. Therefore, when you call SetLocalTime, Windows NT/Win-
dows 2000 uses the current time zone information, including the daylight saving time setting, to perform the conver-
sion. Note that Windows NT/Windows 2000 uses the daylight saving time setting of the current time, not the new
time you are setting. Therefore, calling SetLocalTime again, now that the daylight saving time setting is set for the
new time, will guarantee the correct result.

Windows NT/2000: The SetLocalTime function enables the SE_SYSTEMTIME_NAME privilege before changing
the local time. This privilege is disabled by default. For more information about security privileges, see Privileges.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, AdjustTokenPrivileges, GetLocalTime, GetSystemTime, SetSystemTimeAdjust-
ment, SYSTEMTIME

1.363 SetLocaleInfo

The SetLocaleInfo function sets an item of locale information. This setting only affects the user override portion of
the locale settings; it does not set the system defaults.

SetLocaleInfo: procedure
(

Locale: LCID;
LCType: LCTYPE;
lpLCData: string

);
stdcall;
Page 451



Volume 1
returns( "eax" );
external( "__imp__SetLocaleInfoA@12" );

Parameters

Locale
[in] Specifies the locale whose information the function will set. The locale provides a context for the string map-
ping or sort key generation. An application can use the MAKELCID macro to create a locale identifier.

LCType
[in] Specifies the type of locale information to be set by the function. Note that only one LCTYPE may be spec-
ified per call. Not all LCTYPE values are valid; see the list of valid LCTYPE values in the following Remarks
section.

lpLCData
[in] Pointer to a null-terminated string containing the locale information the function will set. The information
must be in the specified LCTYPE's particular format.

Return Values
If the function succeeds, the return values is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INVALID_ACCESS

ERROR_INVALID_FLAGS

ERROR_INVALID_PARAMETER

Remarks
The locale information is always passed in as a null-terminated Unicode string in the Unicode version of the function,
and as a null-terminated ANSI string in the ANSI version. No integers are allowed by this function; any numeric val-
ues must be specified as Unicode or ANSI text. Each LCTYPE has a particular format, as noted in Locales. Note
that several of the LCTYPE values are linked together, so that changing one changes another value as well. For more
information, see Locale Information.

Only the following LCTYPE values are valid for this function:

Windows 2000: The ANSI version of this function will fail if it is used with a Unicode-only locale. See Language
Identifiers.

LOCALE_ICALENDARTYPE
LOCALE_ICURRDIGITS
LOCALE_ICURRENCY
LOCALE_IDIGITS
LOCALE_IFIRSTDAYOFWEEK
LOCALE_IFIRSTWEEKOFYEAR
LOCALE_ILZERO
LOCALE_IMEASURE
LOCALE_INEGCURR
LOCALE_INEGNUMBER
LOCALE_IPAPERSIZE
LOCALE_ITIME
LOCALE_S1159
LOCALE_S2359
LOCALE_SCURRENCY

LOCALE_SDATE
LOCALE_SDECIMAL
LOCALE_SGROUPING
LOCALE_SLIST
LOCALE_SLONGDATE
LOCALE_SMONDECIMALSEP
LOCALE_SMONGROUPING
LOCALE_SMONTHOUSANDSEP
LOCALE_SNEGATIVESIGN
LOCALE_SPOSITIVESIGN
LOCALE_SSHORTDATE
LOCALE_STHOUSAND
LOCALE_STIME
LOCALE_STIMEFORMAT
LOCALE_SYEARMONTH
Page 452



Win32 API Reference
Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, GetLocaleInfo, MAKELCID

1.364 SetMailslotInfo

The SetMailslotInfo function sets the time-out value used by the specified mailslot for a read operation.

SetMailslotInfo: procedure
(

hMailslot: dword;
lReadTimeout: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetMailslotInfo@8" );

Parameters

hMailslot
[in] Handle to a mailslot. The CreateMailslot function must create this handle.

lReadTimeout
[in] Specifies the amount of time, in milliseconds, a read operation can wait for a message to be written to the
mailslot before a time-out occurs. The following values have special meanings.

This time-out value applies to all subsequent read operations and to all inherited mailslot handles.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The initial time-out value used by a mailslot for a read operation is typically set by CreateMailslot when the mailslot
is created.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

Value Meaning

0 Returns immediately if no message is present. (The system
does not treat an immediate return as an error.)

MAILSLOT_WAIT_FOREVER Waits forever for a message.
Page 453



Volume 1
See Also
Mailslots Overview, Mailslot Functions, CreateMailslot, GetMailslotInfo

1.365 SetNamedPipeHandleState

The SetNamedPipeHandleState function sets the read mode and the blocking mode of the specified named pipe. If
the specified handle is to the client end of a named pipe and if the named pipe server process is on a remote computer,
the function can also be used to control local buffering.

SetNamedPipeHandleState: procedure
(

hNamedPipe: dword;
var lpMode: dword;
var lpMaxCollectionCount: dword;
var lpCollectDataTimeout: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetNamedPipeHandleState@16" );

Parameters

hNamedPipe
[in] Handle to the named pipe instance. This parameter can be a handle to the server end of the pipe, as returned
by the CreateNamedPipe function, or to the client end of the pipe, as returned by the CreateFile function.
The handle must have GENERIC_WRITE access to the named pipe.

Windows NT/2000: This parameter can also be a handle to an anonymous pipe, as returned by the CreatePipe
function.

lpMode
[in] Pointer to a variable that supplies the new mode. The mode is a combination of a read-mode flag and a
wait-mode flag. This parameter can be NULL if the mode is not being set. Specify one of the following modes.

One of the following wait modes can be specified:

Mode Description

PIPE_READMODE_BYTE Data is read from the pipe as a stream of bytes. This mode is the default
if no read-mode flag is specified.

PIPE_READMODE_MESSAGE Data is read from the pipe as a stream of messages. The function fails if
this flag is specified for a byte-type pipe.

Mode Description

PIPE_WAIT Blocking mode is enabled. This mode is the default if no wait-mode flag
is specified. When a blocking mode pipe handle is specified in the
ReadFile, WriteFile, or ConnectNamedPipe function, opera-
tions are not finished until there is data to read, all data is written, or a
client is connected. Use of this mode can mean waiting indefinitely in
some situations for a client process to perform an action.
Page 454



Win32 API Reference
lpMaxCollectionCount
[in] Pointer to a variable that specifies the maximum number of bytes collected on the client computer before
transmission to the server. This parameter must be NULL if the specified pipe handle is to the server end of a
named pipe or if client and server processes are on the same machine. This parameter is ignored if the client pro-
cess specifies the FILE_FLAG_WRITE_THROUGH flag in the CreateFile function when the handle was cre-
ated. This parameter can be NULL if the collection count is not being set.

lpCollectDataTimeout
[in] Pointer to a variable that specifies the maximum time, in milliseconds, that can pass before a remote named
pipe transfers information over the network. This parameter must be NULL if the specified pipe handle is to the
server end of a named pipe or if client and server processes are on the same computer. This parameter is ignored
if the client process specified the FILE_FLAG_WRITE_THROUGH flag in the CreateFile function when the
handle was created. This parameter can be NULL if the collection count is not being set.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Pipes Overview, Pipe Functions, ConnectNamedPipe, CreateFile, CreateNamedPipe, GetNamedPipeHandleState,
ReadFile, WriteFile

1.366 SetPriorityClass

The SetPriorityClass function sets the priority class for the specified process. This value together with the priority
value of each thread of the process determines each thread's base priority level.

SetPriorityClass: procedure
(

hProcess: dword;
dwPriorityClass: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetPriorityClass@8" );

Parameters

hProcess
[in] Handle to the process.

Windows NT/2000: The handle must have the PROCESS_SET_INFORMATION access right. For more infor-

PIPE_NOWAIT Nonblocking mode is enabled. In this mode, ReadFile, WriteFile, and
ConnectNamedPipe always return immediately. Note that nonblocking
mode is supported for compatibility with Microsoft® LAN Manager
version 2.0 and should not be used to achieve asynchronous input and
output (I/O) with named pipes.
Page 455



Volume 1
mation, see Process Security and Access Rights.

dwPriorityClass
[in] Specifies the priority class for the process. This parameter can be one of the following values.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Every thread has a base priority level determined by the thread's priority value and the priority class of its process.
The system uses the base priority level of all executable threads to determine which thread gets the next slice of CPU
time. The SetThreadPriority function enables setting the base priority level of a thread relative to the priority
class of its process. For more information, see Scheduling Priorities.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

Priority Meaning

ABOVE_NORMAL_PRIORITY_CLASS Windows 2000: Indicates a process that has priority above
NORMAL_PRIORITY_CLASS but below
HIGH_PRIORITY_CLASS.

BELOW_NORMAL_PRIORITY_CLASS Windows 2000: Indicates a process that has priority above
IDLE_PRIORITY_CLASS but below
NORMAL_PRIORITY_CLASS.

HIGH_PRIORITY_CLASS Specify this class for a process that performs time-critical
tasks that must be executed immediately. The threads of the
process preempt the threads of normal or idle priority class
processes. An example is the Task List, which must respond
quickly when called by the user, regardless of the load on the
operating system. Use extreme care when using the high-pri-
ority class, because a high-priority class application can use
nearly all available CPU time.

IDLE_PRIORITY_CLASS Specify this class for a process whose threads run only when
the system is idle. The threads of the process are preempted
by the threads of any process running in a higher priority
class. An example is a screen saver. The idle-priority class is
inherited by child processes.

NORMAL_PRIORITY_CLASS Specify this class for a process with no special scheduling
needs.

REALTIME_PRIORITY_CLASS Specify this class for a process that has the highest possible
priority. The threads of the process preempt the threads of all
other processes, including operating system processes per-
forming important tasks. For example, a real-time process
that executes for more than a very brief interval can cause
disk caches not to flush or cause the mouse to be unrespon-
sive.
Page 456



Win32 API Reference
See Also
Processes and Threads Overview, Process and Thread Functions, CreateProcess, CreateThread, GetPriorityClass,
GetThreadPriority, SetThreadPriority

1.367 SetProcessAffinityMask

The SetProcessAffinityMask function sets a processor affinity mask for the threads of the specified process.

A process affinity mask is a bit vector in which each bit represents the processor on which the threads of the process
are allowed to run.

The value of the process affinity mask must be a proper subset of the mask values obtained by the GetProces-
sAffinityMask function.

SetProcessAffinityMask: procedure
(

hProcess: dword;
dwProcessAffinityMask: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetProcessAffinityMask@8" );

Parameters

hProcess
[in] Handle to the process whose affinity mask is to be set. This handle must have the
PROCESS_SET_INFORMATION access right. For more information, see Process Security and Access Rights.

dwProcessAffinityMask
[in] Specifies an affinity mask for the threads of the process.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Process affinity is inherited by any process that you start with the CreateProcess function.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CreateProcess, GetProcessAffinityMask

1.368 SetProcessPriorityBoost

The SetProcessPriorityBoost function disables the ability of the system to temporarily boost the priority of the
threads of the specified process.
Page 457



Volume 1
SetProcessPriorityBoost: procedure
(

hProcess: dword;
DisablePriorityBoost: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetProcessPriorityBoost@8" );

Parameters

hProcess
[in] Handle to the process. This handle must have the PROCESS_SET_INFORMATION access right. For more
information, see Process Security and Access Rights.

DisablePriorityBoost
[in] Specifies the priority boost control state. A value of TRUE indicates that dynamic boosting is to be disabled.
A value of FALSE restores normal behavior.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
When a thread is running in one of the dynamic priority classes, the system temporarily boosts the thread's priority
when it is taken out of a wait state. If SetProcessPriorityBoost is called with the DisablePriorityBoost parameter set
to TRUE, its threads' priorities are not boosted. This setting affects all existing threads and any threads subsequently
created by the process. To restore normal behavior, call SetProcessPriorityBoost with DisablePriorityBoost set to
FALSE.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, GetProcessPriorityBoost

1.369 SetProcessShutdownParameters

The SetProcessShutdownParameters function sets shutdown parameters for the currently calling process. This
function sets a shutdown order for a process relative to the other processes in the system.

SetProcessShutdownParameters: procedure
(

dwLevel: dword;
dwFlags: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetProcessShutdownParameters@8" );
Page 458



Win32 API Reference
Parameters

dwLevel
[in] Specifies the shutdown priority for a process relative to other processes in the system. The system shuts
down processes from high dwLevel values to low. The highest and lowest shutdown priorities are reserved for
system components. This parameter must be in the following range of values.

All processes start at shutdown level 0x280.

dwFlags
[in] This parameter can be the following value.

Return Values
If the function is succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Applications running in the system security context do not get shut down by the operating system. They get notified
of shutdown or logoff through the callback function installable via SetConsoleCtrlHandler. They also get notified in
the order specified by the dwLevel parameter.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, GetProcessShutdownParameters, SetConsoleCtrl-
Handler

1.370 SetProcessWorkingSetSize

The SetProcessWorkingSetSize function sets the minimum and maximum working set sizes for the specified pro-
cess.

Value Meaning

000–0FF System reserved last shutdown range.

100–1FF Application reserved last shutdown range.

200–2FF Application reserved "in between" shutdown range.

300–3FF Application reserved first shutdown range.

400–4FF System reserved first shutdown range.

Value Meaning

SHUTDOWN_NORETRY Specifies whether to retry the shutdown if the specified time-out
period expires. If this flag is specified, the system terminates the
process without displaying a retry dialog box for the user.
Page 459



Volume 1
The working set of a process is the set of memory pages currently visible to the process in physical RAM memory.
These pages are resident and available for an application to use without triggering a page fault. The size of the work-
ing set of a process is specified in bytes. The minimum and maximum working set sizes affect the virtual memory
paging behavior of a process.

SetProcessWorkingSetSize: procedure
(

hProcess: dword;
dwMinimumWorkingSetSize: SIZE_T;
dwMaximumWorkingSetSize: SIZE_T

);
stdcall;
returns( "eax" );
external( "__imp__SetProcessWorkingSetSize@12" );

Parameters

hProcess
[in] Handle to the process whose working set sizes is to be set.

Windows NT/2000: The handle must have PROCESS_SET_QUOTA access rights. For more information, see
Process Security and Access Rights.

dwMinimumWorkingSetSize
[in] Specifies a minimum working set size for the process. The virtual memory manager attempts to keep at least
this much memory resident in the process whenever the process is active.

If both dwMinimumWorkingSetSize and dwMaximumWorkingSetSize have the value -1, the function temporarily
trims the working set of the specified process to zero. This essentially swaps the process out of physical RAM
memory.

dwMaximumWorkingSetSize
[in] Specifies a maximum working set size for the process. The virtual memory manager attempts to keep no
more than this much memory resident in the process whenever the process is active and memory is in short sup-
ply.

If both dwMinimumWorkingSetSize and dwMaximumWorkingSetSize have the value -1, the function temporarily
trims the working set of the specified process to zero. This essentially swaps the process out of physical RAM
memory.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. Call GetLastError to obtain extended error information.

Remarks
The working set of the specified process can be emptied by specifying the value -1 for both the minimum and maxi-
mum working set sizes.

If the values of either dwMinimumWorkingSetSize or dwMaximumWorkingSetSize are greater than the process' current
working set sizes, the specified process must have the SE_INC_BASE_PRIORITY_NAME privilege. Users in the
Administrators and Power Users groups generally have this privilege. For more information about security privileges,
see Privileges.

The operating system allocates working set sizes on a first-come, first-served basis. For example, if an application
successfully sets 40 megabytes as its minimum working set size on a 64-megabyte system, and a second application
requests a 40-megabyte working set size, the operating system denies the second application's request.

Using the SetProcessWorkingSetSize function to set an application's minimum and maximum working set sizes
does not guarantee that the requested memory will be reserved, or that it will remain resident at all times. When the
application is idle, or a low-memory situation causes a demand for memory, the operating system can reduce the
Page 460



Win32 API Reference
application's working set. An application can use the VirtualLock function to lock ranges of the application's virtual
address space in memory; however, that can potentially degrade the performance of the system.

When you increase the working set size of an application, you are taking away physical memory from the rest of the
system. This can degrade the performance of other applications and the system as a whole. It can also lead to failures
of operations that require physical memory to be present; for example, creating processes, threads, and kernel pool.
Thus, you must use the SetProcessWorkingSetSize function carefully. You must always consider the performance of
the whole system when you are designing an application.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, GetProcessWorkingSetSize, VirtualLock

1.371 SetStdHandle

The SetStdHandle function sets the handle for the standard input, standard output, or standard error device.

SetStdHandle: procedure
(

nStdHandle: dword;
hHandle: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetStdHandle@8" );

Parameters

nStdHandle
[in] Specifies the standard handle to be set. This parameter can be one of the following values.

hHandle
[in] Handle to set as standard input, standard output, or standard error.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The standard handles of a process may have been redirected by a call to SetStdHandle, in which case GetStdHan-
dle will return the redirected handle. If the standard handles have been redirected, you can specify the CONIN$

Value Meaning

STD_INPUT_HANDLE Standard input handle

STD_OUTPUT_HANDLE Standard output handle

STD_ERROR_HANDLE Standard error handle
Page 461



Volume 1
value in a call to the CreateFile function to get a handle to a console's input buffer. Similarly, you can specify the
CONOUT$ value to get a handle to the console's active screen buffer.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, CreateFile, GetStdHandle

1.372 SetSystemPowerState

The SetSystemPowerState function suspends the system by shutting power down. Depending on the ForceFlag
parameter, the function either suspends operation immediately or requests permission from all applications and
device drivers before doing so.

The calling process must have the SE_SHUTDOWN_NAME privilege. To enable the SE_SHUTDOWN_NAME
privilege, use the AdjustTokenPrivileges function. For more information, see Privileges.

SetSystemPowerState: procedure
(

fSuspend: boolean;
fForce: boolean

);
stdcall;
returns( "eax" );
external( "__imp__SetSystemPowerState@8" );

Parameters

fSuspend
Windows NT/2000: [in] Specifies the state of the system. If TRUE, the system is suspended. If FALSE, the sys-
tem hibernates.

Windows 95/98: Ignored.

fForce
[in] Forced suspension. If TRUE, the function broadcasts a PBT_APMSUSPEND event to each application and
driver, then immediately suspends operation. If FALSE, the function broadcasts a PBT_APMQUERYSUSPEND
event to each application to request permission to suspend operation.

Return Values
If power has been suspended and subsequently restored, the return value is nonzero.

If the system was not suspended, the return value is zero. To get extended error information, call GetLastError.

Remarks
If any application or driver denies permission to suspend operation, the function broadcasts a
PBT_APMQUERYSUSPENDFAILED event to each application and driver. If power is suspended, this function
returns only after system operation is resumes and related WM_POWERBROADCAST messages have been broad-
cast to all applications and drivers.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Page 462



Win32 API Reference
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Power Management Overview, Power Management Functions, PBT_APMQUERYSUSPEND,
PBT_APMQUERYSUSPENDFAILED, PBT_APMSUSPEND, WM_POWERBROADCAST

1.373 SetSystemTime

The SetSystemTime function sets the current system time and date. The system time is expressed in Coordinated
Universal Time (UTC).

SetSystemTime: procedure
(

var lpSystemTime: SYSTEMTIME
);

stdcall;
returns( "eax" );
external( "__imp__SetSystemTime@4" );

Parameters

lpSystemTime
[in] Pointer to a SYSTEMTIME structure that contains the current system date and time.

The wDayOfWeek member of the SYSTEMTIME structure is ignored.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Windows NT/2000: The SetSystemTime function enables the SE_SYSTEMTIME_NAME privilege before chang-
ing the system time. This privilege is disabled by default. For more information about security privileges, see Privi-
leges.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, GetSystemTime, SetSystemTimeAdjustment, SYSTEMTIME

1.374 SetSystemTimeAdjustment

The SetSystemTimeAdjustment function enables or disables periodic time adjustments to the system's time-of-day
clock. Such time adjustments are used to synchronize the time of day with some other source of time information.
When periodic time adjustments are enabled, they are applied at each clock interrupt.
Page 463



Volume 1
SetSystemTimeAdjustment: procedure
(

dwTimeAdjustment: dword;
bTimeAdjustmentDisabled: boolean

);
stdcall;
returns( "eax" );
external( "__imp__SetSystemTimeAdjustment@8" );

Parameters

dwTimeAdjustment
[in] Specifies the number of 100-nanosecond units added to the time-of-day clock at each clock interrupt if peri-
odic time adjustment is enabled.

bTimeAdjustmentDisabled
[in] Specifies the time adjustment mode that the system is to use. Periodic system time adjustments can be dis-
abled or enabled.

A value of TRUE specifies that periodic time adjustment is to be disabled. The system is free to adjust time of
day using its own internal mechanisms. The value of dwTimeAdjustment is ignored. The system's internal adjust-
ment mechanisms may cause the time-of-day clock to jump noticeably when adjustments are made.

A value of FALSE specifies that periodic time adjustment is to be enabled, and will be used to adjust the
time-of-day clock. The system will not interfere with the time adjustment scheme, and will not attempt to syn-
chronize time of day on its own. The system will add the value of dwTimeAdjustment to the time of day at each
clock interrupt.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError. One way the
function can fail is if the caller does not possess the SE_SYSTEMTIME_NAME privilege.

Remarks
The GetSystemTimeAdjustment and SetSystemTimeAdjustment functions support algorithms that synchronize
the time-of-day clock, reported via GetSystemTime and GetLocalTime, with another time source using a periodic
time adjustment.

The SetSystemTimeAdjustment function supports two modes of time synchronization: time-adjustment – disabled
and time-adjustment – enabled.

In the first mode, bTimeAdjustmentDisabled is set to FALSE. At each clock interrupt, the system adds the value of
dwTimeAdjustment to the time of day. The clock interrupt rate may be determined by calling GetSystemTimeAdjust-
ment, and looking at the returned value of the DWORD value pointed to by lpTimeIncrement.

In the second mode, bTimeAdjustmentDisabled is set to TRUE. At each clock interrupt, the system adds the interval
between clock interrupts to the time of day. No adjustment to that interval is made. The system is free to periodically
refresh the time-of-day clock using other techniques. Such other techniques may cause the time-of-day clock to jump
noticeably when adjustments are made.

An application must have system-time privilege (the SE_SYSTEMTIME_NAME privilege) for this function to suc-
ceed. The SE_SYSTEMTIME_NAME privilege is disabled by default. Use the AdjustTokenPrivileges function
to enable the privilege before calling SetSystemTimeAdjustment, and then to disable the privilege after the SetSys-
temTimeAdjustment call.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Unsupported.
Header: Declared in Winbase.h; include Windows.h.
Page 464



Win32 API Reference
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, AdjustTokenPrivileges, GetLocalTime, GetSystemTime, GetSystemTimeAdjust-
ment

1.375 SetTapeParameters

The SetTapeParameters function either specifies the block size of a tape or configures the tape device.

SetTapeParameters: procedure
(

hDevice: dword;
dwOperation: dword;

var lpTapeInformation: var
);

stdcall;
returns( "eax" );
external( "__imp__SetTapeParameters@12" );

Parameters

hDevice
[in] Handle to the device for which to set configuration information. This handle is created by using the Create-
File function.

dwOperation
[in] Specifies the type of information to set. This parameter must be one of the following values.

lpTapeInformation
[in] Pointer to a structure that contains the information to set. If the dwOperation parameter is
SET_TAPE_MEDIA_INFORMATION, lpTapeInformation points to a TAPE_SET_MEDIA_PARAMETERS struc-
ture.

If dwOperation is SET_TAPE_DRIVE_INFORMATION, lpTapeInformation points to a
TAPE_SET_DRIVE_PARAMETERS structure.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Value Description

SET_TAPE_MEDIA_INFORMATION Sets the tape-specific information specified by the
lpTapeInformation parameter.

SET_TAPE_DRIVE_INFORMATION Sets the device-specific information specified by
lpTapeInformation.

Error Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data before the begin-
ning-of-medium marker failed.
Page 465



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tape Backup Overview, Tape Backup Functions, GetTapeParameters, TAPE_SET_DRIVE_PARAMETERS,
TAPE_SET_MEDIA_PARAMETERS

1.376 SetTapePosition

The SetTapePosition sets the tape position on the specified device.

SetTapePosition: procedure
(

hDevice: dword;
dwPositionMethod: dword;
dwPartition: dword;
dwOffsetLow: dword;
dwOffsetHigh: dword;
bImmediate: boolean

);
stdcall;
returns( "eax" );
external( "__imp__SetTapePosition@24" );

ERROR_BUS_RESET A reset condition was detected on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was reached during an opera-
tion.

ERROR_FILEMARK_DETECTED A filemark was reached during an operation.

ERROR_SETMARK_DETECTED A setmark was reached during an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was reached during an opera-
tion.

ERROR_PARTITION_FAILURE The tape could not be partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on a new tape in a multivol-
ume partition.

ERROR_DEVICE_NOT_PARTITIONED The partition information could not be found when a
tape was being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.

ERROR_NOT_SUPPORTED The tape driver does not support a requested function.

ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection mechanism failed.

ERROR_UNABLE_TO_UNLOAD_MEDIA An attempt to unload the tape failed.

ERROR_WRITE_PROTECT The media is write protected.
Page 466



Win32 API Reference
Parameters

hDevice
[in] Handle to the device on which to set the tape position. This handle is created by using the CreateFile
function.

dwPositionMethod
[in] Specifies the type of positioning to perform. This parameter must be one of the following values.

dwPartition
[in] Specifies the partition to position within. If dwPartition is zero, the current partition is used. Partitions are
numbered logically from 1 through n, where 1 is the first partition on the tape and n is the last.

dwOffsetLow
[in] Specifies the low-order bits of the block address or count for the position operation specified by the dwPosi-
tionMethod parameter.

dwOffsetHigh

Value Meaning

TAPE_ABSOLUTE_BLOCK Moves the tape to the device-specific block address specified
by the dwOffsetLow and dwOffsetHigh parameters. The
dwPartition parameter is ignored.

TAPE_LOGICAL_BLOCK Moves the tape to the block address specified by dwOffsetLow
and dwOffsetHigh in the partition specified by dwPartition.

TAPE_REWIND Moves the tape to the beginning of the current partition. The
dwPartition, dwOffsetLow, and dwOffsetHigh parameters are
ignored.

TAPE_SPACE_END_OF_DATA Moves the tape to the end of the data on the partition specified
by dwPartition.

TAPE_SPACE_FILEMARKS Moves the tape forward (or backward) the number of
filemarks specified by dwOffsetLow and dwOffsetHigh in the
current partition. The dwPartition parameter is ignored.

TAPE_SPACE_RELATIVE_BLOCKS Moves the tape forward (or backward) the number of blocks
specified by dwOffsetLow and dwOffsetHigh in the current
partition. The dwPartition parameter is ignored.

TAPE_SPACE_SEQUENTIAL_FMKS Moves the tape forward (or backward) to the first occurrence
of n filemarks in the current partition, where n is the number
specified by dwOffsetLow and dwOffsetHigh. The dwPartition
parameter is ignored.

TAPE_SPACE_SEQUENTIAL_SMKS Moves the tape forward (or backward) to the first occurrence
of n setmarks in the current partition, where n is the number
specified by dwOffsetLow and dwOffsetHigh. The dwPartition
parameter is ignored.

TAPE_SPACE_SETMARKS Moves the tape forward (or backward) the number of setmarks
specified by dwOffsetLow and dwOffsetHigh in the current
partition. The dwPartition parameter is ignored.
Page 467



Volume 1
[in] Specifies the high-order bits of the block address or count for the position operation specified by the dwPosi-
tionMethod parameter. If the high-order bits are not required, this parameter should be zero.

bImmediate
[in] Indicates whether to return as soon as the move operation begins. If this parameter is TRUE, the function
returns immediately; if FALSE, the function does not return until the move operation has been completed.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Remarks
If the offset specified by dwOffsetLow and dwOffsetHigh specifies the number of blocks, filemarks, or setmarks to
move, a positive offset moves the tape forward to the end of the last block, filemark, or setmark. A negative offset
moves the tape backward to the beginning of the last block, filemark, or setmark. If the offset is zero, the tape does
not move.

To obtain information about the status, capabilities, and capacities of tape drives and media, call the GetTapeParam-
eters function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.

Error Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data before the begin-
ning-of-medium marker failed.

ERROR_BUS_RESET A reset condition was detected on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was reached during an opera-
tion.

ERROR_FILEMARK_DETECTED A filemark was reached during an operation.

ERROR_SETMARK_DETECTED A setmark was reached during an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was reached during an opera-
tion.

ERROR_PARTITION_FAILURE The tape could not be partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on a new tape in a multivol-
ume partition.

ERROR_DEVICE_NOT_PARTITIONED The partition information could not be found when a
tape was being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.

