Compilers and Compiler Generators © P.D. Terry, 2000

15A SSMPLE COMPILER - THE BACK END

After the front end has analysed the source code, the back end of a compiler is responsible
synthesizing object code. The critical reader will have realized that code generation, of any
implies that we consider the semantics of our language and of our target machine, and the
interaction between them, in far more detail than we have done until now. Indeed, we have
real attempt to define what programs written in Clang or Topsy "mean", although we have t
assumed that the reader has quite an extensive knowledge of imperative languages, and tt
could safely draw on this.

15.1 The code generation interface

In considering the interface between analysis and code generation it will again pay to aim fi
degree of machine independence. Generation of code should take place without too much,
knowledge of how the analyser works. A common technique for achieving this seemingly
impossible task is to define a hypothetical machine, with instruction set and architecture co
for the execution of programs of the source language, but without being too far removed frc
actual system for which the compiler is required. The action of the interface routines will be
translate the source program into an equivalent sequence of operations for the hypothetica
machine. Calls to these routines can be embedded in the parser without overmuch concerr
the final generator will turn the operations into object code for the target machine. Indeed, ¢
have already mentioned, some interpretive systems hand such operations over directly to ¢
interpreter without ever producing real machine code.

The concepts of the meaning of an expression, and of assignment of the "values" of expres
locations in memory labelled with the "addresses" of variables are probably well understoot
reader. As it happens, such operations are very easily handled by assuming that the hypotl
machine is stack-based, and translating the normal infix notation used in describing expres
into a postfix or Polish equivalent. This is then easily handled with the aid of an evaluation ¢
the elements of which are either addresses of storage locations, or the values found at suc
addresses. These ideas will probably be familiar to readers already acquainted with stack-
machines like the Hewlett-Packard calculator. Furthermore, we have already examined a
such a machine in section 2.4, and discussed how expressions might be converted into po:
notation in section 11.1.

A little reflection on this theme will suggest that the public interface of such a code generati
might take the form below.

enum CCEN_operators {
CGEN_opadd, CGEN opsub, CGEN opnul, CGEN opdvd, CGEN opeql,
CGEN_opneq, CGEN oplss, CGEN opgeq, CGEN opgtr, CGEN opleq

typedef short CGEN_| abel s;
class CCGEN {
publi c:

CGEN_I| abel s undefi ned; /1 for forward references

CGEN(REPORT *R);
/1 Initializes code generator

voi d negat ei nt eger(void);
/'l Generates code to negate integer value on top of evaluation stack

voi d bi naryi nt eger op(CGEN_operators op);
/1 Generates code to pop two values A B fromstack and push value A op B

voi d conpari son(CGEN_operators op);
/] Cenerates code to pop two values A B from stack; push Bool ean value A op B

voi d readval ue(voi d);
/] Generates code to read an integer; store on address found on top-of-stack

void witeval ue(void);
/'l Generates code to pop and then output the value at top-of-stack

voi d new i ne(void);
/1 Generates code to output line nark

void witestring(CCGEN_| abel s | ocation);
/! Generates code to output string stored fromknown | ocation

voi d stackstring(char *str, CGEN_|abels & ocation);
/1 Stores str in literal pool in nenory and returns its |ocation

voi d stackconstant (i nt nunber);
/'l Generates code to push number onto eval uation stack

voi d stackaddress(int offset);
/1 Cenerates code to push address for known of fset onto eval uation stack

voi d subscript(void);
/] Generates code to index an array and check that bounds are not exceeded

voi d dereference(void);
Il Generates code to replace top-of-stack by the value stored at the
/1 address currently stored at top-of-stack

voi d assign(void);
/I Cenerates code to store value currently on top-of-stack on the
/] address stored at next-to-top, popping these two el enments

voi d openst ackfrane(int size);
/'l Generates code to reserve space for size variables

voi d | eavepr ogran(void);
/1 Generates code needed as a programterm nates (halt)

voi d storel abel (CGEN_| abel s &l ocation);
/] Stores address of next instruction in location for use in backpatching

voi d junp(CCEN_| abel s &ere, CGEN_ | abel s destination);
/1 Generates unconditional branch fromhere to destination

voi d j unponfal se(CGEN_| abel s &ere, CCGEN_| abels destination);
/'l Generates branch fromhere to destination, conditional on the Bool ean
/1 value currently on top of the evaluation stack, popping this value

voi d backpat ch(CGEN_I| abel s | ocation);
/] Stores the current |ocation counter as the address field of the branch
// instruction assuned to be held in an inconplete format |ocation

voi d dunp(void);
/1 Generates code to dunp the current state of the evaluation stack

voi d getsize(int &codel ength, int & nitsp);
/'l Returns length of generated code and initial stack pointer

int gettop(void);
/1l Returns the current |ocation counter

H
As usual, there are several points that need further comment and explanation:

® The code generation routines have been given names that might suggest that they ac
perform operations likg¢ unp. They onlygenerate code for such operations, of course.

® There is an unavoidable interaction between this class and the machine for which cod
be generated - the implementation will need to import the machine address type, and

seen fit to export a routingdt si ze) that will allow the compiler to determine the amoun
code generated.

Code for data manipulation on such a machine can be generated by making calls on
like st ackconst ant, stackaddress, stackstring, subscript anddereference for
storage access; by calls to routines fikkgat ei nt eger andbi naryi nt eger op to generate
code to perform simple arithmetic; and finally by calladsi gn to handle the familiar
assignment process.

For example, compilation of the Clang assignment statement
A =4 + List[5]

(whereLi st has 14 elements) should result in the following sequence of code generat
routine calls

st ackaddress(of fset of A)
st ackconst ant (4)
st ackaddress(of fset of List[0])
st ackconst ant (5)
st ackconst ant (14)
subscri pt
deref erence
bi naryi nt eger op(CGEN_opadd)
assign
The address associated with an array in the symbol table will denote the offset of the
element of the array (the zero-subscript one) from some known "base" at run-time. Ot
are very simple indeed. They have only one dimension, al$ized at compile-time, a fixe
lower subscript bound of zero, and can easily be handled after allocating toersecutive
elements in memory. Addressing an individual element at run time is achieved by con
the value of the subscripting expression, and adding this to (or, on a stack implementz
subtracting it from) the address of the first element in the array. In the interests of safe
shall insist that all subscripting operations incorporate range checks (this is, of course

done in G+).

