
Compilers and Compiler Generators © P.D. Terry, 2000

PREFACE 

This book has been written to support a practically oriented course in programming language
translation for senior undergraduates in Computer Science. More specifically, it is aimed at students
who are probably quite competent in the art of imperative programming (for example, in C++,
Pascal, or Modula-2), but whose mathematics may be a little weak; students who require only a
solid introduction to the subject, so as to provide them with insight into areas of language design
and implementation, rather than a deluge of theory which they will probably never use again;
students who will enjoy fairly extensive case studies of translators for the sorts of languages with
which they are most familiar; students who need to be made aware of compiler writing tools, and to
come to appreciate and know how to use them. It will hopefully also appeal to a certain class of
hobbyist who wishes to know more about how translators work. 

The reader is expected to have a good knowledge of programming in an imperative language and,
preferably, a knowledge of data structures. The book is practically oriented, and the reader who
cannot read and write code will have difficulty following quite a lot of the discussion. However, it
is difficult to imagine that students taking courses in compiler construction will not have that sort of
background! 

There are several excellent books already extant in this field. What is intended to distinguish this
one from the others is that it attempts to mix theory and practice in a disciplined way, introducing
the use of attribute grammars and compiler writing tools, at the same time giving a highly practical
and pragmatic development of translators of only moderate size, yet large enough to provide
considerable challenge in the many exercises that are suggested. 

Overview 

The book starts with a fairly simple overview of the translation process, of the constituent parts of a
compiler, and of the concepts of porting and bootstrapping compilers. This is followed by a chapter
on machine architecture and machine emulation, as later case studies make extensive use of code
generation for emulated machines, a very common strategy in introductory courses. The next
chapter introduces the student to the notions of regular expressions, grammars, BNF and EBNF,
and the value of being able to specify languages concisely and accurately. 

Two chapters follow that discuss simple features of assembler language, accompanied by the
development of an assembler/interpreter system which allows not only for very simple assembly,
but also for conditional assembly, macro-assembly, error detection, and so on. Complete code for
such an assembler is presented in a highly modularized form, but with deliberate scope left for
extensions, ranging from the trivial to the extensive. 

Three chapters follow on formal syntax theory, parsing, and the manual construction of scanners
and parsers. The usual classifications of grammars and restrictions on practical grammars are
discussed in some detail. The material on parsing is kept to a fairly simple level, but with a
thorough discussion of the necessary conditions for LL(1) parsing. The parsing method treated in
most detail is the method of recursive descent, as is found in many Pascal compilers; LR parsing is
only briefly discussed. 



The next chapter is on syntax directed translation, and stresses to the reader the importance and
usefulness of being able to start from a context-free grammar, adding attributes and actions that
allow for the manual or mechanical construction of a program that will handle the system that it
defines. Obvious applications come from the field of translators, but applications in other areas
such as simple database design are also used and suggested. 

The next two chapters give a thorough introduction to the use of Coco/R, a compiler generator
based on L- attributed grammars. Besides a discussion of Cocol, the specification language for this
tool, several in-depth case studies are presented, and the reader is given some indication of how
parser generators are themselves constructed. 

The next two chapters discuss the construction of a recursive descent compiler for a simple
Pascal-like source language, using both hand-crafted and machine-generated techniques. The
compiler produces pseudo-code for a hypothetical stack-based computer (for which an interpreter
was developed in an earlier chapter). "On the fly" code generation is discussed, as well as the use of
intermediate tree construction. 

The last chapters extend the simple language (and its compiler) to allow for procedures and
functions, demonstrate the usual stack-frame approach to storage management, and go on to discuss
the implementation of simple concurrent programming. At all times the student can see how these
are handled by the compiler/interpreter system, which slowly grows in complexity and usefulness
until the final product enables the development of quite sophisticated programs. 

The text abounds with suggestions for further exploration, and includes references to more
advanced texts where these can be followed up. Wherever it seems appropriate the opportunity is
taken to make the reader more aware of the strong and weak points in topical imperative languages.
Examples are drawn from several languages, such as Pascal, Modula-2, Oberon, C, C++, Edison
and Ada. 

Support software 

An earlier version of this text, published by Addison-Wesley in 1986, used Pascal throughout as a
development tool. By that stage Modula-2 had emerged as a language far better suited to serious
programming. A number of discerning teachers and programmers adopted it enthusiastically, and
the material in the present book was originally and successfully developed in Modula-2. More
recently, and especially in the USA, one has witnessed the spectacular rise in popularity of C++,
and so as to reflect this trend, this has been adopted as the main language used in the present text.
Although offering much of value to skilled practitioners, C++ is a complex language. As the aim of
the text is not to focus on intricate C++programming, but compiler construction, the supporting
software has been written to be as clear and as simple as possible. Besides the C++ code, complete
source for all the case studies has also been provided on an accompanying IBM-PC compatible
diskette in Turbo Pascal and Modula-2, so that readers who are proficient programmers in those
languages but only have a reading knowledge of C++ should be able to use the material very
successfully. 

Appendix A gives instructions for unpacking the software provided on the diskette and installing it
on a reader’s computer. In the same appendix will be found the addresses of various sites on the
Internet where this software (and other freely available compiler construction software) can be
found in various formats. The software provided on the diskette includes 



Emulators for the two virtual machines described in Chapter 4 (one of these is a simple
accumulator based machine, the other is a simple stack based machine). 

The one- and two-pass assemblers for the accumulator based machine, discussed in Chapter 6.

A macro assembler for the accumulator-based machine, discussed in Chapter 7. 

Three executable versions of the Coco/R compiler generator used in the text and described in
detail in Chapter 12, along with the frame files that it needs. (The three versions produce
Turbo Pascal, Modula-2 or C/C++ compilers) 

Complete source code for hand-crafted versions of each of the versions of the Clang compiler
that is developed in a layered way in Chapters 14 through 18. This highly modularized code
comes with an "on the fly" code generator, and also with an alternative code generator that
builds and then walks a tree representation of the intermediate code. 

Cocol grammars and support modules for the numerous case studies throughout the book that
use Coco/R. These include grammars for each of the versions of the Clang compiler. 

A program for investigating the construction of minimal perfect hash functions (as discussed
in Chapter 14). 

A simple demonstration of an LR parser (as discussed in Chapter 10). 

Use as a course text 

The book can be used for courses of various lengths. By choosing a selection of topics it could be
used on courses as short as 5-6 weeks (say 15-20 hours of lectures and 6 lab sessions). It could also
be used to support longer and more intensive courses. In our university, selected parts of the
material have been successfully used for several years in a course of about 35 - 40 hours of lectures
with strictly controlled and structured, related laboratory work, given to students in a pre-Honours
year. During that time the course has evolved significantly, from one in which theory and formal
specification played a very low key, to the present stage where students have come to appreciate the
use of specification and syntax-directed compiler-writing systems as very powerful and useful tools
in their armoury. 

It is hoped that instructors can select material from the text so as to suit courses tailored to their
own interests, and to their students’ capabilities. The core of the theoretical material is to be found
in Chapters 1, 2, 5, 8, 9, 10 and 11, and it is suggested that this material should form part of any
course based on the book. Restricting the selection of material to those chapters would deny the
student the very important opportunity to see the material in practice, and at least a partial selection
of the material in the practically oriented chapters should be studied. However, that part of the
material in Chapter 4 on the accumulator-based machine, and Chapters 6 and 7 on writing
assemblers for this machine could be omitted without any loss of continuity. The development of
the small Clang compiler in Chapters 14 through 18 is handled in a way that allows for the later
sections of Chapter 15, and for Chapters 16 through 18 to be omitted if time is short. A very wide
variety of laboratory exercises can be selected from those suggested as exercises, providing the
students with both a challenge, and a feeling of satisfaction when they rise to meet that challenge.
Several of these exercises are based on the idea of developing a small compiler for a language



similar to the one discussed in detail in the text. Development of such a compiler could rely entirely
on traditional hand-crafted techniques, or could rely entirely on a tool-based approach (both
approaches have been successfully used at our university). If a hand-crafted approach were used,
Chapters 12 and 13 could be omitted; Chapter 12 is largely a reference manual in any event, and
could be left to the students to study for themselves as the need arose. Similarly, Chapter 3 falls into
the category of background reading. 

At our university we have also used an extended version of the Clang compiler as developed in the
text (one incorporating several of the extensions suggested as exercises) as a system for students to
study concurrent programming per se, and although it is a little limited, it is more than adequate for
the purpose. We have also used a slightly extended version of the assembler program very
successfully as our primary tool for introducing students to the craft of programming at the
assembler level. 

Limitations 

It is, perhaps, worth a slight digression to point out some things which the book does not claim to
be, and to justify some of the decisions made in the selection of material. 

In the first place, while it is hoped that it will serve as a useful foundation for students who are
already considerably more advanced, a primary aim has been to make the material as accessible as
possible to students with a fairly limited background, to enhance the background, and to make them
somewhat more critical of it. In many cases this background is still Pascal based; increasingly it is
tending to become C++ based. Both of these languages have become rather large and complex, and
I have found that many students have a very superficial idea of how they really fit together. After a
course such as this one, many of the pieces of the language jigsaw fit together rather better. 

When introducing the use of compiler writing tools, one might follow the many authors who
espouse the classic lex/yacc approach. However, there are now a number of excellent LL(1) based
tools, and these have the advantage that the code which is produced is close to that which might be
hand-crafted; at the same time, recursive descent parsing, besides being fairly intuitive, is powerful
enough to handle very usable languages. 

That the languages used in case studies and their translators are relative toys cannot be denied. The
Clang language of later chapters, for example, supports only integer variables and simple
one-dimensional arrays of these, and has concurrent features allowing little beyond the simulation
of some simple textbook examples. The text is not intended to be a comprehensive treatise on
systems programming in general, just on certain selected topics in that area, and so very little is said
about native machine code generation and optimization, linkers and loaders, the interaction and
relationship with an operating system, and so on. These decisions were all taken deliberately, to
keep the material readily understandable and as machine-independent as possible. The systems may
be toys, but they are very usable toys! Of course the book is then open to the criticism that many of
the more difficult topics in translation (such as code generation and optimization) are effectively
not covered at all, and that the student may be deluded into thinking that these areas do not exist.
This is not entirely true; the careful reader will find most of these topics mentioned somewhere. 

Good teachers will always want to put something of their own into a course, regardless of the
quality of the prescribed textbook. I have found that a useful (though at times highly dangerous)
technique is deliberately not to give the best solutions to a problem in a class discussion, with the



optimistic aim that students can be persuaded to "discover" them for themselves, and even gain a
sense of achievement in so doing. When applied to a book the technique is particularly dangerous,
but I have tried to exploit it on several occasions, even though it may give the impression that the
author is ignorant. 

Another dangerous strategy is to give too much away, especially in a book like this aimed at
courses where, so far as I am aware, the traditional approach requires that students make far more
of the design decisions for themselves than my approach seems to allow them. Many of the books
in the field do not show enough of how something is actually done: the bridge between what they
give and what the student is required to produce is in excess of what is reasonable for a course
which is only part of a general curriculum. I have tried to compensate by suggesting what I hope is
a very wide range of searching exercises. The solutions to some of these are well known, and
available in the literature. Again, the decision to omit explicit references was deliberate (perhaps
dangerously so). Teachers often have to find some way of persuading the students to search the
literature for themselves, and this is not done by simply opening the journal at the right page for
them. 

Acknowledgements 

I am conscious of my gratitude to many people for their help and inspiration while this book has
been developed. 

Like many others, I am grateful to Niklaus Wirth, whose programming languages and whose
writings on the subject of compiler construction and language design refute the modern trend
towards ever-increasing complexity in these areas, and serve as outstanding models of the way in
which progress should be made. 

This project could not have been completed without the help of Hanspeter Mössenböck (author of
the original Coco/R compiler generator) and Francisco Arzu (who ported it to C++), who not only
commented on parts of the text, but also willingly gave permission for their software to be
distributed with the book. My thanks are similarly due to Richard Cichelli for granting permission
to distribute (with the software for Chapter 14) a program based on one he wrote for computing
minimal perfect hash functions, and to Christopher Cockburn for permission to include his
description of tonic sol-fa (used in Chapter 13). 

I am grateful to Volker Pohlers for help with the port of Coco/R to Turbo Pascal, and to Dave
Gillespie for developing p2c, a most useful program for converting Modula-2 and Pascal code to
C/C++. 

I am deeply indebted to my colleagues Peter Clayton, George Wells and Peter Wentworth for many
hours of discussion and fruitful suggestions. John Washbrook carefully reviewed the manuscript,
and made many useful suggestions for its improvement. Shaun Bangay patiently provided
incomparable technical support in the installation and maintenance of my hardware and software,
and rescued me from more than one disaster when things went wrong. To Rhodes University I am
indebted for the use of computer facilities, and for granting me leave to complete the writing of the
book. And, of course, several generations of students have contributed in intangible ways by their
reaction to my courses. 

The development of the software in this book relied heavily on the use of electronic mail, and I am
grateful to Randy Bush, compiler writer and network guru extraordinaire, for his friendship, and for
his help in making the Internet a reality in developing countries in Africa and elsewhere. 



But, as always, the greatest debt is owed to my wife Sally and my children David and Helen, for
their love and support through the many hours when they must have wondered where my priorities
lay. 

Pat Terry
Rhodes University 
Grahamstown 

Trademarks 

Ada is a trademark of the US Department of Defense.
Apple II is a trademark of Apple Corporation.
Borland C++, Turbo C++, TurboPascal and Delphi are trademarks of Borland
International Corporation.
GNU C Compiler is a trademark of the Free Software Foundation.
IBM and IBM PC are trademarks of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
MC68000 and MC68020 are trademarks of Motorola Corporation.
MIPS is a trademark of MIPS computer systems.
Microsoft, MS and MS-DOS are registered trademarks and Windows is a trademark of
Microsoft Corporation.
SPARC is a trademark of Sun Microsystems.
Stony Brook Software and QuickMod are trademarks of Gogesch Micro Systems, Inc.
occam and Transputer are trademarks of Inmos.
UCSD Pascal and UCSD p-System are trademarks of the Regents of the University of
California.
UNIX is a registered trademark of AT&T Bell Laboratories.
Z80 is a trademark of Zilog Corporation.