ERROR_NOT_SUPPORTED The tape driver does not support a requested function.

ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection mechanism failed.

ERROR_UNABLE_TO_UNLOAD_MEDIA An attempt to unload the tape failed.

ERROR_WRITE_PROTECT The media is write protected.
Page 468



Win32 API Reference
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tape Backup Overview, Tape Backup Functions, CreateFile, GetTapeParameters, GetTapePosition

1.377 SetThreadAffinityMask

The SetThreadAffinityMask function sets a processor affinity mask for the specified thread.

A thread affinity mask is a bit vector in which each bit represents the processors that a thread is allowed to run on.

A thread affinity mask must be a proper subset of the process affinity mask for the containing process of a thread. A
thread is only allowed to run on the processors its process is allowed to run on.

SetThreadAffinityMask: procedure
(

hThread: dword;
dwThreadAffinityMask: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetThreadAffinityMask@8" );

Parameters

hThread
[in] Handle to the thread whose affinity mask is to be set.

Windows NT/2000: This handle must have the THREAD_SET_INFORMATION access right associated with
it. For more information, see Thread Security and Access Rights.

dwThreadAffinityMask
Windows NT/2000: [in] Specifies an affinity mask for the thread.

Windows 95/98: [in] This value must be 1.

Return Values
If the function succeeds, the return value is nonzero.

Windows NT/2000: The return value is the thread's previous affinity mask.

Windows 95/98: The return value is 1. To succeed, hThread must be valid and dwThreadAffinityMask must be 1.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, GetProcessAffinityMask, OpenThread, SetThread-
IdealProcessor
Page 469



Volume 1
1.378 SetThreadContext

The SetThreadContext function sets the context for the specified thread.

SetThreadContext: procedure
(

hThread: dword;
var lpContext: CONTEXT

);
stdcall;
returns( "eax" );
external( "__imp__SetThreadContext@8" );

Parameters

hThread
[in] Handle to the thread whose context is to be set.

Windows NT/ 2000: The handle must have the THREAD_SET_CONTEXT access right to the thread. For more
information, see Thread Security and Access Rights.

lpContext
[in] Pointer to the CONTEXT structure that contains the context to be set in the specified thread. The value of the
ContextFlags member of this structure specifies which portions of a thread's context to set. Some values in the
CONTEXT structure that cannot be specified are silently set to the correct value. This includes bits in the CPU
status register that specify the privileged processor mode, global enabling bits in the debugging register, and
other states that must be controlled by the operating system.

Return Values
If the context was set, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The function allows the selective context to be set based on the value of the ContextFlags member of the context
structure. The thread handle identified by the hThread parameter is typically being debugged, but the function can
also operate even when it is not being debugged.

Do not try to set the context for a running thread; the results are unpredictable. Use the SuspendThread function to
suspend the thread before calling SetThreadContext.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Debugging Overview, Debugging Functions, CONTEXT, GetThreadContext, SuspendThread

1.379 SetThreadExecutionState

The SetThreadExecutionState function enables applications to inform the system that it is in use, thereby prevent-
ing the system from entering the sleeping power state while the application is running.
Page 470



Win32 API Reference
SetThreadExecutionState: procedure
(

esFlags: EXECUTION_STATE
);

stdcall;
returns( "eax" );
external( "__imp__SetThreadExecutionState@4" );

Parameters

esFlags
[in] Specifies the thread's execution requirements. This parameter can be one or more of the following values.

Return Values
If the function succeeds, the return value is the previous thread execution state.

If the function fails, the return value is NULL.

Remarks
Activities that are automatically detected include local keyboard or mouse input, server activity, and changing win-
dow focus. Activities that are not automatically detected include disk or CPU activity and video display.

Calling SetThreadExecutionState with ES_SYSTEM_REQUIRED prevents the system from putting the computer
in the sleeping state by resetting the system idle timer. Calling SetThreadExecutionState with
ES_DISPLAY_REQUIRED prevents the system from turning off the display by resetting the display idle timer. Call-
ing SetThreadExecutionState without ES_CONTINUOUS simply resets the idle timer; to keep the display or sys-
tem in the working state, the thread must call SetThreadExecutionState periodically.

To run properly on a power-managed computer, applications such as fax servers, answering machines, backup agents,
and network management applications must use ES_SYSTEM_REQUIRED | ES_CONTINUOUS when they pro-
cess events. Multimedia applications, such as video players and presentation applications, must use
ES_DISPLAY_REQUIRED when they display video for long periods of time without user input. Applications such
as word processors, spreadsheets, browsers, and games do not need to call SetThreadExecutionState.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

Flag Description

ES_SYSTEM_REQUIRED Informs the system that the thread is performing some operation that
is not normally detected as activity by the system.

ES_DISPLAY_REQUIRED Informs the system that the thread is performing some operation that
is not normally detected as display activity by the system.

ES_USER_PRESENT Informs the system that a user is present. If a user is present, the sys-
tem will use the power management policies set by the user. Other-
wise, the system will not wake the display device and will return to
the sleeping state as soon as possible.

ES_CONTINUOUS Informs the system that the state being set should remain in effect
until the next call that uses ES_CONTINUOUS and one of the other
state flags is cleared.
Page 471



Volume 1
See Also
Power Management Overview, Power Management Functions, SetSystemPowerState, WM_POWERBROADCAST

1.380 SetThreadIdealProcessor

The SetThreadIdealProcessor function sets a preferred processor for a thread. The system schedules threads on their
preferred processors whenever possible.

SetThreadIdealProcessor: procedure
(

hThread: dword;
dwIdealProcessor: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetThreadIdealProcessor@8" );

Parameters

hThread
[in] Handle to the thread whose preferred processor is to be set. The handle must have the
THREAD_SET_INFORMATION access right associated with it. For more information, see Thread Security and
Access Rights.

dwIdealProcessor
[in] Specifies the number of the preferred processor for the thread. A value of MAXIMUM_PROCESSORS tells
the system that the thread has no preferred processor.

Return Values
If the function succeeds, the return value is the previous preferred processor or MAXIMUM_PROCESSORS if the
thread does not have a preferred processor.

If the function fails, the return value is – 1. To get extended error information, call GetLastError.

Remarks
You can use the GetSystemInfo function to determine the number of processors on the computer. You can also use
the GetProcessAffinityMask function to check the processors on which the thread is allowed to run. Note that Get-
ProcessAffinityMask returns a bit mask whereas SetThreadIdealProcessor uses an integer value to represent the
processor.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, GetProcessAffinityMask, GetSystemInfo,
OpenThread, SetThreadAffinityMask
Page 472



Win32 API Reference
1.381 SetThreadLocale

The SetThreadLocale function sets the calling thread's current locale.

SetThreadLocale: procedure
(

Locale: LCID
);

stdcall;
returns( "eax" );
external( "__imp__SetThreadLocale@4" );

Parameters

Locale
[in] Specifies the new locale for the calling thread. This parameter can be a locale identifier created by the
MAKELCID macro, or one of the following predefined values.

For more information, see Locales.

Return Values
If the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
When a thread is created, it uses the system default thread locale. The system reads the system default thread locale
from the registry when the system boots. This system default can be modified for future process and thread creation
using Control Panel's International application.

The SetThreadLocale function affects the selection of resources that are defined with a LANGUAGE statement.
This affects such functions as CreateDialog, DialogBox, LoadMenu, LoadString, and FindResource,
and sets the code page implied by CP_THREAD_ACP, but does not affect FindResourceEx.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
National Language Support Overview, National Language Support Functions, CreateDialog, DialogBox, LoadMenu,
LoadString, FindResource, GetThreadLocale, GetSystemDefaultLCID, GetUserDefaultLCID, MAKELCID

1.382 SetThreadPriority

The SetThreadPriority function sets the priority value for the specified thread. This value, together with the priority
class of the thread's process, determines the thread's base priority level.

Value Meaning

LOCALE_SYSTEM_DEFAULT Default system locale.

LOCALE_USER_DEFAULT Default user locale.
Page 473



Volume 1
SetThreadPriority: procedure
(

hThread: dword;
nPriority: dword

);
stdcall;
returns( "eax" );
external( "__imp__SetThreadPriority@8" );

Parameters

hThread
[in] Handle to the thread whose priority value is to be set.

Windows NT/2000: The handle must have the THREAD_SET_INFORMATION access right associated with it.
For more information, see Thread Security and Access Rights.

nPriority
[in] Specifies the priority value for the thread. This parameter can be one of the following values:

Windows 2000: This parameter can also be -7, -6, -5, -4, -3, 3, 4, 5, or 6. For more information, see Scheduling
Priorities.

Priority Meaning

THREAD_PRIORITY_ABOVE_NORMAL Indicates 1 point above normal priority for the priority
class.

THREAD_PRIORITY_BELOW_NORMAL Indicates 1 point below normal priority for the priority
class.

THREAD_PRIORITY_HIGHEST Indicates 2 points above normal priority for the priority
class.

THREAD_PRIORITY_IDLE Indicates a base priority level of 1 for
IDLE_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS,
NORMAL_PRIORITY_CLASS,
ABOVE_NORMAL_PRIORITY_CLASS, or
HIGH_PRIORITY_CLASS processes, and a base pri-
ority level of 16 for REALTIME_PRIORITY_CLASS
processes.

THREAD_PRIORITY_LOWEST Indicates 2 points below normal priority for the priority
class.

THREAD_PRIORITY_NORMAL Indicates normal priority for the priority class.

THREAD_PRIORITY_TIME_CRITICAL Indicates a base priority level of 15 for
IDLE_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS,
NORMAL_PRIORITY_CLASS,
ABOVE_NORMAL_PRIORITY_CLASS, or
HIGH_PRIORITY_CLASS processes, and a base pri-
ority level of 31 for REALTIME_PRIORITY_CLASS
processes.
Page 474



Win32 API Reference
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Every thread has a base priority level determined by the thread's priority value and the priority class of its process.
The system uses the base priority level of all executable threads to determine which thread gets the next slice of CPU
time. Threads are scheduled in a round-robin fashion at each priority level, and only when there are no executable
threads at a higher level does scheduling of threads at a lower level take place.

The SetThreadPriority function enables setting the base priority level of a thread relative to the priority class of its
process. For example, specifying THREAD_PRIORITY_HIGHEST in a call to SetThreadPriority for a thread of an
IDLE_PRIORITY_CLASS process sets the thread's base priority level to 6. For a table that shows the base priority
levels for each combination of priority class and thread priority value, see Scheduling Priorities.

For IDLE_PRIORITY_CLASS, BELOW_NORMAL_PRIORITY_CLASS, NORMAL_PRIORITY_CLASS,
ABOVE_NORMAL_PRIORITY_CLASS, and HIGH_PRIORITY_CLASS processes, the system dynamically
boosts a thread's base priority level when events occur that are important to the thread.
REALTIME_PRIORITY_CLASS processes do not receive dynamic boosts.

All threads initially start at THREAD_PRIORITY_NORMAL. Use the GetPriorityClass and SetPriority-

Class functions to get and set the priority class of a process. Use the GetThreadPriority function to get the prior-
ity value of a thread.

Use the priority class of a process to differentiate between applications that are time critical and those that have nor-
mal or below normal scheduling requirements. Use thread priority values to differentiate the relative priorities of the
tasks of a process. For example, a thread that handles input for a window could have a higher priority level than a
thread that performs intensive calculations for the CPU.

When manipulating priorities, be very careful to ensure that a high-priority thread does not consume all of the avail-
able CPU time. A thread with a base priority level above 11 interferes with the normal operation of the operating sys-
tem. Using REALTIME_PRIORITY_CLASS may cause disk caches to not flush, hang the mouse, and so on.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, GetPriorityClass, GetThreadPriority, SetPriority-
Class

1.383 SetThreadPriorityBoost

The SetThreadPriorityBoost function disables the ability of the system to temporarily boost the priority of a thread.

SetThreadPriorityBoost: procedure
(

hThread: dword;
DisablePriorityBoost: boolean

);
stdcall;
returns( "eax" );
external( "__imp__SetThreadPriorityBoost@8" );
Page 475



Volume 1
Parameters

hThread
[in] Handle to the thread whose priority is to be boosted. This thread must have the
THREAD_SET_INFORMATION access right associated with it. For more information, see Thread Security and
Access Rights.

DisablePriorityBoost
[in] Specifies the priority boost control state. A value of TRUE indicates that dynamic boosting is to be disabled.
A value of FALSE restores normal behavior.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
When a thread is running in one of the dynamic priority classes, the system temporarily boosts the thread's priority
when it is taken out of a wait state. If SetThreadPriorityBoost is called with the DisablePriorityBoost parameter set
to TRUE, the thread's priority is not boosted. To restore normal behavior, call SetThreadPriorityBoost with Dis-
ablePriorityBoost set to FALSE.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, OpenThread, GetThreadPriorityBoost

1.384 SetTimeZoneInformation

The SetTimeZoneInformation function sets the current time-zone parameters. These parameters control translations
from Coordinated Universal Time (UTC) to local time.

SetTimeZoneInformation: procedure
(

lpTimeZoneInformation: TIME_ZONE_INFORMATION
);

stdcall;
returns( "eax" );
external( "__imp__SetTimeZoneInformation@4" );

Parameters

lpTimeZoneInformation
[in] Pointer to a TIME_ZONE_INFORMATION structure that contains the time-zone parameters to set.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
Page 476



Win32 API Reference
Remarks
All translations between UTC and local time are based on the following formula:

UTC = local time + bias

The bias is the difference, in minutes, between UTC and local time.

To disable the automatic adjustment for daylight saving time, use the following registry value:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TimeZoneInformation\DisableAutoDay-
lightTimeSet

Remarks
MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, GetTimeZoneInformation, TIME_ZONE_INFORMATION

1.385 SetUnhandledExceptionFilter

The SetUnhandledExceptionFilter function enables an application to supersede the top-level exception handler of
each thread and process.

After calling this function, if an exception occurs in a process that is not being debugged, and the exception makes it
to the unhandled exception filter, that filter will call the exception filter function specified by the lpTopLevelExcep-
tionFilter parameter.

SetUnhandledExceptionFilter: procedure
(

lpTopLevelExceptionFilter: TOP_LEVEL_EXCEPTION_FILTER
);

stdcall;
returns( "eax" );
external( "__imp__SetUnhandledExceptionFilter@4" );

Parameters

lpTopLevelExceptionFilter
[in] Pointer to a top-level exception filter function that will be called whenever the UnhandledExceptionFil-
ter function gets control, and the process is not being debugged. A value of NULL for this parameter specifies
default handling within UnhandledExceptionFilter.

The filter function has syntax congruent to that of UnhandledExceptionFilter: It takes a single parameter of
type LPEXCEPTION_POINTERS, and returns a value of type LONG. The filter function should return one of
the following values.

Value Meaning

EXCEPTION_EXECUTE_HANDLE
R

Return from UnhandledExceptionFilter and execute the associ-
ated exception handler. This usually results in process termination.
Page 477



Volume 1
Return Values
The SetUnhandledExceptionFilter function returns the address of the previous exception filter established with the
function. A NULL return value means that there is no current top-level exception handler.

Remarks
Issuing SetUnhandledExceptionFilter replaces the existing top-level exception filter for all existing and all future
threads in the calling process.

The exception handler specified by lpTopLevelExceptionFilter is executed in the context of the thread that caused the
fault. This can affect the exception handler's ability to recover from certain exceptions, such as an invalid stack.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Structured Exception Handling Overview, Structured Exception Handling Functions, UnhandledExceptionFilter

1.386 SetVolumeLabel

The SetVolumeLabel function sets the label of a file system volume.

SetVolumeLabel: procedure
(

lpRootPathName: string;
lpVolumeName: string

);
stdcall;
returns( "eax" );
external( "__imp__SetVolumeLabelA@8" );

Parameters

lpRootPathName
[in] Pointer to a null-terminated string specifying the root directory of a file system volume. This is the volume
the function will label. A trailing backslash is required. If this parameter is NULL, the root of the current direc-
tory is used.

lpVolumeName
[in] Pointer to a string specifying a name for the volume. If this parameter is NULL, the function deletes the label
from the specified volume.

EXCEPTION_CONTINUE_EXECUT
ION

Return from UnhandledExceptionFilter and continue execution from
the point of the exception. Note that the filter function is free to modify
the continuation state by modifying the exception information supplied
through its LPEXCEPTION_POINTERS parameter.

EXCEPTION_CONTINUE_SEARCH Proceed with normal execution of UnhandledExceptionFilter. That
means obeying the SetErrorMode flags, or invoking the Application
Error pop-up message box.
Page 478



Win32 API Reference
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, GetVolumeInformation

1.387 SetWaitableTimer

The SetWaitableTimer function activates the specified waitable timer. When the due time arrives, the timer is sig-
naled and the thread that set the timer calls the optional completion routine.

SetWaitableTimer: procedure
(

hTimer: dword;
var pDueTime: LARGE_INTEGER;

lPeriod: dword;
pfnCompletionRoutine: procedure;

var lpArgToCompletionRoutine: var;
fResume: boolean

);
stdcall;
returns( "eax" );
external( "__imp__SetWaitableTimer@24" );

Parameters

hTimer
[in] Handle to the timer object. The CreateWaitableTimer or OpenWaitableTimer function returns this
handle.

pDueTime
[in] Specifies when the state of the timer is to be set to signaled, in 100 nanosecond intervals. Use the format
described by the FILETIME structure. Positive values indicate absolute time. Be sure to use a UTC-based abso-
lute time, as the system uses UTC-based time internally. Negative values indicate relative time. The actual timer
accuracy depends on the capability of your hardware. For more information about UTC-based time, see System
Time.

lPeriod
[in] Specifies the period of the timer, in milliseconds. If lPeriod is zero, the timer is signaled once. If lPeriod is
greater than zero, the timer is periodic. A periodic timer automatically reactivates each time the period elapses,
until the timer is canceled using the CancelWaitableTimer function or reset using SetWaitableTimer. If lPe-
riod is less than zero, the function fails.

pfnCompletionRoutine
[in] Pointer to an optional completion routine. The completion routine is application-defined function of type
PTIMERAPCROUTINE to be executed when the timer is signaled. For more information on the timer callback
Page 479



Volume 1
function, see TimerAPCProc.

lpArgToCompletionRoutine
[in] Pointer to the structure that is passed to the optional completion routine.

fResume
[in] Specifies whether to restore a system in suspended power conservation mode when the timer state is set to
signaled. If fResume is TRUE on a platform that does not support a restore, the call will succeed, but GetLastEr-
ror returns ERROR_NOT_SUPPORTED.

Return Value
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Timers are initially inactive. To activate a timer, call SetWaitableTimer. If the timer is already active when you call
SetWaitableTimer, the timer is stopped, then it is reactivated. Stopping the timer in this manner does not set the
timer state to signaled, so threads blocked in a wait operation on the timer remain blocked.

When the specified due time arrives, the timer becomes inactive and the APC is queued to the thread that set the
timer. The state of the timer is set to signaled, the timer is reactivated using the specified period, and the thread that
set the timer calls the completion routine when it enters an alertable wait state. For more information, see
QueueUserAPC.

If the thread that set the timer exits before the timer elapses, the timer is cancelled. If you call SetWaitableTimer on
a timer that has been set by another thread and that thread is not in an alertable state, the completion routine is can-
celled.

When a manual-reset timer is set to the signaled state, it remains in this state until SetWaitableTimer is called to
reset the timer. As a result, a periodic manual-reset timer is set to the signaled state when the initial due time arrives
and remains signaled until it is reset. When a synchronization timer is set to the signaled state, it remains in this state
until a thread completes a wait operation on the timer object.

Example
For an example that uses SetWaitableTimer, see Using Waitable Timer Objects.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, CancelWaitableTimer, CreateWaitableTimer, FILETIME,
OpenWaitableTimer, TimerAPCProc

1.388 SetupComm

The SetupComm function initializes the communications parameters for a specified communications device.

SetupComm: procedure
(

hFile: dword;
dwInQueue: dword;
dwOutQueue: dword

);
Page 480



Win32 API Reference
stdcall;
returns( "eax" );
external( "__imp__SetupComm@12" );

Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

dwInQueue
[in] Specifies the recommended size, in bytes, of the device's internal input buffer.

dwOutQueue
[in] Specifies the recommended size, in bytes, of the device's internal output buffer.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
After a process uses the CreateFile function to open a handle to a communications device, it can call SetupComm
to set the communications parameters for the device. If it does not set them, the device uses the default parameters
when the first call to another communications function occurs.

The dwInQueue and dwOutQueue parameters specify the recommended sizes for the internal buffers used by the
driver for the specified device. For example, YMODEM protocol packets are slightly larger than 1024 bytes. There-
fore, a recommended buffer size might be 1200 bytes for YMODEM communications. For Ethernet-based communi-
cations, a recommended buffer size might be 1600 bytes, which is slightly larger than a single Ethernet frame.

The device driver receives the recommended buffer sizes, but is free to use any input and output (I/O) buffering
scheme, as long as it provides reasonable performance and data is not lost due to overrun (except under extreme cir-
cumstances). For example, the function can succeed even though the driver does not allocate a buffer, as long as some
other portion of the system provides equivalent functionality.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, CreateFile, SetCommState

1.389 SignalObjectAndWait

The SignalObjectAndWait function allows the caller to atomically signal an object and wait on another object.

SignalObjectAndWait: procedure
(

hObjectToSignal: dword;
hObjectToWaitOn: dword;
dwMilliseconds: dword;
bAlertable: boolean

);
stdcall;
Page 481



Volume 1
returns( "eax" );
external( "__imp__SignalObjectAndWait@16" );

Parameters

hObjectToSignal
[in] Specifies the handle to the object to signal. This object can be a semaphore, a mutex, or an event.

Windows NT/2000: If the handle is a semaphore, SEMAPHORE_MODIFY_STATE access is required. If the
handle is an event, EVENT_MODIFY_STATE access is required. If the handle is a mutex, SYNCHRONIZE
access is assumed, because only the owner of a mutex may release it. For more information, see Synchronization
Object Security and Access Rights.

hObjectToWaitOn
[in] Specifies the handle to the object to wait for. For a list of the object types whose handles you can specify, see
the Remarks section.

dwMilliseconds
[in] Specifies the time-out interval, in milliseconds. The function returns if the interval elapses, even if the
object's state is nonsignaled and no completion or asynchronous procedure call (APC) objects are queued. If
dwMilliseconds is zero, the function tests the object's state, checks for queued completion routines or APCs, and
returns immediately. If dwMilliseconds is INFINITE, the function's time-out interval never elapses.

bAlertable
[in] Specifies whether the function returns when the system queues an I/O completion routine or an APC for the
calling thread. If TRUE, the function returns and the thread calls the completion routine or APC function. If
FALSE, the function does not return, and the thread does not call the completion routine or APC function.

A completion routine is queued when the ReadFileEx or WriteFileEx function in which it was specified has
completed. The wait function returns and the completion routine is called only if bAlertable is TRUE, and the
calling thread is the thread that initiated the read or write operation. An APC is queued when you call
QueueUserAPC.

Return Values
If the function succeeds, the return value indicates the event that caused the function to return. This value can be one
of the following:

If the function fails, the return value is WAIT_FAILED. To get extended error information, call GetLastError.

Remarks
A completion routine is queued for execution when the ReadFileEx or WriteFileEx function in which it was spec-
ified has been completed. The wait function returns and the completion routine is executed only if bAlertable is
TRUE, and the calling thread is the thread that initiated the read or write operation.

Value Meaning

WAIT_ABANDONED The specified object is a mutex object that was not released by the
thread that owned the mutex object before the owning thread termi-
nated. Ownership of the mutex object is granted to the calling thread,
and the mutex is set to nonsignaled.

WAIT_IO_COMPLETION One or more I/O completion routines or user-mode APCs are queued
for execution.

WAIT_OBJECT_0 The state of the specified object is signaled.

WAIT_TIMEOUT The time-out interval elapsed, and the object's state is nonsignaled.
Page 482



Win32 API Reference
The SignalObjectAndWait function can wait for the following objects:

Change notification

Console input

Event

Job

Mutex

Process

Semaphore

Thread

Waitable timer

For more information, see Synchronization Objects.

Use caution when using the wait functions and code that directly or indirectly creates windows. If a thread creates any
windows, it must process messages. Message broadcasts are sent to all windows in the system. A thread that uses a
wait function with no time-out interval may cause the system to become deadlocked. Two examples of code that indi-
rectly creates windows are DDE and COM CoInitialize. Therefore, if you have a thread that creates windows, use
MsgWaitForMultipleObjects or MsgWaitForMultipleObjectsEx, rather than SignalObjectAndWait.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, MsgWaitForMultipleObjects, MsgWaitForMultipleObject-
sEx

1.390 SizeofResource

The SizeofResource function returns the size, in bytes, of the specified resource.

SizeofResource: procedure
(

hModule: dword;
hResInfo: dword

);
stdcall;
returns( "eax" );
external( "__imp__SizeofResource@8" );

Parameters

hModule
[in] Handle to the module whose executable file contains the resource.

hResInfo
[in] Handle to the resource. This handle must be created by using the FindResource or FindResourceEx
function.
Page 483



Volume 1
Return Values
If the function succeeds, the return value is the number of bytes in the resource.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Resources Overview, Resource Functions, FindResource, FindResourceEx

1.391 Sleep

The Sleep function suspends the execution of the current thread for the specified interval.

To enter an alertable wait state, use the SleepEx function.

Sleep: procedure
(

dwMilliseconds: dword
);

stdcall;
returns( "eax" );
external( "__imp__Sleep@4" );

Parameters

dwMilliseconds
[in] Specifies the time, in milliseconds, for which to suspend execution. A value of zero causes the thread to
relinquish the remainder of its time slice to any other thread of equal priority that is ready to run. If there are no
other threads of equal priority ready to run, the function returns immediately, and the thread continues execution.
A value of INFINITE causes an infinite delay.

Return Values
This function does not return a value.

Remarks
A thread can relinquish the remainder of its time slice by calling this function with a sleep time of zero milliseconds.

You have to be careful when using Sleep and code that directly or indirectly creates windows. If a thread creates any
windows, it must process messages. Message broadcasts are sent to all windows in the system. If you have a thread
that uses Sleep with infinite delay, the system will deadlock. Two examples of code that indirectly creates windows
are DDE and COM CoInitialize. Therefore, if you have a thread that creates windows, use MsgWaitForMultiple-
Objects or MsgWaitForMultipleObjectsEx, rather than Sleep.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Page 484



Win32 API Reference
See Also
Processes and Threads Overview, Process and Thread Functions, MsgWaitForMultipleObjects, MsgWaitForMultiple-
ObjectsEx, SleepEx

1.392 SleepEx

The SleepEx function suspends the current thread until one of the following occurs:

An I/O completion callback function is called

An asynchronous procedure call (APC) is queued to the thread.

The time-out interval elapses

SleepEx: procedure
(

dwMilliseconds: dword;
bAlertable: boolean

);
stdcall;
returns( "eax" );
external( "__imp__SleepEx@8" );

Parameters

dwMilliseconds
[in] Specifies the time, in milliseconds, that the delay is to occur. A value of zero causes the thread to relinquish
the remainder of its time slice to any other thread of equal priority that is ready to run. If there are no other
threads of equal priority ready to run, the function returns immediately, and the thread continues execution. A
value of INFINITE causes an infinite delay.

bAlertable
[in] Specifies whether the function may terminate early due to an I/O completion callback function or an APC. If
bAlertable is FALSE, the function does not return until the time-out period has elapsed. If an I/O completion
callback occurs, the function does not return and the I/O completion function is not executed. If an APC is
queued to the thread, the function does not return and the APC function is not executed.

If bAlertable is TRUE and the thread that called this function is the same thread that called the extended I/O
function (ReadFileEx or WriteFileEx), the function returns when either the time-out period has elapsed or
when an I/O completion callback function occurs. If an I/O completion callback occurs, the I/O completion func-
tion is called. If an APC is queued to the thread (QueueUserAPC), the function returns when either the timer-out
period has elapsed or when the APC function is called.

Return Values
The return value is zero if the specified time interval expired.

The return value is WAIT_IO_COMPLETION if the function returned due to one or more I/O completion callback
functions. This can happen only if bAlertable is TRUE, and if the thread that called the SleepEx function is the same
thread that called the extended I/O function.

Remarks
This function can be used with the ReadFileEx or WriteFileEx functions to suspend a thread until an I/O operation
has been completed. These functions specify a completion routine that is to be executed when the I/O operation has
been completed. For the completion routine to be executed, the thread that called the I/O function must be in an alert-
able wait state when the completion callback function occurs. A thread goes into an alertable wait state by calling
either SleepEx, MsgWaitForMultipleObjectsEx, WaitForSingleObjectEx, or WaitForMultipleOb-
jectsEx, with the function's bAlertable parameter set to TRUE.
Page 485



Volume 1
A thread can relinquish the remainder of its time slice by calling this function with a sleep time of zero milliseconds.

