
COMPILERS AND COMPILER
GENERATORS 

an introduction with C++ 

© P.D. Terry, Rhodes University, 1996 

e-mail p.terry@ru.ac.za 

The Postscript ® edition of this book was derived from the on-line versions available at
http://www.scifac.ru.ac.za/compilers/, a WWW site that is occasionally updated, and which
contains the latest versions of the various editions of the book, with details of how to download
compressed versions of the text and its supporting software and courseware. 

The original edition of this book, published originally by International Thomson, is now out of
print, but has a home page at http://cs.ru.ac.za/homes/cspt/compbook.htm. In preparing the on-line
edition, the opportunity was taken to correct the few typographical mistakes that crept into the first
printing, and to create a few hyperlinks to where the source files can be found. 

Feel free to read and use this book for study or teaching, but please respect my copyright and do not
distribute it further without my consent. If you do make use of it I would appreciate hearing from
you. 

CONTENTS 

Preface 

Acknowledgements 

1 Introduction 

1.1 Objectives
1.2 Systems programs and translators
1.3 The relationship between high-level languages and translators

2 Translator classification and structure 

2.1 T-diagrams
2.2 Classes of translator
2.3 Phases in translation
2.4 Multi-stage translators
2.5 Interpreters, interpretive compilers, and emulators

3 Compiler construction and bootstrapping 

3.1 Using a high-level host language
3.2 Porting a high-level translator



3.3 Bootstrapping
3.4 Self-compiling compilers
3.5 The half bootstrap
3.6 Bootstrapping from a portable interpretive compiler
3.7 A P-code assembler

4 Machine emulation 

4.1 Simple machine architecture
4.2 Addressing modes
4.3 Case study 1 - a single-accumulator machine
4.4 Case study 2 - a stack-oriented computer

5 Language specification

5.1 Syntax, semantics, and pragmatics 
5.2 Languages, symbols, alphabets and strings 
5.3 Regular expressions 
5.4 Grammars and productions 
5.5 Classic BNF notation for productions 
5.6 Simple examples 
5.7 Phrase structure and lexical structure 
5.8 -productions 
5.9 Extensions to BNF 
5.10 Syntax diagrams 
5.11 Formal treatment of semantics 

6 Simple assemblers 

6.1 A simple ASSEMBLER language
6.2 One- and two-pass assemblers, and symbol tables
6.3 Towards the construction of an assembler
6.4 Two-pass assembly
6.5 One-pass assembly

7 Advanced assembler features 

7.1 Error detection
7.2 Simple expressions as addresses
7.3 Improved symbol table handling - hash tables
7.4 Macro-processing facilities
7.5 Conditional assembly
7.6 Relocatable code
7.7 Further projects

8 Grammars and their classification

8.1 Equivalent grammars 
8.2 Case study - equivalent grammars for describing expressions 
8.3 Some simple restrictions on grammars 



8.4 Ambiguous grammars 
8.5 Context sensitivity 
8.6 The Chomsky hierarchy 
8.7 Case study - Clang 

9 Deterministic top-down parsing 

9.1 Deterministic top-down parsing
9.2 Restrictions on grammars so as to allow LL(1) parsing
9.3 The effect of the LL(1) conditions on language design

10 Parser and scanner construction 

10.1 Construction of simple recursive descent parsers
10.2 Case studies
10.3 Syntax error detection and recovery
10.4 Construction of simple scanners
10.5 Case studies
10.6 LR parsing
10.7 Automated construction of scanners and parsers

11 Syntax-directed translation 

11.1 Embedding semantic actions into syntax rules
11.2 Attribute grammars
11.3 Synthesized and inherited attributes
11.4 Classes of attribute grammars
11.5 Case study - a small student database

12 Using Coco/R - overview 

12.1 Installing and running Coco/R
12.2 Case study - a simple adding machine
12.3 Scanner specification
12.4 Parser specification
12.5 The driver program

13 Using Coco/R - Case studies 

13.1 Case study - Understanding C declarations
13.2 Case study - Generating one-address code from expressions
13.3 Case study - Generating one-address code from an AST
13.4 Case study - How do parser generators work?
13.5 Project suggestions

14 A simple compiler - the front end 

14.1 Overall compiler structure
14.2 Source handling
14.3 Error reporting



14.4 Lexical analysis
14.5 Syntax analysis
14.6 Error handling and constraint analysis
14.7 The symbol table handler
14.8 Other aspects of symbol table management - further types

15 A simple compiler - the back end 

15.1 The code generation interface
15.2 Code generation for a simple stack machine
15.3 Other aspects of code generation

16 Simple block structure 

16.1 Parameterless procedures
16.2 Storage management

17 Parameters and functions 

17.1 Syntax and semantics
17.2 Symbol table support for context sensitive features
17.3 Actual parameters and stack frames
17.4 Hypothetical stack machine support for parameter passing
17.5 Context sensitivity and LL(1) conflict resolution
17.6 Semantic analysis and code generation
17.7 Language design issues

18 Concurrent programming 

18.1 Fundamental concepts
18.2 Parallel processes, exclusion and synchronization
18.3 A semaphore-based system - syntax, semantics, and code generation
18.4 Run-time implementation

Appendix A: Software resources for this book

Appendix B: Source code for the Clang compiler/interpreter

Appendix C: Cocol grammar for the Clang compiler/interpreter

Appendix D: Source code for a macro assembler

Bibliography 

Index


