

or
r
em-

 so
ited.

mber

ge”

sem-
 con-
s since

yde
ifica-

this

arn

Tutorial 4: Painting with Text

This win32 tutorial was created and written by Iczelion for MASM32. It was translated f
use by HLA (High Level Assembly) users by Randall Hyde. All original copyrights and othe
issues still apply to this text. The following is the copyright notice from Iczelion’s Win32 Ass
bly Home Page:

The tutorials written by me are copyright freeware. That means they are available freely
long as they are not included in any commercial package. Commercial use is strictly prohib
"Knowledge, like sex, is better when it's free"

Note that I don't claim to be the win32asm wizard or a coding guru. I'm also learning my
ropes. Those tutorials were written as reminders of what I have learned. They will grow in nu
as I learn more about win32asm programming.

You can read more about Iczelion’s tutorials at the “Iczelion’s Win32 Assembly Home Pa
found at

http://win32asm.cjb.net

That site provides the original MASM examples as well as providing additional win32 as
bly language programming information. Note that the MASM tutorials provide an excellent
trast between MASM and HLA as you can see the differences between these two language
MASM code exists at Iczelion’s site and the HLA translation appears at this site.

Note that references to the first person (“I”) refer to Iczelion, not Randall Hyde. Randy H
has attempted to maintain the tutorial in as “pure” a state as possible, only making the mod
tions necessary to support HLA rather than MASM along with a few minor changes to the
English. All credit, glory, damnation, etc., is due Iczelion; Randall Hyde’s modifications to
tutorial were rather trivial in nature.

Painting With Text

In this tutorial, we will learn how to "paint" text in the client area of a window. We'll also le
about device context.

Source Code for this Tutorial:
// Iczelion's tutorial #4: Painting With Text

program aSimpleWindow;
#include("win32.hhf") // Standard windows stuff.
#include("strings.hhf") // Defines HLA string routines.
#include("memory.hhf") // Defines "NULL" among other things.
#include("args.hhf") // Command line parameter stuff.
#include("conv.hhf")

static
 hInstance: dword;
 CommandLine: string;

http://win32asm.cjb.net

readonly

 ClassName: string := "SimpleWinClass";
 AppName: string := "Our First Window";

static GetLastError:procedure; external("__imp__GetLastError@0");

// The window procedure. Since this gets called directly from
// windows we need to explicitly reverse the parameters (compared
// to the standard STDCALL declaration) in order to make HLA's
// Pascal calling convention compatible with Windows.
//
// This is actually a function that returns a return result in
// EAX. If this function returns zero in EAX, then the event
// loop terminates program execution.

procedure WndProc(lParam:dword; wParam:dword; uMsg:uns32; hWnd:dword);
 nodisplay;

var
 hdc: dword;
 ps: win.PAINTSTRUCT;
 rect: win.RECT;

begin WndProc;

 // If the WM_DESTROY message comes along, then we've
 // got to post a message telling the event loop that
 // it's time to quit the program. The return value in
 // EAX must be false (zero). The GetMessage function
 // will return this value to the event loop which is
 // the indication that it's time to quit.

 if(uMsg = win.WM_DESTROY) then

 win.PostQuitMessage(0);

 /* New Code Added for Tutorial 4 */

 elseif(uMsg = win.WM_PAINT) then

 // When Windows requests that we draw the window,
 // fill in the string in the center of the screen.

 win.BeginPaint(hWnd, ps);
 mov(eax, hdc);

 win.GetClientRect(hWnd, rect);
 win.DrawText

 (
 hdc,
 "Win32 assembly is great and easy!",
 -1,
 rect,
 win.DT_SINGLELINE | win.DT_CENTER | win.DT_VCENTER
);
 win.EndPaint(hWnd, ps);

 /* End of new code */

 else

 // If a WM_DESTROY message doesn't come along,
 // let the default window handler process the
 // message. Whatever (non-zero) value this function
 // returns is the return result passed on to the
 // event loop.

 win.DefWindowProc(hWnd, uMsg, wParam, lParam);
 exit(WndProc);

 endif;
 sub(eax, eax);

end WndProc;

// WinMain-
//
// This is the "main" windows program. It sets up the
// window and then enters an "event loop" processing
// whatever messages are passed along to that window.
// Since our code is the only code that calls this function,
// we'll use the Pascal calling conventions for the parameters.

procedure WinMain
(
 hInst:dword;
 hPrevInst: dword;
 CmdLine: string;
 CmdShow: dword
); nodisplay;

var
 wc: win.WNDCLASSEX;
 msg: win.MSG;
 hwnd: dword;

begin WinMain;

 // Set up the window class (wc) object:

 mov(@size(win.WNDCLASSEX), wc.cbSize);
 mov(win.CS_HREDRAW | win.CS_VREDRAW, wc.style);
 mov(&WndProc, wc.lpfnWndProc);
 mov(NULL, wc.cbClsExtra);
 mov(NULL, wc.cbWndExtra);

 mov(hInstance, wc.hInstance);
 mov(win.COLOR_WINDOW+1, wc.hbrBackground);
 mov(NULL, wc.lpszMenuName);
 mov(ClassName, wc.lpszClassName);