You have to be careful when using SleepEx and code that directly or indirectly creates windows. If a thread creates
any windows, it must process messages. Message broadcasts are sent to all windows in the system. If you have a
thread that uses SleepEx with infinite delay, the system will deadlock. Two examples of code that indirectly creates
windows are DDE and COM CoInitialize. Therefore, if you have a thread that creates windows, use MsgWaitFor-
MultipleObjects or MsgWaitForMultipleObjectsEx, rather than SleepEx.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, MsgWaitForMultipleObjects, MsgWaitForMultiple-
ObjectsEx, QueueUserAPC, ReadFileEx, Sleep, WaitForMultipleObjectsEx, WaitForSingleObjectEx, WriteFileEx

1.393 SuspendThread

The SuspendThread function suspends the specified thread.

SuspendThread: procedure
(

hThread: dword
);

stdcall;
returns( "eax" );
external( "__imp__SuspendThread@4" );

Parameters

hThread
[in] Handle to the thread that is to be suspended.

Windows NT/2000: The handle must have THREAD_SUSPEND_RESUME access. For more information, see
Thread Security and Access Rights.

Return Values
If the function succeeds, the return value is the thread's previous suspend count; otherwise, it is -1. To get extended
error information, use the GetLastError function.

Remarks
If the function succeeds, execution of the specified thread is suspended and the thread's suspend count is incremented.

Suspending a thread causes the thread to stop executing user-mode (application) code.

Each thread has a suspend count (with a maximum value of MAXIMUM_SUSPEND_COUNT). If the suspend count
is greater than zero, the thread is suspended; otherwise, the thread is not suspended and is eligible for execution. Call-
ing SuspendThread causes the target thread's suspend count to be incremented. Attempting to increment past the
maximum suspend count causes an error without incrementing the count.

The ResumeThread function decrements the suspend count of a suspended thread.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Page 486



Win32 API Reference
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, OpenThread, ResumeThread

1.394 SwitchToFiber

The SwitchToFiber function schedules a fiber. The caller of must be a fiber.

SwitchToFiber: procedure
(

lpFiber: dword
);

stdcall;
returns( "eax" );
external( "__imp__SwitchToFiber@4" );

Parameters

lpFiber
[in] Specifies the address of the fiber to schedule.

Return Values
This function does not return a value.

Remarks
You create fibers with CreateFiber. Before you can schedule fibers associated with a thread, you must call Con-
vertThreadToFiber to set up an area in which to save the fiber state information. The thread is now the currently
executing fiber.

The SwitchToFiber function saves the state information of the current fiber and restores the state of the specified
fiber. You can call SwitchToFiber with the address of a fiber created by a different thread. To do this, you must have
the address returned to the other thread when it called CreateFiber and you must use proper synchronization.

Warning Avoid making the following call:

SwitchToFiber( GetCurrentFiber() );

This call may cause unpredictable problems.

Requirements
Windows NT/2000: Requires Windows NT 3.51 SP3 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CreateFiber, ConvertThreadToFiber

1.395 SwitchToThread

The SwitchToThread function causes the calling thread to yield execution to another thread that is ready to run on
the current processor. The operating system selects the thread to yield to.
Page 487



Volume 1
SwitchToThread: procedure;
stdcall;
returns( "eax" );
external( "__imp__SwitchToThread@0" );

Parameters
This function has no parameters.

Return Values
If calling the SwitchToThread function causes the operating system to switch execution to another thread, the return
value is nonzero.

If there are no other threads ready to execute, the operating system does not switch execution to another thread, and
the return value is zero.

Remarks
The yield of execution is in effect for up to one thread-scheduling time slice. After that, the operating system resched-
ules execution for the yielding thread. The rescheduling is determined by the priority of the yielding thread and the
status of other threads that are available to run.

Note The yield of execution is limited to the processor of the calling thread. The operating system will not switch
execution to another processor, even if that processor is idle or is running a thread of lower priority.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, SuspendThread

1.396 SystemTimeToFileTime

The SystemTimeToFileTime function converts a system time to a file time.

SystemTimeToFileTime: procedure
(

var lpSystemTime: SYSTEMTIME;
var lpFileTime: FILETIME

);
stdcall;
returns( "eax" );
external( "__imp__SystemTimeToFileTime@8" );

Parameters

lpSystemTime
[in] Pointer to a SYSTEMTIME structure that contains the time to be converted.

The wDayOfWeek member of the SYSTEMTIME structure is ignored.

lpFileTime
[out] Pointer to a FILETIME structure to receive the converted system time.
Page 488



Win32 API Reference
Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, DosDateTimeToFileTime, FILETIME, FileTimeToDosDateTime, FileTimeToSys-
temTime, SYSTEMTIME

1.397 SystemTimeToTzSpecificLocalTime

The SystemTimeToTzSpecificLocalTime function converts a time in Coordinated Universal Time (UTC) to a spec-
ified time zone's corresponding local time.

SystemTimeToTzSpecificLocalTime: procedure
(

var lpTimeZone: TIME_ZONE_INFORMATION;
var lpUniversalTime: SYSTEMTIME;
var lpLocalTime: SYSTEMTIME

);
stdcall;
returns( "eax" );
external( "__imp__SystemTimeToTzSpecificLocalTime@12" );

Parameters

lpTimeZone
[in] Pointer to a TIME_ZONE_INFORMATION structure that specifies the time zone of interest.

If lpTimeZone is NULL, the function uses the currently active time zone.

lpUniversalTime
[in] Pointer to a SYSTEMTIME structure that specifies a UTC. The function converts this universal time to the
specified time zone's corresponding local time.

lpLocalTime
[out] Pointer to a SYSTEMTIME structure that receives the local time information.

Return Values
If the function succeeds, the return value is nonzero, and the function sets the members of the SYSTEMTIME structure
pointed to by lpLocalTime to the appropriate local time values.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Requirements
Windows NT/2000: Requires Windows NT 3.5 or later.
Page 489



Volume 1
Windows 95/98: Unsupported.
Header: Declared in kenel32.hhf
Library: Use Kernel32.lib.

See Also
Time Overview, Time Functions, GetSystemTime, GetTimeZoneInformation, SYSTEMTIME,
TIME_ZONE_INFORMATION

1.398 TerminateJobObject

The TerminateJobObject function terminates all processes currently associated with the job.

TerminateJobObject: procedure
(

hJob: dword;
uExitCode: dword

);
stdcall;
returns( "eax" );
external( "__imp__TerminateJobObject@8" );

Parameters

hJob
[in] Handle to the job whose processes will be terminated. The CreateJobObject or OpenJobObject function
returns this handle. This handle must have the JOB_OBJECT_TERMINATE access right. For more information,
see Job Object Security and Access Rights.

uExitCode
[in] Specifies the exit code for the processes and threads terminated as a result of this call.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
It is not possible for any of the processes associated with the job to postpone or handle the termination. It is as if Ter-
minateProcess were called for each process associated with the job.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CreateJobObject, OpenJobObject, TerminatePro-
cess
Page 490



Win32 API Reference
1.399 TerminateProcess

The TerminateProcess function terminates the specified process and all of its threads.

TerminateProcess: procedure
(

hProcess: dword;
uExitCode: dword

);
stdcall;
returns( "eax" );
external( "__imp__TerminateProcess@8" );

Parameters

hProcess
[in] Handle to the process to terminate.

Windows NT/2000: The handle must have PROCESS_TERMINATE access. For more information, see Process
Security and Access Rights.

uExitCode
[in] Specifies the exit code for the process and for all threads terminated as a result of this call. Use the GetEx-
itCodeProcess function to retrieve the process's exit value. Use the GetExitCodeThread function to retrieve
a thread's exit value.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The TerminateProcess function is used to unconditionally cause a process to exit. Use it only in extreme circum-
stances. The state of global data maintained by dynamic-link libraries (DLLs) may be compromised if Termi-
nateProcess is used rather than ExitProcess.

TerminateProcess causes all threads within a process to terminate, and causes a process to exit, but DLLs attached to
the process are not notified that the process is terminating.

Terminating a process causes the following:

All of the object handles opened by the process are closed.

All of the threads in the process terminate their execution.

The state of the process object becomes signaled, satisfying any threads that had been waiting for the process to ter-
minate.

The states of all threads of the process become signaled, satisfying any threads that had been waiting for the threads
to terminate.

The termination status of the process changes from STILL_ACTIVE to the exit value of the process.

Terminating a process does not cause child processes to be terminated.

Terminating a process does not necessarily remove the process object from the system. A process object is deleted
when the last handle to the process is closed.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Page 491



Volume 1
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, ExitProcess, OpenProcess, GetExitCodeProcess,
GetExitCodeThread

1.400 TerminateThread

The TerminateThread function terminates a thread.

TerminateThread: procedure
(

hThread: dword;
dwExitCode: dword

);
stdcall;
returns( "eax" );
external( "__imp__TerminateThread@8" );

Parameters

hThread
[in/out] Handle to the thread to terminate.

Windows NT/2000: The handle must have THREAD_TERMINATE access. For more information, see Thread
Security and Access Rights.

dwExitCode
[in] Specifies the exit code for the thread. Use the GetExitCodeThread function to retrieve a thread's exit
value.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
TerminateThread is used to cause a thread to exit. When this occurs, the target thread has no chance to execute any
user-mode code and its initial stack is not deallocated. DLLs attached to the thread are not notified that the thread is
terminating.

TerminateThread is a dangerous function that should only be used in the most extreme cases. You should call Ter-
minateThread only if you know exactly what the target thread is doing, and you control all of the code that the target
thread could possibly be running at the time of the termination. For example, TerminateThread can result in the fol-
lowing problems:

If the target thread owns a critical section, the critical section will not be released.

If the target thread is executing certain kernel32 calls when it is terminated, the kernel32 state for
the thread's process could be inconsistent.

If the target thread is manipulating the global state of a shared DLL, the state of the DLL could be
destroyed, affecting other users of the DLL.

A thread cannot protect itself against TerminateThread, other than by controlling access to its handles. The thread
handle returned by the CreateThread and CreateProcess functions has THREAD_TERMINATE access, so any
caller holding one of these handles can terminate your thread.

If the target thread is the last thread of a process when this function is called, the thread's process is also terminated.
Page 492



Win32 API Reference
The state of the thread object becomes signaled, releasing any other threads that had been waiting for the thread to
terminate. The thread's termination status changes from STILL_ACTIVE to the value of the dwExitCode parameter.

Terminating a thread does not necessarily remove the thread object from the system. A thread object is deleted when
the last thread handle is closed.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CreateProcess, CreateThread, ExitThread, GetExit-
CodeThread, OpenThread

1.401 Thread32First

Retrieves information about the first thread of any process encountered in a system snapshot.

Thread32First: procedure
(

hSnapshot: dword;
var lpte: THREADENTRY32

);
stdcall;
returns( "eax" );
external( "__imp__Thread32First@8" );

Parameters

hSnapshot
[in] Handle to the snapshot returned from a previous call to the CreateToolhelp32Snapshot function.

lpte
[in/out] Pointer to a THREADENTRY32 structure.

Return Values
Returns TRUE if the first entry of the thread list has been copied to the buffer or FALSE otherwise. The
ERROR_NO_MORE_FILES error value is returned by the GetLastError function if no threads exist or the snap-
shot does not contain thread information.

Remarks
The calling application must set the dwSize member of THREADENTRY32 to the size, in bytes, of the structure.
Thread32First changes dwSize to the number of bytes written to the structure. This will never be greater than the
initial value of dwSize, but it may be smaller. If the value is smaller, do not rely on the values of any members whose
offsets are greater than this value.

To retrieve information about other threads recorded in the same snapshot, use the Thread32Next function.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.
Page 493



Volume 1
See Also
Tool Help Library Overview, Tool Help Functions, , CreateToolhelp32Snapshot, THREADENTRY32, Thread32Next

1.402 Thread32Next

Retrieves information about the next thread of any process encountered in the system memory snapshot.

Thread32Next: procedure
(

hSnapshot: dword;
var lpte: THREADENTRY32

);
stdcall;
returns( "eax" );
external( "__imp__Thread32Next@8" );

Parameters

hSnapshot
[in] Handle to the snapshot returned from a previous call to the CreateToolhelp32Snapshot function.

lpte
[out] Pointer to a THREADENTRY32 structure.

Return Values
Returns TRUE if the next entry of the thread list has been copied to the buffer or FALSE otherwise. The
ERROR_NO_MORE_FILES error value is returned by the GetLastError function if no threads exist or the snap-
shot does not contain thread information.

Remarks
To retrieve information about the first thread recorded in a snapshot, use the Thread32First function.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tool Help Library Overview, Tool Help Functions

1.403 TlsAlloc

The TlsAlloc function allocates a thread local storage (TLS) index. Any thread of the process can subsequently use
this index to store and retrieve values that are local to the thread.

TlsAlloc: procedure;
stdcall;
returns( "eax" );
external( "__imp__TlsAlloc@0" );
Page 494



Win32 API Reference
Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is a TLS index initialized to zero.

If the function fails, the return value is TLS_OUT_OF_INDEXES. To get extended error information, call GetLas-
tError.

Remarks
The threads of the process can use the TLS index in subsequent calls to the TlsFree, TlsSetValue, or Tls-
GetValue functions.

TLS indexes are typically allocated during process or dynamic-link library (DLL) initialization. Once allocated, each
thread of the process can use a TLS index to access its own TLS storage slot. To store a value in its slot, a thread spec-
ifies the index in a call to TlsSetValue. The thread specifies the same index in a subsequent call to TlsGetValue, to
retrieve the stored value.

The constant TLS_MINIMUM_AVAILABLE defines the minimum number of TLS indexes available in each pro-
cess. This minimum is guaranteed to be at least 64 for all systems.

Windows 2000: There is a limit of 1088 TLS indexes per process. Windows NT 4.0 and earlier: There is a limit of
64 TLS indexes per process.

TLS indexes are not valid across process boundaries. A DLL cannot assume that an index assigned in one process is
valid in another process.

A DLL might use TlsAlloc, TlsSetValue, TlsGetValue, and TlsFree as follows:

When a DLL attaches to a process, the DLL uses TlsAlloc to allocate a TLS index. The DLL then allocates some
dynamic storage and uses the TLS index in a call to TlsSetValue to store the address in the TLS slot. This concludes
the per-thread initialization for the initial thread of the process. The TLS index is stored in a global or static variable
of the DLL.

Each time the DLL attaches to a new thread of the process, the DLL allocates some dynamic storage for the new
thread and uses the TLS index in a call to TlsSetValue to store the address in the TLS slot. This concludes the
per-thread initialization for the new thread.

Each time an initialized thread makes a DLL call requiring the data in its dynamic storage, the DLL uses the TLS
index in a call to TlsGetValue to retrieve the address of the dynamic storage for that thread.

For additional information on thread local storage, see Thread Local Storage.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Processes and Threads Overview, Process and Thread Functions, TlsFree, TlsGetValue, Tls-
SetValue

1.404 TlsFree

The TlsFree function releases a thread local storage (TLS) index, making it available for reuse.

TlsFree: procedure
(

dwTlsIndex: dword
Page 495



Volume 1
);
stdcall;
returns( "eax" );
external( "__imp__TlsFree@4" );

Parameters

dwTlsIndex
[in] Specifies a TLS index that was allocated by the TlsAlloc function.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the threads of the process have allocated dynamic storage and used the TLS index to store pointers to this storage,
they should free the storage before calling TlsFree. The TlsFree function does not free any dynamic storage that has
been associated with the TLS index. It is expected that DLLs call this function (if at all) only during their process
detach routine.

For a brief discussion of typical uses of the TLS functions, see the Remarks section of the TlsAlloc function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, TlsAlloc, TlsGetValue, TlsSetValue

1.405 TlsGetValue

The TlsGetValue function retrieves the value in the calling thread's thread local storage (TLS) slot for the specified
TLS index. Each thread of a process has its own slot for each TLS index.

TlsGetValue: procedure
(

dwTlsIndex: dword
);

stdcall;
returns( "eax" );
external( "__imp__TlsGetValue@4" );

Parameters

dwTlsIndex
[in] Specifies a TLS index that was allocated by the TlsAlloc function.

Return Values
If the function succeeds, the return value is the value stored in the calling thread's TLS slot associated with the speci-
fied index.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
Page 496



Win32 API Reference
Note The data stored in a TLS slot can have a value of zero. In this case, the return value is zero and GetLastError
returns NO_ERROR.

Remarks
TLS indexes are typically allocated by the TlsAlloc function during process or DLL initialization. After it is allo-
cated, each thread of the process can use a TLS index to access its own TLS storage slot for that index. The storage
slot for each thread is initialized to NULL. A thread specifies a TLS index in a call to TlsSetValue, to store a value
in its slot. The thread specifies the same index in a subsequent call to TlsGetValue, to retrieve the stored value.

TlsSetValue and TlsGetValue were implemented with speed as the primary goal. These functions perform minimal
parameter validation and error checking. In particular, this function succeeds if dwTlsIndex is in the range 0 through
(TLS_MINIMUM_AVAILABLE – 1). It is up to the programmer to ensure that the index is valid.

Functions that return indications of failure call SetLastError when they fail. They generally do not call SetLastEr-
ror when they succeed. The TlsGetValue function is an exception to this general rule. The TlsGetValue function
calls SetLastError to clear a thread's last error when it succeeds. That allows checking for the error-free retrieval of
NULL values.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, GetLastError, SetLastError, TlsAlloc, TlsFree, Tls-
SetValue

1.406 TlsSetValue

The TlsSetValue function stores a value in the calling thread's thread local storage (TLS) slot for the specified TLS
index. Each thread of a process has its own slot for each TLS index.

TlsSetValue: procedure
(

dwTlsIndex: dword;
var lpTlsValue: var

);
stdcall;
returns( "eax" );
external( "__imp__TlsSetValue@8" );

Parameters

dwTlsIndex
[in] Specifies a TLS index that was allocated by the TlsAlloc function.

lpTlsValue
[in] Specifies the value to be stored in the calling thread's TLS slot specified by dwTlsIndex.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.
Page 497



Volume 1
Remarks
TLS indexes are typically allocated by the TlsAlloc function during process or DLL initialization. Once allocated,
each thread of the process can use a TLS index to access its own TLS storage slot for that index. The storage slot for
each thread is initialized to NULL. A thread specifies a TLS index in a call to TlsSetValue, to store a value in its slot.
The thread specifies the same index in a subsequent call to TlsGetValue, to retrieve the stored value.

TlsSetValue and TlsGetValue were implemented with speed as the primary goal. These functions perform minimal
parameter validation and error checking. In particular, this function succeeds if dwTlsIndex is in the range 0 through
(TLS_MINIMUM_AVAILABLE – 1). It is up to the programmer to ensure that the index is valid.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, TlsAlloc, TlsFree, TlsGetValue

1.407 Toolhelp32ReadProcessMemory

Copies memory allocated to another process into an application-supplied buffer.

Toolhelp32ReadProcessMemory: procedure
(

th32ProcessID: dword;
var lpBaseAddress: var;
var lpBuffer: var;

cbRead: dword;
var lpNumberOfBytesRead: dword

);
stdcall;
returns( "eax" );
external( "__imp__Toolhelp32ReadProcessMemory@20" );

Parameters

th32ProcessID
[in] Identifier of the process whose memory is being copied. This parameter can be zero to copy the memory of
the current process.

lpBaseAddress
[in] Base address in the specified process to read. Before transferring any data, the system verifies that all data in
the base address and memory of the specified size is accessible for read access. If this is the case, the function
proceeds. Otherwise, the function fails.

lpBuffer
[out] Pointer to a buffer that receives the contents of the address space of the specified process.

cbRead
[in] Number of bytes to read from the specified process.

lpNumberOfBytesRead
[out] Number of bytes copied to the specified buffer. If this parameter is NULL, it is ignored.
Page 498



Win32 API Reference
Return Values
Returns TRUE if successful.

Requirements
Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tool Help Library Overview, Tool Help Functions

1.408 TransactNamedPipe

The TransactNamedPipe function combines the functions that write a message to and read a message from the spec-
ified named pipe into a single network operation.

TransactNamedPipe: procedure
(

hNamedPipe: dword;
var lpInBuffer: var;

nInBufferSize: dword;
var lpOutBuffer: var;

nOutBufferSize: dword;
var lpBytesRead: dword;
var lpOverlapped: OVERLAPPED

);
stdcall;
returns( "eax" );
external( "__imp__TransactNamedPipe@28" );

Parameters

hNamedPipe
[in] Handle to the named pipe returned by the CreateNamedPipe or CreateFile function.

Windows NT/2000: This parameter can also be a handle to an anonymous pipe, as returned by the CreatePipe
function.

lpInBuffer
[in] Pointer to the buffer containing the data written to the pipe.

nInBufferSize
[in] Specifies the size, in bytes, of the write buffer.

lpOutBuffer
[out] Pointer to the buffer that receives the data read from the pipe.

nOutBufferSize
[in] Specifies the size, in bytes, of the read buffer.

lpBytesRead
[out] Pointer to the variable that receives the number of bytes read from the pipe.

If lpOverlapped is NULL, lpBytesRead cannot be NULL.
Page 499



Volume 1
If lpOverlapped is not NULL, lpBytesRead can be NULL. If this is an overlapped read operation, you can get the
number of bytes read by calling GetOverlappedResult. If hNamedPipe is associated with an I/O completion
port, you can get the number of bytes read by calling GetQueuedCompletionStatus.

lpOverlapped
[in] Pointer to an OVERLAPPED structure. This structure is required if hNamedPipe was opened with
FILE_FLAG_OVERLAPPED.

If hNamedPipe was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped parameter must not be
NULL. It must point to a valid OVERLAPPED structure. If hNamedPipe was created with
FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the function can incorrectly report that the opeation
is complete.

If hNamePipe was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL, TransactNam-
edPipe is executed as an overlapped operation. The OVERLAPPED structure should contain a manual-reset
event object (which can be created by using the CreateEvent function). If the operation cannot be completed
immediately, TransactNamedPipe returns FALSE and GetLastError returns ERROR_IO_PENDING. In this
situation, the event object is set to the nonsignaled state before TransactNamedPipe returns, and it is set to the
signaled state when the transaction has finished. For more information about overlapped operations, see Pipes.

If hNamedPipe was not opened with FILE_FLAG_OVERLAPPED, TransactNamedPipe does not return until
the operation is complete.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
TransactNamedPipe fails if the server did not create the pipe as a message-type pipe or if the pipe handle is not in
message-read mode. For example, if a client is running on the same machine as the server and uses the \\.\pipe\pipe-
name format to open the pipe, the pipe is opened in byte mode by the named pipe file system (NPFS). If the client
uses the form \\server\pipe\pipename, the redirector opens the pipe in message mode. A byte mode pipe handle can be
changed to message-read mode with the SetNamedPipeHandleState function.

The function cannot be completed successfully until data is written into the buffer specified by the lpOutBuffer
parameter. The lpOverlapped parameter is available to enable the calling thread to perform other tasks while the oper-
ation is executing in the background.

If the message to be read is longer than the buffer specified by the nOutBufferSize parameter, TransactNamedPipe
returns FALSE and the GetLastError function returns ERROR_MORE_DATA. The remainder of the message can
be read by a subsequent call to ReadFile, ReadFileEx, or PeekNamedPipe.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Pipes Overview, Pipe Functions, CreateEvent, CreateFile, CreateNamedPipe, GetOverlappedResult, GetQueued-
CompletionStatus, PeekNamedPipe, ReadFile, ReadFileEx, SetNamedPipeHandleState, OVERLAPPED

1.409 TransmitCommChar

The TransmitCommChar function transmits a specified character ahead of any pending data in the output buffer of
the specified communications device.
Page 500



Win32 API Reference
TransmitCommChar: procedure
(

hFile: dword;
cChar: char

);
stdcall;
returns( "eax" );
external( "__imp__TransmitCommChar@8" );

Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

cChar
[in] Specifies the character to be transmitted.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The TransmitCommChar function is useful for sending an interrupt character (such as a CTRL+C) to a host system.

If the device is not transmitting, TransmitCommChar cannot be called repeatedly. Once TransmitCommChar
places a character in the output buffer, the character must be transmitted before the function can be called again. If the
previous character has not yet been sent, TransmitCommChar returns an error.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, CreateFile, WaitCommEvent

1.410 TryEnterCriticalSection

The TryEnterCriticalSection function attempts to enter a critical section without blocking. If the call is successful,
the calling thread takes ownership of the critical section.

TryEnterCriticalSection: procedure
(

var lpCriticalSection: CRITICAL_SECTION
);

stdcall;
returns( "eax" );
external( "__imp__TryEnterCriticalSection@4" );

Parameters

lpCriticalSection
[in/out] Specifies the critical section object.
Page 501



Volume 1
Return Values
If the critical section is successfully entered or the current thread already owns the critical section, the return value is
nonzero.

If another thread already owns the critical section, the return value is zero.

Remarks
The threads of a single process can use a critical section object for mutual-exclusion synchronization. The process is
responsible for allocating the memory used by a critical section object, which it can do by declaring a variable of type
CRITICAL_SECTION. Before using a critical section, some thread of the process must call the Initialize-
CriticalSection or InitializeCriticalSectionAndSpinCount function to initialize the object.

To enable mutually exclusive use of a shared resource, each thread calls the EnterCriticalSection or TryEnter-
CriticalSection function to request ownership of the critical section before executing any section of code that uses
the protected resource. The difference is that TryEnterCriticalSection returns immediately, regardless of whether it
obtained ownership of the critical section, while EnterCriticalSection blocks until the thread can take ownership of
the critical section. When it has finished executing the protected code, the thread uses the LeaveCriticalSection
function to relinquish ownership, enabling another thread to become the owner and gain access to the protected
resource. The thread must call LeaveCriticalSection once for each time that it entered the critical section.

Any thread of the process can use the DeleteCriticalSection function to release the system resources that were allo-
cated when the critical section object was initialized. After this function has been called, the critical section object can
no longer be used for synchronization.

If a thread terminates while it has ownership of a critical section, the state of the critical section is undefined.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, DeleteCriticalSection, EnterCriticalSection, InitializeCriti-
calSection, InitializeCriticalSectionAndSpinCount, LeaveCriticalSection

1.411 UnhandledExceptionFilter

The UnhandledExceptionFilter function passes unhandled exceptions to the debugger, if the process is being
debugged. Otherwise, it optionally displays an Application Error message box and causes the exception handler to
be executed. This function can be called only from within the filter expression of an exception handler.

UnhandledExceptionFilter: procedure
(

var ExceptionInfo: _EXCEPTION_POINTERS
);

stdcall;
returns( "eax" );
external( "__imp__UnhandledExceptionFilter@4" );

Parameters

ExceptionInfo
[in] Pointer to an EXCEPTION_POINTERS structure containing a description of the exception and the processor
context at the time of the exception. This pointer is the return value of a call to the GetExceptionInforma-
tion function.
Page 502



Win32 API Reference
Return Values
The function returns one of the following values.

Remarks
If the process is not being debugged, the function displays an Application Error message box, depending on the cur-
rent error mode. The default behavior is to display the dialog box, but this can be disabled by specifying
SEM_NOGPFAULTERRORBOX in a call to the SetErrorMode function.

The system uses UnhandledExceptionFilter internally to handle exceptions that occur during process and thread
creation.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Structured Exception Handling Overview, Structured Exception Handling Functions, EXCEPTION_POINTERS,
GetExceptionInformation, SetErrorMode, SetUnhandledExceptionFilter, UnhandledExceptionFilter

1.412 UnlockFile

The UnlockFile function unlocks a region in an open file. Unlocking a region enables other processes to access the
region.

For an alternate way to specify the region, use the UnlockFileEx function.

UnlockFile: procedure
(

hFile: dword;
dwFileOffsetLow: dword;
dwFileOffsetHigh: dword;
nNumberOfBytesToUnlockLow: dword;
nNumberOfBytesToUnlockHigh: dword

);
stdcall;
returns( "eax" );
external( "__imp__UnlockFile@20" );

Parameters

hFile
[in] Handle to a file that contains a region locked with LockFile. The file handle must have been created with
either GENERIC_READ or GENERIC_WRITE access to the file.

Value Meaning

EXCEPTION_CONTINUE_SEARCH The process is being debugged, so the exception should be passed (as
second chance) to the application's debugger.

EXCEPTION_EXECUTE_HANDLER If the SEM_NOGPFAULTERRORBOX flag was specified in a previ-
ous call to SetErrorMode, no Application Error message box is dis-
played. The function returns control to the exception handler, which
is free to take any appropriate action.
Page 503



Volume 1
dwFileOffsetLow
[in] Specifies the low-order word of the starting byte offset in the file where the locked region begins.

dwFileOffsetHigh
[in] Specifies the high-order word of the starting byte offset in the file where the locked region begins.

