Compilers and Compiler Generators © P.D. Terry, 2000

16 SSIMPLE BLOCK STRUCTURE

Our simple language has so far not provided forpttoeedure concept in any way. It is the aim ¢
the next two chapters to show how Clang and its compiler can be extended to provide proc
and functions, using a model based on those found in block-structured languages like Mod:
Pascal, which allow the use of local variables, local procedures and recursion. This involve:
deeper treatment of the concepts of storage allocation and management than we have nee
previously.

As in the last two chapters, we shall develop our arguments by a process of slow refinemet
source diskette will be found Cocol grammars, hand-crafted parsers and code generators c
each stage of this refinement, and the reader is encouraged to study this code in detail as |
reads the text.

16.1 Parameterless procedures

In this chapter we shall confine discussion to parametamgasar procedures (or void functions
in C++ terminology), and discuss parameters and value-returning functions in the following

16.1.1 Source handling, lexical analysisand error reporting

The extensions to be discussed in this chapter require no changes to the source handler, s
error reporter classes that were not pre-empted in the discussion in Chapter 14.

16.1.2 Syntax

Regular procedure declaration is inspired by the way it is done in Modula-2, described in El

Bl ock = { ConstDeclarations | VarDeclarations | ProcDeclaration }
ConpoundsSt at enent .
ProcDecl arati on = "PROCEDURE" Procldentifier ";" Block ";"

It might be thought that the same effect could be achieved with
ProcDecl arati on = "PROCEDURE" Procldentifier ";" ConpoundStatenment ";"

but the syntax first suggested allows for nested procedures, and for named constants and \
to be declared local to procedures, in a manner familiar to all Modula-2 and Pascal progran

The declaration of a procedure is most easily understood as a process whereby a
CompoundStatement is given a name. Quoting this name at later places in the program then
execution of thaCompoundStatement. By analogy with most modern languages we should like
extend our definition o8tatement as follows:

St at ement = [ConpoundStatenent | Assignment | ProcedureCall
| I'fStatenent | Wil eStatenment
| WiteStatement | ReadStatenent] .
ProcedurecCal | = Procldentifier .

However, this introduces a non-LL(1) feature into the grammar, for now we have two altern
for Satement (namelyAssignment andProcedureCall) that begin with lexically indistinguishable

symbols. There are various ways of handling this problem:

® A purely syntactic solution for this simple language is possible if we re-factor the gram

St at enment = [ConpoundStatenment | Assignment O Cal |
| IfStatement | Wil eStatenent
| WiteStatement | ReadStatenment] .
AssignmentOrCall = Designator [":=" Expression] .

so that &rocedureCall can be distinguished from @ssignment by simply looking at the
first symbol after th®esignator. This is, of course, the approach that has to be followec
when using Coco/R.

® A simple solution would be to add the keywawrd L before a procedure identifier, as in
Fortran, but this rather detracts from readability of the source program.

® Probably because the semantics of procedure calls and of assignments are so differe
solution usually adopted in a hand-crafted compiler is a static semantic one. To the lis
allowed classes of identifier we add one that distinguishes procedure names uniquely
the symbol starting &atement is an identifier we can then determine from its symbol tat
attributes whether afAissignment or ProcedureCall is to be parsed (assuming all identifier:
have been declared before use, as we have been doing).

16.1.3 The scope and extent of identifiers

Allowing nested procedures - or even local variables on their own - introduces the concept
scope, which should be familiar to readers used to block-structured languages, although it ©
causes confusion to many beginners. In such languages, the "visibility" or "accessibility" of
identifier declared in 8lock is limited to that block, and to blocks themselves declared local 1
block, with the exception that when an identifieradeclared in one or more nested blocks, the
innermost accessible declaration applies to each particular use of that identifier.

Perhaps any confusion which arises in beginners’ minds is exacerbated by the fact that the
fine distinction between compile-time and run-time aspects of scope is not always made cle
compile-time, only those names that are currently "in scope™ will be recognized when trans|
statements and expressions. At run-time, each variable leateanhor lifetime. Other than the

"global variables" (declared within the main program in Modula-2 or Pascal, or outside of al
functions in G+), the only variables that "exist" at any one instant (that is, have storage allot
them, with associated values) are those that were declared local to the blocks that are "acti
is, are associated with procedures that have been called, but which have not yet returned).

One consequence of this, which a few readers may have fallen foul of at some stage, is the
variables declared local to a procedure cannot be expected to retain their values between ¢
the procedure. This leads to a programming style where many variables are declared globe
they should, ideally, be "out of scope” to many of the procedures in the program. (Of courst
use of modules (in languages like Modula-2) or classes+#) &lows many of these to be hidd:
safely away.)

Exercises

16.1 Extend the grammar for Topsy so as to support a program model more like that in+z,a

in which routines may not be nested, although both global and local variables (and constan
be declared.

16.1.4 Symbol table support for the scope rules

Scope rules like those suggested in the last section may be easily handled in a number of \
of which rely on some sort of stack structure. The simplest approach is to build the entire s
table as a stack, pushing a node onto this stack each time an identifier is declared, and poy
several nodes off again whenever we complete parddhock, thereby ensuring that the names
declared local to that block then go out of scope. The stack structure also ensures that if tw
identifiers with the same names are declared in nested blocks, the first to be found when s¢
the table will be the most recently declared. The stack of identifier entries must be augmenti
some way to keep track of the divisions between procedures, either by introducing an extra
into the possibilities for theABLE ent ri es structure, or by constructing an ancillary stack of
special purpose nodes.

The discussion will be clarified by considering the shell of a simple program:

PROGRAM Mai n;

VAR Gl1; (* global *)
PROCEDURE One;
VAR L1, L2; (* local to One *)
BEG N

(* body of One *)
END;

BEG N
(* body of Main *)

END.
For this program, either of the approaches suggested by Figure 16.1(a) or (b) would appea
suitable for constructing a symbol table. In these structures, an extra "sentinel" node has be
inserted at the bottom of the stack. This allows a search of the table to be implemented as
possible, by inserting a copy of the identifier that is being sought into this node before the (|
search begins.