To generate code to handle simple 1/0 operations we can call on the rostices ue,
writeval ue,witestring andnew ine.

To generate code to allow comparisons to be effected we calhpar i son, suitable
parameterized according to the test to be performed.

Control statements are a little more interesting. In the type of machine being consider:
assumed that machine code will be executed in the order in which it was generated, €
where explicit "branch™ operations occur. Although our simple language does not inco
the somewhat despisedro statement, this maps very closely onto real machine code,
must form the basis of code generated by higher level control statements. The transfo
is, of course, easily automated, save for the familiar problem of forward references. In
case there are two source statements that give rise to these. Source code like

I F Condition THEN St at ement

should lead to object code of the more fundamental form

code for Condition
I F NOT Condition THEN GOTO LAB END
code for Statenent

LAB conti nue

and the problem is that when we get to the stage of gene@atiogLAB we do not know the
address that will apply toaB. Similarly, the source code

WH LE Condition DO Stat enent
should lead to object code of the form

LAB code for Condition
I F NOT Condition THEN GOTO EXIT END
code for Statenent
GOTO LAB

EXIT conti nue

Here we should know the address a8 as we start to generate the codeGondition, but
we shall not know the addressexii T when we get to the stage of generatiogo EXI T.

In general the solution to this problem might require the use of a two-pass system. Ho
we shall assume that we are developing a one-pass load-and-go compiler, and that tF
generated code is all in memory, or at worst on a random access file, so that modifica
addresses in branch instructions can easily be effected. We generate branch instructi
the aid ofj unp(here, |abel) andjunponfal se(here, |abel), and we introduce two
auxiliary routinesst or el abel (1 ocat i on) andbackpat ch(| ocati on) to remember the
location of an instruction, and to be able to repair the address fields of incompletely ge
branch instructions at a later stage. The code generator exports a special value of the
CGEN_| abel s type that can be used to generate a temporary target destination for suct
incomplete instructions.

We have so far made no mention of the forward reference tables which the reader me
dreading. In fact we can leave the system to sort these out implicitly, pointing to yet ar
advantage of the recursive descent method. A little thought should show that side-effe
allowing only the structuredhileStatement andlfStatement are that we never need explici
labels, and that we need the same number of implicit labels for each instance of any ¢
These labels may be handled by declaring appropriate variables local to parsing routil
IfStatement; each time a recursive call is madéftiatement new variables will come into
existence, and remain there for as long as it takes to complete parsing of the construc
after which they will be discarded. When compilingl Egatement we simply use a techniq
like the following (shown devoid of error handling for simplicity):

voi d | fStatenment (void)
[/l IfStatement = "IF" Condition "THEN' Statenent .
{ CGEN_I| abel s testl abel; /'l must be declared locally
getsym(); /] scan past IF
Condi tion(); /1 generates code to evaluate Condition
j umponf al se(testl abel,
undefined); // renenber address of inconplete instruction
accept (t hensym ; /1 scan past THEN
Statement () ; /'l generates code for intervening Statenent(s)
backpat ch(test| abel); I/ use local test value stored by junponfalse

If the interior call tost at ement needs to parse a furthé®atement, another instance of
t est | abel will be created for the purpose. Clearly, all variables associated with handli
implicit forward references must be declared "locally”, or chaos will ensue.

We may need to generate special housekeeping code as we enter oBleakeTdis may

not be apparent in the case of a single block program - which is all our language allow
present - but will certainly be the case when we extend the language to support proce
This code can be generated by the routipesst ackf r ane (for code needed as we enter
program) and eavepr ogr am(for code needed as we leave it to return, perhaps, to the c

of some underlying operating system).

® gettop is provided so that a source listing may give details of the object code address
corresponding to statements in the source.

We are now in a position to show a fully attributed phrase structure grammar for a complete
compiler. This could be submitted to Coco/R to generate such a compiler, or could be used
in the completion of a hand-crafted compiler such as the one to be found on the source disl
power and usefulness of this notation should now be very apparent.

PRODUCTI ONS
Cl ang
= (. TABLE entries entry; .)
" PROGRAM'
| dent <ent ry. name> (. debug = (strcnp(entry.nanme, "DEBUG') == 0);
entry.idclass = TABLE progs;
Tabl e->enter(entry); .)
WEAK ";" Block "."
Bl ock

= (. int framesize = 0; .
SYNC { (ConstDeclarations | VarDecl arations<franesize>)

SYNC } (. /* reserve space for variables */
CGen- >openst ackf rame(franesi ze); .)
ConpoundSt at enent (. CGen->| eaveprogran();

if (debug) /* dermnstratlon purposes */
Tabl e->printtabl e(stdout); .)

Const Decl ar ati ons
= "CONST" OneConst { OneConst } .

OneConst

= (. TABLE entries entry; .)
| dent <ent ry. name> (. entry.idclass = TABLE consts; .)
WEAK "=

Nunber <entry. c. val ue> (. Table->enter(entry); .)

Var Decl ar ati ons<i nt &franesi ze>
= "VAR' OneVar<franesize> { WEAK ", " OneVar<franesize>} ";"

OneVar <i nt &f ranesi ze>
= (. TABLE entries entry;
(. entry.idclass = TABLE vars;
entry.v.size = 1; entry.v.scalar = true;
entry.v.offset = framesize + 1; .)
| dent <ent ry. name>
[UpperBound<entry.v.size> (. entry.v.scalar = false; .)
(. Table->enter(entry);
franesize += entry.v.size; .) .