Windows 95/98: dwFileOffsetHigh must be 0, the sign extension of the value of dwFileOffsetLow. Any other
value will be rejected.

nNumberOfBytesToUnlockLow
[in] Specifies the low-order word of the length of the byte range to be unlocked.

nNumberOfBytesToUnlockHigh
[in] Specifies the high-order word of the length of the byte range to be unlocked.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Unlocking a region of a file releases a previously acquired lock on the file. The region to unlock must correspond
exactly to an existing locked region. Two adjacent regions of a file cannot be locked separately and then unlocked
using a single region that spans both locked regions.

If a process terminates with a portion of a file locked or closes a file that has outstanding locks, the behavior is not
specified.

This function works on a file allocation table (FAT) – based file system only if the operating system is running
SHARE.EXE.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CreateFile, LockFile, UnlockFileEx

1.413 UnlockFileEx

The UnlockFileEx function unlocks a previously locked byte range in an open file.

UnlockFileEx: procedure
(

hFile: dword;
dwReserved: dword;
nNumberOfBytesToUnlockLow: dword;
nNumberOfBytesToUnlockHigh: dword;

var lpOverlapped: OVERLAPPED
);

stdcall;
returns( "eax" );
external( "__imp__UnlockFileEx@20" );
Page 504



Win32 API Reference
Parameters

hFile
[in] Handle to a file that is to have an existing locked region unlocked. The handle must have been created with
either GENERIC_READ or GENERIC_WRITE access to the file.

dwReserved
Reserved parameter; must be zero.

nNumberOfBytesToUnlockLow
[in] Specifies the low-order part of the length of the byte range to unlock.

nNumberOfBytesToUnlockHigh
[in] Specifies the high-order part of the length of the byte range to unlock.

lpOverlapped
[in] Pointer to an OVERLAPPED structure that the function uses with the unlocking request. This structure con-
tains the file offset of the beginning of the unlock range.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero or NULL. To get extended error information, call GetLastError.

Remarks
Unlocking a region of a file releases a previously acquired lock on the file. The region to unlock must correspond
exactly to an existing locked region. Two adjacent regions of a file cannot be locked separately and then unlocked
using a single region that spans both locked regions.

If a process terminates with a portion of a file locked or closes a file that has outstanding locks, the behavior is not
specified.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CreateFile, LockFile, LockFileEx, OVERLAPPED, UnlockFile

1.414 UnmapViewOfFile

The UnmapViewOfFile function unmaps a mapped view of a file from the calling process's address space.

UnmapViewOfFile: procedure
(

var lpBaseAddress: var
);

stdcall;
returns( "eax" );
external( "__imp__UnmapViewOfFile@4" );
Page 505



Volume 1
Parameters

lpBaseAddress
[in] Pointer to the base address of the mapped view of a file that is to be unmapped. This value must be identical
to the value returned by a previous call to the MapViewOfFile or MapViewOfFileEx function.

Return Values
If the function succeeds, the return value is nonzero, and all dirty pages within the specified range are written "lazily"
to disk.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Although an application may close the file handle used to create a file-mapping object, the system holds the corre-
sponding file open until the last view of the file is unmapped:

Windows 95: Files for which the last view has not yet been unmapped are held open with the same
sharing restrictions as the original file handle.

Windows NT/2000: Files for which the last view has not yet been unmapped are held open with no
sharing restrictions.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File Mapping Overview, File Mapping Functions, MapViewOfFile, MapViewOfFileEx

1.415 UpdateResource

The UpdateResource function adds, deletes, or replaces a resource in an executable file.

UpdateResource: procedure
(

hUpdate: dword;
lpType: string;
lpName: string;
wLanguage: word;

var lpData: var;
cbData: dword

);
stdcall;
returns( "eax" );
external( "__imp__UpdateResourceA@24" );

Parameters

hUpdate
[in] Specifies an update-file handle. This handle is returned by the BeginUpdateResource function.

lpType
[in] Pointer to a null-terminated string specifying the resource type to be updated. This parameter can also be an
integer value passed to the MAKEINTRESOURCE macro, or it can be one of the following predefined resource
Page 506



Win32 API Reference
types.

lpName
[in] Pointer to a null-terminated string specifying the name of the resource to be updated. This parameter can also
be an integer value passed to the MAKEINTRESOURCE macro.

wLanguage
[in] Specifies the language identifier of the resource to be updated. For a list of the primary language identifiers
and sublanguage identifiers that make up a language identifier, see the MAKELANGID macro.

lpData
[in] Pointer to the resource data to be inserted into the executable file. If the resource is one of the predefined
types, the data must be valid and properly aligned. Note that this is the raw binary data stored in the executable
file, not the data provided by LoadIcon, LoadString, or other resource-specific load functions. All data con-
taining strings or text must be in Unicode format; lpData must not point to ANSI data.

If lpData is NULL, the specified resource is deleted from the executable file.

cbData
[in] Specifies the size, in bytes, of the resource data at lpData.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Value Meaning

RT_ACCELERATOR Accelerator table

RT_ANICURSOR Animated cursor

RT_ANIICON Animated icon

RT_BITMAP Bitmap resource

RT_CURSOR Hardware-dependent cursor resource

RT_DIALOG Dialog box

RT_FONT Font resource

RT_FONTDIR Font directory resource

RT_GROUP_CURSOR Hardware-independent cursor resource

RT_GROUP_ICON Hardware-independent icon resource

RT_ICON Hardware-dependent icon resource

RT_MENU Menu resource

RT_MESSAGETABLE Message-table entry

RT_RCDATA Application-defined resource (raw data)

RT_STRING String-table entry

RT_VERSION Version resource
Page 507



Volume 1
Remarks
An application can use UpdateResource repeatedly to make changes to the resource data. Each call to UpdateRe-
source contributes to an internal list of additions, deletions, and replacements but does not actually write the data to
the executable file. The application must use the EndUpdateResource function to write the accumulated changes to
the executable file.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Resources Overview, Resource Functions, BeginUpdateResource, EndUpdateResource, LoadIcon, LoadString,
LockResource, MAKEINTRESOURCE, MAKELANGID, SizeofResource

1.416 VerLanguageName

The VerLanguageName function retrieves a description string for the language associated with a specified binary
Microsoft language identifier.

VerLanguageName: procedure
(

wLang: dword;
szLang: string;
nSize: dword

);
stdcall;
returns( "eax" );
external( "__imp__VerLanguageNameA@12" );

Parameters

wLang
[in] Specifies the binary Microsoft language identifier. For a complete list of the language identifiers supported
by Win32, see Language Identifiers.

For example, the description string associated with the language identifier 0x040A is "Spanish (Traditional
Sort)". If the identifier is unknown, the szLang parameter points to a default string ("Language Neutral").

szLang
[out] Pointer to the buffer that receives the null-terminated string representing the language specified by the
wLang parameter.

nSize
[in] Specifies the size of the buffer, in characters, pointed to by szLang.

Return Values
If the return value is less than or equal to the buffer size, the return value is the size, in characters, of the string
returned in the buffer. This value does not include the terminating null character.

If the return value is greater than the buffer size, the return value is the size of the buffer required to hold the entire
string. The string is truncated to the length of the existing buffer.

If an error occurs, the return value is zero. Unknown language identifiers do not produce errors.
Page 508



Win32 API Reference
Remarks
Windows NT 3.51 and earlier: The version information functions work only with Win32 file images. They do not
work with 16-bit Windows file images.

Windows 95/98 and Windows NT 4.0 and later: This works on both 16- and 32-bit file images.

Windows 2000 and later: This works on 16-, 32-, and 64-bit file images.

Typically, an installation program uses this function to translate a language identifier returned by the VerQuery-
Value function. The text string may be used in a dialog box that asks the user how to proceed in the event of a lan-
guage conflict.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Version Information Overview, Version Information Functions, VerQueryValue

1.417 VirtualAlloc

The VirtualAlloc function reserves or commits a region of pages in the virtual address space of the calling process.
Memory allocated by this function is automatically initialized to zero, unless MEM_RESET is specified.

To allocate memory in the address space of another process, use the VirtualAllocEx function.

VirtualAlloc: procedure
(

var lpAddress: var;
dwSize: SIZE_T;
flAllocationType: dword;
flProtect: dword

);
stdcall;
returns( "eax" );
external( "__imp__VirtualAlloc@16" );

Parameters

lpAddress
[in] Specifies the desired starting address of the region to allocate. If the memory is being reserved, the specified
address is rounded down to the next 64-kilobyte boundary. If the memory is already reserved and is being com-
mitted, the address is rounded down to the next page boundary. To determine the size of a page on the host com-
puter, use the GetSystemInfo function. If this parameter is NULL, the system determines where to allocate the
region.

dwSize
[in] Specifies the size, in bytes, of the region. If the lpAddress parameter is NULL, this value is rounded up to the
next page boundary. Otherwise, the allocated pages include all pages containing one or more bytes in the range
from lpAddress to (lpAddress+dwSize). This means that a 2-byte range straddling a page boundary causes both
pages to be included in the allocated region.

flAllocationType
[in] Specifies the type of allocation. This parameter can be any combination of the following values.
Page 509



Volume 1
flProtect

[in] Specifies the type of access protection. If the pages are being committed, you can specify any one of the fol-
lowing value, along with PAGE_GUARD and PAGE_NOCACHE as needed.

Value Meaning

MEM_COMMIT Allocates physical storage in memory or in the paging file on disk for the
specified region of pages.
An attempt to commit an already committed page will not cause the func-
tion to fail. This means that a range of committed or decommitted pages can
be committed without having to worry about a failure.

MEM_PHYSICAL Allocate physical memory. This value is solely for use with Address Win-
dowing Extensions (AWE) memory.

MEM_RESERVE Reserves a range of the process's virtual address space without allocating
any physical storage. The reserved range cannot be used by any other allo-
cation operations (the malloc function, the LocalAlloc function, and so
on) until it is released. Reserved pages can be committed in subsequent
calls to the VirtualAlloc function.

MEM_RESET Windows NT/2000: Specifies that the data in the memory range specified
by lpAddress and dwSize is no longer of interest. The pages should not be
read from or written to the paging file. However, the memory block will be
used again later, so it should not be decommitted.

Setting this value does not guarantee that the range operated on with
MEM_RESET will contain zeroes. If you want the range to contain zeroes,
decommit the memory and then recommit it.

When you specify MEM_RESET, the VirtualAlloc function ignores the
value of fProtect. However, you must still set fProtect to a valid protection
value, such as PAGE_NOACCESS.

VirtualAlloc returns an error if you use MEM_RESET and the range of
memory is mapped to a file. A shared view is only acceptable if it is
mapped to a paging file.

MEM_TOP_DOWN Windows NT/2000: Allocates memory at the highest possible address.

MEM_WRITE_WATCH Windows 98: Causes the system to keep track of the pages that are written
to in the allocated region. If you specify this value, you must also specify
MEM_RESERVE. The write-tracking feature remains enabled for the
memory region until the region is freed.

To retrieve the addresses of the pages that have been written to since the
region was allocated or the write-tracking state was reset, call the Get-
WriteWatch function. To reset the write-tracking state, call GetWrite-
Watch or ResetWriteWatch.

Value Meaning

PAGE_READONLY Enables read access to the committed region of pages. An attempt to write
to the committed region results in an access violation. If the system differ-
entiates between read-only access and execute access, an attempt to execute
code in the committed region results in an access violation.
Page 510



Win32 API Reference
Return Values
If the function succeeds, the return value is the base address of the allocated region of pages.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
VirtualAlloc can perform the following operations:

Commit a region of pages reserved by a previous call to the VirtualAlloc function.

Reserve a region of free pages.

Reserve and commit a region of free pages.

You can use VirtualAlloc to reserve a block of pages and then make additional calls to VirtualAlloc to commit indi-
vidual pages from the reserved block. This enables a process to reserve a range of its virtual address space without
consuming physical storage until it is needed.

Each page in the process's virtual address space is in one of the following states.

PAGE_READWRITE Enables both read and write access to the committed region of pages.

PAGE_EXECUTE Enables execute access to the committed region of pages. An attempt to
read or write to the committed region results in an access violation.

PAGE_EXECUTE_READ Enables execute and read access to the committed region of pages. An
attempt to write to the committed region results in an access violation.

PAGE_EXECUTE_READWRITE Enables execute, read, and write access to the committed region of pages.

PAGE_GUARD Windows NT/2000: Pages in the region become guard pages. Any attempt
to read from or write to a guard page causes the system to raise a
STATUS_GUARD_PAGE exception and turn off the guard page status.
Guard pages thus act as a one-shot access alarm.

PAGE_GUARD is a page protection modifier. An application uses it with
one of the other page protection modifiers, with one exception: it cannot be
used with PAGE_NOACCESS. When an access attempt leads the system to
turn off guard page status, the underlying page protection takes over.

If a guard page exception occurs during a system service, the service typi-
cally returns a failure status indicator.

Windows 95/98: To simulate this behavior, use PAGE_NOACCESS.

PAGE_NOACCESS Disables all access to the committed region of pages. An attempt to read
from, write to, or execute in the committed region results in an access viola-
tion exception, called a general protection (GP) fault.

PAGE_NOCACHE Allows no caching of the committed regions of pages. The hardware
attributes for the physical memory should be specified as "no cache." This
is not recommended for general usage. It is useful for device drivers; for
example, mapping a video frame buffer with no caching. This value is a
page protection modifier, and it is only valid when used with one of the
page protections other than PAGE_NOACCESS.

State Meaning

Free The page is not committed or reserved and is not accessible to the process. VirtualAlloc can
reserve, or simultaneously reserve and commit, a free page.
Page 511



Volume 1
If the lpAddress parameter is not NULL, the function uses the lpAddress and dwSize parameters to compute the
region of pages to be allocated. The current state of the entire range of pages must be compatible with the type of allo-
cation specified by the flAllocationType parameter. Otherwise, the function fails and none of the pages are allocated.
This compatibility requirement does not preclude committing an already committed page; see the preceding list.

Windows NT/2000: The PAGE_GUARD protection modifier establishes guard pages. Guard pages act as one-shot
access alarms. For more information, see Creating Guard Pages.

Address Windowing Extensions (AWE): The VirtualAlloc function can be used to reserve an AWE region of mem-
ory within the virtual address space of a specified process. This region of memory can then be used to map physical
pages into and out of virtual memory as required by the application.

The MEM_PHYSICAL and MEM_RESERVE values must be set in the AllocationType parameter. The
MEM_COMMIT value must not be set.

The page protection must be set to PAGE_READWRITE.

The VirtualFree function can be used on an AWE region of memory – in this case, it will invalidate any physical
page mappings in the region when freeing the address space. However, the physical pages themselves are not deleted,
and the application can subsequently use them. The application must explicitly call FreeUserPhysicalPages to
free the physical pages. On process termination, all resources are automatically cleaned up.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, Address Windowing Extensions (AWE), Alloca-
teUserPhysicalPages, FreeUserPhysicalPages, GetWriteWatch, HeapAlloc, MapUserPhysicalPages, MapUserPhysi-
calPagesScatter, ResetWriteWatch, VirtualAllocEx, VirtualFree, VirtualLock, VirtualProtect, VirtualQuery

1.418 VirtualAllocEx

The VirtualAllocEx function reserves, commits, or reserves and commits a region of memory within the virtual
address space of a specified process. The function initializes the memory it allocates to zero, unless MEM_RESET is
used.

VirtualAllocEx: procedure
(

hProcess: dword;
var lpAddress: var;

dwSize: SIZE_T;

Reserved The range of addresses cannot be used by other allocation functions, but the page is not
accessible and has no physical storage associated with it. VirtualAlloc can commit a
reserved page, but it cannot reserve it a second time. The VirtualFree function can release
a reserved page, making it a free page.

Committed Physical storage is allocated for the page, and access is controlled by a protection code. The
system initializes and loads each committed page into physical memory only at the first
attempt to read or write to that page. When the process terminates, the system releases the
storage for committed pages. VirtualAlloc can commit an already committed page. This
means that you can commit a range of pages, regardless of whether they have already been
committed, and the function will not fail. VirtualFree can decommit a committed page,
releasing the page's storage, or it can simultaneously decommit and release a committed
page.
Page 512



Win32 API Reference
flAllocationType: dword;
flProtect: dword

);
stdcall;
returns( "eax" );
external( "__imp__VirtualAllocEx@20" );

Parameters

hProcess
[in] Handle to a process. The function allocates memory within the virtual address space of this process.

You must have PROCESS_VM_OPERATION access to the process. If you do not, the function fails.

lpAddress
[in] Pointer that specifies a desired starting address for the region of pages that you want to allocate.

If you are reserving memory, the function rounds this address down to the nearest 64-kilobyte boundary.

If you are committing memory that is already reserved, the function rounds this address down to the nearest page
boundary. To determine the size of a page on the host computer, use the GetSystemInfo function.

If lpAddress is NULL, the function determines where to allocate the region.

dwSize
[in] Specifies the size, in bytes, of the region of memory to allocate.

If lpAddress is NULL, the function rounds dwSize up to the next page boundary.

If lpAddress is not NULL, the function allocates all pages that contain one or more bytes in the range from lpAd-
dress to (lpAddress+dwSize). This means, for example, that a 2-byte range that straddles a page boundary causes
the function to allocate both pages.

flAllocationType
[in] Specifies the type of memory allocation. This parameter can be one or more of the following values.

Value Meaning

MEM_COMMIT The function allocates actual physical storage in memory or in the paging file on
disk for the specified region of memory pages. The function initializes the mem-
ory to zero.

An attempt to commit a memory page that is already committed does not cause
the function to fail. This means that you can commit a range of pages without first
determining the current commitment state of each page.

If a memory page is not yet reserved, setting this value causes the function to both
reserve and commit the memory page.

MEM_RESERVE The function reserves a range of the process's virtual address space without allo-
cating any actual physical storage in memory or in the paging file on disk.

Other memory allocation functions, such as malloc and LocalAlloc, cannot use
a reserved range of memory until it is released.

You can commit reserved memory pages in subsequent calls to the VirtualAllo-
cEx function.
Page 513



Volume 1
flProtect
[in] Specifies access protection for the region of pages you are allocating. You can specify one of the following
values, along with the PAGE_GUARD and PAGE_NOCACHE protection values, as desired.

MEM_RESET Windows NT/2000: Specifies that the data in the memory range specified by
lpAddress and dwSize is no longer of interest. The pages should not be read from
or written to the paging file. However, the memory block will be used again later,
so it should not be decommitted.

Using this value does not guarantee that the range operated on with
MEM_RESET will contain zeroes. If you want the range to contain zeroes,
decommit the memory and then recommit it.

When you use MEM_RESET, the VirtualAllocEx function ignores the value of
fProtect. However, you must still set fProtect to a valid protection value, such as
PAGE_NOACCESS.

VirtualAllocEx returns an error if you use MEM_RESET and the range of mem-
ory is mapped to a file. A shared view is only acceptable if it is mapped to a pag-
ing file.

MEM_TOP_DOWN The function allocates memory at the highest possible address.

Value Meaning

PAGE_READONLY Enables read permission to the committed region of pages. An attempt to write
to the committed region results in an access violation. If the system differenti-
ates between read-only permission and execute permission, an attempt to exe-
cute code in the committed region results in an access violation.

PAGE_READWRITE Enables both read and write permission to the committed region of pages.

PAGE_EXECUTE Enables execute permission to the committed region of pages. An attempt to
read or write to the committed region results in an access violation.

PAGE_EXECUTE_READ Enables execute and read permission to the committed region of pages. An
attempt to write to the committed region results in an access violation.

PAGE_EXECUTE_READWRI
TE

Enables execute, read, and write permission to the committed region of pages.

PAGE_GUARD Pages in the region become guard pages. Any attempt to read from or write to a
guard page causes the system to raise a STATUS_GUARD_PAGE exception
and turn off the guard page status. Guard pages thus act as a one-shot access
alarm.

This value is a page protection modifier. An application uses it with one of the
other page protection values, with one exception: it cannot be used with
PAGE_NOACCESS. When an access attempt leads the system to turn off
guard page status, the underlying page protection takes over.

If a guard page exception occurs during a system service, the service typically
returns a failure status indicator.

PAGE_NOACCESS Disables all access to the committed region of pages. An attempt to read from,
write to, or execute in the committed region results in an access violation
exception, called a general protection (GP) fault.
Page 514



Win32 API Reference
Return Values
If the function succeeds, the return value is the base address of the allocated region of pages.

If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks
The VirtualAllocEx function can perform the following operations:

Commit a region of pages reserved by a previous call to the VirtualAllocEx function.

Reserve a region of free pages.

Reserve and commit a region of free pages.

You can use VirtualAllocEx to reserve a block of pages and then make additional calls to VirtualAllocEx to commit
individual pages from the reserved block. This lets you reserve a range of a process's virtual address space without
consuming physical storage until it is needed.

Each page of memory in a process's virtual address space is in one of the following states.

If the lpAddress parameter is not NULL, the function uses the lpAddress and dwSize parameters to compute the
region of pages to be allocated. The current state of the entire range of pages must be compatible with the type of allo-
cation specified by the flAllocationType parameter. Otherwise, the function fails and none of the pages is allocated.
This compatibility requirement does not preclude committing an already committed page; see the preceding list.

The PAGE_GUARD protection modifier establishes guard pages. Guard pages act as one-shot access alarms. For
more information, see Creating Guard Pages.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

PAGE_NOCACHE Allows no caching of the committed regions of pages. The hardware attributes
for the physical memory should be specified as "no cache." This is not recom-
mended for general usage. It is useful for device drivers; for example, mapping
a video frame buffer with no caching. This value is a page protection modifier,
and it is only valid when used with one of the page protections other than
PAGE_NOACCESS.

State Meaning

Free The page is not committed or reserved and is not accessible to the process. The VirtualAllo-
cEx function can reserve, or simultaneously reserve and commit, a free page.

Reserved The page is reserved. The range of addresses cannot be used by other allocation functions,
but the page is not accessible and has no physical storage associated with it. The VirtualAllo-
cEx function can commit a reserved page, but it cannot reserve it a second time. You can use
the VirtualFreeEx function to release a reserved page in a specified process, making it a
free page.

Committed Physical storage is allocated for the page, and access is controlled by a protection code. The
system initializes and loads each committed page into physical memory only at the first
attempt to read or write to that page. When the process terminates, the system releases the
storage for committed pages. The VirtualAllocEx function can commit an already commit-
ted page. This means that you can commit a range of pages, regardless of whether they have
already been committed, and the function will not fail. You can use the VirtualFreeEx
function to decommit a committed page in a specified process, or to simultaneously decom-
mit and free a committed page.
Page 515



Volume 1
See Also
Memory Management Overview, Memory Management Functions, HeapAlloc, VirtualFreeEx, VirtualLock, Virtual-
Protect, VirtualQuery

1.419 VirtualFree

The VirtualFree function releases, decommits, or releases and decommits a region of pages within the virtual
address space of the calling process.

To free memory allocated in another process by the VirtualAllocEx function, use the VirtualFreeEx function.

VirtualFree: procedure
(

var lpAddress: var;
dwSize: SIZE_T;
dwFreeType: dword

);
stdcall;
returns( "eax" );
external( "__imp__VirtualFree@12" );

Parameters

lpAddress
[in] Pointer to the base address of the region of pages to be freed. If the dwFreeType parameter includes
MEM_RELEASE, this parameter must be the base address returned by the VirtualAlloc function when the
region of pages was reserved.

dwSize
[in] Specifies the size, in bytes, of the region to be freed. If the dwFreeType parameter includes
MEM_RELEASE, this parameter must be zero. Otherwise, the region of affected pages includes all pages con-
taining one or more bytes in the range from the lpAddress parameter to (lpAddress+dwSize). This means that a
2-byte range straddling a page boundary causes both pages to be freed.

dwFreeType
[in] Specifies the type of free operation. This parameter can be one, or both, of the following values.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
VirtualFree can perform one of the following operations:

Value Meaning

MEM_DECOMMIT Decommits the specified region of committed pages.

An attempt to decommit an uncommitted page will not cause the function to fail.
This means that a range of committed or uncommitted pages can be decommit-
ted without having to worry about a failure.

MEM_RELEASE Releases the specified region of reserved pages. If this value is specified, the
dwSize parameter must be zero, or the function fails.
Page 516



Win32 API Reference
Decommit a region of committed or uncommitted pages.

Release a region of reserved pages.

Decommit and release a region of committed or uncommitted pages.

Pages that have been released are free pages available for subsequent allocation operations. Attempting to read from
or write to a free page results in an access violation exception.

VirtualFree can decommit an uncommitted page; this means that a range of committed or uncommitted pages can be
decommitted without having to worry about a failure. Decommitting a page releases its physical storage, either in
memory or in the paging file on disk. If a page is decommitted but not released, its state changes to reserved, and it
can be committed again by a subsequent call to VirtualAlloc. Attempting to read from or write to a reserved page
results in an access violation exception.

The current state of the entire range of pages must be compatible with the type of free operation specified by the
dwFreeType parameter. Otherwise, the function fails and no pages are released or decommitted.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, VirtualFreeEx

1.420 VirtualFreeEx

The VirtualFreeEx function releases, decommits, or releases and decommits a region of memory within the virtual
address space of a specified process.

VirtualFreeEx: procedure
(

hProcess: dword;
var lpAddress: dword;

dwSize: SIZE_T;
dwFreeType: dword

);
stdcall;
returns( "eax" );
external( "__imp__VirtualFreeEx@16" );

Parameters

hProcess
[in] Handle to a process. The function frees memory within the virtual address space of this process.

You must have PROCESS_VM_OPERATION access to this process. If you do not, the function fails.

lpAddress
[in] Pointer to the starting address of the region of memory to free.

If the MEM_RELEASE value is used in the dwFreeType parameter, lpAddress must be the base address returned
by the VirtualAllocEx function when the region was reserved.

dwSize
[in] Specifies the size, in bytes, of the region of memory to free.
Page 517



Volume 1
If the MEM_RELEASE value is used in the dwFreeType parameter, dwSize must be zero. The function frees the
entire region that was reserved in the initial allocation call to VirtualAllocEx.

If the MEM_DECOMMIT value is used, the function decommits all memory pages that contain one or more
bytes in the range from the lpAddress parameter to (lpAddress+dwSize). This means, for example, that a 2-byte
region of memory that straddles a page boundary causes both pages to be decommitted.

The function decommits the entire region that was reserved by VirtualAllocEx. If the following three condi-
tions are met:

MEM_DECOMMIT is used

lpAddress is the base address returned by the VirtualAllocEx function when the region was reserved

dwSize is zero

The entire region the enters the reserved state.

dwFreeType
[in] Specifies the type of free operation. This parameter can be one of the following values.

Return Values
If the function succeeds, the return value is a nonzero value.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Each page of memory in a process's virtual address space is in one of the following states.

Value Meaning

MEM_DECOMMIT The function decommits the specified region of pages. The pages enter the
reserved state.

The function does not fail if you attempt to decommit an uncommitted page. This
means that you can decommit a range of pages without first determining their cur-
rent commitment state.

MEM_RELEASE The function releases the specified region of pages. The pages enter the free state.

If you specify this value, dwSize must be zero, and lpAddress must point to the
base address returned by the VirtualAllocEx function when the region was
reserved. The function fails if either of these conditions is not met.

If any pages in the region are currently committed, the function first decommits
and then releases them.

The function does not fail if you attempt to release pages that are in different
states, some reserved and some committed. This means that you can release a
range of pages without first determining their current commitment state.

State Meaning

Free The page is neither committed nor reserved. The page is not accessible to the process.
Attempting to read from or write to a free page results in an access violation exception.

You can use the VirtualFreeEx function to put reserved or committed memory pages into the
free state.
Page 518



Win32 API Reference
The VirtualFreeEx function can perform the following operations:

Decommit a region of committed or uncommitted pages. After this operation, the pages are in the
reserved state.

Release a region of reserved pages. After this operation, the pages are in the free state.

Decommit and release a region of committed or uncommitted pages. After this operation, the pages
are in the free state.

The VirtualFreeEx function can decommit a range of pages that are in different states, some committed and some
uncommitted. This means that you can decommit a range of pages without first determining the current commitment
state of each page. Decommitting a page releases its physical storage, either in memory or in the paging file on disk.

If a page is decommitted but not released, its state changes to reserved. You can subsequently call VirtualAllocEx
to commit it, or VirtualFreeEx to release it. Attempting to read from or write to a reserved page results in an access
violation exception.

The VirtualFreeEx function can release a range of pages that are in different states, some reserved and some com-
mitted. This means that you can release a range of pages without first determining the current commitment state of
each page. The entire range of pages originally reserved by the VirtualAllocEx function must be released at the same
time.