(=]

Latest —| L2 || L1 | — |=[ome || 681 o[— [[nain]o| |j

(bl =

Latest —+| L2 || L1 }olone || 61 | [mainfo l_l

Last J Last J Last J

Enue lops +| Down +| Down —+| Down —_l_

Figure 16.1 Stack based S#mbpl Table (&)l with extra nodes mark ing scope
boundaries (B) with ancillarw stack marking scope boundaries

As it happens, this sort of structure becomes rather more difficult to adapt when one extenc
language to allow procedures to handle parameters, and so we shall promote the idea of hi
stack ofscope nodes, each of which contains a pointer to the scope node corresponding to ar
scope, as well as a pointer to a structunel@ttifier nodes pertinent to its own scope. This latter
structure could be held as a stack, queue, tree, or even hash table. Figure 16.2 shows a sit
where queues have been used, each of which is terminated by a common sentinel node.

TopScope —+ [Firss——[L1 |—[Lz
Diown

1 Sent inel

First—| &1 }—| one |——] |_l

=

First =| Main |

Doin
L

Figure 16.2 Symbol Table based on a set of queues, with ancillary stack
marck ing scope boundaries

Although it may not immediately be seen as necessary, it turns out that to handle the addre
aspects needed for code generation we shall need to associate with each iderd#ite tbe at
which it was declared. The revised public interface to the symbol table class requires decla
like

enum TABLE_ i dcl asses { TABLE consts, TABLE vars, TABLE progs, TABLE procs };

struct TABLE entries {

TABLE al fa nane; /1 identifier
int |evel; Il static level
TABLE i dcl asses i dcl ass; /'l class
uni on {
struct {
int val ue;
} c; /1 constants
struct {
int size, offset;
bool scal ar;
}ov; /1 variabl es
struct {
CGEN_| abel s entrypoi nt;
}op; /1 procedures

}s
}

class TABLE {
publi c:
voi d openscope(void);
/1 Opens new scope before parsing a bl ock

voi d cl osescope(void);
/1 C oses scope after parsing a bl ock

. Il rest as before (see section 14.6.3)
On the source diskette can be found implementations of this symbol table handler, while a
extended to meet the requirements of Chapter 17 can be found in Appendix B. As usual, a
comments on implementation techniques may be helpful to the reader:

® The symbol table handler manages the computatioaved internally.

® Anentry is passed by reference to the er routine, so that, when required, the caller is
able to retrieve this value after an entry has been made.

® The outermost program block can be defined as level 1 (some authors take it as level
reserve this level for standard "pervasive" identifiers -1IIIKEEGER, BOOLEAN, TRUE and
FALSE).

® |t is possible to have more than one entry in the table with the samealthough not withi
a single scope. The routine for adding an entry to the table checks that this constraint

obeyed. However, a second occurrence of an identifier in a single scope will result in
entry in the table.

® The routine for searching the symbol table works its way through the various scope le
from innermost to outermost, and is thus more complex than before. A sadirteh will,
however, always return with a value tont r y which matches theane, even if this had not
been correctly declared previously. Such undeclared identifiers will seem to have an €
i dcl ass = TABLE_pr ogs, Which will always be semantically unacceptable when the
identifier is analysed further.

Exercises

16.2 Follow up the suggestion that the symbol table can be stored in a stack, using one or
the methods suggested in Figure 16.1.

16.3 Rather than use a sepasttePE_nodes structure, develop a version of the symbol table ¢
that simply introduces another variant into the exist®LE_ent ri es structure, that is, extend t
enumeration to

enum TABLE idcl asses { TABLE consts, TABLE vars, TABLE progs, TABLE procs,
TABLE scopes };

16.4 How, if at all, does the symbol table interface require modification if you wish to develc
Topsy language to suppetii d functions?

16.5 In our implementation of the table class, scope nodes are deleted bys#¥eope routine.
Is it possible or advisable also to delete identifier nodes when identifiers go out of scope?

16.6 Some compilers make use of the idea of a forest of binary search trees. Develop a tak
handler to make use of this approach. How do you adapt the idea that aeallcto will always
return a well-definednt ry?

For example, given source code like

PROGRAM Si | | y;
VAR B, A C

PROCEDURE One;
VAR X, Y, Z

PROCEDURE Two;
VAR Y, D

the symbol table might look like that shown in Figure 16.3 immediately after deataring

TopScope —+| Down [—+| Down [—*| DOown |[—+| Down —_l_

First Firs First First]

o R S
1 I

r

Figure 16.3 Swmbol Table based on a forest of Binary Search Trees

Further reading

More sophisticated approach to symbol table construction are discussed in many texts on ¢
construction. A very readable treatment may be found in the book by Elder (1994), who als
discusses the problems of using a hash table approach for block-structured languages.

16.1.5 Parsing declar ations and procedure calls

The extensions needed to the attributed grammar to describe the process of parsing proce!
declarations and calls can be understood with reference to the Cocol extract below, where,
temporary clarity, we have omitted the actions needed for code generation, while retaining
needed for constraint analysis:

PRODUCTI ONS

Cl ang

= (. TABLE entries entry; .)
" PROGRAM'
| dent <ent ry. name> (. entry.idclass = TABLE progs;

Tabl e- >enter (entry); Tabl e->openscope(); .)

WEAK ";" Block "." .

Bl ock

= SYNC
{ (ConstDeclarations | VarDeclarations | ProcDeclaration) SYNC }
ConpoundSt at enent (. Tabl e->cl osescope();

ProcDecl arati on
= (. TABLE entries entry; .)

" PROCEDURE"
| dent <ent ry. name> (. entry.idclass = TABLE procs;
Tabl e- >enter (entry); Tabl e->openscope(); .)
WEAK ";" Block ";" .
St at enent
= SYNC [ConpoundStatenent | AssignmentOrCall | |fStatenent

| WhileStatenent | ReadStatement | WiteStatenent]

Assi gnnent O Cal |
= (. TABLE entries entry; .)
Desi gnat or <cl assset (TABLE vars, TABLE procs), entry>
(. if (entry.idclass != TABLE vars) SenError(210); .)
" =" Expression SYNC
| (. if (entry.idclass != TABLE procs) SenError(210); .)