 // Get the icons and cursor for this application:

 win.LoadIcon(NULL, win.IDI_APPLICATION);
 mov(eax, wc.hIcon);
 mov(eax, wc.hIconSm);

 win.LoadCursor(NULL, win.IDC_ARROW);
 mov(eax, wc.hCursor);

 // Okay, register this window with Windows so it
 // will start passing messages our way. Once this
 // is accomplished, create the window and display it.

 win.RegisterClassEx(wc);

 win.CreateWindowEx
 (
 NULL,
 ClassName,
 AppName,
 win.WS_OVERLAPPEDWINDOW,
 win.CW_USEDEFAULT,
 win.CW_USEDEFAULT,
 win.CW_USEDEFAULT,
 win.CW_USEDEFAULT,
 NULL,
 NULL,
 hInst,
 NULL
);
 mov(eax, hwnd);

 win.ShowWindow(hwnd, win.SW_SHOWNORMAL);
 win.UpdateWindow(hwnd);

 // Here's the event loop that processes messages
 // sent to our window. On return from GetMessage,

ls
ad of
ent

 are
each
ient
e size
 // break if EAX contains false and quit the
 // program.

 forever

 win.GetMessage(msg, NULL, 0, 0);
 breakif(!eax);
 win.TranslateMessage(msg);
 win.DispatchMessage(msg);

 endfor;
 mov(msg.wParam, eax);

end WinMain;

begin aSimpleWindow;

 // Get this process' handle:

 win.GetModuleHandle(NULL);
 mov(eax, hInstance);

 // Get a copy of the command line string passed to this code:

 mov(arg.CmdLn(), CommandLine);

 WinMain(hInstance, NULL, CommandLine, win.SW_SHOWDEFAULT);

 // WinMain returns a return code in EAX, exit the program
 // and pass along that return code.

 win.ExitProcess(eax);

end aSimpleWindow;

Theory:

Text in Windows is a type of GUI object. Each character is composed of numerous pixe
(dots) that are lumped together into a distinct pattern. That's why it's called "painting" inste
"writing". Normally, you paint text in your own client area (actually, you can paint outside cli
area but that's another story). Putting text on screen in Windows is drastically different from
DOS. In DOS, you can think of the screen in 80x25 dimension. But in Windows, the screen
shared by several programs. Some rules must be enforced to avoid programs writing over
other's screen. Windows ensures this by limiting painting area of each window to its own cl
area only. The size of client area of a window is also not constant. The user can change th
anytime. So you must determine the dimensions of your own client area dynamically.

in-
ore.
 the
ontext
r client

evice
o dis-

 These
ing to

. You

here

 must
o one

aint
n a sit-
y
es-
her all
ow
sage

 an
ted.

dow
id rect-
ctan-
Before you can paint something on the client area, you must ask for permission from W
dows. That's right, you don't have absolute control of the screen as you aren’t in DOS anym
You must ask Windows for permission to paint your own client area. Windows will determine
size of your client area, font, colors and other GDI attributes and sends a handle to device c
back to your program. You can then use the device context as a passport to painting on you
area.

What is a device context? It's just a data structure maintained internally by Windows. A d
context is associated with a particular device, such as a printer or video display. For a vide
play, a device context is usually associated with a particular window on the display.

Some of the values in the device context are graphic attributes such as colors, font etc.
are default values which you can change at will. They exist to help reduce the load from hav
specify these attributes in every GDI function calls.

You can think of a device context as a default environment prepared for you by Windows
can override some default settings later if you so wish.

When a program needs to paint, it must obtain a handle to a device context. Normally, t
are several ways to accomplish this.

• Call win.BeginPaint in response to WM_PAINT message.
• Call win.GetDC in response to other messages.
• Call win.CreateDC to create your own device context

One thing you must remember, after you're through with the device context handle, you
release it during the processing of a single message. Don't obtain the handle in response t
message and release it in response to another.

Windows posts win.WM_PAINT messages to a window to notify that it's now time to rep
its client area. Windows does not save the content of client area of a window. Instead, whe
uation occurs that warrants a repaint of client area (such as when a window was covered b
another and is just uncovered), Windows puts win.WM_PAINT message in that window's m
sage queue. It's the responsibility of that window to repaint its own client area. You must gat
information about how to repaint your client area in the win.WM_PAINT section of your wind
procedure, so the window procudure can repaint the client area when win.WM_PAINT mes
arrives.

Another concept you must come to terms with is the invalid rectangle. Windows defines
invalid rectangle as the smallest rectangular area in the client area that needs to be repain
When Windows detects an invalid rectangle in the client area of a window , it posts
win.WM_PAINT message to that window. In response to win.WM_PAINT message, the win
can obtain a paintstruct structure which contains, among others, the coordinate of the inval
angle. You call BeginPaint in response to win.WM_PAINT message to validate the invalid re
gle. If you don't process win.WM_PAINT message, at the very least you must call
win.DefWindowProc or win.ValidateRect to validate the invalid rectangle else Windows will
repeatedly send you win.WM_PAINT message.