If a page is released, its state changes to free, and it is available for subsequent allocation operations. Once memory is
released or decommitted, you can never refer to the memory again. Any information that may have been in that mem-
ory is gone forever. Attempting to read from or write to a free page results in an access violation exception. If you
require information, do not decommit or free memory containing that information.

Requirements
Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, VirtualAllocEx

1.421 VirtualLock

The VirtualLock function locks the specified region of the process's virtual address space into physical memory,
ensuring that subsequent access to the region will not incur a page fault.

VirtualLock: procedure
(

Reserved The page is reserved. The range of addresses cannot be used by other allocation functions.
The page is not accessible and has no physical storage associated with it. Attempting to read
from or write to a free page results in an access violation exception.

You can use the VirtualFreeEx function to put committed memory pages into the reserved
state, and to put reserved memory pages into the free state.

Committed The page is committed. Physical storage in memory or in the paging file on disk is allocated
for the page, and access is controlled by a protection code.

The system initializes and loads each committed page into physical memory only at the first
attempt to read from or write to that page.

When a process terminates, the system releases all storage for committed pages.

You can use the VirtualAllocEx function to put committed memory pages into either the
reserved or free state.
Page 519



Volume 1
var lpAddress: var;
dwSize: SIZE_T

);
stdcall;
returns( "eax" );
external( "__imp__VirtualLock@8" );

Parameters

lpAddress
[in] Pointer to the base address of the region of pages to be locked.

dwSize
[in] Specifies the size, in bytes, of the region to be locked. The region of affected pages includes all pages that
contain one or more bytes in the range from the lpAddress parameter to (lpAddress+dwSize). This means that a
2-byte range straddling a page boundary causes both pages to be locked.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
All pages in the specified region must be committed. Memory protected with PAGE_NOACCESS cannot be locked.

Locking pages into memory may degrade the performance of the system by reducing the available RAM and forcing
the system to swap out other critical pages to the paging file. By default, a process can lock a maximum of 30 pages.
The default limit is intentionally small to avoid severe performance degradation. Applications that need to lock larger
numbers of pages must first call the SetProcessWorkingSetSize function to increase their minimum and maxi-
mum working set sizes. The maximum number of pages that a process can lock is equal to the number of pages in its
minimum working set minus a small overhead.

Pages that a process has locked remain in physical memory until the process unlocks them or terminates.

To unlock a region of locked pages, use the VirtualUnlock function. Locked pages are automatically unlocked when
the process terminates.

This function is not like the GlobalLock or LocalLock function in that it does not increment a lock count and trans-
late a handle into a pointer. There is no lock count for virtual pages, so multiple calls to the VirtualUnlock function
are never required to unlock a region of pages.

Windows 95/98: The VirtualLock function is implemented as a stub that has no effect and
always returns a nonzero value.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, SetProcessWorkingSetSize, VirtualUnlock

1.422 VirtualProtect

The VirtualProtect function changes the access protection on a region of committed pages in the virtual address
Page 520



Win32 API Reference
space of the calling process.

To change the access protection of any process, use the VirtualProtectEx function.

VirtualProtect: procedure
(

var lpAddress: var;
dwSize: SIZE_T;
flNewProtect: dword;

var lpflOldProtect: dword
);

stdcall;
returns( "eax" );
external( "__imp__VirtualProtect@16" );

Parameters

lpAddress
[in] Pointer to the base address of the region of pages whose access protection attributes are to be changed.

All pages in the specified region must be within the same reserved region allocated when calling the VirtualA-
lloc or VirtualAllocEx function using MEM_RESERVE. The pages cannot span adjacent reserved regions
that were allocated by separate calls to VirtualAlloc or VirtualAllocEx using MEM_RESERVE.

dwSize
[in] Specifies the size, in bytes, of the region whose access protection attributes are to be changed. The region of
affected pages includes all pages containing one or more bytes in the range from the lpAddress parameter to
(lpAddress+dwSize). This means that a 2-byte range straddling a page boundary causes the protection attributes
of both pages to be changed.

flNewProtect
[in] Specifies the new access protection. You can specify any one of the following value, along with the
PAGE_GUARD and PAGE_NOCACHE values, as necessary.

Value Meaning

PAGE_READONLY Enables read access to the committed region of pages. An attempt
to write to the committed region results in an access violation. If
the system differentiates between read-only access and execute
access, an attempt to execute code in the committed region results
in an access violation.

PAGE_READWRITE Enables both read and write access to the committed region of
pages.

PAGE_WRITECOPY Windows NT/2000: Gives copy-on-write access to the committed
region of pages.

PAGE_EXECUTE Enables execute access to the committed region of pages. An
attempt to read or write to the committed region results in an access
violation.

PAGE_EXECUTE_READ Enables execute and read access to the committed region of pages.
An attempt to write to the committed region results in an access
violation.

PAGE_EXECUTE_READWRITE Enables execute, read, and write access to the committed region of
pages.
Page 521



Volume 1
lpflOldProtect
[out] Pointer to a variable that receives the previous access protection value of the first page in the specified
region of pages. If this parameter is NULL or does not point to a valid variable, the function fails.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
You can set the access protection value on committed pages only. If the state of any page in the specified region is not
committed, the function fails and returns without modifying the access protection of any pages in the specified
region.

The VirtualProtect function changes the access protection of memory in the calling process, and the VirtualProtec-
tEx function changes the access protection of memory in a specified process.

Windows NT/2000: The PAGE_GUARD protection modifier establishes guard pages. Guard pages act as one-shot
access alarms. For more information, see Creating Guard Pages.

Windows 95/98: You cannot use VirtualProtect on any memory region located in the shared virtual address space
(from 0x80000000 through 0xBFFFFFFF).

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

PAGE_EXECUTE_WRITECOPY Enables execute, read, and write access to the committed region of
pages. The pages are shared read-on-write and copy-on-write.

PAGE_GUARD Windows NT/2000: Pages in the region become guard pages. Any
attempt to access a guard page causes the system to raise a
STATUS_GUARD_PAGE exception and turn off the guard page
status. Guard pages thus act as a one-shot access alarm.

PAGE_GUARD is a page protection modifier. An application uses
it with one of the other page protection modifiers, with one excep-
tion: it cannot be used with PAGE_NOACCESS. When an access
attempt leads the system to turn off guard page status, the underly-
ing page protection takes over.

If a guard page exception occurs during a system service, the ser-
vice typically returns a failure status indicator.

Windows 95/98: To simulate this behavior, use
PAGE_NOACCESS.

PAGE_NOACCESS Disables all access to the committed region of pages. An attempt to
read from, write to, or execute in the committed region results in an
access violation exception, called a general protection (GP) fault.

PAGE_NOCACHE Allows no caching of the committed regions of pages. The hard-
ware attributes for the physical memory should be specified as "no
cache." This is not recommended for general usage. It is useful for
device drivers; for example, mapping a video frame buffer with no
caching. This value is a page protection modifier; it is only valid
when used with one of the page protections other than
PAGE_NOACCESS.
Page 522



Win32 API Reference
See Also
Memory Management Overview, Memory Management Functions, VirtualAlloc, VirtualProtectEx

1.423 VirtualProtectEx

The VirtualProtectEx function changes the access protection on a region of committed pages in the virtual address
space of a specified process.

VirtualProtectEx: procedure
(

hProcess: dword;
var lpAddress: var;

dwSize: SIZE_T;
flNewProtect: dword;

var lpflOldProtect: dword
);

stdcall;
returns( "eax" );
external( "__imp__VirtualProtectEx@20" );

Parameters

hProcess
[in] Handle to the process whose memory protection is to be changed. The handle must have
PROCESS_VM_OPERATION access. For more information on PROCESS_VM_OPERATION, see Open-
Process.

lpAddress
[in] Pointer to the base address of the region of pages whose access protection attributes are to be changed.

All pages in the specified region must be within the same reserved region allocated when calling the VirtualA-
lloc or VirtualAllocEx function using MEM_RESERVE. The pages cannot span adjacent reserved regions
that were allocated by separate calls to VirtualAlloc or VirtualAllocEx using MEM_RESERVE.

dwSize
[in] Specifies the size, in bytes, of the region whose access protection attributes are changed. The region of
affected pages includes all pages containing one or more bytes in the range from the lpAddress parameter to
(lpAddress+dwSize). This means that a 2-byte range straddling a page boundary causes the protection attributes
of both pages to be changed.

flNewProtect
[in] Specifies the new access protection. You can specify any one of the following values, along with the
PAGE_GUARD and PAGE_NOCACHE values, as desired.

Value Meaning

PAGE_READONLY Enables read access to the committed region of pages. An
attempt to write to the committed region results in an access
violation. If the system differentiates between read-only
access and execute access, an attempt to execute code in the
committed region results in an access violation.

PAGE_READWRITE Enables both read and write access to the committed region
of pages.
Page 523



Volume 1
lpflOldProtect
[out] Pointer to a variable that receives the previous access protection of the first page in the specified region of
pages. If this parameter is NULL or does not point to a valid variable, the function fails.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The access protection value can be set only on committed pages. If the state of any page in the specified region is not

PAGE_WRITECOPY Windows NT/2000: Gives copy-on-write access to the com-
mitted region of pages.

PAGE_EXECUTE Enables execute access to the committed region of pages. An
attempt to read or write to the committed region results in an
access violation.

PAGE_EXECUTE_READ Enables execute and read access to the committed region of
pages. An attempt to write to the committed region results in
an access violation.

PAGE_EXECUTE_READWRITE Enables execute, read, and write access to the committed
region of pages.

PAGE_EXECUTE_WRITECOPY Enables execute, read, and write access to the committed
region of pages. The pages are shared read-on-write and
copy-on-write.

PAGE_GUARD Windows NT/2000: Pages in the region become guard pages.
Any attempt to read from or write to a guard page causes the
system to raise a STATUS_GUARD_PAGE exception, and
turn off the guard page status. Guard pages thus act as a
one-shot access alarm.

PAGE_GUARD is a page protection modifier. An application
uses it with one of the other page protection modifiers, with
one exception: it cannot be used with PAGE_NOACCESS.
When an access attempt leads the system to turn off guard
page status, the underlying page protection takes over.

If a guard page exception occurs during a system service, the
service typically returns a failure status indicator.

Windows 95/98: To simulate this behavior, use
PAGE_NOACCESS.

PAGE_NOACCESS Disables all access to the committed region of pages. An
attempt to read from, write to, or execute in the committed
region results in an access violation exception, called a gen-
eral protection (GP) fault.

PAGE_NOCACHE Allows no caching of the committed regions of pages. The
hardware attributes for the physical memory should be set to
"no cache." This is not recommended for general usage. It is
useful for device drivers; for example, mapping a video
frame buffer with no caching. This value is a page protection
modifier; it is only valid when used with one of the page pro-
tections other than PAGE_NOACCESS.
Page 524



Win32 API Reference
committed, the function fails and returns without modifying the access protection of any pages in the specified
region.

VirtualProtectEx is identical to the VirtualProtect function except that it changes the access protection of memory
in a specified process.

Windows NT/2000: The PAGE_GUARD protection modifier establishes guard pages. Guard pages act as one-shot
access alarms. For more information, see Creating Guard Pages.

Windows 95/98: You cannot use VirtualProtectEx on any memory region located in the shared virtual address space
(from 0x80000000 through 0xBFFFFFFF).

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, VirtualAlloc, VirtualProtect, VirtualQueryEx

1.424 VirtualQuery

The VirtualQuery function provides information about a range of pages in the virtual address space of the calling
process.

To obtain information about a range of pages in the address space of another process, use the VirtualQueryEx
function.

VirtualQuery: procedure
(

var lpAddress: var;
var lpBuffer: MEMORY_BASIC_INFORMATION;

dwLength: dword
);

stdcall;
returns( "eax" );
external( "__imp__VirtualQuery@12" );

Parameters

lpAddress
[in] Pointer to the base address of the region of pages to be queried. This value is rounded down to the next page
boundary. To determine the size of a page on the host computer, use the GetSystemInfo function.

lpBuffer
[out] Pointer to a MEMORY_BASIC_INFORMATION structure in which information about the specified page range
is returned.

dwLength
[in] Specifies the size, in bytes, of the buffer pointed to by the lpBuffer parameter.

Return Values
The return value is the actual number of bytes returned in the information buffer.
Page 525



Volume 1
Remarks
VirtualQuery provides information about a region of consecutive pages beginning at a specified address that share
the following attributes:

The state of all pages is the same with MEM_COMMIT, MEM_RESERVE, MEM_FREE,
MEM_PRIVATE, MEM_MAPPED, or MEM_IMAGE.

If the initial page is not free, all pages in the region are part of the same initial allocation of pages
reserved by a call to the VirtualAlloc function.

The access of all pages is the same with PAGE_READONLY, PAGE_READWRITE,
PAGE_NOACCESS, PAGE_WRITECOPY, PAGE_EXECUTE, PAGE_EXECUTE_READ,
PAGE_EXECUTE_READWRITE, PAGE_EXECUTE_WRITECOPY, PAGE_GUARD, or PAGE_NOCACHE.

The function determines the attributes of the first page in the region and then scans subsequent pages until it scans the
entire range of pages or until it encounters a page with a nonmatching set of attributes. The function returns the
attributes and the size, in bytes, of the region of pages with matching attributes. For example, if there is a 40 mega-
byte (MB) region of free memory, and VirtualQuery is called on a page that is 10 MB into the region, the function
will obtain a state of MEM_FREE and a size of 30 MB.

This function reports on a region of pages in the memory of the calling process, and the VirtualQueryEx function
reports on a region of pages in the memory of a specified process.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GetSystemInfo,
MEMORY_BASIC_INFORMATION, VirtualQueryEx

1.425 VirtualQueryEx

The VirtualQueryEx function provides information about a range of pages within the virtual address space of a
specified process.

VirtualQueryEx: procedure
(

hProcess: dword;
var lpAddress: var;
var lpBuffer: MEMORY_BASIC_INFORMATION;

dwLength: dword
);

stdcall;
returns( "eax" );
external( "__imp__VirtualQueryEx@16" );

Parameters

hProcess
[in] Handle to the process whose memory information is queried. The handle must have been opened with
PROCESS_QUERY_INFORMATION, which enables using the handle to read information from the process
object.

lpAddress
Page 526



Win32 API Reference
[in] Pointer to the base address of the region of pages to be queried. This value is rounded down to the next page
boundary. To determine the size of a page on the host computer, use the GetSystemInfo function.

lpBuffer
[out] Pointer to a MEMORY_BASIC_INFORMATION structure in which information about the specified page range
is returned.

dwLength
[in] Specifies the size, in bytes, of the buffer pointed to by the lpBuffer parameter.

Return Values
The return value is the actual number of bytes returned in the information buffer.

Remarks
VirtualQueryEx provides information about a region of consecutive pages beginning at a specified address that
share the following attributes:

The state of all pages is the same with MEM_COMMIT, MEM_RESERVE, MEM_FREE,
MEM_PRIVATE, MEM_MAPPED, or MEM_IMAGE.

If the initial page is not free, all pages in the region are part of the same initial allocation of pages
reserved by a call to the VirtualAllocEx function.

The access of all pages is the same with PAGE_READONLY, PAGE_READWRITE,
PAGE_NOACCESS, PAGE_WRITECOPY, PAGE_EXECUTE, PAGE_EXECUTE_READ,
PAGE_EXECUTE_READWRITE, PAGE_EXECUTE_WRITECOPY, PAGE_GUARD, or PAGE_NOCACHE.

The VirtualQueryEx function determines the attributes of the first page in the region and then scans subsequent
pages until it scans the entire range of pages, or until it encounters a page with a nonmatching set of attributes. The
function returns the attributes and the size, in bytes, of the region of pages with matching attributes. For example, if
there is a 40 megabyte (MB) region of free memory, and VirtualQueryEx is called on a page that is 10 MB into the
region, the function will obtain a state of MEM_FREE and a size of 30 MB.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, GetSystemInfo,
MEMORY_BASIC_INFORMATION, VirtualAllocEx, VirtualProtectEx

1.426 VirtualUnlock

The VirtualUnlock function unlocks a specified range of pages in the virtual address space of a process, enabling the
system to swap the pages out to the paging file if necessary.

VirtualUnlock: procedure
(

var lpAddress: var;
dwSize: SIZE_T

);
stdcall;
returns( "eax" );
external( "__imp__VirtualUnlock@8" );
Page 527



Volume 1
Parameters

lpAddress
[in] Pointer to the base address of the region of pages to be unlocked.

dwSize
[in] Specifies the size, in bytes, of the region being unlocked. The region of affected pages includes all pages
containing one or more bytes in the range from the lpAddress parameter to (lpAddress+dwSize). This means that
a 2-byte range straddling a page boundary causes both pages to be unlocked.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
For the function to succeed, the range specified need not match a range passed to a previous call to the VirtualLock
function, but all pages in the range must be locked.

Windows NT/2000: Calling VirtualUnlock on a range of memory that is not locked releases the pages from the pro-
cess's working set.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 98 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Memory Management Overview, Memory Management Functions, VirtualLock

1.427 WaitCommEvent

The WaitCommEvent function waits for an event to occur for a specified communications device. The set of events
that are monitored by this function is contained in the event mask associated with the device handle.

WaitCommEvent: procedure
(

hFile: dword;
var lpEvtMask: dword;
var lpOverlapped: OVERLAPPED

);
stdcall;
returns( "eax" );
external( "__imp__WaitCommEvent@12" );

Parameters

hFile
[in] Handle to the communications device. The CreateFile function returns this handle.

lpEvtMask
[out] Pointer to a variable that receives a mask indicating the type of event that occurred. If an error occurs, the
value is zero; otherwise, it is one of the following values.
Page 528



Win32 API Reference
lpOverlapped
[in] Pointer to an OVERLAPPED structure. This structure is required if hFile was opened with
FILE_FLAG_OVERLAPPED.

If hFile was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped parameter must not be NULL. It must
point to a valid OVERLAPPED structure. If hFile was opened with FILE_FLAG_OVERLAPPED and lpOver-
lapped is NULL, the function can incorrectly report that the operation is complete.

If hFile was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL, WaitCommEvent is
performed as an overlapped operation. In this case, the OVERLAPPED structure must contain a handle to a
manual-reset event object (created by using the CreateEvent function).

If hFile was not opened with FILE_FLAG_OVERLAPPED, WaitCommEvent does not return until one of the
specified events or an error occurs.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The WaitCommEvent function monitors a set of events for a specified communications resource. To set and query
the current event mask of a communications resource, use the SetCommMask and GetCommMask functions.

If the overlapped operation cannot be completed immediately, the function returns FALSE and the GetLastError
function returns ERROR_IO_PENDING, indicating that the operation is executing in the background. When this hap-
pens, the system sets the hEvent member of the OVERLAPPED structure to the not-signaled state before Wait-
CommEvent returns, and then it sets it to the signaled state when one of the specified events or an error occurs. The
calling process can use one of the wait functions to determine the event object's state and then use the GetOverlappe-
dResult function to determine the results of the WaitCommEvent operation. GetOverlappedResult reports the
success or failure of the operation, and the variable pointed to by the lpEvtMask parameter is set to indicate the event
that occurred.

If a process attempts to change the device handle's event mask by using the SetCommMask function while an over-
lapped WaitCommEvent operation is in progress, WaitCommEvent returns immediately. The variable pointed to
by the lpEvtMask parameter is set to zero.

Value Meaning

EV_BREAK A break was detected on input.

EV_CTS The CTS (clear-to-send) signal changed state.

EV_DSR The DSR (data-set-ready) signal changed state.

EV_ERR A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN,
and CE_RXPARITY.

EV_RING A ring indicator was detected.

EV_RLSD The RLSD (receive-line-signal-detect) signal changed state.

EV_RXCHAR A character was received and placed in the input buffer.

EV_RXFLAG The event character was received and placed in the input buffer. The event charac-
ter is specified in the device's DCB structure, which is applied to a serial port by
using the SetCommState function.

EV_TXEMPTY The last character in the output buffer was sent.
Page 529



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Communications Overview, Communication Functions, CreateFile, DCB, GetCommMask, GetOverlappedResult,
OVERLAPPED, SetCommMask, SetCommState

1.428 WaitForDebugEvent

The WaitForDebugEvent function waits for a debugging event to occur in a process being debugged.

WaitForDebugEvent: procedure
(

var lpDebugEvent: DEBUG_EVENT;
dwMilliseconds: dword

);
stdcall;
returns( "eax" );
external( "__imp__WaitForDebugEvent@8" );

Parameters

lpDebugEvent
[in] Pointer to a DEBUG_EVENT structure that is filled with information about the debugging event.

dwMilliseconds
[in] Specifies the number of milliseconds to wait for a debugging event. If this parameter is zero, the function
tests for a debugging event and returns immediately. If the parameter is INFINITE, the function does not return
until a debugging event has occurred.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Only the thread that created the process being debugged can call WaitForDebugEvent.

When a CREATE_PROCESS_DEBUG_EVENT occurs, the debugger application receives a handle to the image file
of the process being debugged, a handle to the process being debugged, and a handle to the initial thread of the pro-
cess being debugged in the DEBUG_EVENT structure. The DEBUG_EVENT members these handles are returned in
are u.CreateProcessInfo.hFile, u.CreateProcessInfo.hProcess, and u.CreateProcessInfo.hThread respectively.
The system will close these handles. The debugger should not close these handles.

Similarly, when a CREATE_THREAD_DEBUG_EVENT occurs, the debugger application receives a handle to the
thread whose creation caused the debugging event in the uCreateThread.hThread member of the
DEBUG_EVENT structure. This handle should also not be closed by the debugger application, as it will be closed
by the system.

Also, when a LOAD_DLL_DEBUG_EVENT occurs, the debugger application receives a handle to the loaded DLL
in the u.LoadDll.hFile member of the DEBUG_EVENT structure. This handle should be closed by the debugger
application by calling the CloseHandle function when the corresponding UNLOAD_DLL_DEBUG_EVENT
occurs.
Page 530



Win32 API Reference
Warning Do not queue an asynchronous procedure call (APC) to a thread that calls WaitForDebugEvent.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Debugging Overview, Debugging Functions, ContinueDebugEvent, DebugActiveProcess, DebugBreak,
DEBUG_EVENT, OutputDebugString

1.429 WaitForMultipleObjects

The WaitForMultipleObjects function returns when one of the following occurs:

Either any one or all of the specified objects are in the signaled state.

The time-out interval elapses.

To enter an alertable wait state, use the WaitForMultipleObjectsEx function.

WaitForMultipleObjects: procedure
(

nCount: dword;
var lpHandles: dword;

fWaitAll: boolean;
dwMilliseconds: dword

);
stdcall;
returns( "eax" );
external( "__imp__WaitForMultipleObjects@16" );

Parameters

nCount
[in] Specifies the number of object handles in the array pointed to by lpHandles. The maximum number of object
handles is MAXIMUM_WAIT_OBJECTS.

lpHandles
[in] Pointer to an array of object handles. For a list of the object types whose handles can be specified, see the
following Remarks section. The array can contain handles to objects of different types. It may not contain the
multiple copies of the same handle.

If one of these handles is closed while the wait is still pending, the function's behavior is undefined.

Windows NT/2000: The handles must have SYNCHRONIZE access. For more information, see Standard
Access Rights.

Windows 95: No handle may be a duplicate of another handle created using DuplicateHandle.

fWaitAll
[in] Specifies the wait type. If TRUE, the function returns when the state all objects in the lpHandles array is sig-
naled. If FALSE, the function returns when the state of any one of the objects set to is signaled. In the latter case,
the return value indicates the object whose state caused the function to return.

dwMilliseconds
[in] Specifies the time-out interval, in milliseconds. The function returns if the interval elapses, even if the condi-
Page 531



Volume 1
tions specified by the bWaitAll parameter are not met. If dwMilliseconds is zero, the function tests the states of
the specified objects and returns immediately. If dwMilliseconds is INFINITE, the function's time-out interval
never elapses.

Return Values
If the function succeeds, the return value indicates the event that caused the function to return. This value can be one
of the following.

If the function fails, the return value is WAIT_FAILED. To get extended error information, call GetLastError.

Remarks
The WaitForMultipleObjects function determines whether the wait criteria have been met. If the criteria have not
been met, the calling thread enters the wait state. It uses no processor time while waiting for the criteria to be met.

When fWaitAll is TRUE, the function's wait operation is completed only when the states of all objects have been set
to signaled. The function does not modify the states of the specified objects until the states of all objects have been set
to signaled. For example, a mutex can be signaled, but the thread does not get ownership until the states of the other
objects are also set to signaled. In the meantime, some other thread may get ownership of the mutex, thereby setting
its state to nonsignaled.

The function modifies the state of some types of synchronization objects. Modification occurs only for the object or
objects whose signaled state caused the function to return. For example, the count of a semaphore object is decreased
by one. When fWaitAll is FALSE, and multiple objects are in the signaled state, the function chooses one of the
objects to satisfy the wait; the states of the objects not selected are unaffected.

The WaitForMultipleObjects function can specify handles of any of the following object types in the lpHandles
array:

Change notification

Console input

Event

Job

Mutex

Process

Semaphore

Thread

Value Meaning

WAIT_OBJECT_0 to (WAIT_OBJECT_0 +
nCount – 1)

If bWaitAll is TRUE, the return value indicates that the state of
all specified objects is signaled.

If bWaitAll is FALSE, the return value minus
WAIT_OBJECT_0 indicates the lpHandles array index of the
object that satisfied the wait. If more than one object became
signalled during the call, this is the array index of the signalled
object with the smallest index value of all the signalled objects.

WAIT_ABANDONED_0 to
(WAIT_ABANDONED_0 + nCount – 1)

If bWaitAll is TRUE, the return value indicates that the state of
all specified objects is signaled and at least one of the objects is
an abandoned mutex object.

If bWaitAll is FALSE, the return value minus
WAIT_ABANDONED_0 indicates the lpHandles array index
of an abandoned mutex object that satisfied the wait.

WAIT_TIMEOUT The time-out interval elapsed and the conditions specified by
the bWaitAll parameter are not satisfied.
Page 532



Win32 API Reference
Waitable timer

For more information, see Synchronization Objects.

Use caution when calling the wait functions and code that directly or indirectly creates windows. If a thread creates
any windows, it must process messages. Message broadcasts are sent to all windows in the system. A thread that uses
a wait function with no time-out interval may cause the system to become deadlocked. Two examples of code that
indirectly creates windows are DDE and COM CoInitialize. Therefore, if you have a thread that creates windows,
use MsgWaitForMultipleObjects or MsgWaitForMultipleObjectsEx, rather than WaitForMultipleOb-
jects.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, MsgWaitForMultipleObjects, MsgWaitForMultipleObject-
sEx, WaitForMultipleObjectsEx

1.430 WaitForMultipleObjectsEx

The WaitForMultipleObjectsEx function returns when one of the following occurs:

Either any one or all of the specified objects are in the signaled state.

An I/O completion routine or asynchronous procedure call (APC) is queued to the thread.

The time-out interval elapses.

WaitForMultipleObjectsEx: procedure
(

nCount: dword;
var lpHandles: dword;

fWaitAll: boolean;
dwMilliseconds: dword;
bAlertable: boolean

);
stdcall;
returns( "eax" );
external( "__imp__WaitForMultipleObjectsEx@20" );

Parameters

nCount
[in] Specifies the number of object handles to wait for in the array pointed to by lpHandles. The maximum num-
ber of object handles is MAXIMUM_WAIT_OBJECTS.

lpHandles
[in] Pointer to an array of object handles. For a list of the object types whose handles can be specified, see the
following Remarks section. The array can contain handles of objects of different types. It may not contain the
multiple copies of the same handle.

If one of these handles is closed while the wait is still pending, the function's behavior is undefined.

Windows NT/2000: The handles must have SYNCHRONIZE access. For more information, see Standard
Access Rights.
Page 533



Volume 1
Windows 95: No handle may be a duplicate of another handle created using DuplicateHandle.

fWaitAll
[in] Specifies the wait type. If TRUE, the function returns when the states all objects in the lpHandles array are
set to signaled. If FALSE, the function returns when the state of any one of the objects is set to signaled. In the
latter case, the return value indicates the object whose state caused the function to return.

dwMilliseconds
[in] Specifies the time-out interval, in milliseconds. The function returns if the interval elapses, even if the crite-
ria specified by the bWaitAll parameter are not met and no completion routines or APCs are queued. If dwMilli-
seconds is zero, the function tests the states of the specified objects and checks for queued completion routines or
APCs and then returns immediately. If dwMilliseconds is INFINITE, the function's time-out interval never
elapses.

bAlertable
[in] Specifies whether the function returns when the system queues an I/O completion routine or APC. If TRUE,
the function returns and the completion routine or APC function is executed. If FALSE, the function does not
return and the completion routine or APC function is not executed.