Upper Bound<i nt &si ze>

= "[" Nunber<size> "]" (. size++; .) .
ConmpoundsSt at enment
= "BEG@ N' Statenent { WEAK ";" Statenent } "END'
St at enment
= SYNC [ConpoundStatenent | Assignnent

| 1fStatement | Wil eSt at enent

| ReadSt at enent | WiteStatenent

| " STACKDUWP" (. CGen->dunmp(); .)

] .
Assi gnnent
= Variable ":="
Expressi on SYNC (. CGen->assign(); .) .

Vari abl e

= (. TABLE entries entry; .)
Desi gnat or <cl assset (TABLE vars), entry> .

DeS| gnat or <cl assset al |l owed, TABLE entries &entry>
(. TABLE al fa nane;
bool found;
| dent <name> (. Tabl e->search(nanme, entry, found);

(

Expr essi on

o
|
) .

| f St at enent

"I F" Condition "THEN'
St at enent

Wi | eSt at enent
"WHI LE"

Condi ti on
St at enent

Condi tion

Expr essi on

(Rel Op<op> Expression

| /* Mssing op */
) .

ReadsSt at ement

= "READ' "(" Variable
{ WEAK "," Variable
P

Wit eStat emrent

—~—~—

~—~—~—

if (!found) SenError(202);

if (lallowed. menb(entry.idclass)) Sentrror(206);

if (entry.idclass != TABLE vars)

r

eturn;

CGen- >st ackaddress(entry.v.offset); .)
if (entry.v.scalar) SenError(204);
/* determ ne size for bounds check */
CGen->st ackconstant (entry. v. si ze);

CGen->subscript();

-)

if (lentry.v.scalar) SenError(205); .)

CGEN_| abel s testl abel ;

-)
CGen- >j unponf al se(test!| abel ,

CGen- >undef i ned) ;

CGen- >backpat ch(testl abel); .)
CGEN_| abel s startloop, testl abel,
CGen->storel abel (startloop); .)

CGen- >j unponf al se(test!| abel ,
startl oop);

CGen- >j unp(dunmmyl abel ,

CGen- >backpat ch(testl| abel) ;

CGEN_operators op; .)

CGen- >conpari son(op); .)
SynError (91);

CGen- >r eadval ue(); .)
CGen->readval ue(); .)

dummyl abel ;

CGen- >undef i ned) ;

)

br eak;

= "WRITE' ["(" WiteElement { WEAK "," WiteEl ement } ")"]
(. CGen->newine(); .)
Wit eEl enent
= (. char str[600];
CGEN_| abel s startstring; .)
String<str> (. CGen->stackstring(str, startstring);
CGen->writestring(startstring); .)
| Expression (. CGen->writeval ue();
Expr essi on
= (. CGEN operators op; .)
("+" Term
| "-" Term (. CGen->negateinteger(); .)
| Term
)
{ AddOp<op> Term (. CGen->bi naryi ntegerop(op); .)
.
Term
= (. CGEN operators op; .)
Fact or
{ ¢ Ml Q<op>
| /* mssing op */ (. SynError(92); op = CGEN_ opmul; .)
) Factor (. CGen->bi naryi ntegerop(op); .)
Fact or
= (. TABLE entries entry,;
int value; .)
Desi gnat or <cl assset (TABLE consts, TABLE vars), entry>
(. switch (entry.idclass)
{ case TABLE vars :
CGen- >der ef erence(); break;
case TABLE consts :
CGen->st ackconstant (entry. c. val ue);
| Nunber <val ue> (. CGen->stackconstant(value); .)
| "(" Expression ")"
AddOp<CGEN _oper ators &op>
= e (. op = CCEN_opadd; .)
|- (. op = CGEN_opsub; .)

Mul Qp<CGEN _operators &op>
= k"

op = CGEN_opmul; .)

)

)

)

| "/ (. op = CGEN_ opdvd; .) .
Rel OQp<CGEN operators &op>

(. op = CGEN_opeql; .)
| <>t (. op = CGEN_opneq; .)
| <" (. op = CGEN_oplss; .)
| <= (. op = CCGEN_opleq; .)
| ">t (. op = CGEN opgtr; .)
| ">= (. op = CGEN_opgeq; .) .
| dent <char *name>
= identifier (. LexNanme(nane, TABLE alfalength); .) .
String<char *str>
= string (. char local[100];
LexString(local, sizeof(local) - 1);
int i =0;
while (local[i]) /* strip quotes */
{ local[i] = local [i+1]; i++ }
local[i-2] ="'\0";
i =0;
while (local[i]) /* find internal quotes */
{if (local[i] == "\""
{int j =i;
while (local[j])
{ local[j] = local[j+1]; j++ }

strcpy(str, local); .) .

Nunber <int &nune
= nunber (. char str[100];
int i =0, |, digit, overflow = 0;
num = 0;
LexString(str, sizeof(str) - 1);
| = strlen(str);
while (i <=1 & isdigit(str[i]))
{ digit =str[i] - "0"; i++
if (num<= (maxint - digit) / 10)
num = 10 * num+ digit;
el se overflow = 1;

}
if (overflow) SenError(200); .) .
END d ang.

A few points call for additional comment:

® The reverse Polish (postfix) form of the expression manipulation is accomplished simj
delaying the calls for "operation” code generation until after the second "operand"” cod
generation has taken place - this is, of course, completely analogous to the system de
in section 11.1 for converting infix expression strings to their reverse Polish equivalen

® [t turns out to be useful for debugging purposes, and for a full understanding of the we
which our machine works, to be able to print out the evaluation stack at any point in tF
program. This we have done by introducing another keyword into the langmagepuvp,
which can appear as a simple statement, and whose code generation is hamgied by

® The reader will recall that the production feactor would be better expressed in a way th
would introduce an LL(1) conflict into the grammar. This conflict is resolved within the
production forDesignator in the above Cocol grammar; it can be (and is) resolved withil
production forFactor in the hand-crafted compiler on the source diskette. In other resp
the semantic actions found in the hand-crafted code will be found to match those in th
grammar very closely indeed.

Exercises

Many of the previous suggestions for extending Clang or Topsy will act as useful sources @
inspiration for projects. Some of these may call for extra code generator interface routines,
many will be found to require no more than we have already discussed. Decide which of th
following problems can be solved immediately, and for those that cannot, suggest the minir
extensions to the code generator that you can foresee might be necessary.

15.1 How do you generate code for HEPEAT ... UNTI L statement in Clang (or thie statemen
in Topsy)?
15.2 How do you generate code forian... THEN ... ELSE statement, with the "dangling els

ambiguity resolved as in Pascal or+Q Bear in mind that theL SE part may or may not be prese
and ensure that your solution can handle both situations.

15.3 What sort of code generation is needed for the Pascal or Modula+stidep that we hav
suggested adding to Clang? Make sure you understand the semanticzosfltiop before you
begin - they may be more subtle than you think!

15.4 What sort of code generation is needed for thes§/lef or loop that we have suggested
adding to Topsy?

15.5 Why do you suppose languages all®drloop to terminate with its control variable
"undefined"?

15.6 At present therl TE statement of Clang is rather like Pascal’st eLn. What changes woul
be needed to provide an expligRi TELN statement, and, similarly, an expliREADLN statement,
with semantics as used in Pascal.

15.7 If you add a "character" data type to your language, as suggested in Exercise 14.30, f
you generate code to han&®AD andwRl TE operations?

15.8 Code generation for theoP ... EXIT ... ENDconstruction suggested in Exercise 14.2
provides quite an interesting exercise. Since we may have sexeTatatements in a loop, we
seem to have a severe forward reference problem. This may be avoided in several ways. F
example, we could generate code of the form

GOTO STARTLOOP
EXI TPO NT GOTO LOOPEXI T
STARTLOOP code for |oop body
GOTO EXI TPOI NT (froman EXIT statenent)

GOTO STARTLOOP
LOOPEXIT code which foll ows | oop

With this idea, alExi T statements can branch baclkexo TPO NT, and we have only to backpatc
the one instruction @xi TPO NT when we reach thend of theLoor. This is marginally inefficient
but the execution of one extearo statement adds very little to the overall execution time.

Another idea is to generate code like

STARTLOOP code for |oop body
GOTO EXI T1 (froman EXI T statenent)

EXI T1 GOTO EXIT2 (froman EXI T statement)

EXI T2 GOTO LOOPEXI T (froman EXI T statement)

GOTO STARTLOOP
LOOPEXI T code which foll ows END

In this case, each time anotl@xr T is encountered the previously incomplete one is backpatcl
branch to the incomplete instruction which is just about to be generated. WizaD the
encountered, the last one is backpatched to leave the loopofA .. END structure may,
unusually, have naxi T statements, but this is easily handled.) This solution is even less effi
than the last. An ingenious modification can lead to much better code. Suppose we genera
which at first appears quite incorrect, on the lines of

STARTLOOP code for | oop body

EXI TO GOTO 0 (inconplete - froman EXIT statenent)
EXI T1 GOTO EXITO (froman EXI T statement)
EXI T2 GOTO EXITL (froman EXI T statement)

with an auxiliary variabl&xi t which contains the address of the most recent afthe
instructions so generated. (In the above example this would contain the address of the inst
labelledexi T2). We have used only backward references so far, so no real problems arise.'
we encounter theND, we refer to the instruction ati t, alter its address field to the now knowt
forward address, and use the old backward address to find the address of the next instructi
modify, repeating this process until tr@t0 0" is encountered, which stops the chaining proc
we are, of course, doing nothing other than constructing a linked list temporarily within the
generated code.

Try out one or other approach, or come up with your own ideas. All of these schemes need
thought when the possibility exists for having nestedP ... END structures, which you shoulc
allow.

15.9 What sort of code generation is needed for the translation of structured statements like
following?

| f St at enent = "IF" Condition "THEN' Statenent Sequence
{ "ELSIF" Condition "THEN' StatenentSequence }
["ELSE" StatenentSequence]
"END' .
"WH LE" Condition "DO' StatenentSequence "END' .
Statement { ";" Statenent } .

Wi | eSt at errent
St at ement Sequence

15.10 Brinch Hansen (1983) introduced an extended form wofthe loop into the language
Edison:

Wi | eSt at errent = "WH LE" Condition "DO' StatenentSequence
{ "ELSE" Condition "DO' StatenentSequence }
"END' .

The Conditions are evaluated one at a time in the order written until one is found to be true,"
the correspondin§tatementSequence is executed, after which the process is repeated. If no
Condition is true, the loop terminates. How could this be implemented? Can you think of an
algorithms where this statement would be useful?

15.11 Add a&HALT statement, as a variation on the TE statement, which first prints the values
its parameters and then aborts execution.

15.12 How would you handle tl@aro statement, assuming you were to add it to the language

What restrictions or precautions should you take when combining it with structured loops (e
particular,FOR loops)?

15.13 How would you implementGasE statement in Clang, orsai t ch statement in Topsy?
What should be done to handle@mERW SE or def aul t , and what action should be taken to b
taken when the selector does not match any of the labelled "arms"? Is it preferable to regar
an error, or as an implicit "do nothing"?

15.14 Add theviob or operator for use in finding remainders in expressions, anshthe OrR and
NOT operations for use in forming more comp{@onditions.

15.15 Addi Nc(x) andDEC(x) statements to Clang, or equivalently add andx- - statements tc
Topsy - thereby turning it, at last, into TopsyThe Topsy version will introduce an LL(1) conf
into the grammar, for now there will be three distinct alternativeStébement that commence wi
an identifier. However, this conflict is not hard to resolve.

Further reading

The hypothetical stack machine has been widely used in the development of Pascal compil
the book by Welsh and McKeag (1980) can be found a treatment on which our own is partl
as is the excellent treatment by Elder (1994). The discussion in the book by Wirth (1976b) i
relevant, although, as is typical in several systems like this, no real attempt is made to spec
interface to the code generation, which is simply overlaid directly onto the analyser in a ma
dependent way. The discussion of the Pascal-P compiler in the book by Pemberton and De
(1982) is, as usual, extensive. However, code generation for a language supporting a varie
types (something we have so far assiduously avoided introducing except in the exercises) 1
obscure many principles when it is simply layered onto an already large system.

Various approaches can be taken to compilingcise statement. The reader might like to cons
the early papers by Sale (1981) and Hennessy and Mendelsohn (1982), as well as the des:
the book by Pemberton and Daniels (1982).

15.2 Code generation for a simple stack machine

The problem of code generation for a real machine is, in general, complex, and very specie
this section we shall content ourselves with completing our first level Clang compiler on the
assumption that we wish to generate code for the stack machine described in section 4.4. ¢
machine does not exist, but, as we saw, it may readily be emulated by a simple interpreter.
if thei nt er pret routine from that section is invoked from the driver program after completin
successful parse, an implementation of Clang quite suitable for experimental work is readil
produced.

An implementation of an "on-the-fly" code generator for this machine is almost trivially easy
can be found on the source diskette. In studying this code the reader should note that:

® An external instance of tl&eyKMC class is made directly visible to the code generator; as
code is generated it is stored directly in the code atralyi ne- >nem

® The constructor of the code generator class initializes two private members - a locatio
counter ¢odet op) needed for storing instructions, and a top of memory poister ¢p)
needed for storing string literals.

® Thest ackaddr ess routine is passed a simple symbol table address value, and convert
into an offset that will later be computed relative todhe bp register when the program i
executed.

® The main part of the code generation is done in terms of calls to a redtinevhich does
some error checking that the "memory" has not overflowed. Storing a string in the liter
in high memory is done by routiseackst ri ng, which is also responsible for overflow
checking. As usual, errors are reported through the error reporting class discussed in
14.3; the code generator suppresses further attempts to generate code if memory ove
occurs, while still allowing syntactic parsing to proceed.

® Since many of the routines in the code generator class are very elementary intedsices
the reader might feel that we have taken modular decomposition too far - code generz
simple as this could surely be made more efficient if the parser simply esm@kedirectly.
This is certainly true, and many recursive descent compilers do this.

® Code generation is very easy for a stack-oriented language. It is much more difficult fc
machine with no stack, and only a few registers and addressing modes. However, as
discussion in later sections will reveal, the interface we have developed is, in fact, cag
being used with only minor modification for code generation for more conventional
machines. Developing the system in a highly modular way has many advantages if or
striving for portability, and for the ability to construct improved back ends easily.

It may be of interest to show the code generated for a simple program that incorporates se\
features of the language.

Clang 1.0 on 19/05/96 at 22:17:12

0 : PROGRAM Debug;

0 : CONST

0 : Vot i ngAge = 18;

0 : VAR

0 : Eligible, Voters[100], Age, Total;
0 : BEG N

2 Total := 0;

7 : Eligible := 0;

12 : READ(Age) ;

15 : WH LE Age > 0 DO

23 : BEG N

23 : | F Age > VotingAge THEN

29 : BEG N

31 : Voters[Eligible] := Age;
43 Eligible := Eligible + 1;
52 : Total := Total + Voters[Eligible -1];
67 : END;

71 : READ(Age) ;

74 END;

76 : WRI TE(Eligible, ' voters. Average age = ', Total / Eligible);
91 : END.

The symbol table has entries

1 DEBUG Program

2 VOTI NGAGE Const ant 18
3 ELI A BLE Vari abl e 1
4 VOTERS Vari abl e 2

5 ACE Vari abl e 103
6 TOTAL Vari abl e 104

and the generated code is as follows:

0 DSP 104 Reserve vari abl e space
2 ADR -104 address of Total
4 LIT 0 push 0O
6 STO Total :=0
7 ADR -1 address of Eligible
9 LIT 0 push 0O
11 STO Eligible :=0
12 ADR -103 address of Age
14 I NN READ(Age)
15 ADR -103 address of Age
17 VAL val ue of Age
18 LIT 0 push 0
20 GIR conpare
21 BZE 74 WH LE Age > 0 DO
23 ADR -103 address of Age
25 VAL val ue of Age
26 LIT 18 push Voti ngAge
28 GIR conpare
29 BZE 69 | F Age > VotingAge THEN
31 ADR -2 address of Voters[O0]
33 ADR -1 address of Eligible
35 VAL value of Eligible
36 LIT 101 array size 101
38 I ND address of Voters[Eligible]
39 ADR -103 address of Age
41 VAL val ue of Age
42 STO Voters[Eligible] := Age
43 ADR -1 address of Eligible
45 ADR -1 address of Eligible
47 VAL val ue of Eligible
48 LIT 1 push 1
50 ADD value of Eligible + 1
51 STO Eligible := Eligible + 1
52 ADR -104 address of Total
54 ADR -104 address of Total
56 VAL val ue of Total
57 ADR -2 address of Voters[O0]
59 ADR -1 address of Eligible
61 VAL val ue of Eligible
62 LIT 1 push 1
64 SUB value of Eligible - 1
65 LIT 101 array size 101
67 | ND address of Voters[Eligible-1]
68 VAL val ue of Voters[Eligible - 1]
69 ADD val ue of Total + Voters[Eligible - 1]
70 STO Total := Total + Voters[Eligible - 1]
71 ADR -103 address of Age
73 INN READ(Age)
74 BRN 15 to start of WH LE | oop
76 ADR -1 address of Eligible
78 VAL val ue of Eligible
79 PRN WRI TE(El i gi bl e,
80 PRS ' voters. Average age = '
82 ADR -104 address of Total
84 VAL val ue of Total
85 ADR -1 address of Eligible
87 VAL val ue of Eligible
88 DVD value of Total / Eligible
89 PRN WRI TE(Total / Eligible)
90 NLN out put new line
91 HLT END.
Exercises

15.16 If you study the code generated by the compiler you should be struck by the fact that
sequenc@DRx; VAL occurs frequently. Investigate the possibilities for peephole optimizatiol
Assume that the stack machine is extended to provide a new opesatiarthat will perform this
sequence in one operation as follows:

case STKMC psh:
cpu. sp--;
int ear = cpu.bp + nmenicpu. pc];

if (inbounds(cpu.sp) && inbounds(ear))
{ nenfcpu.sp] = nenfear]; cpu.pc++; }
br eak;
Go on to modify the code generator so that it will replace any sequerce VAL with PSH x (be
careful: not aliVAL operations follow immediately on @DRrR operation).

15.17 Augment the system so that you can declare constants to be literal strings and print 1
example

PROGRAM Debug;
CONST
Planet = "World’;
BEG N
WRI TE(' Hello ', Planet)
END.

How would you need to modify the parser, code generator, and run-time system?

15.18 Suppose that we wished to use relative branch instructions, rather than absolute brai
instructions. How would code generation be affected?

15.19 (Harder) Once you have introduced a Boolean type into Clang or Topsy, aloagDstid
OR operations, try to generate code based on short-circuit semantics, rather than the easier
operator approach. In the short-circuit approach the operatbrandor are defined to have
semantic meanings such that

A AND B means
AOR B means

THEN B ELSE FALSE END

IF A
IF A THEN TRUE ELSE B END

In the language Ada this has been made exphgii:andor alone have Boolean operator
semantics, buiND THEN andOR ELSE have short-circuit semantics. Thus, in Ada

A AND THEN B means
A OR ELSE B means

THEN B ELSE FALSE END

I F
IF A THEN TRUE ELSE B END

>

Can you make your system accept both forms?

15.20 Consider an extension where we allow a one-dimensional array with fixed bounds, b
the lower bound set by the user. For example, a way to declare such arrays might be along
of

CONST
BC = -44;
AD = 300;

VAR
WA 1 [1939 : 1945], RomanBritain[BC : AD];

Modify the language, compiler, and interpreter to handle this idea, performing bounds chec
the subscript. Addressing an element is quite easy. If we declare an array

VAR Array[Mn : Max];
then the offset of theth element in the array is computed as
I - Mn + offset of first elenent of array
which may give some hints about the checking problem too, if you think of it as

(offset of first elenent of array - Mn) + |

15.21 A little more ingenuity is called for if one is to allow two-dimensional arrays. Again, if

are of fixed size, addressing is quite easy. Suppose we declare a matrix

VAR Matrix[MnX : MaxX , MnY : MaxY];

Then we shall have to reserieaxX- M nX+1) * (MaxY-M nY+1) consecutive locations for the
whole array. If we store the elements by rows (as in most languages, other than Fortran), tt
offset of thel,J th element in the matrix will be found as

(I - MnX) * (MaxY - MnY + 1) + (J - MnY) + offset of first el enent

You will need a new version of t/8FK_i nd opcode (incorporating bounds checking).
15.22 Extend your system to allow whole arrays (of the same length) to be assigned one ta

15.23 Some users like to live dangerously. How could you arrange for the compiler to have
option whereby generation of subscript range checks could be suppressed?

15.24 Complete level 1 of your extended Clang or Topsy compiler by generating code for a
extra statement forms that you have introduced while assiduously exploring the exercises <
earlier in this chapter. How many of these can only be completed if the instruction set of the
machine is extended?

15.3 Other aspects of code generation

As the reader may have realized, the approach taken to code generation up until now has t
rather idealistic. A hypothetical stack machine is, in many ways, ideal for our language - as
the simplicity of the code generator - but it may differ rather markedly from a real machine.
section we wish to look at other aspects of this large and intricate subject.

15.3.1 Machinetyranny

It is rather awkward to describe code generation for a real machine in a general text. It inev
becomes machine specific, and the principles may become obscured behind a lot of detail -
architecture with which the reader may be completely unfamiliar. To illustrate a few of these
difficulties, we shall consider some features of code generation for a relatively simple proce

The Zilog Z80 processor that we shall use as a model is typical of several 8-bit microproce:
were very popular in the early 1980’'s, and which helped to spur on the microcomputer reva
It had a single 8-bit accumulator (denotedahyseveral internal 8-bit registers (denotedbyc,

D, E, HandL), a 16-bit program counterg), two 16-bit index registers X andi Y), a 16-bit
stack pointergP), an 8-bit data bus, and a 16-bit address bus to allow access to 64KB of me
With the exception of thBrRN opcode (and, perhaps, tHer opcode), our hypothetical machine
instructions do not map one-for-one onto Z80 opcodes. Indeed, at first sight the Z80 would
to be ill suited to supporting a high-level language at all, since operations on a single 8-bit
accumulator only provide for handling numbers between -128 and +127, scarcely of much |
arithmetic calculations. For many years, however - even after the introduction of processor:
Intel 80x86 and Motorola 680x0 - 16-bit arithmetic was deemed adequate for quite a numbt
operations, as it allows for numbers in the range -32768 to +32767. In the Z80 a limited nur
operations were allowed on 16-bit register pairs. These were damtast andHL, and were
formed by simply concatenating the 8-bit registers mentioned earlier. For example, 16-bit ¢
could be loaded immediately into a register pair, and such pairs could be pushed and popp

the stack, and transferred directly to and from memory. In additionl_thair could be used as ¢
16-bit accumulator into which could be added and subtracted the other pairs, and could als
to perform register-indirect addressing of bytes. On the Z80 the 16-bit operations stopped <
multiplication, division, logical operations and even comparison against zero, all of which ai
found on more modern 16 and 32-bit processors. We do not propose to describe the instru
in any detail; hopefully the reader will be able to understand the code fragments below fromn
commentary given alongside.

As an example, let us consider Z80 code for the simple assignment statement
Il =4 +J-K

wherel, J andK are integers, each stored in two bytes. A fairly optimal translation of this, n
use of theHL register pair as a 16 bit accumulator, but not using a stack in any way, might be
follows:

LD HL, 4 ; HL := 4

LD DE, (J) : DE := MeniJ]

ADD HL, DE : HL := HL + DE (4 +J)
LD DE, (K) : DE := MeniK]

oR A ; just to clear Carry

SBC HL, DE : H.:=H. - DE- Carry (4 +J - K
LD (1), H ;oMen{1] = HL

On the Z80 this amounted to some 18 bytes of code. The only point worth noting is that, un
addition, there was no simple 16-bit subtraction operation, only one which involved a carry
which consequently required unsetting befese could be executed. By contrast, the same
statement coded for our hypothetical machine would have produced 13 words of code

ADR | ; push address of |

LIT 4 ; push constant 4

ADR] ; push address of J

VAL ; replace with value of J
ADD 4+]

ADR K ; push address of K

VAL ; replace with value of K
SUB 4+ 7 - K

STO ; store on |

and for a simple single-accumulator machine like that discussed in Chapter 4 we should pri
think of coding this statement on the lines of

LDl 4
ADD J
SUB K
STA |

- K
- K

- >>>
TIRTINTINT
FENENFNEN
+ + +
[SR Sy

How do we begin to map stack machine code to these other forms? One approach might b
consider the effect of the opcodes, as defined in the interpreter in Chapter 4, and to arrang
code generating routines likeackaddr ess, st ackconst ant andassi gn generate code equivale
to that which would be obeyed by the interpreter. For convenience we quote the relevant
equivalences again. (We us¢o denote the virtual machine top of stack pointer, to avoid cont
with thesp register of the Z80 real machine.)

ADR address : T :=T 1; Men{T] := address (push an address)

LI T val ue T:=T- 1, Men[T] := value (push a constant)
VAL o Men[T] := Meni{MeniT]] (dereference)

ADD c T:=T+1; Men{T] := Men{T] + Men{T-1] (addition)

SUB T :=T+1; Men[T] := Men{T] Men{ T-1] (subtraction)

STO oo Menf Men{ T+1]] := Men{T]; T:=T + 2 (store top-of-stack)

It does not take much imagination to see that this would produce a great deal more code th
should like. For example, the equivalent Z80 code far aropcode, obtained from a translatior

the sequence above, and generatest bykconst ant (Num) might be

T:=T-1 . LD HL, (T) ;o HL =T
DEC HL ;o HL:=HL - 1
DEC HL ;o HL :=HL - 1
LD (T), H ;o T = H
Men{ T] = Num . LD DE, Num ; DE = Num
LD (HL), E ; store | ow order byte
INC HL ;o HO := HL + 1
LD (HL), D ; store high order byte

which amounts to some 14 bytes. We should commentithaust be decremented twice to allc
for the fact that memory is addressed in bytes, not words, and that we have to store the twe
of the register paibE in two operations, "bumping" the pair (used for register indirect
addressing) between these.

If the machine for which we are generating code does not have some sort of hardware stac
might be forced or tempted into taking this approach, but fortunately most modern processc
incorporate a stack. Although the Z80 did not support operationatikandsus on elements of
its stack, the pushing which is implicitiinT andADR is easily handled, and the popping and
pushing implied byaDD andsuB are nearly as simple. Consequently, it would be quite simple
write code generating routines which, for the same assignment statement as before, would
effects shown below.

ADR | : LD HL, | ; HL : = address of |
PUSH HL ; push address of |
LIT 4 : LD DE, 4 ; DE := 4
PUSH DE ; push value of 4
ADR J : LD HL, J ; HL : = address of J
PUSH HL ; push address of J *
VAL : POP HL ; HL : = address of variable *
LD E, (HL) ; E := Men{HL] |ow order byte
INC HL ; HL := HL + 1
LD D, (HL) ; D := MenfHL] high order byte
PUSH DE ; replace with value of J
ADD : POP DE ; DE : = second operand *
POP HL ; HL := first operand
ADD HL, DE ; HL := HL + DE
PUSH HL 4+]
ADR K LD HL, K ; HL : = address of K
PUSH HL ; push address of K *
VAL : POP HL ; HL := address of variable *
LD E, (HL) ; E := low order byte
INC HL ; HL ;= HL + 1
LD D, (HL) ; D : = high order byte
PUSH DE ; replace with value of K *
SuB : POP DE ; DE : = second operand *
POP HL ; HL := first operand
OoR A ; unset carry
SBC HL, DE ; HL := HL - DE - carry
PUSH HL 4+ - K **
STO : POP DE ; DE := value to be stored *
POP HL ; HL : = address to be stored at
LD (HL), E ; Men{HL] := E store |ow order byte
INC HL ; HL := HL + 1
LD (HL), D ; Men{HL] := D store high order byte
; store on |

We need not present code generator routines based on these ideas in any detail. Their inte
be fairly clear - the code generated by each follows distinct patterns, with obvious differenc
handled by the parameters which have already been introduced.

For the example under discussion we have generated 41 bytes, which is still quite a long w
the optimal 18 given before. However, little effort would be required to reduce this to 32 byt
easy to see that 8 bytes could simply be removed (the ones marked with a single asterisk),
operations of pushing a register pair at the end of one code generating sequence and of pc
same pair at the start of the next are clearly redundant. Another byte could be removed by

the two marked with a double asterisk by a one-byte opcode for exchangbigatheHL pairs (the
Z80 codeEx DE, HL does this). These are examples of so-called "peephole” optimization, an
quite easily included into the code generating routines we are contemplating. For example,
algorithm forassi gn could be

PROCEDURE Assi gn;
(* CGenerate code to store top-of-stack on address stored next-to-top *)
BEG N
I F last code generated was PUSH HL
THEN replace this PUSH HL wi th EX DE, HL
ELSI F | ast code generated was PUSH DE
THEN del ete PUSH DE
ELSE generate code for POP DE
END;
generate code for POP HL; generate code for LD (HL), E
generate code for INC HL; generate code for LD (HL),D
END;

(The reader might like to reflect on the kinds of assignment statements which would give ris
three possible paths through this routine.)