) .
The reader should note that:

® Variables declared local toBhock will be associated with a level one higher than the blo
identifier itself.

® In a hand-crafted parser we can resolve the LL(1) conflict between the assignments a
procedure calls within the parser faatement, on the lines of

voi d Statenent(synset followers)
{ TABLE_ entries entry; bool found;
if (FirstStatenent. menb(SYMsym)) /1 allow for enpty statenents
{ switch (SYM sym
{ case SCAN identifier: /1 must resolve LL(1) conflict
Tabl e- >search(SYM nane, entry, found); // look it up
if (!found) Report->error(202); /'l undecl ared identifier
if (entry.idclass == TABLE procs) ProcedureCall (followers, entry);
el se Assignment (followers, entry);

br eak;
case SCAN i fsym /] other statenent forns
| fStatenent (fol |l owers); break; /1 as needed
}
test(followers, EnptySet, 32); /'l synchronize if necessary

}

Exercises

16.7 In Exercise 14.50 we suggested that undeclared identifiers might be entered into the <
table (and assumed to be variables) at the point where they were first encountered. Investis
whether one can do better than this by examining the symbol which appears after the offen
identifier.

16.8 In a hand-crafted parser, when calBhgck from within ProcDeclaration the semicolon
symbol has to be addedFRollowers, as it becomes the legal followerRibck. Is it a good idea tc
do this, since the semicolon (a widely used and abused token) will then be an element of al
Followers used in parsing parts of that block? If not, what does one do about it?

16.2 Stor age management

If we wish procedures to be able to call one another recursively, we shall have to think care
about code generation and storage management. At run-time there may at some stage be
instances of a recursive procedure in existence, pending completion. For each of these the
corresponding instances of any local variables must be distinct. This has a rather complica
effect at compile-time, for a compiler can no longer associate a simple address with each v
it is declared (except, perhaps, for the global variables in the main program block). Other a:
code generation are not quite such a problem, although we must be on our guard always tc
so-calledre-entrant code, which executes without ever modifying itself.

16.2.1 The stack frame concept

Just as the stack concept turns out to be useful for dealing with the compile-time accessibil
aspects o$cope in block-structured languages, so too do stack structures provide a solution
dealing with the run-time aspectsextent or existence. Each time a procedure is called, it acqu
a region of free store for its local variables - an area which can later be freed when control |
to the caller. On a stack machine this becomes almost trivially easy to arrange, although it |
more obtuse on other architectures. Since procedure activations strictly obey a first-in-last-
scheme, the areas needed for their local working store can be carved out of a single large ¢
Such areas are usually calledivation records or stack frames, and do not themselves contair
any code. In each of them is usually stored some standard information. This incluabtsrtie

address through which control will eventually pass back to the calling procedure, as well as
information that can later be used to reclaim the frame storage when it is no longer requirec

housekeeping section of the frame is calledthme header orlinkage area. Besides the storag
needed for the frame header, space must be also be allocated for local variables (and, pos
parameters, as we shall see in a later section).

This may be made clearer by a simple example. Suppose we come up with the following ve
on code for satisfying the irresistible urge to read a list of numbers and write it down in reve
order:

PROGRAM Backwar ds;
VAR Ter m nat or;

PROCEDURE Start;
VAR Local 1, Local 2;

PROCEDURE Rever se;
VAR Nunber ;
BEG N
Read(Nunber) ;
I F Terminator <> Nunber THEN Start; 10: Wite(Nunber)
END;

BEG N (* Start *)
Reverse; 20:

END;

BEG N (* Backwards *)
Terminator := 9,
Start; 30:

END (* Backwards *).

(Our language does not provide for labels; these have simply been added to make the des«
easier.)

We note that a stack is also the obvious structure to use in a non-recursive solution to the
so the example also highlights the connection between the use of stacks to implement rect
ideas in non-recursive languages.

If this program were to be given exciting data Biée65 9, then its dynamic execution would
result in a stack frame history something like the following, where each line represents the
layout of the stack frames as the procedures are entered and left.

Stack grows ---->
start main program Backwar ds
call Start Backwar ds Start
call Reverse Backwar ds Start Rever se
read 56 and recurse Backwar ds Start Rever se Start
and again Backwar ds Start Rever se Start Rever se
read 65 and recurse Backwar ds Start Rever se Start Rever se Start
and again Backwar ds Start Reverse Start Reverse Start Rever se
read 9, wite 9, return Backwar ds Start Rever se Start Rever se Start
and again Backwar ds Start Reverse Start Rever se
wite 65 and return Backwar ds Start Rever se Start
and again Backwar ds Start Rever se
wite 56 and return Backwar ds Start
and again Backwar ds

At run-time the actual address of a variable somewhere in memory will have to be found by
subtracting amffset (which, fortunatelycan be determined aompile-time) from the address of
the appropriate stack frame (a value which, naturally but unfortunedelyot be predicted at
compile-time). The code generated at compile-time must contain enough information for the
run-time system to be able to find (or calculate) the base of the appropriate stack frame wh
needed. This calls for considerable thought.

The run-time stack frames are conveniently maintained as a linked list. As a procedure is ¢
can set up (in its frame header) a pointer to the base of the stack frame of the procedure th

it. This pointer is usually called tldyynamic link. A pointer to the top of this linked structure - t
is, to the base of the most recently activated stack frame - is usually given special status, a
called thebase pointer. Many modern architectures provide a special machine register espe«
suited for use in this role; we shall assume that our target machine has such a gepisted that
on procedure entry it will be set to the current value of the stack pemtehile on procedure ex
it will be reset to assume the value of the dynamic link emanating from the frame header.

If a variable is local to the procedure currently being executed, its run-time address will thei
given byBP - O f set, whered f set can be predicted at compile-time. The run-time address
non-local variable must be obtained by subtractingfitset from an address found by descenc
a chain of stack frame links. The problem is to know how far to traverse this chain, and at fi
seems easily solved, since at declaration time we have already made provision to associat
declaration level with each entry in the symbol table. When faced with the need to generate
address an identifier, we can surely generate code (at compile-time) which will use this info
to determine (at run-time) how far down the chain to go. This distance at first appears to be
predictable - nothing other than the difference in levels between the level we have reached
compilation, and the level at which the identifier (to which we want to refer) was declared.

This is nearly true, but in fact we cannot simply traverse the dynamic link chain by that nurr
steps. This chain, as its name suggests, reflectytienic way in which procedures acalled anc
their frames stacked, while the level information in the symbol table is relatedstatibelepth of
nesting of procedures as they wdeelared. Consider the case when the program above has ji
read the second data number At that stage the stack memory would have the appearance
depicted in Figure 16.4, where the following should be noted:

® The numberq11) used as the highest address is simply for illustrative purposes.

® Since we are assuming that the stack posres decrementebefore an item is pushed ont
the stack, the base regiseerwill actually point to an address just above the current top
frame. Similarly, immediately after control has been transferred to a procedure the sta
pointersp will actually point to the last local variable.

Address Purpose Contents
511 . +—+— Original BF, 5F = E11
E18 Terminator ERR frame for main program [lewel 1)
EE2 DOuwnamic Link Ei1 —J
E@2 FReturn Address 287 frame for Start [lewel 2]
EE7 Locall 5
EBE Localz o +—1
EEE DOwnamic_Link EiH —
S84 FReturn Address 287 | frame for Rewerse (lewel 3]
EB2 MHumber EE +—
EE2 DOuwnamic Link =151 —J
E@1 FReturn Address 1™ frame for Start [lewel 2]
EEE Locall 5
499 Localz Y #+—|— BF = 499
498 DOwnamic_Link EQ3 —— EF - 1
497 FReturn Address TzZET EF - 2 frame for Rewerse (lewel 3]
496 Number EE +—— 5P = 495

Figure 16.4 Appearance of run time stack after four procedure calls

The compiler would know (at compile-time) that ni nat or was declared at static level 1, and
could have allocated it an offset address of 1 (relative to the base pointer that is used for th
program). Similarly, when parsing the referenc&eiar nat or within Rever se, the compiler
would be aware that it was currently compiling at a static level 3 - a level difference of 2. Hc
generation of code for descending two steps along the dynamic link chain would result (at r
in a memory access to a dynamic link masquerading as a "variable" at location 505, rather
the variablerer ni nat or at location 510.

16.2.2 The static link chain

One way of handling the problem just raised is to provide a second chain for linking data se
one which will be maintained at run-time using only information that has been embedded in
code generated at compile- time. This second chain is callsththelink chain, and is set up
when a procedure is invoked. By now it should not take much imagination to see that callin
procedure is not handled by simply executing a machine derehstruction, but rather by the
execution of a complex activation and calling sequence.

Procedure activation is that part of the sequence that reserves storage for the frame heade
evaluates the actual parameters needed for the call. Parameter handling is to be discussec
in anticipation we shall postulate that the calling routine initiates activation by executing coc

® saves the current stack poingerin a special register known as thark stack pointer vP,
and then

® decrementsP so as to reserve storage for the frame header, before
® dealing with the arrangements for transferring any actual parameters.

When a procedure is called, code is first executed that stores in the first three elements of i
activation record

® adtaticlink - a pointer to the base of the stack frame for the most recently active instar
the procedure within which its source code was nested,;

® adynamic link - a pointer to the base of the stack frame of the calling routine;
® areturn address - the code address to which control must finally return in the calling rot

whereafter th@p register can be reset to value that was previously sawed amd control
transferred to the main body of the procedure code.

This calling sequence can, in principle, be associated with either the caller or the called rou
Since a routine is defined once, but possibly called from many places, it is usual to associa
of the actions with the called routine. When this codgerated, it incorporates (a) the (known
level difference between the static level from which the procedure is to be called and the st
at which it was declared, and (b) the (known) starting address of the executable code. We
emphasize that the static link is only set up at run-time, when cegeciged that follows the
extant static chain from the stack frame ofdhking routine for as many steps as the level
difference between the calling and called routine dictates.

Activating and calling procedures is one part of the story. We also need to make provision 1
accessing variables. To achieve this, the compiler embeds address information into the ger
code. This takes the form of pairs of numbers indicating (a) the (known) level difference bet
the static level from which the variable is being accessed and the static level where it was ¢
and (b) the (known) offset displacement that is to be subtracted from the base pointer of th
run-time stack frame. When this code is later executed, the level difference information is u
traverse the static link chain when variable address computations are required. In sharp co
dynamic link chain is used, as suggested earlier, only to discard a stack frame at procedure

With this idea, and for the same program as before, the stack would take on the appearanc
in Figure 16.5.

Address Purpose Contents

511 +——— +— Original BF, 5F
—|— 518 Terminator 9 frame for main program [lewvel 1]

EEY Static Link 511 — | header for Start

EB2 Dwnamic Link 511

S@7 Feturn Address "3@™ frame for Stact [lewel 2

EAE Locall 5

EBE Localz *

E@4 Static Link 518 —— header for Rewerse
'—|—— EBAZ2 DOwnamic Link 51l

SBz FReturn Address Mz2ET frame for Rewverse [lewel 3
— |[—* 581 HNumber EE +—

E@E Static Link E1l —|— header for Starct

499 DOuwnamic Link SHE

492 FReturn Address Tla™ frame for S5tart [lewvel 2]

497 Locall 5

495 Localz v +— BF, MF

495 Static Link EEl —— +— BF-1 header for Reverse
—— 494 [wnamic Link SE1 +— EBEP-Z2

492 Return Address TzZE™ +— BP-3 frame for Rewverse [lewvel 3]

492 MHumber &5 +— 5P

Figure 16.5 Appearance of run time stack after four procedure calls, using

static links for non-local wariable acocess

16.2.3 Hypothetical machine support for the static link model

We postulate some extensions to the instruction set of the hypothetical stack machine intro
section 4.4 so as to support the execution of programs that have simple procedures. We as
existence of another machine register, the 16/ithat points to the frame header at the base
the activation record of the procedure that is about to be called.

One instruction is redefined, and three more are introduced:

ADR L A Push arun-time address onto the stack, for a variable stored at an oftbén the stack
frame that is. steps down the static link chain that begins at the current base register

MVST Prepare to activate a procedure, saving stack p@mpiamnp, and then reserving
storage for frame header.

CAL L A Call and enter a procedure whose code commences at agldirdsvhich was declared
at a static differencefrom the procedure making the call.

RET Return from procedure, resettiag BP andrcC.

The extensions to the interpreter of section 4.4 show the detailed operational semantics of

Instructions:
case STKMC adr: /1 push run tine address
cpu. sp--; /1 decrenent stack pointer
i f (inbounds(cpu.sp))
{ menicpu.sp] = base(nenicpu. pc]) /1 chain down static |inks
+ men{ cpu. pc + 1]; /1 and then add offset
cpu.pc += 2; } /'l bunmp program count
br eak;
case STKMC nst: /] procedure activation
Cpu. mp = Cpu. sp; /'l set mark stack pointer
cpu.sp -= STKMC header si ze; /1 bunp stack pointer
i nbounds(cpu. sp); /'l check space avail able
br eak;
case STKMC cal: /'l procedure entry
men{ cpu. mp - 1] = base(nen{cpu.pc]); // set up static link
menj cpu.mp - 2] = cpu. bp; /'l save dynanmic |ink
menfcpu.np - 3] = cpu.pc + 2; /1 save return address
cpu. bp = cpu. np; Il reset base pointer
cpu.pc = nenicpu.pc + 1]; /1 junmp to start of procedure
br eak;
case STKMC ret: /] procedure exit
cpu.sp = cpu. bp; /1 discard stack frane

cpu.pc = menfcpu.bp - 3]; /1 get return address
cpu.bp = nenfcpu.bp - 2]; /'l reset base pointer
br eak;

The routines for calling a procedure and computing the run-time address of a variable mak
the small auxiliary routinease:

nt STKMC: : base(int)
/

i

/1l Returns base of I|-th stack frame down the static link chain

{ int current = cpu. bp; /] start from base pointer
while (I > 0) { current = nenfcurrent - 1]; |--; }

return (current);

16.2.4 Code generation for the static link model

The discussion in the last sections will be made clearer if we examine the refinements to th
compiler in more detail.

The routines for parsing the main program and for parsing nested procedures make approf
entries into the symbol table, and then call uBlock to handle the rest of the source code for f
routine.

Cl ang
= (. TABLE entries entry; .)
" PROGRAM'
| dent <ent ry. name> (. entry.idclass = TABLE progs;
Tabl e- >enter (entry); Tabl e->openscope(); .)
WEAK "; "

Bl ock<entry. | evel +1, TABLE_progs, 0>

ProcDecl arati on
= (. TABLE entries entry; .)

" PROCEDURE"
| dent <ent ry. name> (. entry.idclass = TABLE procs;

CGen->storel abel (entry. p.entrypoint);

Tabl e- >enter (entry); Tabl e->openscope(); .)
WEAK ;"

Bl ock<ent ry.level +1, entry.idcl ass, CCGEN_headersize>

We note that:

® The address of the first instruction in any procedure will be stored in the symbol table
ent rypoi nt field of the entry for the procedure name, and retrieved from there whene\
procedure is to be called.

® The parser for 8lock is passed a parameter denoting its static level, a parameter dena
class, and a parameter denoting the offset to be assigned to its first local variable. Off
addresses for variables in the stack frame for a procedure start at 4 (allowing for the s
the frame header), as opposed to 1 (for the main program).

Parsing @lock involves several extensions over what was needed when there was only a si
main program, and can be understood with reference to the attributed production:

Bl ock<int bl kl evel, TABLE_idclasses bl kclass, int initialfranesize>
= (. int franesize = initialfranesize;
CGEN_| abel s entrypoint;
CGen->j unp(entrypoi nt, CGen->undefined); .)
SYNC
{ (Const Decl arati ons
| VarDecl ar ati ons<franesi ze>
| ProcDecl aration
) SYNC } (. blockclass = bl kcl ass; bl ockl evel = blklevel;
Il global for efficiency
CGen- >backpat ch(entrypoint);

CGen- >openst ackfrane(franesi ze - initialfranesize); .)
ConpoundSt at enment (. switch (bl ockcl ass)
{ case TABLE progs :
CGen- >l eaveprogran(); break;
case TABLE_procs :
CGen- >l eaveprocedure(); break;

}
Tabl e- >cl osescope(); .) .

in which the following points are worthy of comment:

® Since blocks can be nested, the compiler cannot predict, when a procedure cehaeet;
exactly when the code for that procedure willdetned, still less where it will be located ir
memory. To save a great deal of trouble such as might arise from apparent forward
references, we can arrange that the code for each procedure starts with an instructior
may have to branch (over the code for any nested blocks) to the actual code for the pi
body. This initial forward branch is generated by a call to the code generating raugne
and is backpatched when we finally come to generate the code for the procedure bod
little thought we can see that a simple optimization will allow for the elimination of the
forward jump in the common situation where a procedure has no further procedure ne
within it. Of course, calls to procedures within which other procedweasested will
immediately result in the execution of a further branch instruction, but the loss in effici
will usually be very small.

® The call to thepenst ackf r ame routine takes into account the fact that storage will have
allocated for the frame header when a procedure is activated just before it is called.

® The formal parametets kcl ass andbl kl evel are copied into global variables in the par
to cut down on the number of attributes needed for every other production, and thus ir
on parsing efficiency. This rather nasty approach is not needed in Modula-2 and Pasc
hand-crafted parsers, where the various routines of the parser can themselves be nes

® After the CompoundSatement has been parsed, code is generated either to halt the prog
(in the case of a program block), or to effect a procedure return (by calling on
| eavepr ocedur e to emit arRET instruction).

Code for parsing assignments and procedure calls is generated after the LL(1) conflict has
resolved by the call tbesi gnat or :

Assi gnnent O Cal |
= (. TABLE entries entry; .)
Desi gnat or <cl assset (TABLE _vars, TABLE procs), entry>
(/* assignment */ (. if (entry.idclass != TABLE vars) SenError(210); .)
":=" Expression SYNC (. CGen->assign(); .)
| /* procedure call */ (. if (entry.idclass == TABLE_ procs)
{ CGen->mar kst ack();
CGen->cal | (bl ockl evel - entry.level, entry.p.entrypoint);

) }else SenError (210); .)
This makes use of two routinesyr kst ack andcal | that are responsible for generating code f
initiating the activation and calling sequences (for our interpretive system these routines sir
emit themsT andcAL instructions). The routine for processinBesignator is much as before, sa
that it must call upon an extended version ofstherkaddr ess code generation routine to emit t
new form of theADR instruction:

Desi gnat or <cl assset al |l owed, TABLE entries &entry>
= (. TABLE_ al fa nane;
bool found; .)
| dent <name> (. Tabl e->search(name, entry, found);

if (!found) SenError(202);
if (lallowed. menmb(entry.idclass)) Sentrror(206);
if (entry.idclass != TABLE vars) return;
CGen- >st ackaddr ess(bl ockl evel - entry.level,
entry.v.offset); .)
(" (. if (entry.v.scalar) SenError(204); .)
Expr essi on (. /* determ ne size for bounds check */
CGen->st ackconstant (entry. v. si ze);
CGen->subscript(); .)
o
| (. if ('entry.v.scalar) SenError(205); .)
) .
We observe that an improved code generator could be written to make use of a tree repres
for expressions and conditions, similar to the one discussed in section 15.3.2. A detailed Ci
grammar and hand-crafted parsers using this can be found on the source diskette; it suffice
that virtually no changes have to be made to those parts of the grammar that we have discl

this section, other than for those responsible for assignment statements.
16.2.5 Theuse of a" Display”

Another widely used method for handling variable addressing involves the use of a so-calle
display. Since at most one instance of a procedure can be active at one time, only the lates
of each local variable can be accessible. The tedious business of following a static chain fo
variable access at execution time can be eliminated by storing the base pointers for the ma
recently activated stack frames at each level - the addresses we would otherwise have foul
following the static chain - in a small set of dedicated registers. These conceptually form th
elements of an array indexed by static level values. Run-time addressing is then performed
subtracting the predicted stack frame offset from the appropriate entry in this array.

When code for a procedure call is required, the interface takes into account the (known) ab
level at which the called procedure was declared, and also the (known) starting address of
executable code. The code to be executed is, however, rather different from that used by tt
link method. When a procedure is called it still needs to store the dynamic link, and the retL
address (in its frame header). In place of setting up the start of the static link chain, the call
sequence updates the display. This turns out to be very easy, as only one element is involy
can be predicted at compile-time to be the one that corresponds to a static level one higher
at which the name of the called procedure was declared. (RecalRiad dentifier is attributed
with the level of théBlock in which it is declared, and not with the level of Bleck which defines
its local variables and code.)

Similarly, when we leave a procedure, we must not only reset the program counter and bas
we may also need to restore a single element of the display. This is strictly only necessary
have called the procedure from one declared statically at a higher level, but it is simplest to
one element on all returns.

Consequently, when a procedure is called, we arrange for it to store in its frame header:

® adisplay copy - a copy of the current value of the display element for the level one higt
than the level of the called routine. This will allow the display to be reset later if neces:

® adynamic link - a pointer to the base of the stack frame of the calling routine.
® areturn address - the code address to which control must finally return in the calling rot

When a procedure relinquishes control, the base pointer is reset from the dynamic link, the

counter is reset from the return address, and one element of the display is restored from th
copy. The element in question is that for a level one higher than the level at which the nam
called routine was declared, that is, the level at which the block for the routine was compile
this level information must be incorporated in the code generated to handle a procedure ex

Information pertinent to variable addresses is still passed to the code generator by the anal
pairs of numbers, the first giving the (known) level at which the identifier was declared (an ¢
level, not the difference between two levels), and the second giving the (known) offset from
run-time base of the stack frame. This involves only minor changes to the code generation
so far developed.

This should be clarified by tracing the sequence of procedure calls for the same program a
When only the main program is active, the situation is as depicted in Figure 16.6(a).

Stack Displaw
Address Furpose Contents Contents Lewvel
E11 . 7 +—— Lii 1
El@ Terminator 3 B

Figure 16.60a) Stack frames edtant immediately after starting edecution

After st art is activated and called, the situation changes to that depicted in Figure 16.6(b).

Stack Display
Address Furpose Contents Contents Lewvel
E11 . 7 +—— Gil 1
E El@ Terminator El —_— gna B
59 Display Cop 7 7 4
ERg Dunamic Linﬂ 511
SEv7 Feturn Address 3@™ Start Frame
=] Locall N
ERE Localz "

Figure 1&6.&60b) Stack frames extant immediately after first procedure call

After Rever se is called for the first time it changes again to that depicted in Figure 16.6(c).

Stack Dizplaw
Address Purpose Contents Contents Leuel

E11 . T +— G511 1

E Elg Terminator 3 ——— &lo 2
15] Display Cop I o 4
ERg Dynamic LinE 51
547 Return Address "2E™ Start Frame
=15) Locall 5
j=isisy Localz b +— +—— EBEF, MF
SR Display Cop o
ERg Dunamic_Lin 516 Rewverse Frame
582 Return Address ™26
Bl Humber =19 +——— 5F

Figure 16.60c) Stack frames edtant immediately after first call to Rewerse

After the next (recursive) call @ art the changes become rather more significant, as the dis
copy is now relevant for the first time (Figure 16.6(d)).

Stack Dizplaw
Address Purpose Contents Contents Leuel

1
Sl z
SlE 3
o 4
1
W Start Frame

+_J Rewverse Frame
+—— EBEF , MF

Start frame

Terminator

Display CQDE
Dunamic_Lin
Feturn Address
Locall

Localz

Display CQDE
Dunamic_Lin
Feturn Address
Humber

EENICR TR 4y Ly I dy |G WTd p U NN TA W d g RN BN w RN

Displayw CQDE
Dunamic_Lin
Return Address
Locall

Localz

Figure 16.60d) Stack frames edtant irmediately after second call to Start

Bf o AOMCACA CACACACACA LN
oo OO S CEEEE e
gl [an T B o S T TR RS T e Sl [Ta LN R v

+—— 5F

After the next (recursive) call Rever se we get the situation in Figure 16.6(e).