A completion routine is queued when the ReadFileEx or WriteFileEx function in which it was specified has
completed. The wait function returns and the completion routine is called only if bAlertable is TRUE and the
calling thread is the thread that initiated the read or write operation. An APC is queued when you call
QueueUserAPC.

Return Values
If the function succeeds, the return value indicates the event that caused the function to return. This value can be one
of the following.

If the function fails, the return value is WAIT_FAILED. To get extended error information, call GetLastError.

Remarks
The WaitForMultipleObjectsEx function determines whether the wait criteria have been met. If the criteria have not
been met, the calling thread enters the wait state. It uses no processor time while waiting for the criteria to be met.

Value Meaning

WAIT_OBJECT_0 to (WAIT_OBJECT_0 +
nCount – 1)

If bWaitAll is TRUE, the return value indicates that the state of all
specified objects is signaled.

If bWaitAll is FALSE, the return value minus WAIT_OBJECT_0
indicates the lpHandles array index of the object that satisfied the
wait. If more than one object became signalled during the call, this
is the array index of the signalled object with the smallest index
value of all the signalled objects.

WAIT_ABANDONED_0 to
(WAIT_ABANDONED_0 + nCount – 1)

If bWaitAll is TRUE, the return value indicates that the state of all
specified objects is signaled, and at least one of the objects is an
abandoned mutex object.

If bWaitAll is FALSE, the return value minus
WAIT_ABANDONED_0 indicates the lpHandles array index of
an abandoned mutex object that satisfied the wait.

WAIT_IO_COMPLETION One or more I/O completion routines are queued for execution.

WAIT_TIMEOUT The time-out interval elapsed, the conditions specified by the
bWaitAll parameter were not satisfied, and no completion routines
are queued.
Page 534



Win32 API Reference
When fWaitAll is TRUE, the function's wait operation is completed only when the states of all objects have been set
to signaled. The function does not modify the states of the specified objects until the states of all objects have been set
to signaled. For example, a mutex can be signaled, but the thread does not get ownership until the states of the other
objects are also set to signaled. In the meantime, some other thread may get ownership of the mutex, thereby setting
its state to nonsignaled.

The function modifies the state of some types of synchronization objects. Modification occurs only for the object or
objects whose signaled state caused the function to return. For example, the count of a semaphore object is decreased
by one. When fWaitAll is FALSE, and multiple objects are in the signaled state, the function chooses one of the
objects to satisfy the wait; the states of the objects not selected are unaffected.

The WaitForMultipleObjectsEx function can specify handles of any of the following object types in the lpHandles
array:

Change notification

Console input

Event

Job

Mutex

Process

Semaphore

Thread

Waitable timer

For more information, see Synchronization Objects.

Use caution when calling the wait functions and code that directly or indirectly creates windows. If a thread creates
any windows, it must process messages. Message broadcasts are sent to all windows in the system. A thread that uses
a wait function with no time-out interval may cause the system to become deadlocked. Two examples of code that
indirectly creates windows are DDE and COM CoInitialize. Therefore, if you have a thread that creates windows,
use MsgWaitForMultipleObjects or MsgWaitForMultipleObjectsEx, rather than WaitForMultipleObject-
sEx.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also

Synchronization Overview, Synchronization Functions, MsgWaitForMultipleObjects, Msg-
WaitForMultipleObjectsEx

1.431 WaitForSingleObject

The WaitForSingleObject function returns when one of the following occurs:

The specified object is in the signaled state.

The time-out interval elapses.

To enter an alertable wait state, use the WaitForSingleObjectEx function. To wait for multiple objects, use the
WaitForMultipleObjects.

WaitForSingleObject: procedure
(

hHandle: dword;
Page 535



Volume 1
dwMilliseconds: dword
);

stdcall;
returns( "eax" );
external( "__imp__WaitForSingleObject@8" );

Parameters

hHandle
[in] Handle to the object. For a list of the object types whose handles can be specified, see the following Remarks
section.

If this handle is closed while the wait is still pending, the function's behavior is undefined.

Windows NT/2000: The handle must have SYNCHRONIZE access. For more information, see Standard Access
Rights.

dwMilliseconds
[in] Specifies the time-out interval, in milliseconds. The function returns if the interval elapses, even if the
object's state is nonsignaled. If dwMilliseconds is zero, the function tests the object's state and returns immedi-
ately. If dwMilliseconds is INFINITE, the function's time-out interval never elapses.

Return Values
If the function succeeds, the return value indicates the event that caused the function to return. This value can be one
of the following.

If the function fails, the return value is WAIT_FAILED. To get extended error information, call GetLastError.

Remarks
The WaitForSingleObject function checks the current state of the specified object. If the object's state is nonsig-
naled, the calling thread enters the wait state. It uses no processor time while waiting for the object state to become
signaled or the time-out interval to elapse.

The function modifies the state of some types of synchronization objects. Modification occurs only for the object
whose signaled state caused the function to return. For example, the count of a semaphore object is decreased by one.

The WaitForSingleObject function can wait for the following objects:

Change notification

Console input

Event

Job

Mutex

Process

Semaphore

Thread

Value Meaning

WAIT_ABANDONED The specified object is a mutex object that was not released by the thread
that owned the mutex object before the owning thread terminated. Owner-
ship of the mutex object is granted to the calling thread, and the mutex is set
to nonsignaled.

WAIT_OBJECT_0 The state of the specified object is signaled.

WAIT_TIMEOUT The time-out interval elapsed, and the object's state is nonsignaled.
Page 536



Win32 API Reference
Waitable timer

For more information, see Synchronization Objects.

Use caution when calling the wait functions and code that directly or indirectly creates windows. If a thread creates
any windows, it must process messages. Message broadcasts are sent to all windows in the system. A thread that uses
a wait function with no time-out interval may cause the system to become deadlocked. Two examples of code that
indirectly creates windows are DDE and COM CoInitialize. Therefore, if you have a thread that creates windows,
use MsgWaitForMultipleObjects or MsgWaitForMultipleObjectsEx, rather than WaitForSingleObject.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, MsgWaitForMultipleObjects, MsgWaitForMultipleObject-
sEx, WaitForMultipleObjects, WaitForSingleObjectEx

1.432 WaitForSingleObjectEx

The WaitForSingleObjectEx function returns when one of the following occurs:

The specified object is in the signaled state.

An I/O completion routine or asynchronous procedure call (APC) is queued to the thread.

The time-out interval elapses.

To wait for multiple objects, use the WaitForMultipleObjectsEx.

WaitForSingleObjectEx: procedure
(

hHandle: dword;
dwMilliseconds: dword;
bAlertable: boolean

);
stdcall;
returns( "eax" );
external( "__imp__WaitForSingleObjectEx@12" );

Parameters

hHandle
[in] Handle to the object. For a list of the object types whose handles can be specified, see the following Remarks
section.

If this handle is closed while the wait is still pending, the function's behavior is undefined.

Windows NT/2000: The handle must have SYNCHRONIZE access. For more information, see Standard Access
Rights.

dwMilliseconds
[in] Specifies the time-out interval, in milliseconds. The function returns if the interval elapses, even if the
object's state is nonsignaled and no completion routines or APCs are queued. If dwMilliseconds is zero, the func-
tion tests the object's state and checks for queued completion routines or APCs and then returns immediately. If
dwMilliseconds is INFINITE, the function's time-out interval never elapses.

bAlertable
Page 537



Volume 1
[in] Specifies whether the function returns when the system queues an I/O completion routine or APC. If TRUE,
the function returns and the completion routine or APC function is executed. If FALSE, the function does not
return, and the completion routine or APC function is not executed.

A completion routine is queued when the ReadFileEx or WriteFileEx function in which it was specified has
completed. The wait function returns and the completion routine is called only if bAlertable is TRUE, and the
calling thread is the thread that initiated the read or write operation. An APC is queued when you call
QueueUserAPC.

Return Values
If the function succeeds, the return value indicates the event that caused the function to return. This value can be one
of the following.

If the function fails, the return value is WAIT_FAILED. To get extended error information, call GetLastError.

Remarks
The WaitForSingleObjectEx function determines whether the wait criteria have been met. If the criteria have not
been met, the calling thread enters the wait state. It uses no processor time while waiting for the criteria to be met.

The function modifies the state of some types of synchronization objects. Modification occurs only for the object
whose signaled state caused the function to return. For example, the count of a semaphore object is decreased by one.

The WaitForSingleObjectEx function can wait for the following objects:

Change notification

Console input

Event

Job

Mutex

Process

Semaphore

Thread

Waitable timer

For more information, see Synchronization Objects.

Use caution when calling the wait functions and code that directly or indirectly creates windows. If a thread creates
any windows, it must process messages. Message broadcasts are sent to all windows in the system. A thread that uses
a wait function with no time-out interval may cause the system to become deadlocked. Two examples of code that
indirectly creates windows are DDE and COM CoInitialize. Therefore, if you have a thread that creates windows,
use MsgWaitForMultipleObjects or MsgWaitForMultipleObjectsEx, rather than WaitForSingleObjectEx.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

Value Meaning

WAIT_OBJECT_0 The state of the specified object is signaled.

WAIT_ABANDONED The specified object is a mutex object that was not released by the
thread that owned the mutex object before the owning thread termi-
nated. Ownership of the mutex object is granted to the calling thread,
and the mutex is set to nonsignaled.

WAIT_IO_COMPLETION One or more I/O completion routines are queued for execution.

WAIT_TIMEOUT The time-out interval elapsed, and the object's state is nonsignaled.
Page 538



Win32 API Reference
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Synchronization Overview, Synchronization Functions, MsgWaitForMultipleObjects, MsgWaitForMultipleObject-
sEx, WaitForMultipleObjectsEx

1.433 WaitNamedPipe

The WaitNamedPipe function waits until either a time-out interval elapses or an instance of the specified named pipe
is available for connection (that is, the pipe's server process has a pending ConnectNamedPipe operation on the
pipe).

WaitNamedPipe: procedure
(

lpNamedPipeName: string;
nTimeOut: dword

);
stdcall;
returns( "eax" );
external( "__imp__WaitNamedPipeA@8" );

Parameters

lpNamedPipeName
[in] Pointer to a null-terminated string that specifies the name of the named pipe. The string must include the
name of the computer on which the server process is executing. A period may be used for the servername if the
pipe is local. The following pipe name format is used:

\\servername\pipe\pipename

nTimeOut
[in] Specifies the number of milliseconds that the function will wait for an instance of the named pipe to be avail-
able. You can used one of the following values instead of specifying a number of milliseconds.

Return Values
If an instance of the pipe is available before the time-out interval elapses, the return value is nonzero.

If an instance of the pipe is not available before the time-out interval elapses, the return value is zero. To get extended
error information, call GetLastError.

Remarks
If no instances of the specified named pipe exist, the WaitNamedPipe function returns immediately, regardless of the
time-out value.

If the function succeeds, the process should use the CreateFile function to open a handle to the named pipe. A return
value of TRUE indicates that there is at least one instance of the pipe available. A subsequent CreateFile call to the
pipe can fail, because the instance was closed by the server or opened by another client.

Value Meaning

NMPWAIT_USE_DEFAULT_WAIT The time-out interval is the default value specified by the
server process in the CreateNamedPipe function.

NMPWAIT_WAIT_FOREVER The function does not return until an instance of the named
pipe is available.
Page 539



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Winbase.h; include Windows.h.
Library: Use Kernel32.lib.

See Also
Pipes Overview, Pipe Functions, CallNamedPipe, ConnectNamedPipe, CreateFile, CreateNamedPipe

1.434 WideCharToMultiByte

The WideCharToMultiByte function maps a wide-character string to a new character string. The new character
string is not necessarily from a multibyte character set.

WideCharToMultiByte: procedure
(

CodePage: dword;
dwFlags: dword;

var lpWideCharStr: var;
cchWideChar: dword;

var lpMultiByteStr: var;
cbMultiByte: dword;

var lpDefaultChar: var;
var lpUsedDefaultChar: boolean

);
stdcall;
returns( "eax" );
external( "__imp__WideCharToMultiByte@32" );

Parameters

CodePage
[in] Specifies the code page used to perform the conversion. This parameter can be given the value of any code
page that is installed or available in the system. You can also specify one of the following values.

dwFlags

Value Meaning

CP_ACP ANSI code page

CP_MACCP Macintosh code page

CP_OEMCP OEM code page

CP_SYMBOL Windows 2000: Symbol code page (42)

CP_THREAD_ACP Windows 2000: Current thread's ANSI code page

CP_UTF7 Windows NT 4.0 and Windows 2000: Translate using UTF-7. When this is
set, lpDefaultChar and lpUsedDefaultChar must be NULL

CP_UTF8 Windows NT 4.0 and Windows 2000: Translate using UTF-8. When this is
set, dwFlags must be zero and both lpDefaultChar and lpUsedDefaultChar
must be NULL.
Page 540



Win32 API Reference
[in] Specifies the handling of unmapped characters. The function performs more quickly when none of these
flags is set. The following flag constants are defined.

When WC_COMPOSITECHECK is specified, the function converts composite characters to precomposed char-
acters. A composite character consists of a base character and a nonspacing character, each having different char-
acter values. A precomposed character has a single character value for a base/nonspacing character combination.
In the character è, the e is the base character, and the accent grave mark is the nonspacing character.

When an application specifies WC_COMPOSITECHECK, it can use the last three flags in this list
(WC_DISCARDNS, WC_SEPCHARS, and WC_DEFAULTCHAR) to customize the conversion to precom-
posed characters. These flags determine the function's behavior when there is no precomposed mapping for a
base/nonspace character combination in a wide-character string. These last three flags can only be used if the
WC_COMPOSITECHECK flag is set.

The function's default behavior is to generate separate characters (WC_SEPCHARS) for unmapped composite
characters.

lpWideCharStr
[in] Points to the wide-character string to be converted.

cchWideChar
[in] Specifies the number of wide characters in the string pointed to by the lpWideCharStr parameter. If this value
is –1, the string is assumed to be null-terminated and the length is calculated automatically. The length will
include the null-terminator.

lpMultiByteStr
[out] Points to the buffer to receive the translated string.

cbMultiByte
[in] Specifies the size, in bytes, of the buffer pointed to by the lpMultiByteStr parameter. If this value is zero, the
function returns the number of bytes required for the buffer. (In this case, the lpMultiByteStr buffer is not used.)

lpDefaultChar
[in] Points to the character used if a wide character cannot be represented in the specified code page. If this
parameter is NULL, a system default value is used. The function is faster when both lpDefaultChar and lpUsed-
DefaultChar are NULL.

Note that if CodePage is either CP_UTF7 or CP_UTF8, this parameter must be NULL.

Value Meaning

WC_NO_BEST_FIT_CHARS Windows 2000: Any Unicode characters that do not translate directly to
multibyte equivalents will be translated to the default character (see lpDe-
faultChar parameter). In other words, if translating from Unicode to multi-
byte and back to Unicode again does not yield the exact same Unicode
character, the default character is used.

This flag may be used by itself or in combination with the other dwFlag
options.

WC_COMPOSITECHECK Convert composite characters to precomposed characters.

WC_DISCARDNS Discard nonspacing characters during conversion.

WC_SEPCHARS Generate separate characters during conversion. This is the default con-
version behavior.

WC_DEFAULTCHAR Replace exceptions with the default character during conversion.
Page 541



Volume 1
lpUsedDefaultChar
[in] Points to a flag that indicates whether a default character was used. The flag is set to TRUE if one or more
wide characters in the source string cannot be represented in the specified code page. Otherwise, the flag is set to
FALSE. This parameter may be NULL. The function is faster when both lpDefaultChar and lpUsedDefaultChar
are NULL.

Note that if CodePage is either CP_UTF7 or CP_UTF8, this parameter must be NULL.

Return Values
If the function succeeds, and cbMultiByte is nonzero, the return value is the number of bytes written to the buffer
pointed to by lpMultiByteStr. The number includes the byte for the null terminator.

If the function succeeds, and cbMultiByte is zero, the return value is the required size, in bytes, for a buffer that can
receive the translated string.

If the function fails, the return value is zero. To get extended error information, call GetLastError. GetLastError
may return one of the following error codes:

ERROR_INSUFFICIENT_BUFFER
ERROR_INVALID_FLAGS
ERROR_INVALID_PARAMETER

Remarks
The lpMultiByteStr and lpWideCharStr pointers must not be the same. If they are the same, the function fails, and
GetLastError returns ERROR_INVALID_PARAMETER.

If CodePage is CP_SYMBOL and cbMultiByte is less than cchWideChar, no characters are written to lpMultiByte.
Otherwise, if cbMultiByte is less than cchWideChar, cbMultiByte characters are copied to the buffer pointed to by
lpMultiByte.

An application can use the lpDefaultChar parameter to change the default character used for the conversion.

As noted earlier, the WideCharToMultiByte function operates most efficiently when both lpDefaultChar and
lpUsedDefaultChar are NULL. The following table shows the behavior of WideCharToMultiByte for the four com-
binations of lpDefaultChar and lpUsedDefaultChar.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Unicode and Character Sets Overview, Unicode and Character Set Functions, MultiByteToWideChar

lpDefaultChar lpUsedDefaultChar Result

NULL NULL No default checking. This is the most efficient
way to use this function.

non-NULL NULL Uses the specified default character, but does not
set lpUsedDefaultChar.

NULL non-NULL Uses the system default character and sets
lpUsedDefaultChar if necessary.

non-NULL non-NULL Uses the specified default character and sets
lpUsedDefaultChar if necessary.
Page 542



Win32 API Reference
1.435 WinExec

The WinExec function runs the specified application.

Note This function is provided only for compatibility with 16-bit Windows. Win32-based applications should use the
CreateProcess function.

WinExec: procedure
(

lpCmdLine: string;
uCmdShow: dword

);
stdcall;
returns( "eax" );
external( "__imp__WinExec@8" );

Parameters

lpCmdLine
[in] Pointer to a null-terminated character string that contains the command line (file name plus optional parame-
ters) for the application to be executed. If the name of the executable file in the lpCmdLine parameter does not
contain a directory path, the system searches for the executable file in this sequence:

The directory from which the application loaded.

The current directory.

The Windows system directory. The GetSystemDirectory function retrieves the path of this directory.

The Windows directory. The GetWindowsDirectory function retrieves the path of this directory.

The directories listed in the PATH environment variable.

uCmdShow
[in] Specifies how a Windows-based application window is to be shown and is used to supply the wShowWin-
dow member of the STARTUPINFO parameter to the CreateProcess function. For a list of the acceptable val-
ues, see the description of the nCmdShow parameter of the ShowWindow function. For a non-Windows – based
application, the PIF file, if any, for the application determines the window state.

Return Values
If the function succeeds, the return value is greater than 31.

If the function fails, the return value is one of the following error values:

Remarks
In Win32, the WinExec function returns when the started process calls the GetMessage function or a time-out limit
is reached. To avoid waiting for the time out delay, call the GetMessage function as soon as possible in any process
started by a call to WinExec.

Value Meaning

0 The system is out of memory or resources.

ERROR_BAD_FORMAT The .exe file is invalid (non-Win32 .exe or error in .exe image).

ERROR_FILE_NOT_FOUND The specified file was not found.

ERROR_PATH_NOT_FOUND The specified path was not found.
Page 543



Volume 1
Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Processes and Threads Overview, Process and Thread Functions, CreateProcess, GetMessage, GetSystemDirectory,
GetWindowsDirectory, LoadModule, ShowWindow

1.436 WriteConsole

The WriteConsole function writes a character string to a console screen buffer beginning at the current cursor loca-
tion.

WriteConsole: procedure
(

hConsoleOutput: dword;
var lpBuffer: var;

nNumberOfCharsToWrite: dword;
var lpNumberOfCharsWritten: dword;
var lpReserved: var

);
stdcall;
returns( "eax" );
external( "__imp__WriteConsoleA@20" );

Parameters

hConsoleOutput
[in] Handle to the console screen buffer to be written to. The handle must have GENERIC_WRITE access.

lpBuffer
[in] Pointer to a buffer that contains characters to be written to the screen buffer.

nNumberOfCharsToWrite
[in] Specifies the number of characters to write.

lpNumberOfCharsWritten
[out] Pointer to a variable that receives the number of TCHARs actually written. For the ANSI version of this
function, this is the number of bytes; for the Unicode version, this is the number of characters.

lpReserved
Reserved; must be NULL.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
WriteConsole writes characters to a console screen buffer. It behaves like the WriteFile function, except it can
write in either Unicode or ANSI mode. To create an application that maintains a single set of sources compatible with
both modes, use WriteConsole rather than WriteFile. Although WriteConsole can be used only with a console
Page 544



Win32 API Reference
screen buffer handle, WriteFile can be used with other handles (such as files or pipes). WriteConsole fails if used
with a standard handle that has been redirected to be something other than a console handle.

Although an application can use WriteConsole in ANSI mode to write ANSI characters, consoles do not support
ANSI escape sequences. However, some Win32 functions provide equivalent functionality: for example, SetCur-

sorPos, SetConsoleTextAttribute, and GetConsoleCursorInfo.

WriteConsole writes characters to the screen buffer at the current cursor position. The cursor position advances as
characters are written. The SetConsoleCursorPosition function sets the current cursor position.

Characters are written using the foreground and background color attributes associated with the screen buffer. The
SetConsoleTextAttribute function changes these colors. To determine the current color attributes and the current
cursor position, use GetConsoleScreenBufferInfo.

All of the input modes that affect the behavior of WriteFile have the same effect on WriteConsole. To retrieve and
set the output modes of a console screen buffer, use the GetConsoleMode and SetConsoleMode functions.

Windows NT/2000: This function uses either Unicode characters or ANSI characters from the console's current code
page. The console's code page defaults initially to the system's OEM code page. To change the console's code page,
use the SetConsoleCP or SetConsoleOutputCP functions, or use the chcp or mode con cp select= commands.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, GetConsoleCursorInfo, GetConsoleMode,
GetConsoleScreenBufferInfo, ReadConsole, SetConsoleCP, SetConsoleCursorPosition, SetConsoleMode, SetConso-
leOutputCP, SetConsoleTextAttribute, SetCursorPos, WriteFile

1.437 WriteConsoleInput

The WriteConsoleInput function writes data directly to the console input buffer.

WriteConsoleInput: procedure
(

hConsoleInput: dword;
var lpBuffer: INPUT_RECORD;

nLength: dword;
var lpNumberOfEventsWritten: dword

);
stdcall;
returns( "eax" );
external( "__imp__WriteConsoleInputA@16" );

Parameters

hConsoleInput
[in] Handle to the console input buffer. The handle must have GENERIC_WRITE access.

lpBuffer
[in] Pointer to an INPUT_RECORD buffer containing data to be written to the input buffer.

nLength
[in] Specifies the number of input records to be written.
Page 545



Volume 1
lpNumberOfEventsWritten
[out] Pointer to a variable that receives the number of input records actually written.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
WriteConsoleInput places input records into the input buffer behind any pending events in the buffer. The input
buffer grows dynamically, if necessary, to hold as many events as are written.

Windows NT/2000: This function uses either Unicode characters or 8-bit characters from the console's current code
page. The console's code page defaults initially to the system's OEM code page. To change the console's code page,
use the SetConsoleCP or SetConsoleOutputCP functions, or use the chcp or mode con cp select= commands.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, INPUT_RECORD, PeekConsoleInput, Read-
ConsoleInput, SetConsoleCP, SetConsoleOutputCP

1.438 WriteConsoleOutput

The WriteConsoleOutput function writes character and color attribute data to a specified rectangular block of char-
acter cells in a console screen buffer. The data to be written is taken from a correspondingly sized rectangular block at
a specified location in the source buffer.

WriteConsoleOutput: procedure
(

hConsoleOutput: dword;
var lpBuffer: CHAR_INFO;

dwBufferSize: COORD;
dwBufferCoord: COORD;

VAR lpWriteRegion: SMALL_RECT
);

stdcall;
returns( "eax" );
external( "__imp__WriteConsoleOutputA@20" );

Parameters

hConsoleOutput
[in] Handle to the screen buffer. The handle must have GENERIC_WRITE access.

lpBuffer
[in] Pointer to a source buffer that contains the data to be written to the screen buffer. This pointer is treated as
the origin of a two-dimensional array of CHAR_INFO structures whose size is specified by the dwBufferSize
parameter.

dwBufferSize
Page 546



Win32 API Reference
[in] Specifies the size, in character cells, of the buffer pointed to by the lpBuffer parameter. The X member of the
COORD structure is the number of columns; the Y member is the number of rows.

dwBufferCoord
[in] Specifies the coordinates of the upper-left cell in the buffer pointed to by the lpBuffer parameter to write data
from. The X member of the COORD structure is the column, and the Y member is the row.

lpWriteRegion
[in/out] Pointer to a SMALL_RECT structure. On input, the structure members specify the upper-left and
lower-right coordinates of the screen buffer rectangle to write to. On output, the structure members specify the
actual rectangle that was written to.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
WriteConsoleOutput treats the source buffer and the destination screen buffer as two-dimensional arrays (columns
and rows of character cells). The rectangle pointed to by the lpWriteRegion parameter specifies the size and location
of the block to be written to in the screen buffer. A rectangle of the same size is located with its upper-left cell at the
coordinates of the dwBufferCoord parameter in the lpBuffer array. Data from the cells that are in the intersection of
this rectangle and the source buffer rectangle (whose dimensions are specified by the dwBufferSize parameter) is writ-
ten to the destination rectangle.

Cells in the destination rectangle whose corresponding source location are outside the boundaries of the source buffer
rectangle are left unaffected by the write operation. In other words, these are the cells for which no data is available to
be written.

Before WriteConsoleOutput returns, it sets the members of lpWriteRegion to the actual screen buffer rectangle
affected by the write operation. This rectangle reflects the cells in the destination rectangle for which there existed a
corresponding cell in the source buffer, because WriteConsoleOutput clips the dimensions of the destination rectan-
gle to the boundaries of the screen buffer.

If the rectangle specified by lpWriteRegion lies completely outside the boundaries of the screen buffer, or if the corre-
sponding rectangle is positioned completely outside the boundaries of the source buffer, no data is written. In this
case, the function returns with the members of the structure pointed to by the lpWriteRegion parameter set such that
the Right member is less than the Left, or the Bottom member is less than the Top. To determine the size of the
screen buffer, use the GetConsoleScreenBufferInfo function.

WriteConsoleOutput has no effect on the cursor position.

Windows NT/2000: This function uses either Unicode characters or 8-bit characters from the console's current code
page. The console's code page defaults initially to the system's OEM code page. To change the console's code page,
use the SetConsoleCP or SetConsoleOutputCP functions, or use the chcp or mode con cp select= commands.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, CHAR_INFO, COORD, GetConsoleScreen-
BufferInfo, ReadConsoleOutput, ReadConsoleOutputAttribute, ReadConsoleOutputCharacter, SetConsoleCP, Set-
ConsoleOutputCP, SMALL_RECT, WriteConsoleOutputAttribute, WriteConsoleOutputCharacter
Page 547



Volume 1
1.439 WriteConsoleOutputAttribute

The WriteConsoleOutputAttribute function copies a number of foreground and background color attributes to con-
secutive cells of a console screen buffer, beginning at a specified location.

WriteConsoleOutputAttribute: procedure
(

hConsoleOutput: dword;
var lpAttribute: word;

nLength: dword;
dwWriteCoord: COORD;

var lpNumberOfAttrsWritten: dword
);

stdcall;
returns( "eax" );
external( "__imp__WriteConsoleOutputAttribute@20" );

Parameters

hConsoleOutput
[in] Handle to the screen buffer. The handle must have GENERIC_WRITE access.

lpAttribute
[in] Pointer to a buffer that contains the attributes to write to the screen buffer.

nLength
[in] Specifies the number of screen buffer character cells to write to.

dwWriteCoord
[in] Specifies the column and row coordinates of the first cell in the screen buffer to write to.

lpNumberOfAttrsWritten
[out] Pointer to a variable that receives the number of attributes actually written to the screen buffer.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the number of attributes to be written to extends beyond the end of the specified row in the screen buffer, attributes
are written to the next row. If the number of attributes to be written to extends beyond the end of the screen buffer, the
attributes are written up to the end of the screen buffer.

The character values at the positions written to are not changed.

Each attribute specifies the foreground (text) and background colors in which that character cell is drawn. The
attribute values are some combination of the following values: FOREGROUND_BLUE, FOREGROUND_GREEN,
FOREGROUND_RED, FOREGROUND_INTENSITY, BACKGROUND_BLUE, BACKGROUND_GREEN,
BACKGROUND_RED, and BACKGROUND_INTENSITY. For example, the following combination of values pro-
duces red text on a white background:

FOREGROUND_RED | BACKGROUND_RED | BACKGROUND_GREEN | BACKGROUND_BLUE

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Page 548



Win32 API Reference
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, ReadConsoleOutput, ReadConsoleOutputAt-
tribute, ReadConsoleOutputCharacter, WriteConsoleOutput, WriteConsoleOutputCharacter

1.440 WriteConsoleOutputCharacter

The WriteConsoleOutputCharacter function copies a number of characters to consecutive cells of a console screen
buffer, beginning at a specified location.

WriteConsoleOutputCharacter: procedure
(

hConsoleOutput: dword;
lpCharacter: string;
nLength: dword;
dwWriteCoord: COORD;

var lpNumberOfCharsWritten: dword
);

stdcall;
returns( "eax" );
external( "__imp__WriteConsoleOutputCharacterA@20" );

Parameters

hConsoleOutput
[in] Handle to the screen buffer. The handle must have GENERIC_WRITE access.

lpCharacter
[in] Pointer to a buffer that contains the characters to write to the screen buffer.

nLength
[in] Specifies the number of TCHARs to write. For the ANSI version of the function, this is the number of bytes;
for the Unicode version, this is the number of characters.

dwWriteCoord
[in] Specifies the column and row coordinates of the first cell in the screen buffer to write to.

lpNumberOfCharsWritten
[out] Pointer to a variable that receives the number of TCHARs actually written. For the ANSI version of the
function, this is the number of bytes; for the Unicode version, this is the number of characters.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
If the number of characters to be written to extends beyond the end of the specified row in the screen buffer, charac-
ters are written to the next row. If the number of characters to be written to extends beyond the end of the screen
buffer, characters are written up to the end of the screen buffer.

The attribute values at the positions written to are not changed.

Windows NT/2000: This function uses either Unicode characters or 8-bit characters from the console's current code
page. The console's code page defaults initially to the system's OEM code page. To change the console's code page,
Page 549



Volume 1
use the SetConsoleCP or SetConsoleOutputCP functions, or use the chcp or mode con cp select= commands.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Consoles and Character-Mode Support Overview, Console Functions, ReadConsoleOutput, ReadConsoleOutputAt-
tribute, ReadConsoleOutputCharacter, SetConsoleCP, SetConsoleOutputCP, WriteConsoleOutput, WriteConsoleOut-
putAttribute

1.441 WriteFile

The WriteFile function writes data to a file and is designed for both synchronous and asynchronous operation. The
function starts writing data to the file at the position indicated by the file pointer. After the write operation has been
completed, the file pointer is adjusted by the number of bytes actually written, except when the file is opened with
FILE_FLAG_OVERLAPPED. If the file handle was created for overlapped input and output (I/O), the application
must adjust the position of the file pointer after the write operation is finished.

This function is designed for both synchronous and asynchronous operation. The WriteFileEx function is designed
solely for asynchronous operation. It lets an application perform other processing during a file write operation.

WriteFile: procedure
(

hFile: dword;
var lpBuffer: var;

nNumberOfBytesToWrite: dword;
var lpNumberOfBytesWritten: dword;
var lpOverlapped: OVERLAPPED

);
stdcall;
returns( "eax" );
external( "__imp__WriteFile@20" );

Parameters

hFile
[in] Handle to the file to be written to. The file handle must have been created with GENERIC_WRITE access to
the file.

Windows NT/2000: For asynchronous write operations, hFile can be any handle opened with the
FILE_FLAG_OVERLAPPED flag by the CreateFile function, or a socket handle returned by the socket or
accept function.

Windows 95/98: For asynchronous write operations, hFile can be a communications resource opened with the
FILE_FLAG_OVERLAPPED flag by CreateFile, or a socket handle returned by socket or accept. You cannot
perform asynchronous write operations on mailslots, named pipes, or disk files.

lpBuffer
[in] Pointer to the buffer containing the data to be written to the file.

nNumberOfBytesToWrite
[in] Specifies the number of bytes to write to the file.

A value of zero specifies a null write operation. A null write operation does not write any bytes but does cause
Page 550



Win32 API Reference
the time stamp to change.

Named pipe write operations across a network are limited to 65,535 bytes.

lpNumberOfBytesWritten
[out] Pointer to the variable that receives the number of bytes written. WriteFile sets this value to zero before
doing any work or error checking.

Windows NT/2000: If lpOverlapped is NULL, lpNumberOfBytesWritten cannot be NULL. If lpOverlapped is
not NULL, lpNumberOfBytesWritten can be NULL. If this is an overlapped write operation, you can get the
number of bytes written by calling GetOverlappedResult. If hFile is associated with an I/O completion port,
you can get the number of bytes written by calling GetQueuedCompletionStatus.

Windows 95/98: This parameter cannot be NULL.

lpOverlapped
[in] Pointer to an OVERLAPPED structure. This structure is required if hFile was opened with
FILE_FLAG_OVERLAPPED.

If hFile was opened with FILE_FLAG_OVERLAPPED, the lpOverlapped parameter must not be NULL. It must
point to a valid OVERLAPPED structure. If hFile was opened with FILE_FLAG_OVERLAPPED and lpOver-
lapped is NULL, the function can incorrectly report that the write operation is complete.

If hFile was opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not NULL, the write operation
starts at the offset specified in the OVERLAPPED structure and WriteFile may return before the write opera-
tion has been completed. In this case, WriteFile returns FALSE and the GetLastError function returns
ERROR_IO_PENDING. This allows the calling process to continue processing while the write operation is
being completed. The event specified in the OVERLAPPED structure is set to the signaled state upon comple-
tion of the write operation.

If hFile was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped is NULL, the write operation
starts at the current file position and WriteFile does not return until the operation has been completed.

Windows NT/2000: If hFile was not opened with FILE_FLAG_OVERLAPPED and lpOverlapped is not
NULL, the write operation starts at the offset specified in the OVERLAPPED structure and WriteFile does not
return until the write operation has been completed.

Windows 95/98: For operations on files, disks, pipes, or mailslots, this parameter must be NULL; a pointer to an
OVERLAPPED structure causes the call to fail. However, Windows 95/98 supports overlapped I/O on serial
and parallel ports.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
An application must meet certain requirements when working with files opened with
FILE_FLAG_NO_BUFFERING:

File access must begin at byte offsets within the file that are integer multiples of the volume's sector
size. To determine a volume's sector size, call the GetDiskFreeSpace function.

File access must be for numbers of bytes that are integer multiples of the volume's sector size. For
example, if the sector size is 512 bytes, an application can request reads and writes of 512, 1024, or 2048 bytes, but
not of 335, 981, or 7171 bytes.

Buffer addresses for read and write operations must be sector aligned (aligned on addresses in
memory that are integer multiples of the volume's sector size). One way to sector align buffers is to use the Virtu-
alAlloc function to allocate the buffers. This function allocates memory that is aligned on addresses that are integer
multiples of the system's page size. Because both page and volume sector sizes are powers of 2, memory aligned by
multiples of the system's page size is also aligned by multiples of the volume's sector size.

If part of the file is locked by another process and the write operation overlaps the locked portion, this function fails.
Page 551



Volume 1
Accessing the output buffer while a write operation is using the buffer may lead to corruption of the data written from
that buffer. Applications must not read from, write to, reallocate, or free the output buffer that a write operation is
using until the write operation completes.

Characters can be written to the screen buffer using WriteFile with a handle to console output. The exact behavior of
the function is determined by the console mode. The data is written to the current cursor position. The cursor position
is updated after the write operation.

The system interprets zero bytes to write as specifying a null write operation and WriteFile does not truncate or
extend the file. To truncate or extend a file, use the SetEndOfFile function.

When writing to a nonblocking, byte-mode pipe handle with insufficient buffer space, WriteFile returns TRUE with
*lpNumberOfBytesWritten < nNumberOfBytesToWrite.

When an application uses the WriteFile function to write to a pipe, the write operation may not finish if the pipe
buffer is full. The write operation is completed when a read operation (using the ReadFile function) makes more
buffer space available.

If the anonymous read pipe handle has been closed and WriteFile attempts to write using the corresponding anony-
mous write pipe handle, the function returns FALSE and GetLastError returns ERROR_BROKEN_PIPE.

The WriteFile function may fail with ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY whenever there are too many outstanding asynchronous I/O requests.

To cancel all pending asynchronous I/O operations, use the CancelIo function. This function only cancels opera-
tions issued by the calling thread for the specified file handle. I/O operations that are canceled complete with the error
ERROR_OPERATION_ABORTED.

If you are attempting to write to a floppy drive that does not have a floppy disk, the system displays a message box
prompting the user to retry the operation. To prevent the system from displaying this message box, call the SetEr-
rorMode function with SEM_NOOPENFILEERRORBOX.

MAPI: For more information, see Syntax and Limitations for Win32 Functions Useful in MAPI Development.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CancelIo, CreateFile, GetLastError, GetOverlappedResult, GetQueuedCom-
pletionStatus, OVERLAPPED, ReadFile, SetEndOfFile, SetErrorMode, WriteFileEx

1.442 WriteFileEx

The WriteFileEx function writes data to a file. It is designed solely for asynchronous operation, unlike WriteFile,
which is designed for both synchronous and asynchronous operation.

WriteFileEx reports its completion status asynchronously, calling a specified completion routine when writing is
completed or canceled and the calling thread is in an alertable wait state.

WriteFileEx: procedure
(

hFile: dword;
var lpBuffer: var;

nNumberOfBytesToWrite: dword;
var lpOverlapped: OVERLAPPED;

lpCompletionRoutine: procedure
);

stdcall;
returns( "eax" );
Page 552



Win32 API Reference
external( "__imp__WriteFileEx@20" );

Parameters

hFile
[in] Handle to the file to be written to. This file handle must have been created with the
FILE_FLAG_OVERLAPPED flag and with GENERIC_WRITE access to the file.

Windows NT/ 2000: This parameter can be any handle opened with the FILE_FLAG_OVERLAPPED flag by
the CreateFile function, or a socket handle returned by the socket or accept function.

Windows 95/98: This parameter can be a communications resource opened with the
FILE_FLAG_OVERLAPPED flag by CreateFile, or a socket handle returned by socket or accept. You cannot
perform asynchronous write operations on mailslots, named pipes, or disk files.

lpBuffer

[in] Pointer to the buffer containing the data to be written to the file.

This buffer must remain valid for the duration of the write operation. The caller must not use this buffer until the
write operation is completed.

nNumberOfBytesToWrite
[in] Specifies the number of bytes to write to the file.

If nNumberOfBtyesToWrite is zero, this function does nothing; in particular, it does not truncate the file. For
additional discussion, see the following Remarks section.

lpOverlapped
[in] Pointer to an OVERLAPPED data structure that supplies data to be used during the overlapped (asynchronous)
write operation.

For files that support byte offsets, you must specify a byte offset at which to start writing to the file. You specify
this offset by setting the Offset and OffsetHigh members of the OVERLAPPED structure. For files that do not
support byte offsets, Offset and OffsetHigh are ignored.

The WriteFileEx function ignores the OVERLAPPED structure's hEvent member. An application is free to use
that member for its own purposes in the context of a WriteFileEx call. WriteFileEx signals completion of its
writing operation by calling, or queuing a call to, the completion routine pointed to by lpCompletionRoutine, so
it does not need an event handle.

The WriteFileEx function does use the Internal and InternalHigh members of the OVERLAPPED structure.
You should not change the value of these members.

The OVERLAPPED data structure must remain valid for the duration of the write operation. It should not be a vari-
able that can go out of scope while the write operation is pending completion.

lpCompletionRoutine
[in] Pointer to a completion routine to be called when the write operation has been completed and the calling
thread is in an alertable wait state. For more information about this completion routine, see FileIOComple-
tionRoutine.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

If the WriteFileEx function succeeds, the calling thread has an asynchronous I/O (input/output) operation pending:
the overlapped write operation to the file. When this I/O operation finishes, and the calling thread is blocked in an
alertable wait state, the operating system calls the function pointed to by lpCompletionRoutine, and the wait com-
pletes with a return code of WAIT_IO_COMPLETION.

If the function succeeds and the file-writing operation finishes, but the calling thread is not in an alertable wait state,
the system queues the call to *lpCompletionRoutine, holding the call until the calling thread enters an alertable wait
Page 553



Volume 1
state. See Synchronization for more information about alertable wait states and overlapped input/output operations.

Remarks
When using WriteFileEx you should check GetLastError even when the function returns "success" to check for
conditions that are "successes" but have some outcome you might want to know about. For example, a buffer over-
flow when calling WriteFileEx will return TRUE, but GetLastError will report the overflow with
ERROR_MORE_DATA. If the function call is successful and there are no warning conditions, GetLastError will
return ERROR_SUCCESS.

An application must meet certain requirements when working with files opened with
FILE_FLAG_NO_BUFFERING:

File access must begin at byte offsets within the file that are integer multiples of the volume's sector
size. To determine a volume's sector size, call the GetDiskFreeSpace function.

File access must be for numbers of bytes that are integer multiples of the volume's sector size. For
example, if the sector size is 512 bytes, an application can request reads and writes of 512, 1024, or 2048 bytes, but
not of 335, 981, or 7171 bytes.

Buffer addresses for read and write operations must be sector aligned (aligned on addresses in
memory that are integer multiples of the volume's sector size). One way to sector align buffers is to use the Virtu-
alAlloc function to allocate the buffers. This function allocates memory that is aligned on addresses that are integer
multiples of the system's page size. Because both page and volume sector sizes are powers of 2, memory aligned by
multiples of the system's page size is also aligned by multiples of the volume's sector size.

If part of the output file is locked by another process, and the specified write operation overlaps the locked portion,
the WriteFileEx function fails.

Accessing the output buffer while a write operation is using the buffer may lead to corruption of the data written from
that buffer. Applications must not read from, write to, reallocate, or free the output buffer that a write operation is
using until the write operation completes.

The WriteFileEx function may fail, returning the messages ERROR_INVALID_USER_BUFFER or
ERROR_NOT_ENOUGH_MEMORY if there are too many outstanding asynchronous I/O requests.

To cancel all pending asynchronous I/O operations, use the CancelIo function. This function only cancels opera-
tions issued by the calling thread for the specified file handle. I/O operations that are canceled complete with the error
ERROR_OPERATION_ABORTED.

If you are attempting to write to a floppy drive that does not have a floppy disk, the system displays a message box
prompting the user to retry the operation. To prevent the system from displaying this message box, call the SetEr-
rorMode function with SEM_NOOPENFILEERRORBOX.

An application uses the WaitForSingleObjectEx, WaitForMultipleObjectsEx, MsgWaitForMultiple-

ObjectsEx, SignalObjectAndWait, and SleepEx functions to enter an alertable wait state. Refer to Synchroni-
zation for more information about alertable wait states and overlapped input/output operations.

Windows 95/98: On this platform, neither WriteFileEx nor ReadFileEx can be used by the comm ports to commu-
nicate. However, you can use WriteFile and ReadFile to perform asynchronous communication.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CancelIo, CreateFile, FileIOCompletionRoutine, MsgWaitForMultipleObject-
sEx, OVERLAPPED, ReadFileEx, SetEndOfFile, SetErrorMode, SleepEx, SignalObjectAndWait, WaitForMultiple-
ObjectsEx, WaitForSingleObjectEx, WriteFile
Page 554



Win32 API Reference
1.443 WriteFileGather

The WriteFileGather function gathers data from a set of buffers and writes the data to a file.

The function starts writing data to the file at a position specified by an OVERLAPPED structure. It operates asynchro-
nously.

WriteFileGather: procedure
(

hFile: dword;
var aSegmentArray: FILE_SEGMENT_ELEMENT;

nNumberOfBytesToWrite: dword;
var lpReserved: dword;
var lpOverlapped: OVERLAPPED

);
stdcall;
returns( "eax" );
external( "__imp__WriteFileGather@20" );

Parameters

hFile
[in] Handle to the file to write to.

This file handle must have been created using GENERIC_WRITE to specify write access to the file,
FILE_FLAG_OVERLAPPED to specify asynchronous I/O, and FILE_FLAG_NO_BUFFERING to specify
non-cached I/O.

aSegmentArray
[out] Pointer to an array of FILE_SEGMENT_ELEMENT pointers to buffers. The function gathers the data it
writes to the file from this set of buffers.

Each buffer must be at least the size of a system memory page and must be aligned on a system memory page
size boundary. The system will write one system memory page of data from each buffer that a
FILE_SEGMENT_ELEMENT pointer points to.

The function gathers the data from the buffers in a sequential manner: it writes data to the file from the first
buffer, then from the second buffer, then from the next, until there is no more data to write.

The final element of the array must be a 64-bit NULL pointer.

Note The array must contain one member for each system memory page-sized chunk of the total number of bytes
to write to the file, plus one member for the final NULL pointer. For example, if the number of bytes to read is
40K, and the system page size is 4K, then this array must have 10 members for data, plus one member for the
final NULL member, for a total of 11 members.

nNumberOfBytesToWrite
[in] Specifies the total number of bytes to write; each element of aSegmentArray contains a 1-page chunk of this
total. Because the file must be opened with FILE_FLAG_NO_BUFFERING, the number of bytes to write must
be a multiple of the sector size of the file system on which the file resides.

If nNumberOfBytesToWrite is zero, the function performs a null write operation. A null write operation does not
write any bytes to the file, but it does cause the file's time stamp to change.

Note that this behavior differs from file writing functions on the MS-DOS platform, where a write count of zero
bytes truncates a file. If nNumberOfBytesToWrite is zero, WriteFileGather does not truncate or extend the file.
To truncate or extend a file, use the SetEndOfFile function. However, if nNumberOfBytesToWrite is not zero
and the offset and length of the write place data beyond the current end of the file, WriteFileGather will extend
the file.

lpReserved
Page 555



Volume 1
This parameter is reserved for future use. You must set it to NULL.

lpOverlapped
[in] Pointer to an OVERLAPPED data structure.

The WriteFileGather function requires a valid OVERLAPPED structure. The lpOverlapped parameter cannot
be NULL.

The WriteFileGather function starts writing data to the file at a position specified by the Offset and OffsetHigh
members of the OVERLAPPED structure.

The WriteFileGather function may return before the write operation has completed. In that case, the WriteFile-
Gather function returns the value zero, and the GetLastError function returns the value
ERROR_IO_PENDING. This asynchronous operation of WriteFileGather lets the calling process continue
while the write operation completes. You can call the GetOverlappedResult, HasOverlappedIoCom-

pleted, or GetQueuedCompletionStatus function to obtain information about the completion of the write
operation.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call the GetLastError function.

If the function returns before the write operation has completed, the function returns zero, and GetLastError returns
ERROR_IO_PENDING.

Remarks
If part of the file specified by hFile is locked by another process, and the write operation overlaps the locked portion,
the WriteFileGather function fails.

Requirements
Windows NT/2000: Requires Windows NT 4.0 SP2 or later.
Windows 95/98: Unsupported.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
File I/O Overview, File I/O Functions, CreateFile, GetOverlappedResult, GetQueuedCompletionStatus, HasOverlap-
pedIoCompleted, OVERLAPPED, ReadFile, ReadFileEx, ReadFileScatter

1.444 WritePrivateProfileSection

The WritePrivateProfileSection function replaces the keys and values for the specified section in an initialization
file.

Note This function is provided only for compatibility with 16-bit versions of Windows. Win32-based applications
should store initialization information in the registry.

WritePrivateProfileSection: procedure
(

lpAppName: string;
lpString: string;
lpFileName: string

);
stdcall;
returns( "eax" );
external( "__imp__WritePrivateProfileSectionA@12" );
Page 556



Win32 API Reference
Parameters

lpAppName
[in] Pointer to a null-terminated string specifying the name of the section in which data is written. This section
name is typically the name of the calling application.

lpString
[in] Pointer to a buffer containing the new key names and associated values that are to be written to the named
section.

lpFileName
[in] Pointer to a null-terminated string containing the name of the initialization file. If this parameter does not
contain a full path for the file, the function searches the Windows directory for the file. If the file does not exist
and lpFileName does not contain a full path, the function creates the file in the Windows directory. The function
does not create a file if lpFileName contains the full path and file name of a file that does not exist.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
The data in the buffer pointed to by the lpString parameter consists of one or more null-terminated strings, followed
by a final null character. Each string has the following form:

key=string

The WritePrivateProfileSection function is not case-sensitive; the string pointed to by the lpAppName parameter
can be a combination of uppercase and lowercase letters.

If no section name matches the string pointed to by the lpAppName parameter, WritePrivateProfileSection creates
the section at the end of the specified initialization file and initializes the new section with the specified key name and
value pairs.

WritePrivateProfileSection deletes the existing keys and values for the named section and inserts the key names and
values in the buffer pointed to by the lpString parameter. The function does not attempt to correlate old and new key
names; if the new names appear in a different order from the old names, any comments associated with preexisting
keys and values in the initialization file will probably be associated with incorrect keys and values.

This operation is atomic; no operations that read from or write to the specified initialization file are allowed while the
information is being written.

Windows 95/98: The system keeps a cached version of Win.ini to improve performance. If all three parameters are
NULL, the function flushes the cache. The function always returns FALSE after flushing the cache, regardless of
whether the flush succeeds or fails.

Windows NT/2000: The system maps most .ini file references to the registry, using the mapping defined under the
following registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping

This mapping is likely if an application modifies system-component initialization files, such as Control.ini, Sys-
tem.ini, and Winfile.ini. In this case, the WritePrivateProfileSection function writes information to the registry, not
to the initialization file; the change in the storage location has no effect on the function's behavior.

The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps to locate ini-
tialization information:

Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping\myfile.ini
Page 557



Volume 1
Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
registry you will find the keys for the section.

If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.

If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.

# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Registry Overview, Registry Functions, GetPrivateProfileSection, RegCreateKeyEx, RegSetValueEx, WriteProfile-
Section

1.445 WritePrivateProfileString

The WritePrivateProfileString function copies a string into the specified section of an initialization file.

Note This function is provided only for compatibility with 16-bit versions of Windows. Win32-based applications
should store initialization information in the registry.

WritePrivateProfileString: procedure
(

lpAppName: string;
lpKeyName: string;
lpString: string;
lpFileName: string

);
stdcall;
returns( "eax" );
external( "__imp__WritePrivateProfileStringA@16" );
Page 558



Win32 API Reference
Parameters

lpAppName
[in] Pointer to a null-terminated string containing the name of the section to which the string will be copied. If the
section does not exist, it is created. The name of the section is case-independent; the string can be any combina-
tion of uppercase and lowercase letters.

lpKeyName
[in] Pointer to the null-terminated string containing the name of the key to be associated with a string. If the key
does not exist in the specified section, it is created. If this parameter is NULL, the entire section, including all
entries within the section, is deleted.

lpString
[in] Pointer to a null-terminated string to be written to the file. If this parameter is NULL, the key pointed to by
the lpKeyName parameter is deleted.

Windows 95: The system does not support the use of the TAB (\t) character as part of this parameter.

lpFileName
[in] Pointer to a null-terminated string that specifies the name of the initialization file.

Return Values
If the function successfully copies the string to the initialization file, the return value is nonzero.

If the function fails, or if it flushes the cached version of the most recently accessed initialization file, the return value
is zero. To get extended error information, call GetLastError.

Remarks
Windows 95: Windows 95 keeps a cached version of Win.ini to improve performance. If all three parameters are
NULL, the function flushes the cache. The function always returns FALSE after flushing the cache, regardless of
whether the flush succeeds or fails.

A section in the initialization file must have the following form:

[section]

key=string

.

.

.

If the lpFileName parameter does not contain a full path and file name for the file, WritePrivateProfileString
searches the Windows directory for the file. If the file does not exist, this function creates the file in the Windows
directory.

If lpFileName contains a full path and file name and the file does not exist, WriteProfileString creates the file.
The specified directory must already exist.

Windows NT/2000: The system maps most .ini file references to the registry, using the mapping defined under the
following registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping

Windows NT/Windows 2000 keeps a cache for the IniFileMapping registry key. Calling WritePrivatePro-
fileStringW with the value of all arguments set to NULL will cause the system to refresh its cache of the IniFileMap-
pingKey for the specified .ini file.

The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps to locate ini-
Page 559



Volume 1
tialization information:

Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping\myfile.ini

Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
registry you will find the keys for the section.

If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.

If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.

# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

An application using the WritePrivateProfileStringW function to enter .ini file information into the registry should
follow these guidelines:

Ensure that no .ini file of the specified name exists on the system.

Ensure that there is a key entry in the registry that specifies the .ini file. This entry should be under
the path HKEY_LOCAL_MACHINE\SOFTWARE \Microsoft\Windows NT\CurrentVersion\IniFileMapping.

Specify a value for that .ini file key entry that specifies a section. That is to say, an application must
specify a section name, as it would appear within an .ini file or registry entry. Here is an example: [My Section].

For system files, specify SYS for an added value.

For application files, specify USR within the added value. Here is an example: "My Section: USR:
App Name\Section". And, since USR indicates a mapping under HKEY_CURRENT_USER, the application should
also create a key under HKEY_CURRENT_USER that specifies the application name listed in the added value. For
the example just given, that would be "App Name".

After following the preceding steps, an application setup program should call WritePrivatePro-
fileStringW with the first three parameters set to NULL, and the fourth parameter set to the INI file name. For exam-
ple:

WritePrivateProfileStringW( NULL, NULL, NULL, L"appname.ini" );

Such a call causes the mapping of an .ini file to the registry to take effect before the next system
reboot. The system rereads the mapping information into shared memory. A user will not have to reboot their com-
puter after installing an application in order to have future invocations of the application see the mapping of the .ini
file to the registry.
Page 560



Win32 API Reference
The following sample code illustrates the preceding guidelines and is based on several assumptions:

There is an application named App Name.

That application uses an .ini file named AppName.ini.

There is a section in the .ini file that we want to look like this:

[Section1]

FirstKey = It all worked out okay.

SecondKey = By golly, it works.

ThirdKey = Another test.

The user will not have to reboot the system in order to have future invocations of the application
see the mapping of the .ini file to the registry.

Here is the sample code :

// include files
#include <stdio.h>
#include <windows.h>

// a main function
main()

{
// local variables
CHAR inBuf[80];
HKEY hKey1, hKey2;
DWORD dwDisposition;
LONG lRetCode;

// try to create the .ini file key
lRetCode = RegCreateKeyEx ( HKEY_LOCAL_MACHINE,

"SOFTWARE\\Microsoft\\Windows NT
\\CurrentVersion\\IniFileMapping\\appname.ini",
0, NULL, REG_OPTION_NON_VOLATILE, KEY_WRITE,
NULL, &hKey1,
&dwDisposition);

// if we failed, note it, and leave
if (lRetCode != ERROR_SUCCESS){

printf ("Error in creating appname.ini key\n");
return (0) ;
}

// try to set a section value
lRetCode = RegSetValueEx ( hKey1,

"Section1",
0,
REG_SZ,
"USR:App Name\\Section1",
20);

// if we failed, note it, and leave
if (lRetCode != ERROR_SUCCESS) {

printf ( "Error in setting Section1 value\n");
return (0) ;
}

// try to create an App Name key
lRetCode = RegCreateKeyEx ( HKEY_CURRENT_USER,
Page 561



Volume 1
"App Name",
0, NULL, REG_OPTION_NON_VOLATILE, KEY_WRITE,
NULL, &hKey2,
&dwDisposition);

// if we failed, note it, and leave
if (lRetCode != ERROR_SUCCESS) {

printf ("Error in creating App Name key\n");
return (0) ;
}

// force the system to re-read the mapping into shared memory
// so that future invocations of the application will see it
// without the user having to reboot the system
WritePrivateProfileStringW( NULL, NULL, NULL, L"appname.ini" );

// if we get this far, all has gone well
// let's write some added values
WritePrivateProfileString ("Section1", "FirstKey",

"It all worked out okay.", "appname.ini");
WritePrivateProfileString ("Section1", "SecondKey",

"By golly, it works.", "appname.ini");
WritePrivateProfileSection ("Section1", "ThirdKey = Another Test.",

"appname.ini");

// let's test our work
GetPrivateProfileString ("Section1", "FirstKey",

"Bogus Value: Get didn't work", inBuf, 80,
"appname.ini");

printf ("%s", inBuf);

// okay, we are outta here
return(0);

}

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Registry Overview, Registry Functions, GetPrivateProfileString, WriteProfileString

1.446 WritePrivateProfileStruct

The WritePrivateProfileStruct function copies data into a key in the specified section of an initialization file. As it
copies the data, the function calculates a checksum and appends it to the end of the data. The GetPrivateProfile-
Struct function uses the checksum to ensure the integrity of the data.

Note This function is provided only for compatibility with 16-bit versions of Windows. Win32-based applications
should store initialization information in the registry.

WritePrivateProfileStruct: procedure
(

lpszSection: string;
lpszKey: string;
Page 562



Win32 API Reference
var lpStruct: var;
uSizeStruct: dword;
szFile: string

);
stdcall;
returns( "eax" );
external( "__imp__WritePrivateProfileStructA@20" );

Parameters

lpszSection
[in] Pointer to a null-terminated string containing the name of the section to which the string will be copied. If the
section does not exist, it is created. The name of the section is case independent, the string can be any combina-
tion of uppercase and lowercase letters.

lpszKey
[in] Pointer to the null-terminated string containing the name of the key to be associated with a string. If the key
does not exist in the specified section, it is created. If this parameter is NULL, the entire section, including all
keys and entries within the section, is deleted.

lpStruct
[in] Pointer to a buffer that contains the data to copy. If this parameter is NULL, the given key is deleted.

uSizeStruct
[in] Specifies the size, in bytes, of the buffer pointed to by the lpStruct parameter.

szFile
[in] Pointer to a null-terminated string that names the initialization file. If this parameter is NULL, the given
information is copied into the Win.ini file.

Return Values
If the function successfully copies the string to the initialization file, the return value is nonzero.

If the function fails, or if it flushes the cached version of the most recently accessed initialization file, the return value
is zero. To get extended error information, call GetLastError.

Remarks
Windows 95: Windows 95 keeps a cached version of Win.ini to improve performance. If all three parameters are
NULL, the function flushes the cache. The function always returns FALSE after flushing the cache, regardless of
whether the flush succeeds or fails.

A section in the initialization file must have the following form:

[section]
key=string

.

.

.

If the szFile parameter does not contain a full path and file name for the file, WritePrivateProfileString searches the
Windows directory for the file. If the file does not exist, this function creates the file in the Windows directory.

If szFile contains a full path and file name and the file does not exist, WriteProfileString creates the file. The speci-
fied directory must already exist.

Windows NT/2000: The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following
steps to locate initialization information:

Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Page 563



Volume 1
Windows NT\CurrentVersion\IniFileMapping\myfile.ini

Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
registry you will find the keys for the section.

If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.

If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.

# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Registry Overview, Registry Functions, GetPrivateProfileString, WriteProfileString

1.447 WriteProcessMemory

The WriteProcessMemory function writes data to an area of memory in a specified process. The entire area to be
written to must be accessible, or the operation fails.

WriteProcessMemory: procedure
(

hProcess: dword;
var lpBaseAddress: var;
var lpBuffer: var;

nSize: dword;
var lpNumberOfBytesWritten: dword

);
stdcall;
returns( "eax" );
external( "__imp__WriteProcessMemory@20" );
Page 564



Win32 API Reference
Parameters

hProcess
[in] Handle to the process whose memory is to be modified. The handle must have PROCESS_VM_WRITE and
PROCESS_VM_OPERATION access to the process.

lpBaseAddress
[in] Pointer to the base address in the specified process to which data will be written. Before any data transfer
occurs, the system verifies that all data in the base address and memory of the specified size is accessible for
write access. If this is the case, the function proceeds; otherwise, the function fails.

lpBuffer
[in] Pointer to the buffer that contains data to be written into the address space of the specified process.

nSize
[in] Specifies the requested number of bytes to write into the specified process.

lpNumberOfBytesWritten
[out] Pointer to a variable that receives the number of bytes transferred into the specified process. This parameter
is optional. If lpNumberOfBytesWritten is NULL, the parameter is ignored.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError. The function
will fail if the requested write operation crosses into an area of the process that is inaccessible.

Remarks
WriteProcessMemory copies the data from the specified buffer in the current process to the address range of the
specified process. Any process that has a handle with PROCESS_VM_WRITE and PROCESS_VM_OPERATION
access to the process to be written to can call the function. The process whose address space is being written to is typ-
ically, but not necessarily, being debugged.

The entire area to be written to must be accessible. If it is not, the function fails as noted previously.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Debugging Overview, Debugging Functions, ReadProcessMemory

1.448 WriteProfileSection

The WriteProfileSection function replaces the contents of the specified section in the Win.ini file with specified keys
and values.

Note This function is provided only for compatibility with 16-bit versions of Windows. Win32-based applications
should store initialization information in the registry.

WriteProfileSection: procedure
(

Page 565



Volume 1
lpAppName: string;
lpString: string

);
stdcall;
returns( "eax" );
external( "__imp__WriteProfileSectionA@8" );

Parameters

lpAppName
[in] Pointer to a null-terminated string containing the name of the section. This section name is typically the
name of the calling application.

lpString
[in] Pointer to a buffer containing the new key names and associated values that are to be written to the named
section.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks
Windows 95: If there is no section in Win.ini that matches the specified section name, WriteProfileSection creates
the section at the end of the file and initializes the new section with the key name and value pairs specified in the
lpString parameter.

Keys and values in the lpString buffer consist of one or more null-terminated strings, followed by a final null charac-
ter. Each string has the following form:

key=string

The WriteProfileSection function is not case-sensitive; the strings can be a combination of uppercase and lowercase
letters.

WriteProfileSection deletes the existing keys and values for the named section and inserts the key names and values
in the buffer pointed to by lpString. The function does not attempt to correlate old and new key names; if the new
names appear in a different order from the old names, any comments associated with preexisting keys and values in
the initialization file will probably be associated with incorrect keys and values.

This operation is atomic; no other operations that read from or write to the initialization file are allowed while the
information is being written.

Windows NT/2000: The system maps most .ini file references to the registry, using the mapping defined under the
following registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping

When the operation has been mapped, the WriteProfileSection function writes information to the registry, not to the
initialization file; the change in the storage location has no effect on the function's behavior.

The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps to locate ini-
tialization information:

Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping\myfile.ini

Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
registry you will find the keys for the section.
Page 566



Win32 API Reference
If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.

If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.

# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Registry Overview, Registry Functions, GetProfileSection, WritePrivateProfileSection

1.449 WriteProfileString

The WriteProfileString function copies a string into the specified section of the Win.ini file.

Note This function is provided only for compatibility with 16-bit versions of Windows. Win32-based applications
should store initialization information in the registry.

WriteProfileString: procedure
(

lpAppName: string;
lpKeyName: string;
lpString: string

);
stdcall;
returns( "eax" );
external( "__imp__WriteProfileStringA@12" );

Parameters

lpAppName
[in] Pointer to a null-terminated string that specifies the section to which the string is to be copied. If the section
does not exist, it is created. The name of the section is not case-sensitive; the string can be any combination of
Page 567



Volume 1
uppercase and lowercase letters.

lpKeyName
[in] Pointer to a null-terminated string containing the key to be associated with the string. If the key does not
exist in the specified section, it is created. If this parameter is NULL, the entire section, including all entries in
the section, is deleted.

lpString
[in] Pointer to a null-terminated string to be written to the file. If this parameter is NULL, the key pointed to by
the lpKeyName parameter is deleted.

Windows 95: The system does not support the use of the TAB (\t) character as part of this parameter.

Return Values
If the function successfully copies the string to the Win.ini file, the return value is nonzero.

If the function fails, or if it flushes the cached version of Win.ini, the return value is zero. To get extended error infor-
mation, call GetLastError.

Remarks
Windows 95: Windows 95 keeps a cached version of Win.ini to improve performance. If all three parameters are
NULL, the function flushes the cache. The function always returns FALSE after flushing the cache, regardless of
whether the flush succeeds or fails.

A section in the Win.ini file must have the following form:

[section]

key=string

.

.

.

Windows NT/2000: The system maps most .ini file references to the registry, using the mapping defined under the
following registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping

When the operation has been mapped, the WriteProfileString function writes information to the registry, not to the
initialization file; the change in the storage location has no effect on the function's behavior.

The Win32 profile functions (Get/WriteProfile*, Get/WritePrivateProfile*) use the following steps to locate ini-
tialization information:

Look in the registry for the name of the initialization file, say MyFile.ini, under IniFileMapping:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows NT\CurrentVersion\IniFileMapping\myfile.ini

Look for the section name specified by lpAppName. This will be a named value under myfile.ini, or a subkey of
myfile.ini, or will not exist.

If the section name specified by lpAppName is a named value under myfile.ini, then that value specifies where in the
registry you will find the keys for the section.

If the section name specified by lpAppName is a subkey of myfile.ini, then named values under that subkey specify
where in the registry you will find the keys for the section. If the key you are looking for does not exist as a named
value, then there will be an unnamed value (shown as <No Name>) that specifies the default location in the registry
where you will find the key.

If the section name specified by lpAppName does not exist as a named value or as a subkey under myfile.ini, then
there will be an unnamed value (shown as <No Name>) under myfile.ini that specifies the default location in the reg-
istry where you will find the keys for the section.

If there is no subkey for MyFile.ini, or if there is no entry for the section name, then look for the actual MyFile.ini on
Page 568



Win32 API Reference
the disk and read its contents.

When looking at values in the registry that specify other registry locations, there are several prefixes that change the
behavior of the .ini file mapping:

! - this character forces all writes to go both to the registry and to the .ini file on disk.

# - this character causes the registry value to be set to the value in the Windows 3.1 .ini file when a
new user logs in for the first time after setup.

@ - this character prevents any reads from going to the .ini file on disk if the requested data is not
found in the registry.

USR: - this prefix stands for HKEY_CURRENT_USER, and the text after the prefix is relative to
that key.

SYS: - this prefix stands for HKEY_LOCAL_MACHINE\SOFTWARE, and the text after the
prefix is relative to that key.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Registry Overview, Registry Functions, GetProfileString, WritePrivateProfileString

1.450 WriteTapemark

The WriteTapemark function writes a specified number of filemarks, setmarks, short filemarks, or long filemarks to
a tape device. These tapemarks divide a tape partition into smaller areas.

WriteTapemark: procedure
(

hDevice: dword;
dwTapemarkType: dword;
dwTapemarkCount: dword;
bImmediate: boolean

);
stdcall;
returns( "eax" );
external( "__imp__WriteTapemark@16" );

Parameters

hDevice
[in] Handle to the device on which to write tapemarks. This handle is created by using the CreateFile function.

dwTapemarkType
[in] Specifies the type of tapemarks to write. This parameter can be one of the following values.

Value Description

TAPE_FILEMARKS Writes the number of filemarks specified by the dwTapemark-
Count parameter.
Page 569



Volume 1
dwTapemarkCount
[in] Specifies the number of tapemarks to write.

bImmediate
[in] Specifies whether to return as soon as the operation begins. If this parameter is TRUE, the function returns
immediately; if it is FALSE, the function does not return until the operation has been completed.

Return Values
If the function succeeds, the return value is NO_ERROR.

If the function fails, the return value is one of the following error codes:

Remarks
Filemarks, setmarks, short filemarks, and long filemarks are special recorded elements that denote the linear organi-
zation of the tape. None of these marks contain user data. Filemarks are the most general marks; setmarks provide a
hierarchy not available with filemarks.

TAPE_LONG_FILEMARKS Writes the number of long filemarks specified by dwTape-
markCount.

TAPE_SETMARKS Writes the number of setmarks specified by dwTapemark-
Count.

TAPE_SHORT_FILEMARKS Writes the number of short filemarks specified by dwTape-
markCount.

Error Description

ERROR_BEGINNING_OF_MEDIA An attempt to access data before the beginning-of-medium
marker failed.

ERROR_BUS_RESET A reset condition was detected on the bus.

ERROR_END_OF_MEDIA The end-of-tape marker was reached during an operation.

ERROR_FILEMARK_DETECTED A filemark was reached during an operation.

ERROR_SETMARK_DETECTED A setmark was reached during an operation.

ERROR_NO_DATA_DETECTED The end-of-data marker was reached during an operation.

ERROR_PARTITION_FAILURE The tape could not be partitioned.

ERROR_INVALID_BLOCK_LENGTH The block size is incorrect on a new tape in a multivolume
partition.

ERROR_DEVICE_NOT_PARTITIONED The partition information could not be found when a tape
was being loaded.

ERROR_MEDIA_CHANGED The tape that was in the drive has been replaced or
removed.

ERROR_NO_MEDIA_IN_DRIVE There is no media in the drive.

ERROR_NOT_SUPPORTED The tape driver does not support a requested function.

ERROR_UNABLE_TO_LOCK_MEDIA An attempt to lock the ejection mechanism failed.

ERROR_UNABLE_TO_UNLOAD_MEDIA An attempt to unload the tape failed.

ERROR_WRITE_PROTECT The media is write protected.
Page 570



Win32 API Reference
A short filemark contains a short erase gap that cannot be overwritten unless the write operation is performed from
the beginning of the partition or from an earlier long filemark.

A long filemark contains a long erase gap that allows an application to position the tape at the beginning of the
filemark and to overwrite the filemark and the erase gap.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Header: Declared in kernel32.hhf
Library: Use Kernel32.lib.

See Also
Tape Backup Overview, Tape Backup Functions, CreateFile
Page 571



Volume 1
Page 572


	Win32 API Reference for HLA
	1 Kernel32.lib
	1.1 AddAtom
	1.2 AllocConsole
	1.3 AreFileApisANSI
	1.4 AssignProcessToJobObject
	1.5 BackupRead
	1.6 BackupSeek
	1.7 BackupWrite
	1.8 Beep
	1.9 BeginUpdateResource
	1.10 BuildCommDCB
	1.11 BuildCommDCBAndTimeouts
	1.12 CallNamedPipe
	1.13 CancelWaitableTimer
	1.14 CloseHandle
	1.15 CommConfigDialog
	1.16 CompareFileTime
	1.17 CompareString
	1.18 ConnectNamedPipe
	1.19 ContinueDebugEvent
	1.20 ConvertDefaultLocale
	1.21 ConvertThreadToFiber
	1.22 CopyFile
	1.23 CopyFileEx
	1.24 CreateConsoleScreenBuffer
	1.25 CreateDirectory
	1.26 CreateDirectoryEx
	1.27 CreateEvent
	1.28 CreateFiber
	1.29 CreateFile
	1.30 CreateFileMapping
	1.31 CreateHardLink
	1.32 CreateIoCompletionPort
	1.33 CreateJobObject
	1.34 CreateMailslot
	1.35 CreateMutex
	1.36 CreateNamedPipe
	1.37 CreatePipe
	1.38 CreateProcess
	1.39 CreateRemoteThread
	1.40 CreateSemaphore
	1.41 CreateTapePartition
	1.42 CreateThread
	1.43 CreateToolhelp32Snapshot
	1.44 CreateWaitableTimer
	1.45 DebugActiveProcess
	1.46 DebugBreak
	1.47 DefineDosDevice
	1.48 DeleteAtom
	1.49 DeleteFile
	1.50 DeviceIoControl
	1.51 DisableThreadLibraryCalls
	1.52 DisconnectNamedPipe
	1.53 DosDateTimeToFileTime
	1.54 DuplicateHandle
	1.55 EndUpdateResource
	1.56 EnterCriticalSection
	1.57 EnumCalendarInfo
	1.58 EnumCalendarInfoEx
	1.59 EnumDateFormats
	1.60 EnumDateFormatsEx
	1.61 EnumResourceLanguages
	1.62 EnumResourceNames
	1.63 EnumResourceTypes
	1.64 EnumSystemCodePages
	1.65 EnumSystemLocales
	1.66 EnumTimeFormats
	1.67 EraseTape
	1.68 EscapeCommFunction
	1.69 ExitProcess
	1.70 ExitThread
	1.71 ExpandEnvironmentStrings
	1.72 FatalAppExit
	1.73 FatalExit
	1.74 FileTimeToDosDateTime
	1.75 FileTimeToLocalFileTime
	1.76 FileTimeToSystemTime
	1.77 FillConsoleOutputAttribute
	1.78 FindAtom
	1.79 FindClose
	1.80 FindCloseChangeNotification
	1.81 FindFirstChangeNotification
	1.82 FindFirstFile
	1.83 FindFirstFileEx
	1.84 FindNextChangeNotification
	1.85 FindNextFile
	1.86 FindResource
	1.87 FindResourceEx
	1.88 FlushConsoleInputBuffer
	1.89 FlushFileBuffers
	1.90 FlushInstructionCache
	1.91 FlushViewOfFile
	1.92 FoldString
	1.93 FormatMessage
	1.94 FreeConsole
	1.95 FreeEnvironmentStrings
	1.96 FreeLibrary
	1.97 FreeLibraryAndExitThread
	1.98 FreeResource
	1.99 GenerateConsoleCtrlEvent
	1.100 GetACP
	1.101 GetAtomName
	1.102 GetBinaryType
	1.103 GetCPInfoEx
	1.104 GetCommConfig
	1.105 GetCommMask
	1.106 GetCommModemStatus
	1.107 GetCommProperties
	1.108 GetCommState
	1.109 GetCommTimeouts
	1.110 GetCommandLine
	1.111 GetCompressedFileSize
	1.112 GetComputerName
	1.113 GetConsoleCP
	1.114 GetConsoleCursorInfo
	1.115 GetConsoleMode
	1.116 GetConsoleOutputCP
	1.117 GetConsoleScreenBufferInfo
	1.118 GetConsoleTitle
	1.119 GetConsoleWindow
	1.120 GetCurrencyFormat
	1.121 GetCurrentDirectory
	1.122 GetCurrentProcess
	1.123 GetCurrentProcessId
	1.124 GetCurrentThread
	1.125 GetCurrentThreadId
	1.126 GetDateFormat
	1.127 GetDefaultCommConfig
	1.128 GetDevicePowerState
	1.129 GetDiskFreeSpace
	1.130 GetDiskFreeSpaceEx
	1.131 GetDriveType
	1.132 GetEnvironmentStrings
	1.133 GetEnvironmentVariable
	1.134 GetExitCodeProcess
	1.135 GetExitCodeThread
	1.136 GetFileAttributes
	1.137 GetFileAttributesEx
	1.138 GetFileInformationByHandle
	1.139 GetFileSize
	1.140 GetFileTime
	1.141 GetFileType
	1.142 GetFullPathName
	1.143 GetHandleInformation
	1.144 GetLargestConsoleWindowSize
	1.145 GetLastError
	1.146 GetLocalTime
	1.147 GetLocaleInfo
	1.148 GetLogicalDriveStrings
	1.149 GetLogicalDrives
	1.150 GetLongPathName
	1.151 GetMailslotInfo
	1.152 GetModuleFileName
	1.153 GetModuleHandle
	1.154 GetNamedPipeHandleState
	1.155 GetNamedPipeInfo
	1.156 GetNumberFormat
	1.157 GetNumberOfConsoleInputEvents
	1.158 GetNumberOfConsoleMouseButtons
	1.159 GetOEMCP
	1.160 GetOverlappedResult
	1.161 GetPriorityClass
	1.162 GetPrivateProfileInt
	1.163 GetPrivateProfileSection
	1.164 GetPrivateProfileSectionNames
	1.165 GetPrivateProfileString
	1.166 GetPrivateProfileStruct
	1.167 GetProcAddress
	1.168 GetProcessAffinityMask
	1.169 GetProcessHeap
	1.170 GetProcessHeaps
	1.171 GetProcessPriorityBoost
	1.172 GetProcessShutdownParameters
	1.173 GetProcessTimes
	1.174 GetProcessVersion
	1.175 GetProcessWorkingSetSize
	1.176 GetProfileInt
	1.177 GetProfileSection
	1.178 GetProfileString
	1.179 GetQueuedCompletionStatus
	1.180 GetShortPathName
	1.181 GetStartupInfo
	1.182 GetStdHandle
	1.183 GetStringType
	1.184 GetSystemDefaultLCID
	1.185 GetSystemDefaultLangID
	1.186 GetSystemDirectory
	1.187 GetSystemInfo
	1.188 GetSystemPowerStatus
	1.189 GetSystemTime
	1.190 GetSystemTimeAdjustment
	1.191 GetSystemTimeAsFileTime
	1.192 GetTapeParameters
	1.193 GetTapePosition
	1.194 GetTapeStatus
	1.195 GetTempFileName
	1.196 GetTempPath
	1.197 GetThreadContext
	1.198 GetThreadLocale
	1.199 GetThreadPriority
	1.200 GetThreadPriorityBoost
	1.201 GetThreadSelectorEntry
	1.202 GetThreadTimes
	1.203 GetTickCount
	1.204 GetTimeFormat
	1.205 GetTimeZoneInformation
	1.206 GetUserDefaultLCID
	1.207 GetUserDefaultLangID
	1.208 GetVersion
	1.209 GetVersionEx
	1.210 GetVolumeInformation
	1.211 GetWindowsDirectory
	1.212 GlobalAddAtom
	1.213 GlobalAlloc
	1.214 GlobalDeleteAtom
	1.215 GlobalFindAtom
	1.216 GlobalFlags
	1.217 GlobalFree
	1.218 GlobalGetAtomName
	1.219 GlobalHandle
	1.220 GlobalLock
	1.221 GlobalMemoryStatus
	1.222 GlobalMemoryStatusEx
	1.223 GlobalReAlloc
	1.224 GlobalSize
	1.225 GlobalUnlock
	1.226 Heap32First
	1.227 Heap32ListFirst
	1.228 Heap32ListNext
	1.229 Heap32Next
	1.230 HeapAlloc
	1.231 HeapCompact
	1.232 HeapCreate
	1.233 HeapDestroy
	1.234 HeapFree
	1.235 HeapLock
	1.236 HeapReAlloc
	1.237 HeapSize
	1.238 HeapUnlock
	1.239 HeapValidate
	1.240 HeapWalk
	1.241 InitAtomTable
	1.242 InitializeCriticalSection
	1.243 InitializeCriticalSectionAndSpinCount
	1.244 InterlockedCompareExchange
	1.245 InterlockedDecrement
	1.246 InterlockedExchange
	1.247 InterlockedExchangeAdd
	1.248 InterlockedIncrement
	1.249 IsBadCodePtr
	1.250 IsBadReadPtr
	1.251 IsBadStringPtr
	1.252 IsBadWritePtr
	1.253 IsDBCSLeadByte
	1.254 IsDBCSLeadByteEx
	1.255 IsDebuggerPresent
	1.256 IsProcessorFeaturePresent
	1.257 IsValidCodePage
	1.258 IsValidLocale
	1.259 LCMapString
	1.260 LeaveCriticalSection
	1.261 LoadLibrary
	1.262 LoadLibraryEx
	1.263 LoadModule
	1.264 LoadResource
	1.265 LocalAlloc
	1.266 LocalFileTimeToFileTime
	1.267 LocalFlags
	1.268 LocalFree
	1.269 LocalHandle
	1.270 LocalLock
	1.271 LocalReAlloc
	1.272 LocalSize
	1.273 LocalUnlock
	1.274 LockFile
	1.275 LockFileEx
	1.276 LockResource
	1.277 lstrcat
	1.278 lstrcmp
	1.279 lstrcmpi
	1.280 lstrcpy
	1.281 lstrcpyn
	1.282 lstrlen
	1.283 MapViewOfFile
	1.284 MapViewOfFileEx
	1.285 Module32First
	1.286 Module32Next
	1.287 MoveFile
	1.288 MoveFileEx
	1.289 MoveFileWithProgress
	1.290 MulDiv
	1.291 MultiByteToWideChar
	1.292 OpenEvent
	1.293 OpenFile
	1.294 OpenFileMapping
	1.295 OpenJobObject
	1.296 OpenMutex
	1.297 OpenProcess
	1.298 OpenSemaphore
	1.299 OpenWaitableTimer
	1.300 OutputDebugString
	1.301 PeekConsoleInput
	1.302 PostQueuedCompletionStatus
	1.303 PrepareTape
	1.304 Process32First
	1.305 Process32Next
	1.306 PulseEvent
	1.307 PurgeComm
	1.308 QueryDosDevice
	1.309 QueryInformationJobObject
	1.310 QueryPerformanceCounter
	1.311 QueryPerformanceFrequency
	1.312 QueueUserAPC
	1.313 RaiseException
	1.314 ReadConsole
	1.315 ReadConsoleInput
	1.316 ReadConsoleOutput
	1.317 ReadConsoleOutputAttribute
	1.318 ReadConsoleOutputCharacter
	1.319 ReadFile
	1.320 ReadFileEx
	1.321 ReadFileScatter
	1.322 ReadProcessMemory
	1.323 ReleaseMutex
	1.324 ReleaseSemaphore
	1.325 RemoveDirectory
	1.326 RequestWakeupLatency
	1.327 ResetEvent
	1.328 ResumeThread
	1.329 ScrollConsoleScreenBuffer
	1.330 SearchPath
	1.331 SetCommConfig
	1.332 SetCommMask
	1.333 SetCommState
	1.334 SetCommTimeouts
	1.335 SetComputerName
	1.336 SetConsoleActiveScreenBuffer
	1.337 SetConsoleCP
	1.338 SetConsoleCtrlHandler
	1.339 SetConsoleCursorInfo
	1.340 SetConsoleCursorPosition
	1.341 SetConsoleMode
	1.342 SetConsoleOutputCP
	1.343 SetConsoleScreenBufferSize
	1.344 SetConsoleTextAttribute
	1.345 SetConsoleTitle
	1.346 SetConsoleWindowInfo
	1.347 SetCriticalSectionSpinCount
	1.348 SetCurrentDirectory
	1.349 SetDefaultCommConfig
	1.350 SetEnvironmentVariable
	1.351 SetErrorMode
	1.352 SetEvent
	1.353 SetFileApisToANSI
	1.354 SetFileApisToOEM
	1.355 SetFileAttributes
	1.356 SetFilePointer
	1.357 SetFileTime
	1.358 SetHandleCount
	1.359 SetHandleInformation
	1.360 SetInformationJobObject
	1.361 SetLastError
	1.362 SetLocalTime
	1.363 SetLocaleInfo
	1.364 SetMailslotInfo
	1.365 SetNamedPipeHandleState
	1.366 SetPriorityClass
	1.367 SetProcessAffinityMask
	1.368 SetProcessPriorityBoost
	1.369 SetProcessShutdownParameters
	1.370 SetProcessWorkingSetSize
	1.371 SetStdHandle
	1.372 SetSystemPowerState
	1.373 SetSystemTime
	1.374 SetSystemTimeAdjustment
	1.375 SetTapeParameters
	1.376 SetTapePosition
	1.377 SetThreadAffinityMask
	1.378 SetThreadContext
	1.379 SetThreadExecutionState
	1.380 SetThreadIdealProcessor
	1.381 SetThreadLocale
	1.382 SetThreadPriority
	1.383 SetThreadPriorityBoost
	1.384 SetTimeZoneInformation
	1.385 SetUnhandledExceptionFilter
	1.386 SetVolumeLabel
	1.387 SetWaitableTimer
	1.388 SetupComm
	1.389 SignalObjectAndWait
	1.390 SizeofResource
	1.391 Sleep
	1.392 SleepEx
	1.393 SuspendThread
	1.394 SwitchToFiber
	1.395 SwitchToThread
	1.396 SystemTimeToFileTime
	1.397 SystemTimeToTzSpecificLocalTime
	1.398 TerminateJobObject
	1.399 TerminateProcess
	1.400 TerminateThread
	1.401 Thread32First
	1.402 Thread32Next
	1.403 TlsAlloc
	1.404 TlsFree
	1.405 TlsGetValue
	1.406 TlsSetValue
	1.407 Toolhelp32ReadProcessMemory
	1.408 TransactNamedPipe
	1.409 TransmitCommChar
	1.410 TryEnterCriticalSection
	1.411 UnhandledExceptionFilter
	1.412 UnlockFile
	1.413 UnlockFileEx
	1.414 UnmapViewOfFile
	1.415 UpdateResource
	1.416 VerLanguageName
	1.417 VirtualAlloc
	1.418 VirtualAllocEx
	1.419 VirtualFree
	1.420 VirtualFreeEx
	1.421 VirtualLock
	1.422 VirtualProtect
	1.423 VirtualProtectEx
	1.424 VirtualQuery
	1.425 VirtualQueryEx
	1.426 VirtualUnlock
	1.427 WaitCommEvent
	1.428 WaitForDebugEvent
	1.429 WaitForMultipleObjects
	1.430 WaitForMultipleObjectsEx
	1.431 WaitForSingleObject
	1.432 WaitForSingleObjectEx
	1.433 WaitNamedPipe
	1.434 WideCharToMultiByte
	1.435 WinExec
	1.436 WriteConsole
	1.437 WriteConsoleInput
	1.438 WriteConsoleOutput
	1.439 WriteConsoleOutputAttribute
	1.440 WriteConsoleOutputCharacter
	1.441 WriteFile
	1.442 WriteFileEx
	1.443 WriteFileGather
	1.444 WritePrivateProfileSection
	1.445 WritePrivateProfileString
	1.446 WritePrivateProfileStruct
	1.447 WriteProcessMemory
	1.448 WriteProfileSection
	1.449 WriteProfileString
	1.450 WriteTapemark



