HLA v2.0 Symbol Table Design Documentation

This document describes the internal operation of HLA v2.0’'s symbol table routines and data struc-

tures. This document assumes that the reader is familiar with compiler theory and terminology.

This document also assumes that the reader is comfortable with the HLA language and 80x86

assembly language in general.

The symbol table module is responsible for maintaining a database of program identifiers during the compilation

of an HLA program. The symbol table data structure and the symbol table functions faithfully implement the seman-
tics required by the HLA language. This document will explain those semantics, describe the symbol table data struc-
tures, and also describe the algorithms needed to implement those semantics. The reader should have read the
accompanying documentation on the HLA lexical analyzer (lexer) prior to reading this documentation.

Identifier Semantics in an HLA Program

Symbols in an HLA program exhibit certain semantics that you must understand in order to make sense of the
symbol table algorithms and data structures. This section will carefully described those semantics so that you can
understand the rest of this document.

Scope

HLA is ablock-structured language. This means that we can lexically divide a set of HLA source modules that
comprise a single program into several lexically independent blocks. This structure of an HLA program has a large
bearing on the design and implementation of the HLA symbol table routines.

At the coarsest level of granularity, an HLA program is broken up into source files. Although an HLA program
could consist of as little as a single source file during compilation, most HLA programs are actually made of multiple
source modules (this is true even if the programmer believes the program contains a single source file; most HLA
programs use the HLA Standard Library and the Standard Library routines themselves appear in different source

modules). A typical HLA program consists of a sSihnBROGRAM module and one or motgNIT modules.

Symbols appearing within a source module are al@oa to that module (that is, other modules cannot reference
those symbols) unless the programmer explicitly declares those symbols to be external. Therefore, even at this coars-
est level we see two different types of symbols: those that are usable only within a single source file module, and
those that are usable within multiple modules.

WE'll use the ternscope to describe the visibility of symbols in an HLA source file. Typical symbolPR@-

GRAM or UNIT have file scope; that is, the visibility (or usability) of these symbols is limited to the source file in
which they are defined. It is possible, however, to define symbolsextétimal scope. A module can reference a
symbol with external scope even if that symbol’'s definition is in a different source file. In HLA, of course, you use
the EXTERNAL attribute to explicitly tell the compiler that a symbol has external scope. If a symbol in a source
module does not have tBX TERNAL attribute, then the symbol only has file scope.

Note that if a source file contains both an external declaration and a file scope declaration, then that symbol is
public to that given source file. There must be exactly one public declaration for each external symbol in a set of
HLA source modules that comprise a single program.

Within a source file, the scope of an identifier is limited in several ways. Symbols you declare within a
namespace havemespace scope. You may only refer directly to such symbols within the namespace that contains
them or by providing a “dot-path” to the symbol using the namespace identifier.

1. Intheory, an HLA program does not require a PROGRAM module; it could consist of a set of UNITs linked together
if the programmer understands the operating systems’ run-time system. However, this would be an extremely rare
situation and doesn't really change the discussion, so we will ignore this here. It is also possible to obtain a slightly
different module topology if you consider linking HLA UNITs with code from other languages. We will not consider
that situation here for the same reason - it doesn't affect this discussion in any major way.

Symbols that you declare within a program unit (procedure, iterator, or method) use “local scope.” Variables
with local scope are not visible outside the boundaries of the program unit in which you declare them. It is not an
error for a local variable to have the same name as a global variable. Within the scope of the local variable (that is,
within the program unit in which you define the local variable) the local name takes precedence over the global name.
HLA does not provide a mechanism for overriding the scope of the local name in order to access the global name.

If you declare one program unit within another (e.g., you nest procedure declarations), then the local symbols in
the outer program unit are global to the nested program unit declaration. As long as a global symbol is not redefined
in the nested program unit, that symbol’s name is visible within the nested program unit.

— OuterProcedure

declaration for A
declaration for B

-InnerProcedure —
declaration for B Global A (f OutputProced '
M oba rom utputProcedure_
dec aratlon&// and locals B and C are accessible
here.
- OuterProcedures A and B

variables are accessible here,
but InnerProcedures B and
C variables are not accessible
here.

None of the variables declared within OuterProcedure (or
InnerProcedure) are accessible out here.

Note that external declarations are never allowed within a procedure, iterator, or method. External declarations are
legal only at the global level of RROGRAM or UNIT.

Record, union, and class declarations provide another name space that defines the scope of an identifier within a
program. ldentifiers within one of these data structures (i.e., the field names) are accessible via the “dot-path” syntax
for record, union, and class objects. The names within a given record, union, or class must be unique to that particular
data structure, but you can reuse names in different structures and outside the structure.

The scope of identifiers within a record, class, or union, are futher affectedBRI¥&TE section of these data
structures. Consider the following record declarations:

base: record
publicl:uns32;
public2:uns32;
private:
privatel: uns32;
private2: uns32;
endr ecor d;

derived: record inherits(base)
public3:uns32;

privatel: uns32;
endr ecord;

The PRIVATE reserved word tells HLA that the following fields in the record will not be visible in any records
that inherit the fields dfase. Therefore, records that inherit frdrase may freely reuse the identifigosivate 7 and
private2 (as the derived record does above). Note that the derived records/classes/unions still reserved space for the

private fields from the base data structure, however, the names are no longer accessible in the derivéd structure

HLA's multi-part (context-free) macros introduce some interesting twists to the variable scope model. Consider,
first, the following simple multi-part macro declaration:

macro mul tipart:x;

<< sone text to expand >>
keyword keywd:y;

<< sone text to expand #2 >>
termnator termmtr: z;

<< sone text to expand #3 >>

endnacr o;

Also consider the following invocation of the above macro:
mul ti part

<< body text, part 1 >>
keywr d
<< body text, part 2 >>

termmtr;

First, note that the symboleywrd andtermntr are not available until the user actually invokes rtiudtipart
macro. This is a form of dynamic scoping (dynamic with respect to HLA's compile-time language) insofar as the
declarations of the symbols do not control the scope, but rather the usage of the symbols within the source file. Note
that once the compiler encounters térenntr symbol in the sequence above, kegnrd andtermntr symbols are no
longer visible (or “in scope”) to the program.

Macros also have their own local symbols. In the example akgv@ndzare all examples of local macro sym-
bols. The scope of a local macro symbol is somewhat complex and challenging to describe (not to mention, imple-
ment). Like theKEYWORD and TERMINATOR identifiers, the scope of a local macro symbol is dynamically
defined and the behavior isn’t entirely intuitive.

Local macro symbols you declare inkEYWORD or TERMINATOR section are the easiest to understand
because their behavior is very similar to local symbols within a procedure. Local symbols in these geatitria (
the example above) are visible only within the macro text expansion section associated K W@RD or TER-
MINATOR sections (<< some text to expand #2 >> and << some text to expand #3 >> in the example above). Note
that these symbols are not available outside the macro declaration (and, in particular, the symbol y is not defined in
the << body text, part 2 >> section).

1. HLA v1.x used th® VERRIDES keyword to achieve this result.

Local symbols in MACRO declaration behave differently than local symbols KE& WORD (or TERMINA-
TOR) section. Like thiKEYWORD andTERMINATOR sections, local symbols you define with M&CRO state-
ment are visible in the text expansion associated wittVtR€RO statement (<< some text to expand #1 >> in the
example above); however, the local symbols you declareNPAGERO statement are also visible within all text
expansion sections of a multi-part macro. That is, the identifirethe example above is visible not only in << some
text to expand #1 >>, but also << some text to expand #2 >> and << some text to expand #3 >>. You are not allowed
to redefine local macro symbols within the same macro (e.g., you cannot regétclireKEYWORD or TERMI-
NATOR sections).

HLA's scoping rules have a big impact on the design of the symbol table data structures and algorithms. To
understand the reason behind many of the compiler’s design decisions, you should be comfortable with the semantics
behind identifier visibility and scope in HLA. For more information, please consult the HLA documentation.

Generic Symbol Table Data Structures

The following paragraphs describe the data and meta-data we must keep for each symbol in the HLA symbol
table:

next, left, right

These fields contain pointers to other symbol table entries.né@ttdield implements a linear list of symbols
within a particular symbol table. HLA uses tleé& andright fields to implement a binary search tree in the symbol
table. Note that some algorithms (e.g., making a copy of a symbol table, dumping symbols, processing parameters,
and symbol insertion) work best with a linear list of symbols; other algorithms (e.g., searching for a symbol) are
much more efficiently implemented using a binary tree. Therefore, the HLA compiler imposes both data structures
on the symbol tables it builds. Then a given operation can use whichever algorithm is more appropriate for the task at
hand.

Icname, trueName

These two fields are (HLA) strings that specify the identifier associated with this symbol table entry. The
Icname field contains the name in all lower case characterstrubflame field contains the symbol using the exact
spelling (with respect to case) of the identifier in the source file. When searching for a symbol in the symbol table,
HLA first converts the target string to lower case and then searches through the symbol table comparing the test string
against thécname field of the entries in the symbol table. If HLA finds a match, it then compares the original iden-
tifier against the string in tteueName field and reports a “case neutrality” violation if the second string comparison

fails. This is how HLA enforces case neutrality of identitiers

symType, baseType, localSyms, equateLabel

These fields are all different names for the same physical pointer (i.e., they all belong to a union). This is a
pointer to a symbol table entry and the meaning of the pointer depends upon the context, specifically the symbols
classification.

For array types, thbaseType field contains a pointer to the type entry for the array element’s type. You may
identify array types by looking at theimElements field of the symbol table data type. niimElements contains

1. Case neutrality means that HLA uses a case sensitive comparison for identifiers so that all uses of an identifier within
a source file must exactly match the original declaration. However, HLA does not treat identifiers whose only differ-
ence is alphabetic case as distinct; instead, HLA reports an error if you attempt to use such identifiers in your pro-
gram.

zero, then the object is scalar and the valubase Type is meaningless; however, iimElements is non-zero,

then thebaseType field points at the element type for this array. Note that HLA v2.x implements multidimensional
arrays as “arrays of arrays.” Therefore, blase Type field for a two-dimensional array object will point at the data
type that specifies the second dimension of the array.