Below are the steps you should perform in response to a win.WM_PAINT message:

• Get a handle to device context with win.BeginPaint.

e by
nc-
aram-

n the

por-

. hdc

egin-
t

llows:

 are
 is at

• Paint the client area.
• Release the handle to device context with win.EndPaint

Note that you don't have to explicitly validate the invalid rectangle. It's automatically don
the win.BeginPaint call. Between win.BeginPaint-win.Endpaint pair, you can call any GDI fu
tions to paint your client area. Nearly all of them require the handle to device context as a p
eter.

Content:

We will write a program that displays a text string "Win32 assembly is great and easy!" i
center of the client area. (See the previous source code.)

Analysis:

The majority of the code is the same as the example in tutorial 3. I'll explain only the im
tant changes.
procedure WndProc(lParam:dword; wParam:dword; uMsg:uns32; hWnd:dword);
 nodisplay;
var
 hdc: dword;
 ps: win.PAINTSTRUCT;
 rect: win.RECT;

These are local variables that are used by GDI functions in our win.WM_PAINT section
is used to store the handle to device context returned from win.BeginPaint call. ps is a
win.PAINTSTRUCT structure. Normally you don't use the values in ps. It's passed to win.B
Paint function and Windows fills it with appropriate values. You then pass ps to win.EndPain
function when you finish painting the client area. rect is a win.RECT structure defined as fo

RECT:record
 left: dword;
 top:dword;
 right:dword;
 bottom:dword;
endrecord;

Left and top are the coordinates of the upper left corner of a rectangle Right and bottom
the coordinates of the lower right corner. One thing to remember: The origin of the x-y axes
the upper left corner of the client area. So the point y=10 is BELOW the point y=0.
 elseif(uMsg = win.WM_PAINT) then

 // When Windows requests that we draw the window,

dow
c-

ou

 as
level
g to
 (in

gle. It
ters:

null-

t be -

e
 string
 // fill in the string in the center of the screen.

 win.BeginPaint(hWnd, ps);
 mov(eax, hdc);

 win.GetClientRect(hWnd, rect);
 win.DrawText
 (
 hdc,
 "Win32 assembly is great and easy!",
 -1,
 rect,
 win.DT_SINGLELINE | win.DT_CENTER | win.DT_VCENTER
);
 win.EndPaint(hWnd, ps);

In response to win.WM_PAINT message, you call win.BeginPaint with handle to the win
you want to paint and an uninitialized win.PAINTSTRUCT structure as parameters. After su
cessful call, EAX contains the handle to device context. Next you call win.GetClientRect to
retrieve the dimension of the client area. The dimension is returned in rect variable which y
pass to win.DrawText as one of its parameters. win.DrawText's syntax is:
procedure DrawText
(
 hdc:dword;
 lpString:string;
 nCount:dword;
 var lpRect:dword;
 uFormat:dword
);

win.DrawText is a high-level text output API function. It handles some gory details such
word wrap, centering etc. so you could concentrate on the string you want to paint. Its low-
brother, win.TextOut, will be examined in the next tutorial. win.DrawText formats a text strin
fit within the bounds of a rectangle. It uses the currently selected font,color and background
the device context) to draw the text.Lines are wrapped to fit within the bounds of the rectan
returns the height of the output text in device units, in our case, pixels. Let's see its parame

hdc handle to device context

lpString The pointer to the string you want to draw in the rectangle. The string must be
terminated else you would have to specify its length in the next parameter, nCount.

nCount The number of characters to output. If the string is null-terminated, nCount mus
1. Otherwise nCount must contain the number of characters in the string you want to draw.

lpRect The pointer to the rectangle (a structure of type win.RECT) you want to draw th
string in. Note that this rectangle is also a clipping rectangle, that is, you could not draw the
outside this rectangle.

ree val-

he

d-

ices:

 your
uFormat The value that specifies how the string is displayed in the rectangle. We use th
ues combined by "or" operator:

• DT_SINGLELINE specifies a single line of text
• DT_CENTER centers the text horizontally.
• DT_VCENTER centers the text vertically. Must be used with DT_SINGLELINE.

After you finish painting the client area, you must call win.EndPaint function to release t
handle to device context.

That's it. We can summarize the salient points here:

• You call win.BeginPaint-win.EndPaint pair in response to win.WM_PAINT message.
• Do anything you like with the client area between the calls to win.BeginPaint and win.En

Paint.
• If you want to repaint your client area in response to other messages, you have two cho
• Use win.GetDC-win.ReleaseDC pair and do your painting between these calls
• Call win.InvalidateRect or win.UpdateWindow to invalidate the entire client area, forcing

Windows to put win.WM_PAINT message in the message queue of your window and do
painting in win.WM_PAINT section

	Tutorial 4: Painting with Text
	Painting With Text
	Source Code for this Tutorial:
	Theory:
	Content:
	Analysis:

