

n

Tutorial 3: A Simple Window

In this tutorial, we will build a Windows program that displays a fully functional window o
the desktop.

Source Code for This Tutorial:
// Iczelion's tutorial #3: A Simple Window

program aSimpleWindow;
#include("win32.hhf") // Standard windows stuff.
#include("strings.hhf") // Defines HLA string routines.
#include("memory.hhf") // Defines "NULL" among other things.
#include("args.hhf") // Command line parameter stuff.
#include("conv.hhf")

static
 hInstance: dword;
 CommandLine: string;

readonly

 ClassName: string := "SimpleWinClass";
 AppName: string := "Our First Window";

static GetLastError:procedure; external("__imp__GetLastError@0");

// The window procedure. Since this gets called directly from
// windows we need to explicitly reverse the parameters (compared
// to the standard STDCALL declaration) in order to make HLA's
// Pascal calling convention compatible with Windows.
//
// This is actually a function that returns a return result in
// EAX. If this function returns zero in EAX, then the event
// loop terminates program execution.

procedure WndProc(lParam:dword; wParam:dword; uMsg:uns32; hWnd:dword);
 nodisplay;

begin WndProc;

 // If the WM_DESTROY message comes along, then we've
 // got to post a message telling the event loop that
 // it's time to quit the program. The return value in
 // EAX must be false (zero). The GetMessage function
 // will return this value to the event loop which is
 // the indication that it's time to quit.

 if(uMsg = win.WM_DESTROY) then

 win.PostQuitMessage(0);
 sub(eax, eax);

 else

 // If a WM_DESTROY message doesn't come along,
 // let the default window handler process the
 // message. Whatever (non-zero) value this function
 // returns is the return result passed on to the
 // event loop.

 win.DefWindowProc(hWnd, uMsg, wParam, lParam);

 endif;

end WndProc;

// WinMain-
//
// This is the "main" windows program. It sets up the
// window and then enters an "event loop" processing
// whatever messages are passed along to that window.
// Since our code is the only code that calls this function,
// we'll use the Pascal calling conventions for the parameters.

procedure WinMain
(
 hInst:dword;
 hPrevInst: dword;
 CmdLine: string;
 CmdShow: dword
); nodisplay;

var
 wc: win.WNDCLASSEX;
 msg: win.MSG;
 hwnd: dword;
 s:string;

begin WinMain;

 // Set up the window class (wc) object:

 mov(@size(win.WNDCLASSEX), wc.cbSize);
 mov(win.CS_HREDRAW | win.CS_VREDRAW, wc.style);
 mov(&WndProc, wc.lpfnWndProc);
 mov(NULL, wc.cbClsExtra);
 mov(NULL, wc.cbWndExtra);

 mov(hInstance, wc.hInstance);
 mov(win.COLOR_WINDOW+1, wc.hbrBackground);

 mov(NULL, wc.lpszMenuName);
 mov(ClassName, wc.lpszClassName);

 // Get the icons and cursor for this application:

 win.LoadIcon(NULL, win.IDI_APPLICATION);
 mov(eax, wc.hIcon);
 mov(eax, wc.hIconSm);

 win.LoadCursor(NULL, win.IDC_ARROW);
 mov(eax, wc.hCursor);

 // Okay, register this window with Windows so it
 // will start passing messages our way. Once this
 // is accomplished, create the window and display it.

 win.RegisterClassEx(wc);

 win.CreateWindowEx
 (
 NULL,
 ClassName,
 AppName,
 win.WS_OVERLAPPEDWINDOW,
 win.CW_USEDEFAULT,
 win.CW_USEDEFAULT,
 win.CW_USEDEFAULT,
 win.CW_USEDEFAULT,
 NULL,
 NULL,
 hInst,
 NULL
);
 mov(eax, hwnd);

 win.ShowWindow(hwnd, win.SW_SHOWNORMAL);
 win.UpdateWindow(hwnd);

 // Here's the event loop that processes messages
 // sent to our window. On return from GetMessage,
 // break if EAX contains false and quit the
 // program.

 forever

 win.GetMessage(msg, NULL, 0, 0);
 breakif(!eax);
 win.TranslateMessage(msg);
 win.DispatchMessage(msg);

 endfor;

oth
h new

lready
y
, pro-
 OOP

 line)
Box or

me-

he win-
 mov(msg.wParam, eax);

end WinMain;

begin aSimpleWindow;

 // Get this process' handle:

 win.GetModuleHandle(NULL);
 mov(eax, hInstance);

 // Get a copy of the command line string passed to this code:

 mov(arg.CmdLn(), CommandLine);

 WinMain(hInstance, NULL, CommandLine, win.SW_SHOWDEFAULT);

 // WinMain returns a return code in EAX, exit the program
 // and pass along that return code.

 win.ExitProcess(eax);

end aSimpleWindow;

Theory:

Windows programs rely heavily on API functions for their GUI. This approach benefits b
users and programmers. For users, they don't have to learn how to navigate the GUI of eac
programs, the GUI of Windows programs are alike. For programmers, the GUI codes are a
there,tested, and ready for use. The downside for programmers is the increased complexit
involved. In order to create or manipulate any GUI objects such as windows, menu or icons
grammers must follow a strict recipe. But that can be overcome by modular programming or
paradigm.

I'll outline the steps required to create a window on the desktop below:

• Get the instance handle of your program (required)
• Get the command line (not required unless your program wants to process a command
• Register window class (required ,unless you use predefined window types, eg. Message

a dialog box)
• Create the window (required)
• Show the window on the desktop (required unless you don't want to show the window im

diately)
• Refresh the client area of the window
• Enter an infinite loop, checking for messages from Windows
• If messages arrive, they are processed by a specialized function that is responsible for t

dow

OS
pro-
ou, as

etails
ng.

file
ntly,
ne

 file.

 to
 a lot

xported

nt it

ro-

 most
other.
ue and
mpil-
s.
 able

th
ll.

eath!

ruc-
t file.
res,
e not
• Quit program if the user closes the window

As you can see, the structure of a Windows program is rather complex compared to a D
program. But the world of Windows is drastically different from the world of DOS. Windows
grams must be able to coexist peacefully with each other. They must follow stricter rules. Y
a programmer, must also be more strict with your programming style and habit.

Content:

Above is the source code of our simple window program. Before jumping into the gory d
of Win32 ASM programming, I'll point out some fine points which will ease your programmi

You should put all Windows constants, structures and function prototypes in an include
and include it at the beginning of your .hla file. It'll save you a lot of effort and typing. Curre
you can find many of the Windows definitions in the win32.hhf header file. You can also defi
your own constants & structure definitions but you should put them into a separate include

When declaring API function prototypes, structures, or constants in your include file, try
stick to the original names used in Windows include files, including case. This will save you
of headache when looking up some item in Win32 API reference. About the only exception
should be the reasonable use of namespaces (e.g., the “win.” prefix in front of the names e
by the “win32.hhf” header file).

HLA automatically links in the Windows kernel32.lib and user32.lib libraries (at some poi
will probably automatically link in gdi32.lib as well). If you start needing to link in additional
Windows library files, you may want to start using makefiles to automate your compilation p
cess. This will save you a lot of typing.

Analysis:

You may be taken aback that a simple Windows program requires so much coding. But
of those codes are just *template* codes that you can copy from one source code file to an
Or if you prefer, you could assemble some of these codes into a library to be used as prolog
epilogue codes. You can write only the codes in WinMain function. In fact, this is what C co
ers do. They let you write WinMain codes without worrying about other housekeeping chore
The only catch is that you must have a function named WinMain else C compilers will not be
to combine your codes with the prologue and epilogue. You do not have such restriction wi
assembly language. You can use any function name instead of WinMain or no function at a

Prepare yourself. This's going to be a long, long tutorial. Let's analyze this program to d
program aSimpleWindow;
#include("win32.hhf") // Standard windows stuff.
#include("strings.hhf") // Defines HLA string routines.
#include("memory.hhf") // Defines "NULL" among other things.
#include("args.hhf") // Command line parameter stuff.
#include("conv.hhf")

We must include win32.hhf at the beginning of the source code. It contains important st
tures and constants that are used by our program. The include file , win32.hhf, is just a tex
You can open it with any text editor. Please note that win32.hhf does not contain all structu
and constants (yet). There are being added as needed. You can add in new items if they ar
already in the file.

om-
r each
des

s and
ppro-
 in

ked
ram

trings
d App-
uired

gram)
 sec-

ant to
ero

Our program calls HLA Standard Library routines in the string, memory management, c
mand line argument, and conversions modules, so we must provide #include statements fo
of these (alternatively, we could have simply included the “stdlib.hhf” header file which inclu
all HLA Standard Library header files). The win32 routines appear in the “kernel32.lib” and
“use32.lib” library modules. As long as your programs only use routines from these module
the HLA Standard Library modules you don’t have to do any special other than supply the a
priate #include statements. If you need to call win32 API routines above and beyond those
kerne32.lib and user32.lib, you will need to supply an appropriate header file and link in the
appropriate LIB file. The next question : “how can I know which import library should be lin
to my program?” The answer: You must know where the API functions called by your prog
reside. For example, if you call an API function in gdi32.dll, you must link with gdi32.lib.

Next are the "DATA" sections.
static
 hInstance: dword;
 CommandLine: string;

readonly

 ClassName: string := "SimpleWinClass";
 AppName: string := "Our First Window";

static GetLastError:procedure; external("__imp__GetLastError@0");

In READONLY, we declare two HLA strings. The win32 APIs require zero-terminated
strings(ASCIIZ strings). Fortunately, HLA strings are zero terminated so we can use HLA s
for this purpose. The two strings are ClassName which is the name of our window class an
Name which is the name of our window. Note that the two variables are initialized (as is req
in the READONLY section).

In the STATIC section, two variables are declared: hInstance (instance handle of our pro
and CommandLine (command line of our program). Note that these variables in the STATIC
tion are not initialized, that is, they don't have to hold any specific value on startup, but we w
reserve the space for future use (actually, the win32 OS will initialize these variables with z
upon startup, but the code does not take advantage of this fact).
begin aSimpleWindow;

 // Get this process' handle:

 win.GetModuleHandle(NULL);
 mov(eax, hInstance);

 // Get a copy of the command line string passed to this code:

 mov(arg.CmdLn(), CommandLine);

r pro-
ink of
 our
.

mory.

ou

ters

alls.

 of
re the
gram

s.

 this

ro-
indow
e in its

y of
nts to
st

te
n
l still
of the

 WinMain(hInstance, NULL, CommandLine, win.SW_SHOWDEFAULT);

 // WinMain returns a return code in EAX, exit the program
 // and pass along that return code.

 win.ExitProcess(eax);

end aSimpleWindow;
The main program sits between the “begin aSimpileWindow;” and “end aSimpleWin-
dow;” clauses.

Our first instruction is the call to GetModuleHandle to retrieve the instance handle of ou
gram. Under Win32, instance handle and module handle are one and the same. You can th
instance handle as the ID of your program. It is used as parameter to several API functions
program must call, so it's generally a good idea to retrieve it at the beginning of our program

Note: Actually under win32, instance handle is the linear address of your program in me

Upon returning from a Win32 function, the function's return value, if any, can be found in
EAX. All other values are returned through variables passed in the function parameter list y
defined for the call.

A Win32 function that you call will nearly always preserve the segment registers and the
EBX, EDI, ESI and EBP registers. Conversely, ECX and EDX are considered scratch regis
and are always undefined upon return from a Win32 function.

Note: Don't expect the values of EAX, ECX, EDX to be preserved across API function c

The bottom line is that: when calling an API function, expect return values in EAX. If any
your functions will be called by Windows, you must also play by the rule: preserve and resto
values of the segment registers, EBX, EDI, ESI and EBP upon function return else your pro
will crash very shortly, this includes your window procedure and windows callback function

The arg.CmdLn call is unnecessary if your program doesn't process a command line. In
example, I show you how to call it in case you need it in your program.

Next is the WinMain call. Here it receives four parameters: the instance handle of our p
gram, the instance handle of the previous instance of our program, the command line and w
state at first appearance. Under Win32, there's NO previous instance. Each program is alon
address space, so the value of hPrevInst is always 0 (NULL). This is a leftover from the da
Win16 when all instances of a program run in the same address space and an instance wa
know if it's the first instance. Under win16, if hPrevInst is NULL, then this instance is the fir
one.

Note: You don't have to declare the function name as WinMain. In fact, you have comple
freedom in this regard. You don't have to use any WinMain-equivalent function at all. You ca
paste the codes inside WinMain function after the arg.CmdLn routine and your program wil
be able to function perfectly. WinMain is just a Windows tradition because this is the name
C function that the OS calls when writing applications in C.

Upon returning from WinMain, EAX is filled with exit code. We pass that exit code as the
parameter to ExitProcess which terminates our application.

at fol-
er to
 the
tack

of a
d the
er nec-
isplay,
ack

cal
proce-
ly

to wc
d, I
ted and
 that
ted
alues
 in

procedure WinMain
(
 hInst: dword;
 hPrevInst: dword;
 CmdLine: string;
 CmdShow: dword
); nodisplay;

The above line is the function declaration of WinMain. Note the parameter:type pairs th
low procedure line. They are parameters that WinMain receives from the caller. You can ref
these parameters by name instead of by stack manipulation. In addition, HLA will generate
prologue and epilogue codes for the function. So we don't have to concern ourselves with s
frame on function enter and exit. The NODISPLAY option tells HLA to skip the generation
“display” for this procedure. Displays are only necessary if you have nested procedures an
nested procedures refer to VAR objects in the global (nesting) code. Since this is hardly ev
essary, it’s rare that a procedure would actually need a display. Were HLA to generate a d
that would not affect the execution of program other than to add a few bytes of code and st
data.

var
 wc: win.WNDCLASSEX;
 msg: win.MSG;
 hwnd: dword;
 s:string;

begin WinMain;

The VAR section is were the WinMain procedure allocates memory from the stack for lo
variables used in the procedure. The variable declarations must be immediately below the
dure directive and before the “begin WinMain;” clause. The variable declarations immediate
follow the VAR directive. So wc:win.WNDCLASSEX tells HLA to allocate memory from the
stack the size of the win.WNDCLASSEX structure for the variable named wc. We can refer
in our programs without any difficulty involved in stack manipulation. That's really a godsen
think. The downside is that local variables cannot be used outside the function they're crea
will be automatically destroyed when the function returns to the caller. Another drawback is
you cannot initialize local variables automatically because they're just stack memory alloca
dynamically when the function is entered . You have to manually assign them with desired v
after VAR directives (Note: if you want static objects in your HLA procedures, declare them
the STATIC, DATA, or READONLY sections; see the HLA documentation for more details).
 // Set up the window class (wc) object:

 mov(@size(win.WNDCLASSEX), wc.cbSize);
 mov(win.CS_HREDRAW | win.CS_VREDRAW, wc.style);
 mov(&WndProc, wc.lpfnWndProc);
 mov(NULL, wc.cbClsExtra);
 mov(NULL, wc.cbWndExtra);

truc-
 is
racter-
u cre-
t to
 these
s of
t

ust be
dow,

to cre-

e win-
 with

ds
use
in-
ure is
. Win-
g the

roce-
ur
 mov(hInstance, wc.hInstance);
 mov(win.COLOR_WINDOW+1, wc.hbrBackground);
 mov(NULL, wc.lpszMenuName);
 mov(ClassName, wc.lpszClassName);

 // Get the icons and cursor for this application:

 win.LoadIcon(NULL, win.IDI_APPLICATION);
 mov(eax, wc.hIcon);
 mov(eax, wc.hIconSm);

 win.LoadCursor(NULL, win.IDC_ARROW);
 mov(eax, wc.hCursor);

 // Okay, register this window with Windows so it
 // will start passing messages our way. Once this
 // is accomplished, create the window and display it.

 win.RegisterClassEx(wc);

The inimidating lines above are really simple in concept. It just takes several lines of ins
tion to accomplish. The concept behind all these lines is the window class. A window class
nothing more than a blueprint or specification of a window. It defines several important cha
istics of a window such as its icon, its cursor, the function responsible for it, its color etc. Yo
ate a window from a window class. This is some sort of object oriented concept. If you wan
create more than one window with the same characteristics, it stands to reason to store all
characteristics in only one place and refer to them when needed. This scheme will save lot
memory by avoiding duplication of information. Remember, Windows is designed in the pas
when memory chips are prohibitive and most computers have 1 MB of memory. Windows m
very efficient in using the scarce memory resource. The point is: if you define your own win
you must fill the desired characteristics of your window in a win.WNDCLASS or win.WND-
CLASSEX structure and call win.RegisterClass or win.RegisterClassEx before you're able
ate your window. You only have to register the window class once for each window type you want
to create a window from.

Windows has several predefined Window classes, such as button and edit box. For thes
dows (or controls), you don't have to register a window class, just call win.CreateWindowEx
the predefined class name.

The single most important member in the win.WNDCLASSEX is lpfnWndProc. lpfn stan
for long pointer to function. Under Win32, there's no "near" or "far" pointer, just pointer beca
of the new FLAT memory model. But this is again a leftover from the days of Win16. Each w
dow class must be associated with a function called window procedure. The window proced
responsible for message handling of all windows created from the associated window class
dows will send messages to the window procedure to notify it of important events concernin
windows it 's responsible for,such as user keyboard or mouse input. It's up to the window p
dure to respond intelligently to each window message it receives. You will spend most of yo
time writing event handlers in window procedure.

I describe each member of win.WNDCLASSEX below:

ile-

ther
 con-

om

truc-
 data

nce.
S

t must

r is
f the

WNDCLASSEX: record
 cbSize :dword;
 style :dword;
 lpfnWndProc :dword;
 cbClsExtra :dword;
 cbWndExtra :dword;
 hInstance :dword;
 hIcon :dword;
 hCursor :dword;
 hbrBackground :dword;
 lpszMenuName :dword;
 lpszClassName :dword;
 hIconSm :dword;
endrecord;

cbSize: The size of win.WNDCLASSEX structure in bytes. We can use the @size comp
time function to get the value for this field.

style: The style of windows created from this class. You can combine several styles toge
using compile time "|" operator. The win.hhf header file contains many of the Windows style
stants; they typically begin with “win.WS_...”

lpfnWndProc : The address of the window procedure responsible for windows created fr
this class.

cbClsExtra: Specifies the number of extra bytes to allocate following the window-class s
ture. The operating system initializes the bytes to zero. You can store window class-specific
here.

cbWndExtra : Specifies the number of extra bytes to allocate following the window insta
The operating system initializes the bytes to zero. If an application uses the win.WNDCLAS
structure to register a dialog box created by using the CLASS directive in the resource file, i
set this member to DLGWINDOWEXTRA.

hInstance: Instance handle of the module.

hIcon: Handle to the icon. Get it from LoadIcon call.

hCursor: Handle to the cursor. Get it from LoadCursor call.

hbrBackground: Background color of windows created from the class.

lpszMenuName: Default menu handle for windows created from the class.

lpszClassName: The name of this window class.

hIconSm: Handle to a small icon that is associated with the window class. If this membe
NULL, the system searches the icon resource specified by the hIcon member for an icon o
appropriate size to use as the small icon.
 win.CreateWindowEx
 (
 NULL,
 ClassName,
 AppName,
 win.WS_OVERLAPPEDWINDOW,
 win.CW_USEDEFAULT,
 win.CW_USEDEFAULT,

ased
ly, iif
A.

r
ow,

in-
d class
 a win-

ill

ssing
 and
s

 oper-
yle is
 win.CW_USEDEFAULT,
 win.CW_USEDEFAULT,
 NULL,
 NULL,
 hInst,
 NULL
);

After registering the window class, we can call CreateWindowEx to create our window b
on the submitted window class. The following is a pseudo-prototype for this function (actual
you look in win.hhf, you’ll find that “CreateWindowEx” is a macro that calls CreateWindowEx
We’ll ignore this issue here). Notice that there are 12 parameters to this function.
procedure CreateWindowEx
(
 dwExStyle:dword;
 lpClassName:dword;
 lpWindowName:dword;
 dwStyle:dword;
 X:dword;
 Y:dword;
 nWidth:dword;
 nHeight:dword;
 hWndParent:dword;
 hMenu:dword;
 hInstance:dword;
 lpParam:dword
);

Let's see detailed description of each parameter:

dwExStyle: Extra window styles. This is the new parameter that is added to the old Cre-
ateWindow. You can put new window styles for Windows 95 & NT here.You can specify you
ordinary window style in dwStyle but if you want some special styles such as topmost wind
you must specify them here. You can use NULL if you don't want extra window styles.

lpClassName: (Required). Address of the HLA (ASCIIZ) string containing the name of w
dow class you want to use as template for this window. The Class can be your own registere
or predefined window class. As stated above, every window you created must be based on
dow class.

lpWindowName: Address of the ASCIIZ string containing the name of the window. It'll be
shown on the title bar of the window. If this parameter is NULL, the title bar of the window w
be blank.

dwStyle: Styles of the window. You can specify the appearance of the window here. Pa
NULL is ok but the window will have no system menu box, no minimize-maximize buttons,
no close-window button. The window would not be of much use at all. You will need to pres
Alt+F4 to close it. The most common window style is win.WS_OVERLAPPEDWINDOW. A
window style is only a bit flag. Thus you can combine several window styles by using the "|"
ator to achieve the desired appearance of the window. win.WS_OVERLAPPEDWINDOW st
actually a combination of the most common window styles by this method.

 be
ow

in-
 win-
rface
ip is
ll be
w, we

ck at

 the
ts
ant to
 is

dle or a
ss,

 win-
ing
eter by

. We
yed.
he
r

nt of

X,Y: The coordinates of the upper left corner of the window. Normally this values should
win.CW_USEDEFAULT, that is, you want Windows to decide for you where to put the wind
on the desktop.

nWidth, nHeight : The width and height of the window in pixels. You can also use
win.CW_USEDEFAULT to let Windows choose the appropriate width and height for you.

hWndParent: A handle to the window's parent window (if exists). This parameter tells W
dows whether this window is a child (subordinate) of some other window and, if it is, which
dow is the parent. Note that this is not the parent-child relationship of multiple document inte
(MDI). Child windows are not bound to the client area of the parent window. This relationsh
specifically for Windows internal use. If the parent window is destroyed, all child windows wi
destroyed automatically. It's really that simple. Since in our example, there's only one windo
specify this parameter as NULL.

hMenu: A handle to the window's menu. NULL if the class menu is to be used. Look ba
the a member of win.WNDCLASSEX structure, lpszMenuName. lpszMenuName specifies
default menu for the window class. Every window created from this window class will have
same menu by default. Unless you specify an *overriding* menu for a specific window via i
hMenu parameter. hMenu is actually a dual-purpose parameter. In case the window you w
create is of a predefined window type (ie. control), such control cannot own a menu. hMenu
used as that control's ID instead. Windows can decide whether hMenu is really a menu han
control ID by looking at lpClassName parameter. If it's the name of a predefined window cla
hMenu is a control ID. If it's not, then it's a handle to the window's menu.

hInstance: The instance handle for the program module creating the window.

lpParam: Optional pointer to a data structure passed to the window. This is used by MDI
dow to pass the CLIENTCREATESTRUCT data. Normally, this value is set to NULL, mean
that no data is passed via CreateWindow(). The window can retrieve the value of this param
the call to GetWindowLong function.
 mov(eax, hwnd);
 win.ShowWindow(hwnd, win.SW_SHOWNORMAL);
 win.UpdateWindow(hwnd);

On successful return from win.CreateWindowEx, the window handle is returned in EAX
must keep this value for future use. The window we just created is not automatically displa
You must call win.ShowWindow with the window handle and the desired *display state* of t
window to make it display on the screen. Next you can call win.UpdateWindow to order you
window to repaint its client area. This function is useful when you want to update the conte
the client area. You can omit this call though.
 // Here's the event loop that processes messages
 // sent to our window. On return from GetMessage,
 // break if EAX contains false and quit the
 // program.

 forever

 win.GetMessage(msg, NULL, 0, 0);
 breakif(!eax);
 win.TranslateMessage(msg);

o we
y one
Win-
ows.
t to

ssage
This
turns
e

a new

han
okes.

r the

SG
 Win-
y the

 win.DispatchMessage(msg);

 endfor;

At this time, our window is up on the screen. But it cannot receive input from the world. S
have to *inform* it of relevant events. We accomplish this with a message loop. There's onl
message loop for each module. This message loop continually checks for messages from
dows with GetMessage call. GetMessage passes a pointer to a win.MSG structure to Wind
This win.MSG structure will be filled with information about the message that Windows wan
send to a window in the module. win.GetMessage function will not return until there's a me
for a window in the module. During that time, Windows can give control to other programs.
is what forms the cooperative multitasking scheme of Win16 platform .win.GetMessage re
FALSE if win.WM_QUIT message is received which, in the message loop, will terminate th
loop and exit the program.

win.TranslateMessage is a utility function that takes raw keyboard input and generates
message (win.WM_CHAR) that is placed on the message queue. The message with
win.WM_CHAR contains the ASCII value for the key pressed, which is easier to deal with t
the raw keyboard scan codes. You can omit this call if your program doesn't process keystr

win.DispatchMessage sends the message data to the window procedure responsible fo
specific window the message is for.

 mov(msg.wParam, eax);

end WinMain;

If the message loop terminates, the exit code is stored in wParam member of the win.M
structure. You can store this exit code into EAX to return it to Windows. At the present time,
dows does not make use of the return value, but it's better to be on the safe side and play b
rules.

// The window procedure. Since this gets called directly from
// windows we need to explicitly reverse the parameters (compared
// to the standard STDCALL declaration) in order to make HLA's
// Pascal calling convention compatible with Windows.
//
// This is actually a function that returns a return result in
// EAX. If this function returns zero in EAX, then the event
// loop terminates program execution.

procedure WndProc(lParam:dword; wParam:dword; uMsg:uns32; hWnd:dword);
 nodisplay;

begin WndProc;

Wnd,

on-
 need

te that
ages,
ssage
ceives
r use by
 itself.

The
t check
t to do
fWin-
Proc

o your
eives
t your

is, you
en it
, you
This is our window procedure. You don't have to name it WndProc. The last parameter, h
is the window handle of the window that the message is destined for. Note: when using the STD-
CALL calling convention, hWnd is actually the first parameter, but with the Pascal calling c
vention it is the last parameter.. Since your code doesn’t usually call WndProc, there is little
to create a macro that will reverse the parameters for us. uMsg is the message value. No
uMsg is not a MSG structure. It's just a number, really. Windows defines hundreds of mess
most of which your programs will not be interested in. Windows will send an appropriate me
to a window in case something relevant to that window happens. The window procedure re
the message and reacts to it intelligently. wParam and lParam are just extra parameters fo
some messages. Some messages do send accompanying data in addition to the message
Those data are passed to the window procedure by means of lParam and wParam.
 // If the WM_DESTROY message comes along, then we've
 // got to post a message telling the event loop that
 // it's time to quit the program. The return value in
 // EAX must be false (zero). The GetMessage function
 // will return this value to the event loop which is
 // the indication that it's time to quit.

 if(uMsg = win.WM_DESTROY) then

 win.PostQuitMessage(0);
 sub(eax, eax);

 else

 // If a WM_DESTROY message doesn't come along,
 // let the default window handler process the
 // message. Whatever (non-zero) value this function
 // returns is the return result passed on to the
 // event loop.

 win.DefWindowProc(hWnd, uMsg, wParam, lParam);

 endif;

end WndProc;

Here comes the crucial part. This is where most of your program's intelligence resides.
codes that respond to each Windows message are in the window procedure. Your code mus
the Windows message to see if it's a message it's interested in. If it is, do anything you wan
in response to that message and then return with zero in eax. If it's not, you MUST call De
dowProc, passing all parameters you received to it for default processing.. This DefWindow
is an API function that processes the messages your program are not interested in.

The only message that you MUST respond to is WM_DESTROY. This message is sent t
window procedure whenever your window is closed. By the time your window procedure rec
this message, your window is already removed from the screen. This is just a notification tha
window was destroyed, you should prepare yourself to return to Windows. In response to th
can perform housekeeping prior to returning to Windows. You have no choice but to quit wh
comes to this state. If you want to have a chance to stop the user from closing your window

ing
ack

should process win.WM_CLOSE message. Now back to win.WM_DESTROY, after perform
housekeeping chores, you must call win.PostQuitMessage which will post win.WM_QUIT b
to your module. win.WM_QUIT will make win.GetMessage return with zero value in EAX,
which in turn, terminates the message loop and quits to Windows. You can send
win.WM_DESTROY message to your own window procedure by calling win.DestroyWindow
function.

	Tutorial 3: A Simple Window
	In this tutorial, we will build a Windows program that displays a fully functional window on the ...
	Source Code for This Tutorial:

	// Iczelion's tutorial #3: A Simple Window program aSimpleWindow; #include("win32.hhf") // Stan...
	Theory:

	Windows programs rely heavily on API functions for their GUI. This approach benefits both users a...
	I'll outline the steps required to create a window on the desktop below:
	 Get the instance handle of your program (required)
	 Get the command line (not required unless your program wants to process a command line)
	 Register window class (required ,unless you use predefined window types, eg. MessageBox or a di...
	 Create the window (required)
	 Show the window on the desktop (required unless you don't want to show the window immediately)
	 Refresh the client area of the window
	 Enter an infinite loop, checking for messages from Windows
	 If messages arrive, they are processed by a specialized function that is responsible for the wi...
	 Quit program if the user closes the window
	As you can see, the structure of a Windows program is rather complex compared to a DOS program. B...
	Content:

	Above is the source code of our simple window program. Before jumping into the gory details of Wi...
	You should put all Windows constants, structures and function prototypes in an include file and i...
	When declaring API function prototypes, structures, or constants in your include file, try to sti...
	HLA automatically links in the Windows kernel32.lib and user32.lib libraries (at some point it wi...
	Analysis:

	You may be taken aback that a simple Windows program requires so much coding. But most of those c...
	Prepare yourself. This's going to be a long, long tutorial. Let's analyze this program to death!
	program aSimpleWindow; #include("win32.hhf") // Standard windows stuff. #include("strings.hhf"...
	We must include win32.hhf at the beginning of the source code. It contains important structures a...
	Our program calls HLA Standard Library routines in the string, memory management, command line ar...
	Next are the "DATA" sections.
	static hInstance: dword; CommandLine: string; readonly ClassName: string := "SimpleWinClass"; App...
	In READONLY, we declare two HLA strings. The win32 APIs require zero-terminated strings(ASCIIZ st...
	In the STATIC section, two variables are declared: hInstance (instance handle of our program) and...
	begin aSimpleWindow; // Get this process' handle: win.GetModuleHandle(NULL); mov(eax, hInstanc...
	Our first instruction is the call to GetModuleHandle to retrieve the instance handle of our progr...
	Note: Actually under win32, instance handle is the linear address of your program in memory.
	Upon returning from a Win32 function, the function's return value, if any, can be found in EAX. A...
	A Win32 function that you call will nearly always preserve the segment registers and the EBX, EDI...
	Note: Don't expect the values of EAX, ECX, EDX to be preserved across API function calls.
	The bottom line is that: when calling an API function, expect return values in EAX. If any of you...
	The arg.CmdLn call is unnecessary if your program doesn't process a command line. In this example...
	Next is the WinMain call. Here it receives four parameters: the instance handle of our program, t...
	Note: You don't have to declare the function name as WinMain. In fact, you have complete freedom ...
	Upon returning from WinMain, EAX is filled with exit code. We pass that exit code as the paramete...
	procedure WinMain (hInst: dword; hPrevInst: dword; CmdLine: string; CmdShow: dword); nodisplay;
	The above line is the function declaration of WinMain. Note the parameter:type pairs that follow ...
	var wc: win.WNDCLASSEX; msg: win.MSG; hwnd: dword; s:string; begin WinMain;
	The VAR section is were the WinMain procedure allocates memory from the stack for local variables...
	 // Set up the window class (wc) object: mov(@size(win.WNDCLASSEX), wc.cbSize); mov(win.CS...
	The inimidating lines above are really simple in concept. It just takes several lines of instruct...
	Windows has several predefined Window classes, such as button and edit box. For these windows (or...
	The single most important member in the win.WNDCLASSEX is lpfnWndProc. lpfn stands for long point...
	I describe each member of win.WNDCLASSEX below:
	WNDCLASSEX: record cbSize :dword; style :dword; lpfnWndProc :d...
	cbSize: The size of win.WNDCLASSEX structure in bytes. We can use the @size compile- time functio...
	style: The style of windows created from this class. You can combine several styles together usin...
	lpfnWndProc: The address of the window procedure responsible for windows created from this class.
	cbClsExtra: Specifies the number of extra bytes to allocate following the window-class structure....
	cbWndExtra: Specifies the number of extra bytes to allocate following the window instance. The op...
	hInstance: Instance handle of the module.
	hIcon: Handle to the icon. Get it from LoadIcon call.
	hCursor: Handle to the cursor. Get it from LoadCursor call.
	hbrBackground: Background color of windows created from the class.
	lpszMenuName: Default menu handle for windows created from the class.
	lpszClassName: The name of this window class.
	hIconSm: Handle to a small icon that is associated with the window class. If this member is NULL,...
	 win.CreateWindowEx (NULL, ClassName, AppName, win.WS_OVERLAPPEDWINDOW, win.CW_USEDEFAULT, wi...
	After registering the window class, we can call CreateWindowEx to create our window based on the ...
	procedure CreateWindowEx (dwExStyle:dword; lpClassName:dword; lpWindowName:dword; dwSty...
	Let's see detailed description of each parameter:
	dwExStyle: Extra window styles. This is the new parameter that is added to the old CreateWindow. ...
	lpClassName: (Required). Address of the HLA (ASCIIZ) string containing the name of window class y...
	lpWindowName: Address of the ASCIIZ string containing the name of the window. It'll be shown on t...
	dwStyle: Styles of the window. You can specify the appearance of the window here. Passing NULL ...
	X,Y: The coordinates of the upper left corner of the window. Normally this values should be win.C...
	nWidth, nHeight: The width and height of the window in pixels. You can also use win.CW_USEDEFAULT...
	hWndParent: A handle to the window's parent window (if exists). This parameter tells Windows whet...
	hMenu: A handle to the window's menu. NULL if the class menu is to be used. Look back at the a me...
	hInstance: The instance handle for the program module creating the window.
	lpParam: Optional pointer to a data structure passed to the window. This is used by MDI window to...
	 mov(eax, hwnd); win.ShowWindow(hwnd, win.SW_SHOWNORMAL); win.UpdateWindow(hwnd);
	On successful return from win.CreateWindowEx, the window handle is returned in EAX. We must keep ...
	// Here's the event loop that processes messages // sent to our window. On return from GetMessage...
	At this time, our window is up on the screen. But it cannot receive input from the world. So we h...
	win.TranslateMessage is a utility function that takes raw keyboard input and generates a new mess...
	win.DispatchMessage sends the message data to the window procedure responsible for the specific w...
	mov(msg.wParam, eax); end WinMain;
	If the message loop terminates, the exit code is stored in wParam member of the win.MSG structure...
	// The window procedure. Since this gets called directly from // windows we need to explicitly re...
	This is our window procedure. You don't have to name it WndProc. The last parameter, hWnd, is the...
	 // If the WM_DESTROY message comes along, then we've // got to post a message telling the eve...
	Here comes the crucial part. This is where most of your program's intelligence resides. The codes...
	The only message that you MUST respond to is WM_DESTROY. This message is sent to your window proc...