If the current symbol is a program unit identifier (procedure, method, iterator, program, or NMAK)ESRACE
Or asSEGMENT, or a union/record/class, then tloealSyms field points at the local symbols for that program unit.
Note that this field points at the local symbol table tree for that program unit (i.e., searching through the sub-symbol
table will use a binary search).

For data objects that have some sort of type associated with them (i.e., scalar constants and varisjtes), the
Type field contains a pointer to the symbol table entry that defines the symbol’s type. Note that the pType field will
usually contain the equivalent type information as well, in a more compact form.

For LABEL objects, thesquateLabel field will contain a pointer to another label symbol table entry if the current
label is equated to that other label. If the current symbol is not equated to another label, this field will contain NULL.

Certain objects (e.g., macros) do not have any associated symbol type information. For these olsjgeis, the
Type field will contain NULL. For example, a procedure’s symbol table entry doesn’t have a data type associated
with it, so thesymTypefield contains NULL (though thgType field will containproc_pt in this instance). The impor-
tant thing to note is that tregmType field doesn’t necessarily contain a valid pointer; it may contain NULL.

seg, linearSyms

If the current object is STATIC, READONLY, STORAGE, OF SEGMENT variable, then this field points at the symbol
table entry for the segment that contains this symbol. Notesthatc objects belong to thdata segmentREA-
DONLY objects belong to theeadonly segment, andTORAGE objects belong to thbss segment (unless the pro-
grammer has changed the default names for these segmentSEGHerT symbol table entries (includingdata
(SEGMENT), readonly (READONLY), andbss (STORAGE) symbol table entries, HLA stores a pointer to the beginning
of the linear list for the segment in this field. All other symbols store a NULL in this field.

If the current symbol is an object with a local symbol table (e.g., namespace, union, record, class, procedure, pro-
gram, unit, method, iterator, etc.) then linearSyms points at the first symbol in a linear list of that local symbol table.

Note that the use of seg and linearSyms is mutually exclusive.

segList, equateList, lastLinear

If the current object is STATIC, READONLY, STORAGE, Or SEGMENT variable, then theegList field points at the
next variable in the linear list of symbols associated with this segmensedaeNT symbol table entries (including
data (SEGMENT), readonly (READONLY), andbss (STORAGE) symbol table entries, HLA stores a pointer to the last
entry of the linear list for the segment in this field.

For LABEL objects, theequateList field forms a linked list of unresolved forward references. After compiling
the currenrROGRAM or UNIT, HLA will traverse this list to resolve any outstanding equates (or emit an unresolved
label message).

For objects that maintain a local symbol table, the lastLinear field points at the last symbol in the linear symbol
table list.

All other symbols store a NULL in this field. Note that these three fields are member of a union and, therefore,
their use is mutually exclusive.

owner

This pointer contains the address of the object whose sub-symbol table holds this symbol table entry. Usually,
this is the address of a procedure, program, unit, method, iterator, or namespace symbol table entry. For the special
case of lex level zero symbol table entries, this field contains NULL.

lexLevel

This field holds the static procedure nesting level for the symbol. Note that lex level zero corresponds to global
program/unit symbols. Procedures declared in a program or a unit have lex level one, procedures nested in these pro-
cedures have lex level two, etc. HLA uses negative lex levels for records, unions, and classes.

objectSize

The objectSize field specifies the size, in bytes, of this particular object. If an “object size” doesn’'t make sense
for this object (e.g., for macros or procedures) then this field’s value is irrelevant and will probably contain zero. If
the object is an array, record, or other composite structure, then this field contains the total size of the object in bytes.

pType

The pType field is an enumerated data type that lets the HLA compiler quickly and easily work with predefined
data types (e.gint32, uns8, float64, andbyte). The compiler uses this field (along with symClass) to determine
how to interpret theymType (and related) pointer.

symClass

This field holds the symbol’s classification, that is, whether the symbol is a constant, type, variable, procedure,
etc. This is one of the following valugSonstant_ct, Value_ct, Type_ct, Var_ct, Parm_ct, Static_ct, Label_ct,
Proc_ct, lterator_ct, ClassProc_ct, Classlter_ct, Method_ct, Macro_ct, Keyword_ct, Terminator_ct,
Program_ct, Namespace_ct, Segment_ct, Register_ct, andNone_ct. Along with pType, symClass determines
which (if any) of the symbol table union members HLA should use.

Table 1. Symbol Table Union Member Selection

Program,
Unit,
Scalar Record, Procedure,| Namespace
Array Union, Pointer Method, and Other
symClass Data
Types and Class| Types | lterator,and| Segment Types
Types' Types Procedure Types
Pointer
Types
Constant_ct, symType baseType| inhType baseType NULL NULL NULL
Value_ct,
Type_ct, Var_ct,
Parm_ct,
Static_c
Label_ct NULL NULL NULL NULL NULL NULL NULL
Program_ct, NULL NULL NULL NULL localSyms NULL NULL
Unit_ct, Proc_ct,
Iterator_ct,
ClassProc_ct,
Classlter_ct,
Method_ct

Table 1. Symbol Table Union Member Selection

Program,
Unit,
Scalar Record, Procedure,| Namespace
Array Union, Pointer Method, and Other
symClass Data
Types and Class| Types | lterator,and| Segment Types
Types' Types Procedure Types
Pointer
Types
Macro_ct, NULL NULL NULL NULL NULL NULL NULL
Keyword_ct,
Terminator_ct
Namespace_ct, || NULL NULL NULL NULL NULL localSyms NULL
Segment_ct
Register_ct NULL NULL NULL NULL NULL NULL NULL

a. boolean, charater, string, enum, uns, int, byte/word/dword,qword/tbyte/lword, and real.

isExternal

This field contains true if the symbol has an external declaration and no local declaration (making the symbol
public) for the symbol has been found.

isForward

This field contains true if there has been a forward declaration for the symbol. It is reset to false when the actual
declaration appears.

isPrivate

This field contains true if the symbol is a private field of the current data structure (e.g., class or record).

isReadOnly

This field is true if the object is a read-only memory object (i.e., is a member of a segment that is marked “rea-
donly”).

pClass

This field is only valid if thesymClass field containsParm_ct (meaning that this symbol is a parameter decla-
ration for some program unit). The value of this field determines the parameter’s class (that is, the parameter passing
mechanism this particular parameter uses). This field contains one patim€lass_t enumeration values:
valp_pc, refp_pc, vrp_pc, result_pc, name_pc, or lazy_pc.

inReg

This field is valid only if thesymClass field containsParm_ct (meaning that this symbol is a parameter declaration
for some program unit). The value of this field specifies whether HLA passes the specified parameter on the stack or
in a register. This field contains a value of type inReg_t and holds a valugAlikenAX, inEAX, inNone, etc.

externName

This field contains the external name for objects. The external name is the name that would be passed to an
assembler or linker. For external objects, this is usually the saimeelame (unless, of course, the programmer
specifies some explicit external name). For non-external objects, this field usually contains an HLA-synthesized
name that is guaranteed to be unique. Some objects (e.g., constavit afjects) do not have a static name, this
field will probably contain NULL for such objects.

offset, address

For automatic variablesviar symbols), this field contains the offset into the activation record for the variable.
For RECORD andUNION fields, this field contains the offset into the data structure for that field.ARowbjects and
METHOD/ITERATOR pointers withincLAsses, theoffset field contains the offset into the class data structure.

Labels, procedures, and (non-class) iterators use the address field to hold the address of the intermediate code
that HLA generates for the associated code. For static objects (STATIC, READONLY, SEGMENT, STORAGE) the
address field contains a pointer to the intermediate code generated for the variable’s value.

Most other objects don't use this field.

Optional Union Fields in a Symbol Table Entry

Note: the following fields are part of a union and their use is mutually exclusive.

fwd

This field holds a link to the next symbol table entry that references a forward declaration. HLA uses this list of
symbols to backpatch symbol table entries when the forward declared symbol is finally defined.

va (type attr_t)

If the current symbol is some constant typeffstant_ct or Value_ct) then this field holds the value associated
with that constant symbol. If the constant is an array or record type, thea.#nmeayValues or va.fieldValues
fields contain a pointer to the actual data. If the constant is a string or unicodeustiiimg) value, then the field
points at an appropriate HLA string. Otherwise, the value is contained withra fredd itself.

inhType, fieldCnt, numElements, fieldindex

These fields are members of a record (that is, their use is not mutually exclusive within this group, though the use
of the entire group is mutually exclusive with the use of the other fields of the optional union fields. These fields are
used by record, union, class, and array type declarations.

If the current object is a record or class type definition, themtiigpe field contains a pointer to the symbol
table entry (if any) from which the record/class has inherited any fields. If the object is not a record/class or it doesn’t
inherit any fields, then this field will contain NULL.

For record, union, and class types, fileelCnt field specifies the total number of fields in the local symbol table
associated with this type declaration.

For array types, theumElements field specifies the total number of array elements for the current array type.

For symbol entries that are fields of some existing record/union/class tyieldhelex field specifies a zero-
based index into the linear symbol table associated with the parent record/union/class type. This field exists mainly as
a convenience for quickly indexing into record constants at compile time.

returnsStr, baseClass, parmSize, localSize, preserves, callSeq, hasFrame, hasDis-
play, alignsStack, useEnter, useLeave, uses

These fields are only used by procedures, methods, iterators, pointers to these objects, namespaces, programs,
and units.

returnsStr

This field holds a string that is tleETURNS value associated with a procedure or method. Whenever HLA
encounters a procedure call in an expression or operand, it substitutes this string for the call in the source file after
emitting the code for the call to the procedure. This field is only valid for procedure and method symbols.

baseClass

For methods, class iterators, and class procedures, this field points at the base class for the program unit. For
other objects this field contains NULL. Note that this pointer, if non-null, always points at an object that is a type
definition.

parmSize

This field specifies the size of the parameter list (used, for example, Rythestruction when returning from
a procedure to clean up the parameters).

localSize

For programs, procedures, iterators, and methods, this field specifies the number of bytes of local variables the
program unit requires.
preserves

This is a bitmap (specified by the preserveReg_t constants) that specifies which registers a procedure/method/
iterator preserves across a call.

callSeq

For program units, this field specifies the calling sequence (Pascal/HLA, C, StdCall) and is one of the following
constant valuesascal_cs, stdcall_cs, cdecl_cs.

hasFrame

If this field contains true, then HLA will emit code at the beginning and end of the program unit to construct and
destroy an activation record. This variable also controls code emission RartireN instruction. If falSeRETURN
simply emits arET instruction; if true RETURN emits a jump to the code that cleans up the activation record and
returns from the procedure.

hasDisplay

This field is true if the program unit is to allocate storage for a display in its activation rechadFtdme and
hasDisplay are both true, then HLA will actually emit the code to build the activation record.
alignsStack

If this field is true andhasFrame is also true, then HLA emits code to double word align the stack after con-
structing the activation record. This is primarily useful if the caller pushes some number of bytes that is not an even
multiple of four prior to calling the current program unit.

useEnter
If this field is true andchasFrame is also true, then HLA emits an ENTER instruction to build the activation
record. If this field is false anfthsFrame is true, then HLA emits discrete instructions to build the activation record.

uselLeave

If this field is true andhasFrame is also true, then HLA emits a LEAVE instruction to clean up the activation
record on procedure exit. If this field is false da$Frame is true, then HLA emits discrete instructions to remove
the activation record.

uses

This field specifies a 32-bit register that is available for processing parameters on a procedure call. The type of
this field is inReg_t, however HLA only uses the 32-bit register declarations here. Default yaNmnis, in which
case HLA preserves all registers it uses to push parameters on the stack (when using a register is necessary).

Symbol Table Entries for Composite Data Types

Array, structure, and pointer types are alw@yge_ct objects. That is, any time you declare a constant or vari-
able array or structure object, thenType field always points at a type definition. Variables and constants are never
created directly as array objects. Instead, thein Type field points at a symbol table entry that is a type declaration
of the appropriate composite type. This is obviously true when you have declarations like the following:

type
a: uns32[4];
r: record a:uns32; b:uns32; c:uns32; endrecord

var

<
TR

In this exampley s symType field clearly points at the symbol table entry for a while symtype field obviously
points atr s entry. What may not be so obvious is the fact $ipat Type even points at a type declaration in the fol-
lowing declarations:

var
X: uns32[4];
y: record a:uns32; b:uns32; c:uns32; endrecord,

What is not clear here is exacthhat symbol table entries theymType fields point at. As it turns out, when you

have declarations like the ones immediately above, HLA automatically creaesngmous type entry in the sym-

bol table. The normal symbol table search routines will never match these anonymous entries; howgver the
Type fields can properly refer to these entries so that the type checking mechanisms in HLA can operate in a
consistent manner without a lot of extra kludging. Note thapffpe fields for x and y will contain the value
Deferred_pt. This tells HLA thatx andy are composite types and it should follow ¥Type pointer to deter-

mine their type.

trueName X Variable declaration.
Note: symClass = Var_ct
and pType = Deferred_pt
symType

Anonymous type declaration.
trueName 2?77 Note: symClass = Type_ct
and pType = Array_pt

symType
numElements 4
liLeNarie uns32 Uns32 type declaration.
Note: symClass = Type_ct
symType NULL and pType = uns32_pt

Note that HLA's symbol table declaration only provides a singl@Elements field for specifying the number
of elements in an array object. This means that the symbol table format supports only a single dimension array. A
good question is “How does HLAs symbol table structure support multi-dimensional array declarations?” For exam-
ple, the following is a perfectly legal HLA declaration:

var
a2: uns32[8,4];

To understand how HLA implements the above two-dimensional array declaration, consider the following declara-
tion:

type
ul: uns32[4];
u2: ul[8];
var
a3: u2

In this example, it's easier to see how HLA implements multi-dimensional arrays using an “array of arrays” mecha-
nism. Clearly, it's easy to implement thé type; all HLA has to do is set timElements field to four and point

the symType field at theuns32 symbol table entry. Logically, implementing is no different. HLA set#/2 s
numElements field to eight and points treymType field at the symbol table entry for.

When HLA encounters a multi-dimensional array declaration like the o2 fabove, it creates an anonymous
type declaration for each of the dimensions in the declaration. Them2wsesymType field will wind up pointing
at an anonymous type entry wheaenElements field contains eight and whosgmType field points at a second
symbol table type entry. That second anonymous entry will contain foumiawit&/ements field and thesymType
field will point at theuns32 symbol table entry.

Variable declaration.
Note: symClass = Var_ct
and pType = Deferred_pt

Anonymous type declaration.
Note: symClass = Type_ct
and pType = Array_pt

Anonymous type declaration.
Note: symClass = Type_ct
and pType = Array_pt

trueName a2

symType

trueName 7777

symType

numElements 8

trueName ?77?

symType

numElements 4
trueName uns32

Uns32 type declaration.
Note: symClass = Type_ct
and pType = uns32_pt

HLA handles direct (anonymous) record declarations in an identical fashion. If you have a record variable

declared as follows:

var
rv:record
a: uns32;
b: uns32;
C:uns32;
endr ecord;

then HLA will create a symbol table entry forthat points at a symbol table entry that HLA creates on the fly. The
new (anonymous) symbol table entry will have a fields field that points at the entde$ fandc, have &ieldCnt
value of three, etc. Note that thé&ype field for rv will contain the valueDeferred_pt. This tells HLA thatv is a
composite type and it should follow tegmType pointer to determinev s type.

trueName v Variable declaration.

Note: symClass = Var_ct

and pType = Deferred_pt
symType

Anonymous type declaration.

2977 Note: symClass = Type_ct
IiLieNarie and pType = Record_pt
fields Local symbol table containing
a,b,andc

Note that this use of anonymous symbol table entries is a big departure from the technique used in HLA v1.x.
HLA v1.x did not use anonymous symbol table entries (which is a standard compiler symbol table management trick)
and, instead, implemented structures and array directly in the variable’s symbol table entry. While there were some
minor benefits to the way HLA v1.x handled these entries, the disadvantages far outweighted the benefits. The new

(well, traditional actually) scheme employed by HLA v2.0 is much simpler and probably more efficient in the long

runl.

Pointers are another composite data type that HLA handles in a fashion just like arrays and structures. Consider
the following declaration:

var
p: pointer to dword,;

The symbol table entry fgr will contain Deferred_pt as thepType value andsymType will point at an anon-
ymous type entry. That anonymous entry will hapd e value ofPointer_pt and thebase Type field will point at
the symbol table entry fatword.

Symbol Table Data for Specific Symbol Classes

The following subsections describe the meaning of the symbol table entries for each of the symbol classes:

LABEL Class Symbol Table Entries

Label objects let HLA programmers forward declare statement labels in an HLA program. Statement labels are
NEAR32 symbols (using Intel/MASM terminology). The principle purpose fosaEL object is to allow code in

1. One might ask if the traditional scheme is so good and so well known, why didn’t HLA v1.x use this scheme. The
reason is that HLA v1.x was a prototype and several experiments were tried in the code. The mechanism for imple-
menting arrays and records was one such experiment that, alas, failed.

one procedure to reference a label declared in a separate procedure. Note that a procedure may forward reference any
local statement labels appearing in that procedure; the purposeLaBthesection is to declare symbols that other
procedures may reference.

Here is the syntax for the label section (note: optional items are underlined):

| abel
identifier; option
<< Addi tional |abel identifier declarations >>

Allowable options (these are mutually exclusive):

@xternal;
@xternal (“extern_nane”);

Example:

| abel
aLabel I D
AnExt er nal Lbl ; @xternal;
Anot her Ext Lbl ; @xternal (“external _nanme”);

Note: All labels you declare in a procedure must appear as statement labels within the current procedure or some
other procedure must define a global symbol using that label. To define a statement label in a program, you simply
put the label's name followed by a colon anywhere a statement is legal, e.g.,

Label Exanpl e:
nov(0, eax);

By default, labels are local to the procedure in which you define them. You may define global labels by following the
identifier with a pair of colons, e.g.,

d obal Label ::
nov(1, ebx);

Global symbols must be unique from the current lex level up to lex level zero (that is, there cannot be a visible symbol
identical to the global label at the point you define the global label) unless that label was defined somewhere in a
LABEL declaration section (in which case the global label declaration satisfies the requirement that the symbol must
be defined at some point. By declaring a label at lex level one (the program/unit lex level), you can easily refer to a
label inside any procedure from within any other procedure (though it's probably not good programming style to do
S0).

program Nest edLabel Ref er ence;
| abel
nest edLabel ;

procedure UsesNest edLabel ;
begi n UsesNest edLabel ;

jmp nestedLabel; // Not bright, just for deno only.
end UsesNest edLabel ;

procedur e Defi nesNestedLabel ;

begi n Defi neNest edLabel ;
nestedLabel :: // Satisfies nestedLabel declaration earlier.
end Defi neNest edLabel ;

begi n Nest edLabel Ref erence;

end Nest edLabel Ref erence;

Like other HLA public declarations, you create public labels by both declaring the label to be external and then
defining the label in the current source file. For example, we can make “nestedLabel” accessible from other source
files in the example above by changing the label declaration to the following:

| abel
nest edLabel ; external;

Here’s howLABEL symbol table entries use the fields in the symbol table:

Icname, truename

These symbol table fields contain the declared name of the symbol.

equatelLabel

If the current label is equated to another label, and that label has not yet been defined, then this field points at the
symbol table entry for that other label. Once the label is defined, HLA sets this field to NULL. If the current label
object is not equated to another label, then this field will be NULL.

seg, linearList
This field contains NULL for label objects.

equatelList (segList/lastLinear)

This field forms a linked list of labels that are equated to other labels. After processimgram Or aUNIT,
HLA scans through this equate list to determine if there are any unresolved label declarations and to resolve any out-
standing equated labels.

owner

This field points at the object whose localSymbols field contains a pointer to the sub-symbol-table that holds this
symbol (typically @ROGRAM, UNIT, PROCEDURE, ITERATOR, Or METHOD symbol table entry).

lexLevel

This field holds the numeric lex level of this symbol.

objectSize

This field has no meaning for label objects.

pType
The field contains the constdrabel_pt for label objects.

symClass
This field containgabel_ct for label objects.

isExternal
This field contains true if the symbol is externally defined (i.e., the @EXTERNAL clause is present).

isForward

This field is always set to true when you define a symbol in the LABEL section. HLA sets this field to false when
it encounters the actual symbol definition in the procedure.

isPrivate

This field has no meaning for label objects.

isReadonly

This field has no meaning for label objects (though, technically, labels could always be considered read-only
objects).

pClass

This field has no meaning for label objects.

inReg

This field has no meaning for label objects.

externName

This field contains the external name of the label object. If this symbol is not external, then this field contains
NULL.

address (offset)

HLA stores the address of the intermediate code associated with the label in this field. At code generation time,
the compiler uses this information to compute the offset of some label into the program’s code space.

Label declarations do not use any other fields in the symbol table data structure. Also note that labels may only
appear as global symbols in programs/units or local symbols in procedures, iterators, and methods. They may not
appear in namespace or structure declarations.

enterLabel Function Prototype:

procedur e enter Label

(
symnbol :string;
| cNane :string;
symNode :synmNodePtr _t;
equat e :synmNodePtr _t;
ext ernNane: string;
addr ess : dwor d;
owner :synmNodePtr _t;
var | eaf :synNodePtr _t
)

This procedure inserts a label symbol into the current symbol table. If it succeeds, it returns a pointer to the new
symbol table entry in the EAX register. If it fails, it returns NULL (zero) in EAX; if it fails, the function will print
the appropriate error message, the caller need not take any special action. Failure usually implies a duplicate symbol
error, though there are a few other degenerate cases the function handles, as well.

The symbol parameter must point at an HLA string that contains the label’'s identier. This field must not be
NULL and must point at a non-empty string. HLA assumes that this particular string is not shared with any other data
object. Therefore, the caller must first duplicate this string if some other long-term data structure will also point at
this string data.

The lcName parameter is a copy afymbol with all uppercase characters converted to lower case. Though, in
theory,enterLabel could compute this, it turns out that HLA would recompute this value several times for each sym-
bol; by passing it as a parameter, HLA allows the caller to do this conversion just once (making the whole system
more efficient).

The symNode parameter is a pointer to the symbol table entry for this symbol. Pass in NULL if the symbol is
currently undefined.

The equate parameter contains a pointer to a symbol table entry for a symbol to whom we’re equating the cur-
rent symbol. This parameter gets passed NULL if we're not creating an equated symbol.

The externName parameter contains the address of a string holding the external name for this symbol. This
parameter gets passed NULL if this symbol does not have an external (public) name.

The address parameter contains the memory address of the intermediate code associated with the statement to
which the label applies. When processing symbols ilLiseL section, this offset generally isn’t known yet, so HLA

simply passes zero in this parameter. HLAs code generator uses this address to determine jump offsets and other
such information at code generation time.

The owner parameter contains a pointer to the object whose sub-symbol table contains this label.

Theleaf field contains the address of the left or right symbol table field to whom we're going to link this symbol
in the symbol table.

This function returns a pointer to the symbol table entry (it creates or finds) in the EAX register.

CONST Class Symbol Table Entries

CONST class symbols have a (compile and run time) immutable value associated with them. HLA binds the value
of acoNsT object to the symbol at the point of declaration and that value never changes thereafter.

Icname, truename

These symbol table fields contain the declared name of the symbol.

symType

This field contains a pointer to the symbol’s data type.

seg, segList

These fields contain NULL faronsT objects.

owner

This field points at the object whokscalSymbols field contains a pointer to the sub-symbol-table that holds
this symbol.

lexLevel

This field holds the numeric lex level of this symbol.

objectSize

This field holds the size of the constant, in bytes.

pType

The field contains the enumera@ype_t constant associated with this constant’s data type. Usually the value is
something likeUns32_pt, although HLA constants can be composite as well as scalar data types. For composite and
user-defined types, thidype field will containDeferred_pt. In that case, theymType field will point at an appro-
priate symbol table entry (usually an array, record, or pointer type entry, since these are the only composite types
HLA allows as constants).

symClass

This field contain€onstant_ct for constant objects.

isExternal

This field always contains false fooNsT objects.

isForward

This field always contains false fooNsT objects.

isPrivate

This field contains true if thisoNsT symbol is a private field of @.Ass object.

pClass

This field has no meaning faDNST objects.

externName

This field has no meaning fapNsT objects and contains NULL.

Variant Data Fields (va)

One of the variant data fields (e.ga.uns32_vt) holds the value associated with this constant symbol. The
pType andsymType fields determine which of the variant data fields holds the value. For array, record, and union
types, thearrayValues_vt or fieldValues_vt fields contain the address of the constant data elsewhere in memory.
HLA does not support class constants.

enterConst Function Prototype:

procedure enter Const

(
symnbol :string;
| cNane :string;
symNode :synmNodePtr _t;
symlype :synmNodePtr _t;
var const Val cattr_t;
owner :synmNodePtr _t;
var | eaf :synmNodePtr _t
)

This procedure insertscNsT symbol into the symbol table specifieddayner (into the current symbol table if
owneris NULL). If it succeeds, it returns a pointer to the new symbol table entry in the EAX register. If it fails, it

returns NULL (zero) in EAX; if it fails, the function will print the appropriate error message, the caller need not take
any special action. Failure usually implies a duplicate symbol error, though there are a few other degenerate cases the
function handles, as well.

The symbol parameter must point at an HLA string that contains the constant’s identifier. This field must not be
NULL and must point at a non-empty string. HLA assumes that this particular string is not shared with any other data
object. Therefore, the caller must first duplicate this string if some other long-term data structure will also point at
this string data.

The lcName parameter is a copy afymbol with all uppercase characters converted to lower case. Though, in
theory,enterLabel could compute this, it turns out that HLA would recompute this value several times for each sym-
bol; by passing it as a parameter, HLA allows the caller to do this conversion just once (making the whole system
more efficient).

The symNode parameter is a pointer to the symbol table entry for this symbol. Pass in NULL if the symbol is
currently undefined.

The symType parameter points at the symbol table entry for this constant’s data type.

The constVal parameter must be a pointer to the value to assign to this constant symbol. HLA makes a copy of
thevalue_t component o€onstVal, so the caller doesn’t have to preallocate the data fovathe_t data. However,
if there are any pointers to auxiliary data (e.g., strings, arrays, or records), then HLA assumes that such data has been
allocated on the heap and no other data structures refer to this data (that is, the pointer contained atithin the
structure is the only pointer that refers to this data). If this is not the casentfiee@onst s caller must duplicate
this data prior to callingnterConst. Note that most of the time this structure is filled in by the expression evaluator
and the expression evaluator guarantees unique copies of the data.

The owner parameter points at the object (procedure, namespace, etc.) whose sub-symbol table will hold this
constant’s symbol. If this field contains NULL then HLA inserts the symbol into the currently active symbol table.

Theleaf field contains the address of the left or right symbol table field to whom we're going to link this symbol
in the symbol table.

VAL/? Class Symbol Table Entries

VAL class symbols have run time immutable values associated with them, though their values can change at com-
pile-time (e.g., by executing compile-time language statements like “?”). HLA binds the valWaiobaject to the
symbol at the point of declaration and that value remains constant until explicitly changed by the “?” compile-time
statement.

There is a big semantic difference between declaring (and assigning a value to) a symbaAinstetion ver-
sus using the “?” compile-time statement. A statement like the following:

? XYZ : uns32 := 0O;

will use a previously-declaredYZ symbol, even if that symbol was defined at a different lex level. This statement

can change both the type of value of the previously defined symb¥¥Zlfvas not previously defined, then the “?”
statement above declares a new symbol at the current scope. This statement never generates an error, regardless of
whetherXYZ was previously declared at the same or a different lex level (or not at all).

Contrast the behavior above with the followivig/ declaration:

VAL
XYZ . uns32 = 0;

This declaration will replace the value of symMMZ if it already exists at the current lex level. If the sym¥¥l;
exists at a different lex level, then the declaration above does not affect the value or type of the original symbol;
instead, this declaration creates a new copy of the symbol at the current lex level.

VAL and “?” symbols use the fields of a symbol table entry in exactly the same maQosisa®bjects. The only
difference between the two is that thygnClass field containsValue_ct and it's possible to change the symbol’s
type by replacing the value of thrdield (and the associated type information).

enterVal Function Prototype:

The enterVal function enters a symbol into a symbol table whose declaration appeavainsaction. This
function looks only in the local symbol table specified by owner (or the currently active symbol @bteeifis
NULL). Ifit doesn't find the symbol in the local symbol table, it creates that symbol and assigns the associated value;
if it does find the symbol, and that symbol’s clasgatie_ct, then HLA frees the current value associated with that
symbol and assigns the value aiinstVal to the symbol. The parameters fterVal are identical to those for
enterConst.

procedure enter Val

(
symnbol :string;
| cNane :string;
symNode :synmNodePtr _t;
symlype :synmNodePtr _t;
var const Val cattr_t;
owner :synmNodePtr _t;
var | eaf :synmNodePtr _t
)

setVal Function Prototype:

The setVal function handles the “?” operator. This function first checks to see if the symbol is currently visible
at any lex level; if so, and that symbol's clas¥due_ct, then HLA frees the current value associated with that
symbol and assigns the valueaainstVal to the symbol. If the specified symbol is not visible at the point the “?”
operator appears, theatVal behaves identically tenterVal. The parameters fenterVal are identical to those for
enterConst.

procedure set Val

(
symnbol :string;
| cNane :string;
symNode :synmNodePtr _t;
symlype :synmNodePtr _t;
var const Val cattr_t;
owner :synmNodePtr _t;
var | eaf :synmNodePtr _t
)

TYPE Symbol Table Entries

The TYPE section lets a program define new data types in HLA. The syntax for a TYPE declaration takes one of
the following forms (optional items are underlined):

type

id: typelD /'l 1sonor phi sm (type renam ng).

id: enu{ id_list }; /'l Create an enumerated data type.

id: pointer to typelD, /'l Creates a pointer type to a base type.
id: typel dimist]; /'l Creates an array type.

id: record fields endrecord; // Creates a record type.

id: union fields endunion; /'l Creates a union type.

id: class decls endcl ass; /'l Creates a class type.

id: procedure(_parns); /'l Creates a procedure pointer type.

id: iterator(_parns); /'l Creates an iterator pointer type.

The following is legal in the TYPE declaration section, but it doesn’t create an actual TYPE symbol table entry.

id: forward(id); /'l Forward declaration for use by nacros.

Here’s how TYPE symbols use the symbol table fields:

Icname, truename

These symbol table fields contain the declared name of the symbol.

symType, baseType, localSyms (depends on declaration)

For primitive types (e.gint32) this field contains NULL (zero). For isomorphic types (type renaming) this field
contains a pointer to the type entry whose type this definition is renaming. For array typeseffype field points
at the type field for an array element. For structure typedhtSyms field contains a pointer to the base type. For
most other types, this field contains NULL.

linearSyms, (seg)

This field contains a pointer to the local symbol table for record, union, and class types. It contains NULL for
most other types

lastLinear (segList/equateList)

This field contains a pointer to the last entry in the linearl local symbol table for record, union, and class types. It
contains NULL for most other types

owner

This field points at the object whokscalSymbols field contains a pointer to the sub-symbol-table that holds
this symbol.

lexLevel

This field holds the numeric lex level of this symbol.

objectSize

This field holds the size the data type will consume, in bytes. For composite types, this is the total number of
bytes associated with the object. Note that string and ustring objects are pointers, hence this field contains four. This
field has no meaning for procedures, iterators, methods, programs, macros, and TEXT objects. Note that this field
does contain four for pointers to these objects.

pType

The field contains the enumera@ype_t constant associated with this constant’s data type. Usually the value is
something likeUns32_pt, although HLA constants can be composite as well as scalar data types. For composite and
user-defined types, thidype field usually contains something likeray pt or Record_pt.

Boolean_pt:
Enum_pt:

uns8_pt:
Unsl6_pt:
Uns32_pt:
Uns64_pt:
Uns128 pt:

Byte_pt:
Word_pt:
DWord_pt:
QWord_pt:
TByte_pt:
LWord_pt:

Int8_pt:
Int16_pt:
INt32_pt:
Int64_pt:
Int128_pt:

Char_pt:
XChar_pt:
Unicode_pt:

Real32_pt:
Real64_pt:
Real80_pt:
Reall28_pt:

String_pt:
UString_pt:
Cset_pt:
XCset_pt:

Thunk_pt:

Deferred_pt:

Associated with type boolean and isomorphisms of boaBamType field contains NULL.
Associated with enumerated types. SymType field contains NULL.

Associated with type uns8 and isomorphisms of uSgiType field contains NULL.
Associated with type uns16 and isomorphisms of urggai.Type field contains NULL.
Associated with type uns32 and isomorphisms of urfya2.Type field contains NULL.
Associated with type uns64 and isomorphisms of urfy#.Type field contains NULL.
Associated with type uns128 and isomorphisms of un§l28Type field contains NULL.

Associated with type byte and isomorphisms of b§ienType field contains NULL.
Associated with type word and isomorphisms of w&gnType field contains NULL.
Associated with type dword and isomorphisms of dwSyn Type field contains NULL.
Associated with type qword and isomorphisms of qw8ydn Type field contains NULL.
Associated with type tbyte and isomorphisms of tb§ien Type field contains NULL.
Associated with type Iword and isomorphisms of lwdgm Type field contains NULL.

Associated with type int8 and isomorphisms of ir@@mType field contains NULL.
Associated with type int16 and isomorphisms of in8gn Type field contains NULL.
Associated with type int32 and isomorphisms of int8gmType field contains NULL.
Associated with type int64 and isomorphisms of int8dn Type field contains NULL.
Associated with type int128 and isomorphisms of int’38nType field contains NULL.

Associated with type char and isomorphisms of wan Type field contains NULL.
Associated with type xchar and isomorphisms of xcByam Type field contains NULL.
Associated with type unicode and isomorphisms of unic®gde.Type field contains NULL.

Associated with type real32 and isomorphisms of re&l@2.Type field contains NULL.
Associated with type real64 and isomorphisms of re&lg#.Type field contains NULL.
Associated with type real80 and isomorphisms of re&lig®.Type field contains NULL.
Associated with type real128 and isomorphisms of reaBy287Type field contains NULL.

Associated with type string and isomorphisms of stf8ygn Type field contains NULL.
Associated with type ustring and isomorphisms of ust®yga Type field contains NULL.
Associated with type cset and isomorphisms of Set.Type field contains NULL.
Associated with type xcset and isomorphisms of x&enType field contains NULL.
Specifies a thunk typ&ymType is NULL.

Used for type isomorphisms (type renaming). Tells HLA to get typesfmanType field.

Array_pt:
Record_pt:
Union_pt:
Class_pt:
Pointer_pt:
Procptr_pt:
AnonRec_pt:

Namespace_pt:
Segment_pt:

Label_pt:
Proc_pt:

Method_pt:
ClassProc_pt:
Classlter_pt:
Iterator_pt:
Program_pt:

Macro_pt:
Text_pt:

Variant_pt:
Error_pt:

symClass

Specifies an array typ&ymType points at the base type.

Specifies a record type. Base points at fieldsSystType field contains NULL.

Specifies a union type. Base points at fields3gm Type field contains NULL.

Specifies a class type. Base points at fieldsShst.Type field contains NULL.

Specifies a pointer typease Type points at the base type.

Specifies a procedure pointer ty@mType field contains NULL. The procedure related fields
contains other procedure data.

Specifies an anonymous record type. Generally not used by definitioriByiretbection.

Specifies a namespace type. Generally not used by definitiof's P getion.
Specifies a segment type. Generally not used by definition¥ viretrsction.

Specifies a statement label tySgmType is NULL.

Specifies a procedure typ8ymType field contains NULL. The procedure related fields contains
other procedure data.

Specifies a method typ&ymType field contains NULL. The procedure related fields contains
other procedure data.

Specifies a class procedure typgmn Type field contains NULL. The procedure related fields
contains other procedure data.

Specifies a class iterator tyggym Type field contains NULL. The procedure related fields con-
tains other procedure data.

Specifies an iterator typ&ymType field contains NULL. The procedure related fields contains
other procedure data.

Specifies a program type. Generally not used by definitiongirpthgection (only legal for the
program identifier).

Specifies a macro type. Generally not used by definitionsTiythesection.
Specifies a TEXT type. SymType field contains NULL.

Specifies a variant data type. Generally not used by definitionsTiyethsection.
This type is never used in the symbol table. It is returned Bga value to indicate some sort of
error during parsing.

This field containgype_ct for TYPE objects.

isExternal, isForward, isReadonly

These fields don't apply tovPE objects, so they always contain false.

isPrivate

This field contains true if this type symbol is a private field of &8s object.

pClass

Not used byl'YPE objects.

inReg

Not used byl'YPE objects.

externName
This field generally contains NULL.

offset/address

Not used byl'YPE objects.

variant fields

numElements

For array objects, this field contains the number of elements for the array. For scalar objects, this field contains
zero.

inhType

For record and class objects, this field points at a record/union type from which the current type has inherited
fields. For other types this field contains NULL.

fieldIndex

For types, this field usually contains zero.

fieldCnt

For record, union, and class objects, this field contains the number of fields in the structure. For other types, this
field contains zero.

Procedure Related Fields (returnsStr, parms, etc.)

These fields have meaning if thElype field holds Procptr_pt, Proc_pt, Method_pt, ClassProc_pt,
Classlter_pt, or Iterator_pt. In this case, these fields contain the same information as you would find for a proce-
dure symbol table entry (see “PROGRAM, UNIT, PROCEDURE, METHOD, and ITERATOR Symbol Table
Entries” on page 41 for more details).

enterType Function Prototype

The enterType procedure insertsy&e symbol into the symbol table. Here’s the prototype for this procedure:

procedure enterType

synbol :string;

| cNane :string;

symNode :synmNodePtr _t;

pType :pType_t;

t heType :synNodePtr _t;

owner :synNodePtr _t;
var | eaf :synmNodePtr _t

)

The parameters have their usual meanings. NotdHbaype corresponds to theymTypel/base Typellocal-
Syms field (depending upon the value @Type). Note that this procedure does not fill in the valueREoORD,
ARRAY, UNION, CLASS, and PROCEDURE/METHOD/ITERATOR types. The caller must do this af@terType returns
(using the pointer to the symbol table entry #évaerType returns in EAX).

VAR Symbol Table Entries

The VAR section lets a program define automatic variables in HLA. The synta¥ier declaration takes one
of the following forms:

type
id: typelD /'l Sinple declaration.
id: enu{ id_list }; /'l Create an enunerated vari abl e.
id: pointer to typelD /'l Creates a pointer variable.
id: typel dimist]; /'l Creates an array vari able.
id: record fields endrecord; // Creates a record variable.
id: union fields endunion; /1 Creates a union variable.
id: procedure {(parns)}; /1 Creates a procedure pointer var.

The following is legal in th& AR declaration section, but it doesn’t create an adfual symbol table entry.

id: forward(id); /'l Forward declaration for use by macros.

Here’s howVAR symbols use the symbol table fields:

Icname, truename

These symbol table fields contain the declared name of the symbol.

symType

This field contains a pointer to the symbol table entry that corresponds to this variable’s type.

seg/linearSyms, segList/equateList/lastLinear
These fields contain NULL fovAr objects.

owner

This field points at the object whokscalSymbols field contains a pointer to the sub-symbol-table that holds
this symbol.

lexLevel

This field holds the numeric lex level of this symbol.

objectSize

This field holds the size the variable will consume, in bytes. For composite types, this is the total number of
bytes associated with the variable. Note that string and ustring objects are pointers, hence this field contains four.
This field has no meaning for procedures, iterators, methods, programs, and macros. Note that this field does contain
four for pointers to these objects.

pType

The field contains the enumeraglype_t constant associated with this variable’s data type. Usually the value is
something likeJns32_pt, although HLA variables can be composite as well as scalar data types. For composite and
user-defined types, thiype field usually containBeferred_pt.

Boolean_pt: Object is a boolean variable.
Enum_pt: Object is a variable that is an enumerated type.
Uns8_pt: Object is an uns8 variable.
Unsl16_pt: Object is an uns16 variable.
Uns32_pt: Object is an uns32variable.
Uns64_pt: Object is an uns64 variable.
Uns128 pt: Object is an uns128 variable.
Byte pt: Object is a byte variable.
Word_pt: Object is a word variable.
DWord_pt: Object is a dword variable.
QWord_pt: Object is a qword variable.
TByte_pt: Object is a thyte variable.
LWord_pt: Object is an Ilword variable.
Int8_pt: Object is an int8 variable.
Int16_pt: Object is an int16 variable.
Int32_pt: Object is an int32 variable.
Int64_pt: Object is an int64 variable.
Int128 pt: Object is an int128 variable.
Char_pt: Object is a char variable.
XChar_pt: Object is an xchar variable.
Unicode_pt: Object is a unicode character variable.
Real32_pt: Object is a real32 variable.
Real64_pt: Object is a real64 variable.

Real80_pt:

Object is a real80 variable.

String_pt: Object is a string variable.

UString_pt: Object is a unicode string variable.

Cset_pt: Object is a character set variable.

XCset_pt: Object is an extended character set variable.
Thunk_pt: Object is a thunk variable.

Deferred_pt: Used for composite types. Tells HLA to get type spmType field.

The other “_pt” values don't apply to VAR objects.

symClass

This field contain¥ar_ct for VAR objects oiParm_ct for p arameters (which are also consideved objects).

isExternal, isForward

These fields always contain false forr objects.

isPrivate

This field contains true if thigArR object appears in the private section of a class definition.

isReadonly
This field contains false fof AR objects.

pClass

If this symbol table entry is a parameter object, then this field contains the parameter passing mechanism. This is
one of the following valuesialp_pc, refp_pc, vrp_pc, result_pc, name_pc, orlazy_pc.

inReg

If this symbol table entry is a parameter object, then this field contains the register (if any) in which the parameter
is passed (e.ginNone for parameters passed on the stack).

externName
This field contains NULL.

offset

Contains the offset into the activation record for ¥ object

The remaining fields have no meaning iW&R declaration symbol table entry. For composite data types and
procedure variables, HLA always creates an anonymous type entry rather than use these fields within the variable’s
symbol table entry.

enterVal Function Prototype

The following function inserts a var object into the symbol table:

procedure enterVar

(
trueName: string;
| cNane :string;
symNode :synmNodePtr _t;
pType :pType_t;
symlype :synmNodePtr _t;
owner :synmNodePtr _t;
of f set 1int32;
pC ass :parnCl ass_t;
var | eaf :synNodePtr _t
)

The symbol, IcName, symNode, pType, symType, owner, and leaf parameters have the usual meaning. The off-
set parameter holds the offset of the variable into the current activation record; this value is positive for parameters
and negative for local variables. The pClass parameter is meaningful only for parameters; it holds the parameter
passing type of the symbol; the caller should pags_pc (zero) for non-parameter objects.

STATIC, READONLY, and STORAGE Symbol Table Entries

The STATIC, READONLY, AND STORAGE sections let a program define static variables in HLA. The difference
between these sections is whether or not you can initialize the objects at compikerAime éndREADONLY) and
whether you may write to the segment at run-tieTe (IC andSTORAGE)

The syntax for aTORAGE declaration takes one of the following forms:

st or age
id: typel D /'l Sinple declaration.
id: enu{ id_list }; /'l Create an enunerated vari abl e.
id: pointer to typelD /'l Creates a pointer variable.
id: typeld dimist]; /'l Creates an array vari able.
id: record fields endrecord; // Creates a record variable.
id: union fields endunion; /1 Creates a union variable.
id: procedure {(parns)}; /1 Creates a procedure pointer var.

The following is legal in theTORAGE declaration section, but it doesn't create an astuatAGE symbol table entry.

id: forward(id); /'l Forward declaration for use by macros.

The syntax for READONLY declaration takes one of the following forms:

readonly
id: typelD := expression,
id: enun{ id_list } := expression,
id: pointer to typelD := expression,
id: typeld dimist] := expression,
id: record fields endrecord; := expression,
id: procedure {(parnms)} := expression,

Note that the types of the above expression must match the type of the object. In particular, pointer and procedure
variables require pointer constants, array declarations require array constants, and record declaration require record
constants.

The following is legal in th&EADONLY declaration section, but it doesn’t create an aagtsaboNLy symbol
table entry.

id: forward(id); /'l Forward declaration for use by macros.

Semantic Note: if HLA detects an attempt to write REA&DONLY variable (e.g., “mov(eax, ROvar);”) then HLA
will issue a warning during the compilation of the program. This is not a fatal error, but suggests that a run-time error
may result when you execute the code. Note that it is not possible for HLA to detect all attempts to write to a read-
only object (e.g., HLA will not detect an attempt to take the addressmf@oNLY variable and then store a value
indirectly at that address). HLA does not issue a warning if you attempt to passaLyY object by reference to a
procedure (since the procedure doesn’t have to write to the address you pass).

ThesTATIC declaration section allows any of the declarations above (initialized or uninitialized). Of course, the
static section begins with the reserved werdric rather tharREADONLY Or STORAGE:

static
id: typel D
id: enun{ id_list };
id: pointer to typelD,
id: typel dimist];
id: record fields endrecord;
id: union fields endunion;
id: procedure {(parnms)};

id: typel D := expression,

id: enu{ id_list } := expression,

id: pointer to typelD := expression,

id: typeld dimist] := expression,

id: record fields endrecord; := expression,
id: procedure {(parnms)} := expression,

The following is legal in theTATIC declaration section, but it doesn’t create an acstuatic symbol table entry.

id: forward(id); /'l Forward declaration for use by macros.

Here’s how variables you declare in #TIC, READONLY, andSTORAGE sections use the symbol table fields:

Icname, truename

These symbol table fields contain the declared name of the symbol.

symType

This field contains a pointer to the symbol table entry that corresponds to this variable’s type.

seg

The owner field points at the segment that owns this object.sanc variables this field always points at the
symbol table entry for the “static” segment (the data segment)REBROONLY variables, this field always points at
the “readonly” segment symbol table entry. BOORAGE variables, this field always points at the “bss” segment
symbol table entry.

segList

This pointer forms a linearly linked list of symbols that all belong to the same segment. This will chain all
STATIC Objects together, alEADONLY objects together, and atORAGE objects together. HLA uses these lists to
emit the static sections to the object code during the code generation phase.

owner

This field points at the object whokscalSymbols field contains a pointer to the sub-symbol-table that holds
this symbol.

lexLevel

This field holds the numeric lex level of this symbol.

objectSize

This field holds the size the variable will consume, in bytes. For composite types, this is the total number of
bytes associated with the variable. Note that string and ustring objects are pointers, hence this field contains four.
This field has no meaning for procedures, iterators, methods, programs, and macros. Note that this field does contain
four for pointers to these objects.

pType

The field contains the enumeraglype_t constant associated with this variable’s data type. Usually the value is
something likeUns32_pt, although HLA variables can be composite as well as scalar data types. For composite and
user-defined types, thidype field usually containBeferred_pt (in which case theymType field points at a symbol
table entry that specifies the type of the variable).

Boolean_pt: Object is a boolean variable.
Enum_pt: Object is a variable that is an enumerated type.

Uns8_pt: Object is an uns8 variable.

Unsl16_pt: Object is an uns16 variable.
Uns32_pt: Object is an uns32variable.
Uns64_pt: Object is an uns64 variable.
Uns128 pt: Object is an uns128 variable.
Byte pt: Object is a byte variable.

Word_pt: Object is a word variable.
DWord_pt: Object is a dword variable.
QWord_pt: Object is a qword variable.
TByte_pt: Object is a tbyte variable.
LWord_pt: Object is an lword variable.
Int8_pt: Object is an int8 variable.

Int16_pt: Object is an int16 variable.
Int32_pt: Object is an int32 variable.
Int64_pt: Object is an int64 variable.

Int128 pt: Object is an int128 variable.
Char_pt: Object is a char variable.
XChar_pt: Object is an xchar variable.
Unicode_pt: Object is a unicode character variable.
Real32_pt: Object is a real32 variable.
Real64_pt: Object is a real64 variable.
Real80_pt: Object is a real80 variable.
String_pt: Object is a string variable.
UString_pt: Object is a unicode string variable.
Cset_pt: Object is a character set variable.
XCset_pt: Object is an extended character set variable.
Thunk_pt: Object is a thunk variable.

Deferred_pt: Used for composite types. Tells HLA to get type spmType field.

The other “_pt” values don’t apply to STATIC, READONLY, and STORAGE obj ects.

symClass

This field contain&tatic_ct for STATIC, READONLY, andSTORAGE oObjects.

isExternal

This field contains true if this is an external symbol declaration. Note that external declarations are legal only at
lex level one.

isForward

ThesTATIC, READONLY, andSTORAGE objects do not use this field. It always contains false for these objects.

isPrivate

This field contains true if the current variable declaration appeaniv &TE section of aLAss declaration.

pClass

If this symbol table entry is a parameter object, then this field contains the parameter passing mechanism. This is
one of the following valuesialp_pc, refp_pc, vrp_pc, result_pc, name_pc, orlazy_pc.

externName
This field contains NULL.

address

This field points at the intermediate code generated for the variable’s declaration. The code generator uses this
information to determine the variable’s run-time offset.

va (variant data) Field

For sTATIC and READONLY objects, HLA stores the initial value of the object in this field. For uninitialized
STATIC objects, this field contains all zeros (and, therefore, the array/record pointer fields will contain Stciut.).
AGE 0bjects do not use this field (since you cannot initialize them).

STATIC, READONLY, andSTORAGE objects do not use any of the remaining fields in the symbol table record. Pro-
cedure variables and composite objects use an anonymous type record, if necessary, to hold the other information.

enterStatic, enterReadonly, enterStorage Function Prototypes

These three functions insert a symbol into the symbol table associated with the specified static segment. The pro-
totypes are the following:

procedure enterStatic

(

trueName: string;
| cNane :string;
ext ernNane: string;
symNode :synmNodePtr _t;
pType :pType_t;
symrlype :synmNodePtr _t;
owner :synmNodePtr _t;
addr ess : dwor d;

var va cattr_t;

var | eaf :synNodePtr _t

The symbol, IcName, symNode, pType, symType, owner, andleaf parameters have the usual values. The
externName parameter contains NULL if this is not aRTERNAL symbol, it points at the external name if it is an
EXTERNAL symbol. Thesymbol andexternName parameters cannot both point at the same physical string in mem-
ory. Theva parameter holds the initial value for tlsisaTiC object; this parameter contains NULL if tkeaTic
object doesn't have an initial value.

procedure enterReadonly

(
trueName: string;
| cNane :string;
ext ernNane: string;
symNode :synNodePtr _t;
pType :pType_t;
synmlype :synmNodePtr _t;
owner :synmNodePtr _t;
addr ess : dwor d;
var va cattr_t;
var | eaf s synmNodePtr _t
)

The symbol, IcName, symNode, pType, symType, owner, and leaf parameters have the usual values. (see
above). Thesa parameter holds the initial value for tlRisSADONLY object; this parameter must not contain NULL;
it must contain a value constant that is compatible with the symbol’s data type.

procedure enter Storage

(
trueName: string;
| cNane :string;
ext ernNane: string;
symNode :synmNodePtr _t;
pType :pType_t;
symlype :synmNodePtr _t;
owner :synmNodePtr _t;
addr ess : dwor d;

var | eaf :synmNodePtr _t
)

See the dicussion fenterStatic andenterReadonly.

SEGMENT Symbol Table Entries

TheSTATIC, READONLY, andSTORAGE sections in HLA are special casessejments. Variables you declare in
the STATIC section belong to théata segment, variables you declare in $ilfeRAGE section belong to thess seg-
ment, and variables you declare in BBaDONLY section belong to theeadonly segment. HLA allows the creation

1. The term segment in HLA has very little to do with the concept of segments on the x86 CPU. A segment to HLA is
just a block of memory where you may place related objects. Generally, segments are fully contain within their own
memory management page or set of pages (i.e., data from two different segments never appears in the same memory
page). Furthermore, on some OSes it is possible to control the access to pages (i.e., R/W vs. Read-only).

of additional segments using tReGMENT keyword. TheSEGMENT declaration section uses the following syntax
(optional items are underlined):

segment segnane (“external nane”) :readonly ;
<< vari abl e decl arati ons >>

The syntax for variable declarations is identical to that forsthgic section. Note that if the optional “:rea-
donly” attribute is present, each declaration must have an initializer (a constant expression) or HLA will complain.

HLA allows multiple declarations of the same segment. In this case, the additional declarations are simply con-
catenated to the end of the original segment. If mulsipta1ENT declarations of the same name appear in a compi-
lation, the optionaéxternal_name field must be absent in all declarations or the string must be exactly the same in
all declarations.

The symbol table fields for variables you declare in a segment are identical to thtsageakopbjects except for
theowner andexternalName fields. Theowner field will contain a pointer to the symbol table entry for the seg-
ment to which they belong (e.gegname above). ThexternalName field will contain either the segment’s name
(if the optional external segment name string is not present) or the specified external name.

SEGMENT declarations are legal only at the globabGrRAM/UNIT level. You may not embexskGMENT declara-
tions within procedures, methods, iterators, namespaces, or cl&sseseNT names are always external. If the
optionalexternal_name string is present, HLA will use this as the external name; ie#ternal_name string is
not present, HLA will use theegname identifier as the external name.

Note that HLA predeclares three segment symbol table entries ferAmg, READONLY, andSTORAGE Seg-
ments. Other than the fact that these are predefined segments, they behave similarly to any other segment; the princi-
ple difference is that HLA understands the semantics of these segments a little better and can provide better
diagnostic error messages (e.g., if you don't initializeeapoONLY object or you attempt to initialize STORAGE
object).

Here’s howseGMENT identifiers you declare use the fields in a symbol table entry (keep in mind that this is a discus-
sion of theseGMENT identifier's entry, not the entries for the variables you declare isEtheENT):

Icname, truename

These symbol table fields contain the declared name sttreent identifier.

localSyms

This field contains a pointer to the root node of the sub-symbol table (binary search tree) for this segment.

seg

This field points at the last entry in the linear list of symbols in the sub-symbol table associated with this seg-
ment. HLA uses this entry to append new entries to the list.

segList

This pointer contains the address of the first entry in the linear sub-symbol table list associated with this segment.

owner

This field points at the object wholeealSymbols field contains a pointer to the sub-symbol table that holds this
segment’s symbol.

lexLevel

Segment declarations may only occur at lex level one, so this field will contain one for user-defined segments (it
may contain zero for HLA-defined segments likedhéa, readonly, andbss segments).

objectSize

This field has no meaning forsaGMENT symbol.

pType
This field contains Segment_pt.

symClass

This field containSSegment_ct for SEGMENT identifiers.

isExternal

This field always contains true since segments are always external.

isForward

SEGMENT objects do not use this field. It always contains false for these objects.

isPrivate

This field does not apply t&GMENT identifiers. Therefore, it always contains false.

pClass

SEGMENT identifiers are never parameters, so this field always comaipspc.

externName

This field contains a pointer to tSeGMENT s external name. If the external name was not explicitly provided,
this will be the same name as #B&MENT name. Note, however, that this string is physically different thairube
Name field even if the strings are identical.

offset/address

This field has no meaning for segment declarations; it will contain zero.

Segment symbol table entries do not use any of the remaining fields in a symbol table entry.

enterSegmentlD Function Prototype

The enterSegmentID function inserts a segment identifier into the symbol table if it does not already exist. If
the segment identifier is already in the symbol table, then this function simply ensures that the external names match
(if externName is not NULL) and then returns a pointer to the existing symbol table entry. Note that it is not an
error to have multiple occurrences of the same segment in the source file; HLA simply adds the variables in the addi-
tional segments to the existing sub-symbol table for the segment.

procedure enterSegnment| D

(
symnbol :string;
externNane :string
); returns(“eax”);

The symbol parameter holds the segment’'s namegttternName holds the external segment nameexfern-
Name is NULL, thenenterSegment will duplicate the symbol string and use this as the external name for the seg-
ment. TheenterSegment function initializeslocalSyms, seg, andsegList with NULL.

enterSegment Function Prototype

The enterSegment function adds a variable associated with a segment to the segment’s sub-symbol table.

procedure enter Segnent

(
t rueName :string;
| cNane :string;
ext ernNane: string;
symNode :synmNodePtr _t;
pType :pType_t;
symrlype :synmNodePtr _t;
owner :synmNodePtr _t;
addr ess : dwor d;
t heSeg :synmNodePtr _t;
var va cattr_t;
var | eaf :synNodePtr _t
)

ThetrueName parameter contains the name of the variable to enter into the symbol tableNatme param-
eter contains the lowercase versiorfradeName. ThesymNode parameter contains a pointer to the symbol’s entry
in the symbol table (or NULL if the symbol is undefined). EkternName parameter points at tlXTERNAL name,
if this symbol is arEXTERNAL object (thesymbol andexternName pointers must refer to different strings, even if
the string data is identical). Tjpd@ype andsymType parameters specify the variable’s type. TeSeg parameter
points at the segment symbol table entry to which this variable belongsa paeameter contains the initial data for
this entry, if any. The other parameters have the usual definitions.

NAMESPACE Symbol Table Entries

A NAMESPACE declaration encapsulates a declaration section and creates a sub-symbol table for those declara-
tions. NAMESPACES help prevent “namespace pollution” by requiring a prefixiesPACE identifier to refer to
objects appearing in theAMESPACE. The syntax for &AMESPACE declaration is the following:

nanmespace nsl D,
<< Namespace Decl arations >>

end nsl D,

NAMESPACE declarations may includeoNsT, VAL, TYPE, STATIC, READONLY, STORAGE, SEGMENT, PROCEDURE,
ITERATOR, METHOD, andMACRO declarations. NAMESPACE declarations may not includear, NAMESPACE, PRO-
GRAM, Or UNIT declarations.