Stack Displaw
Address Furpose Contents Contents Lewel

PR Y] 1
Eal 2

— a9 E
? 4

Terminator

Display EQDE
Ounamic Lin
Return Address
Locall

Localz

Start Frame

Display EQDE Rewverse Frame
Dunamic_Lin

Il
El
Il
=)
el
2
el
Il
=)
Return Address "E
=Y
=1
3
7
Il
5
=1
1

Humber

Display CQDE Start frame
Dunamic_Lin

Feturn Address
Locall

Localz

Display CQDE
Dunamic_Lin

Feturn Address
Humber =1 +— 5P

—— —— FBF, I

Rewverse frame

1
fopfads el OO CACAGACACT CAON
e el Qe im EEEE SEEEE e
[LIUE STy B Sl [D o B! (X NI Ty [ot [DY B o

Figure 16.60e) Stack frames edtant immediately after second call to Rewverse

When the recursion unwindggver se relinquishes control, the stack frametas- 492 is
discarded, andi spl ay[3] is reset t&05. WhenRever se relinquishes control yet again, the fra
in 504- 501 is discarded and there is actually no need to <gs ay[3], as it is no longer neede
Similarly, after leavinggt art and discarding the frame $09- 505 there is no need to alter

Di spl ay[2] . However, it is easiest simply to reset the display every time control returns fror
procedure.

16.2.6 Hypothetical machine support for the display model

Besides the mark stack regist® our machine is assumed to have a set of display registers,
we can model in an interpreter as a small aktaypl ay. Conceptually this is indexed from 1,
which calls for care in a3 implementation where arrays are indexed from O.M3tanstruction
provides support for procedure activation as before, butiRecAL andRET instructions are subt
different:

ADR L A Push arun-time address onto the stack for a variable that was declared at static level
L and predicted to be stored at an offsgbm the base of a stack frame.

CAL L A Calland enter a procedure whédecldentifier was declared at static leugland
whose code commences at address

RET L Return from a procedure whoBlck was compiled at level

The extensions to the interpreter of section 4.4 show the detailed operational semantics of
instructions:

case STKMC adr: /1 push run tine address
cpu. sp--; /1 decrenent stack pointer
if (inbounds(cpu.sp))
{ menfcpu.sp] = display[nmenfcpu.pc] - 1] /1 extract display el ement
+ meni cpu. pc + 1]; /1 and then add of f set
cpu.pc += 2; } /'l bunmp program count
br eak;
case STKMC cal: /] procedure entry
meni cpu. np - 1] = di spl ay[meni cpu. pc]]; /'l save display el enent
menj cpu. mp - 2] = cpu. bp; /'l save dynanmic |ink
menfcpu.np - 3] = cpu.pc + 2; /1 save return address
di spl ay[men{ cpu. pc]] = cpu. np; /1 update display
cpu. bp = cpu. np; /'l reset base pointer
cpu.pc = nenfcpu.pc + 1]; /1 enter procedure
br eak;
case STKMC ret: /] procedure exit
di spl ay[menf cpu.pc] - 1] = nmenfcpu.bp - 1]; // restore display
cpu.sp = cpu. bp; /'l discard stack frane
cpu.pc = nenfcpu.bp - 3]; /1 get return address
cpu.bp = nenfcpu.bp - 2]; /'l reset base pointer
br eak;

16.2.7 Code generation for the display model

The attributed productions in a Cocol description of our compiler are very similar to those u
static link model. The production f@&tock takes into account the new form of & instruction,
and also checks that the limit on the depth of nesting imposed by aifisgteay will not be
exceeded:

Bl ock<int bl klevel, TABLE_idclasses blkclass, int initialfranmesize>
= (. int franesize = initialfranesize;
CGEN_| abel s entrypoint;

CGen->j unp(entrypoi nt, CGen->undefi ned);

if (blklevel > CGEN_|evnmax) SentError(213); .)
SYNC
{ (Const Decl ar ati ons
| Var Decl arati ons<franesi ze>
| ProcDecl aration
) SYNC } (. blockclass = bl kcl ass; bl ockl evel = blklevel;
CGen- >backpat ch(entrypoint);
CGen- >openst ackf rame(franesi ze
- initialfranesize); .)
ConpoundsSt at enent (. switch (bl ockcl ass)

{ case TABLE progs :
CGen- >| eavepr ogran();

case TABLE_procs :
CGen- >| eavepr ocedur e(bl ockl evel);

br eak;
br eak;

}
Tabl e- >cl osescope(); .)

The productions foAssignmentOrCall and forDesignator require trivial alteration to allow for th
fact that the code generator is passed absolute static levels, and not level differences:

Assi gnnent O Cal |
= (. TABLE entries entry; .)
Desi gnat or <cl assset (TABLE vars, TABLE procs), entry>
(/* assignnent */ (. if (entry.idclass != TABLE vars) SenError(210); .)
":=" Expression SYNC (. CGen->assign(); .)
| /* procedure call */ (. if (entry.idclass
{ CGen->mar kst ack();
CGen->cal | (entry. | evel,

TABLE_procs)
entry. p.entrypoint);

c}el se SenError(210); .)
)

Desi gnhat or <cl assset al |l owed, TABLE entries &entry>
= (. TABLE_ al fa nane;

bool found; .)
| dent <name> (. Tabl e->search(name, entry, found);
if (!found) SenError(202);
if (lallowed. menb(entry.idclass)) Sentrror(206);
if (entry.idclass != TABLE vars) return;
CGen- >st ackaddress(entry.level, entry.v.offset); .)
((. if (entry.v.scalar) SenError(204); .)
Expr essi on (. /* determne size for bounds check */

CGen- >st ackconstant (entry. v. si ze);

.y

) .

It may be of interest to show the code generated for the program given earlier. The correct
source

PROGRAM Debug;

(.

VAR Ter m nat or;

PROCEDURE Start ;

VAR Local 1,

CGen->subscript(); .)

if (lentry.v.scalar) SenError(205); .)