Here’s how HLA uses the symbol table fields§iamMESPACE symbols:

Icname, truename

These symbol table fields contain the declared name of the namespér (the example above).

localSymbols

This field points at the root of the search tree for the local symbols withiaknespACE.

seg, segList

For NAMESPACE objects, these fields contain NULL.

owner

This field points at the object wholeealSymbols field contains a pointer to the sub-symbol table that holds this
symbol. This will always be th&ROGRAM or UNIT identifier since namespace exist only at lex level one.

lexLevel

NAMESPACES are always global, hence this field will always contain one. Noteitha&tsPACE declarations are
legal within procedures, but the entry for treMESPACE symbol is still made at the global level.

objectSize

This field is meaningless fOfAMESPACE declarations.

pType

The field contains the enumerag@ype_t constaniNamespace_pt.

symClass
This field contain®Namespace_ct.

isExternal

NAMESPACES are never external, so this field contains false. Note that objects you declare withinsaACE
can be external; HLA does not support tlaenespace.var dot notation fOEXTERNAL names. You have to specify
a unique external name string to prevent external name space pollution if this is a problem.

isForward

This field has no meaning feRMESPACE declarations and always contains false.

isPrivate

This field has no meaning feSRMESPACE declarations and always contains false.

pClass

This field is meaningless fOfFAMESPACE declarations and always contairep_pc.

externName

Namespaces are always local. Hence this field always contains NULL.

offset/address

This field is meaningless fOfAMESPACE declarations.

The remaining fields have no meaning INAVESPACE declaration symbol table entry.

enterNamespacelD Function Prototype

The enterNamespacelD function checks to see if the specified symbol is already present in the symbol table. If
so, this procedure simply returns a pointer to the existing entry; if not, this procedure enters the symbol into the sym-
bol table at lex level one (regardless of what lex level the declaration occurs at). Here is the prototype for this func-
tion:

procedur e enter Nanespacel D

(

symnbol :string
) returns(“eax”);

The symbol parameter holds the segment’s name.

PROGRAM, UNIT, PROCEDURE, METHOD, and ITERATOR Symbol
Table Entries

PROGRAMS, UNITS, PROCEDURES, METHODS, andITERATORS share a common symbol table format. They all sup-
port a set of local variables; in additi®ROCEDURES, METHODS, andITERATORS also allow parameters (for consis-
tency, HLA's symbol table entries allakOGRAMS anduNITS to have parameters even though none will ever appear).

Here’s howPROGRAM, UNIT, PROCEDURE, METHOD, andITERATOR symbols use the symbol table fields:

Icname, truename

These symbol table fields contain the declared name eRUTRAM, UNIT, PROCEDURE, ITERATOR, Of METHOD.

localSyms

This field contains a pointer to the local variables for this procedure. Note that this pointer contains the address
of the root node of the binary search tree for the sub-symbol table. Also note thb@yURE, METHOD, Or ITER-
ATOR parameters also appear in this tree.

seg

This field points at the segment entry for the CODE (TEXT) segment. HLA creates this special segment object
at lex level zero before the compilation begins.

segList

This field forms a linked list of code objects in the current compilation unit.

owner

This field contains a pointer to the symbol table whose scope contains the current identifiroGRexms and
UNITS, this is the HLA lex level zero symbol table root (an anonymous symbol that doesn’t have an identifier associ-
ated with it). FOrPROCEDURES, METHODS, and ITERATORS, this field points at theROGRAM, UNIT, PROCEDURE,
METHOD, Or ITERATOR symbol to whose scope the current symbol belongs. See the discussion at the end of this sec-
tion for more details.

lexLevel

This field holds the numeric lex level of this symbol.

objectSize

This field has no meaning for these types of symbols.

pType

The field contains the enumeratglype_t constant associated with this variable’s data type. This is one of the
following values (depending on the symbol type):

Proc_pt: Object is a procedure symbol.

Method_pt: Object is a method symbol.

ClassProc_pt: Object is a procedure that is a class member.
Classlter_pt: Object is an iterator that belongs to a class.
Iterator_pt: Object is an iterator symbol.

Program_pt: Ob ject is a program or a unit symbol.
symClass

This field contains one of the following values, depending on the symbol’s class:

Proc_ct: Object is a procedure symbol.

Method_ct: Object is a method symbol.

ClassProc_ct: Object is a procedure that is a class member.
Classlter_ct: Object is an iterator that belongs to a class.
Iterator_ct: Object is an iterator symbol.

Program_ct: Ob ject is a program or a unit symbol.
isExternal

This field contains true if the symbol is (currently) declared as an external object. HLA sets this field to false
when (if) it finds an actual procedure declaration later in the source file.

isForward

This field contains true if this is a forward declaration of a procedure. HLA sets this field to false when the sym-
bol is actually defined.

isPrivate

This field contains true if thisROCEDURE, METHOD, OF ITERATOR Object appears in the private section of a class
definition. This field is always false ferRoGRAM anduniT symbol table entries.

pClass
This symbol does not apply to these symbol types, so this field always comtgngc.

externName

If this is an externalROCEDURE, METHOD, OF ITERATOR, then this field holds the external name of the object.

address

This field contains the address of the first statement associated with this object in HLAs intermediate code. For
UNITS, this field contains NULL (sinaeNiTs don’t have any code associated with them).

returnsStr

This field points at an HLA string that the HLA compiler will substitute for a call to this object after HLA com-
piles the call to the object. HLA uses this string to implement “instruction compositioPRGOEDURE, ITERATOR,
andMETHOD invocations.

parms

This field points at the first element oPROCEDURE, ITERATOR, Of METHOD parameter list. Note that tiéext
field forms this linear list of parameters. The parameter list ends with Aléxécontains NULL or when the first
symbol in this linear list has@Class value ofnotp_pc.

lastLocal

This field points at the last entry in the linear list of symbols associated wWititapURE, METHOD, ITERATOR,
PROGRAM, Or UNIT. HLA uses this pointer to add new symbols to the linear list in the sub-symbol table.

baseClass

For class procedures, class iterators, and methods, this field contains a pointer to the symbol table entry for the
class to which this symbol belongs. For other objects, this field contains NULL.

parmSize

This field specifies the number of bytes of parameter data associated with this objeebGRamMs anduNITs
this field contains zero.

callSeq
For procedures, iterators, and methods, this field contains one of the foltalifigq_t values that specifies the
call sequence/parameter passing sequence:

pascal_cs: Pascal calling sequence. Caller pushes parameters in left to right order and the procedure removes
the parameters from the stack upon return.

stdcall_cs: Standard calling sequence. Caller pushes parameters in right to left order and the procedure
removes the parameters from the stack upon return.

cdecl_cs: C calling sequence. Caller pushes parameters in right to left order and the caller removes the
parameters from the stack upon return.

This field is meaningless feROGRAM anduNIT objects.

hasFrame

This field contains true if HLA is to emit code to build the stack frame when compiling the procedure. It contains
false if it is the programmer’s responsibility to write this code.

hasDisplay

This field contains true if HLA is to reserve space for a display in the activation recdrdsFifame is also
true, then HLA will emit the code to build the display as wellhd$Display is false, then HLA assumes that there is
no display associated with this object.

alignStack

This field contains true if HLA is supposed to emit code to align the stack on a double word boundary after con-
structing the activation record. Note thatsFrame must also be true in order for HLA to emit this code.

enterProc Function Prototype

The following function inserts aROCEDURE, ITERATOR, METHOD, PROGRAM, Of UNIT object into the symbol
table:

procedure enterProc

(
symnbol :string;
pType :pType_t;
owner :synmNodePtr _t;
based ass :synmNodePtr _t
); returns(“eax”);

The symbol field is a string with the object's name. Tlpdype field containsProc_pt, iterator_pt,
ClassProc_pt, Classliter_pt, Method_pt, or Program_pt depending on the type of symbol to enter into the symbol
table. TheenterProc procedure automatically sets tegmClass value based on theType value. Theowner
parameter is the address of the symbol table entry whose sub-symbol table contains this oljeotrAoer and
UNIT objects, this points at the root node of the HLA symbol table (an anonymous symbol). If the current object is a
class procedure, class iterator, or a class objectbdssClass contains a pointer to the symbol table entry for the
class object to which the current object belongs. For other objects, this field should contain NULL.

The enterProc procedure initializes several fields in the symbol table entry. The fields it initialie&srégbt,
next, Icname, trueName, localSyms, lastLocal, seg, seglist, owner, lexLevel, objectSize (with zero),
pType, symClass, andpClass. It is the caller’s responsibility to initialize other fields in this symbol table entry
including isExternal, isForward, isPrivate, externName, address, returnsStr, parms, parmSize, callSeq,
hasFrame, hasDisplay, andalignStack. The caller must initialize these fields because this information generally
isn’t known when first entering the symbol into the symbol table. Note that altleatgftfroc initializes thelocal-

Syms andlastLocal fields, it does not process the parameters and local symbols for this @jértroc simply
enters a few symbols into the symbol table prior to the processing of the parameter list. It is the caller's responsibility
to enter parameters and local symbols into the local symbol table.

The enterProc procedure actually enters the symbol twice in the symbol table. For the firsteedryroc
enters the symbol into the symbol table at the lex level correspoding BRAGOEDURE, METHOD, ITERATOR, PRO-
GRAM, Or UNIT's declaration. ThemnterProc enters the symbol a second time into the symbol table; this second
entry, however, is in the sub-symbol table associated with the first declaration. This entry is added to prevent (imme-
diate) redefining the symbol as a local symbol inPti@EDURE, METHOD, ITERATOR, PROGRAM, Of UNIT, thus bar-
ring recursive invocations.

Note: procedures are still under development. So this definition may change before too much longer.

MACRO and TEMPLATE Symbol Table Entries

Still to describe...