Local 2;

PROCEDURE Rever se;
VAR Nunber ;
BEG N

READ(Nunber) ;

I F Term nator <> Nunber THEN Start;

WRI TE(Nunber)

END;

BEG N

Rever se

END;
BEG N

Ter m nat or

Start
END.

=9

produces the following stack machine code, where for comparison we have shown both mc

Static link

oooh~NO

10
13
14
17
18
19
21
22
25
28
29
30
31
32
34
35
38
39
41
44
46
47
48
51

BRN
BRN
DSP
ADR
I NN
ADR
VAL
ADR
VAL
NEQ
BZE
VBT
CAL
ADR
VAL
PRN
NLN
RET
DSP
VST
CAL
RET
DSP
ADR
LT
STO
VBT
CAL
HLT

39
32

1
-4
-1

-4

25

(ol ol ol N

2

6

9
10
13
14
17
18
19
21
22
25
28
29
30
31
33
35
36
39
41
43
46
48
49
50
53

Di spl ay

BRN
BRN
DSP
ADR
I NN
ADR
VAL
ADR
VAL
NEQ
BZE
VBT
CAL
ADR
VAL
PRN
NLN
RET
DSP
VST
CAL
RET
DSP
ADR
LIT
STO
VST
CAL
HLT

41
33

-4
-1

-4

25

N W

OFRFPNA

junmp to start of nmin program

jump to start of Start

start of code for Reverse (declared at |evel 3)
address of Number (declared at |evel 3)

read (Nunber)

address of Terminator is two | evels down
dereference - value of Termi nator on stack
address of Nunber is on this |evel

dereference - value of Number now on stack
conpare for inequality

prepare to activate Start
recursive call to Start
address of Nunber

wri t e(Nurber)

exit Reverse

start of code for Start (declared at |evel 2)
prepare to activate Reverse

call on Reverse, which is declared at this |evel
exit Start

start of code for main program (level now 1)
address of Term nator on stack

push constant 9 onto stack

Term nator := 9

prepare to activate Start

call Start, which is declared at this |evel
stop execution

16.2.8 Relative merits of the static link and display models

The display method is potentially more efficient at run-time than the static link method. In s
real machines special purpose fast CPU registers may be used to store the display, leading
greater efficiency. It suffers from the drawback that it seems necessary to place an arbitran
the depth to which procedures may be statically nested. The limit on the size of the display
same as the maximum static depth of nesting allowed by the compiler at compile-time. Mur
Law will ensure that this depth will be inadequate for the program you were going to write t
ensure you a niche in the Halls of Fame! Ingenious methods can be found to overcome the

problems, but we leave investigation of these to the exercises that follow.

Exercises

16.9 Since Topsy allows only a non-nested program structure for routines like that found in
C++, its run-time support system need not be nearly as complex as the one described in thi
although use will still need to be made of the stack frame concept. Discuss the implementa
void functions in Topsy in some detail, paying particular attention to the information that wo
needed in the frame header of each routine, and extend your Topsy compiler and the hypo
machine interpreter to allow you to handle multi-function programs.

16.10 Follow up the suggestion that the display does not have to be restored after every re
a procedure. When should the compiler generate code to handle this operation, and what fi
should the code take? Are the savings worth worrying about? (The Pascal-S system takes
approach (Wirth, 1981; Rees and Robson, 1987).)

16.11 If you use the display method, is there any real need to use the baserregsteell?

16.12 If one studies block-structured programs, one finds that many of the references to va
a block are either to the local variables of that block, or to the global variables of the main
block. Study the source code for the Modula-2 and Pascal implementation of the hand-craft
parsers and satisfy yourself of the truth of this. If this is indeed so, perhaps special forms ol
addressing should be used for these variables, so as to avoid the inefficient use of the stati
search or display reference at run-time. Explore this idea for the simple compiler-interprete!
we are developing.

16.13 In our emulated machine the computation of every run-time address by invoking a fu
call to traverse the static link chain might prove to be excessively slow if the idea were exte
a native- code generator. Since references to "intermediate" variables are likely to be less f
than references to "local” or "global” variables, some compilers (for example, Turbo Pascal
generate code that unrolls the loop implicit intihee function for such accesses - that is, they
generate an explicit sequenceNbassignments, rather than a loop that is perforshédhes -
thereby sacrificing a marginal amount of space to obtain speed. Explore the implications ar
implementation of this idea.

16.14 One possible approach to the problem of running out of display elements is to store ¢
display as will be needed in the frame header for the procedure itself. Explore the impleme
of this idea, and comment on its advantages and disadvantages.

16.15 Are there any dangers lurking behind the peephole optimization suggested earlier foi
eliminating redundant branch instructions? Consider carefully the code that needs to be ge
foranlF ... THEN ... ELSE statement.

16.16 Can you think of a way of avoiding the unconditional branch instructions with which r
every enveloping procedure starts, without using all the machinery of a separate forward re
table?

16.17 Single-pass compilers have difficulty in handling some combinations of mutually rect
procedures. It is not always possible to nest such procedures in such a way that they are a

"declared" before they are "invoked" in the source code - indeediit G not possible to nest
procedures (functions) at all. The solution usually adopted is to suppdortved declaration of
procedures. In Pascal, and in some Modula-2 compilers this is done by substituting the key
FORWARD for the body of the procedure when it is first declared.+n tGe same effect is achieve
through the use diunction prototypes.

Extend the Clang and Topsy compilers as so far developed so as to allow mutually recursiy
routines to be declared and elaborated properly. Bear in mind that all procedures derlsyrl
must later be defined in full, and at the same level as that where the forward declaration wa
originally made.

16.18 The poor oldoro statement is not only hated by protagonists of structured programmi
is also surprisingly awkward to compile. If you wish to add it to Clang, why should you prev
users from jumping into procedure or function blocks, and if you let them jump out of them,
special action must be taken to maintain the integrity of the stack frame structures?

Further reading

Most texts on compiling block-structured languages give a treatment of the material discus:
but this will make more sense after the reader has studied the next chapter.

The problems with handling tl@To statement are discussed in the books by Aho, Sethi and
Ullman (1986) and Fischer and LeBlanc (1988, 1991).