By now, hopefully, it will have dawned on the reader that generation of native code is probe
strongly influenced by the desire to make this compact and efficient, and that achieving this
objective will require the compiler writer to be highly conversant with details of the target m.
and with the possibilities afforded by its instruction set. We could pursue the ideas we have
introduced, but will refrain from doing so, concentrating instead on how one might come up
better structure from which to generate code.

15.3.2 Abstract syntax trees asintermediate r epresentations

In section 13.3 the reader was introduced to the idea of deriving an abstract syntax tree fro
expression, by attributing the grammar that describes such expressions so as to add sema
that construct the nodes in these trees and then link them together as the parsing process |
out. After such a tree has been completely constructed by the syntactic/semantic analysis
even during its construction) it is often possible to carry out various transformations on it be
embarking on the code generation phase that consists of walking it in some convenient wa’
generating code apposite to each node as it is visited.

In principle we can construct a single tree to represent an entire program. Initially we shall |
simply to demonstrate the use of trees to represent the expressions that appear on both sic
Assignments, as components éteadSatements andWriteStatements and as components of the
Condition in IfStatements andWhileStatements. Later we shall extend the use of trees to handle
compilation of parameterized subroutine calls as well.

A tree is usually implemented as a structure in which the various nodes are linked by pointe
so we declare assT type to be a pointer toNDDE type. The nodes are inhomogeneous. When
declare them in traditional implementations we resort to using variant records or unions, bu
C++ implementation we can take advantage of inheritance to derive various node classes fr
base class, declared as

struct NODE {
int val ue; /1 value to be associated with this node
bool defi ned; /1 true if value is predictable at conpile tine
NODE() { defined = 0; }
virtual void emtl(void) 0;
virtual void emt2(void) 0;
Il ... further menbers as appropriate

H
where theeni t member functions will be responsible for code generation as the nodes are v

during the code generation phase. It makes sense to think of a value associated with each
either a value that can be predicted at compile-time, or a value that will require code to be ¢
to compute it at run-time (where it will then be stored in a register, or on a machine stack, p

When constants form operands of expressions they give rise to nodes of aCOMBPNEDE class:

struct CONSTNCDE : public NODE {

CONSTNODE(i nt V) { value = V; defined = true; }
virtual void emtl(void); /'l generate code to retrieve value of constant
virtual void emt2(void) {;

b

Operands in expressions that are known to be associated with variables are handled by int
a derivedvARNODE class. Such nodes need to store the variable’s offset address, and to prov
least two code generating member functions. These will handle the generation of code whe
variable is associated withvaalueDesignator (as it is in &actor) and when it is associated with
VariableDesignator (as it is on the left side of akssignment, or in aReadStatement).

struct VARNODE : public NODE {
int offset; /1 offset of variable assigned by conpiler
VARNCDE() {;} /'l default constructor

VARNCDE(i nt O { offset = QO }
virtual void emtil(void); /'l generate code to retrieve value of variable
virtual void emt2(void); /1 generate code to retrieve address of variable

b

To handle access to the elements of an array we deriwebaEXNODE class from th&ARNCDE class
The member function responsible for retrieving the address of an array element has the

responsibility of generating code to perform run-time checks that the index remains in boun
we need further pointers to the subtrees that represent the index expression and the size o

struct | NDEXNCDE : public VARNODE {

AST si ze; /1 for range checking

AST i ndex; /1 subscripting expression

| NDEXNODE(int O AST S, AST |) { offset = O size =S; index =1; }

11 voi d emit1(void) is inherited from VARNCDE

virtual void emt2(void); /1 code to retrieve address of array el enent

3

Finally, we derive two node classes associated with unary (prefix) and binary (infix) arithme
operations

struct MONOPNCDE : public NODE {
CCGEN_operators op;
AST oper and;
MONOPNODE(CGEN_operators O, AST E) { op = O operand = E }
virtual void em til(void); /'l generate code to evaluate "op operand"
virtual void emt2(void) {;}

3

struct BI NOPNCDE : public NODE {
CGEN_oper ators op;
AST left, right;
Bl NOPNODE(CCGEN_operators O, AST L, ASTR) { op = O left =1L; right = R }
virtual void emtl(void); /1 generate code to evaluate "left op right"
virtual void emt2(void) {;}

b
The structures we hope to set up are exemplified by considering an assignment statement
AX+ 4] := (A3 +2 *(5-4*1) -Y

We use one tree to represent the address used for the destination (left side), and one for tr
the expression (right side), as shown in Figure 15.1, where for illustration the @&ragsumed t
have been declared with an size of 8.

dest 'Lnat ion EHPprEss ion

IHDEXHDDE
nFFset ALA] BINDPHDDE
index
slze — leFt
right -]
EIHOFHODE COMSTHODE
op + value 8 EIMOFHODE LHRMHODE
’— leFﬁt ?DF: of fzet W
right — g
right —]
LJARHODE CONSTHODE
offset ® value 4 BIHDPHDEE BIHDPHDDE
op
left leFt
right — right /]
INDEXMODE LJARMODE COMSTHODE BINDPHDDE
off=et ALB] offzset £ value §
Lnden left
slze — right 1
COMSTHODE COMSTHODE COMSTHODE COMSTHODE
walue 2 value B value 4 value 1
Figure 15.1 AST structures for the statement
ALY + 41 := (AL2] + 21 # (5 - 4 # 11 -V

Tree-building operations may be understood by referring to the attributes with which a Coct
grammar would be decorated:

Assi gnnent
= (. AST dest, exp; .)
Vari abl e<dest> ": ="
Expr essi on<exp> SYNC (. CGen->assign(dest, exp); .)

Vari abl e<AST &V>
= (. TABLE entries entry; .)
Desi gnat or<V, classset(TABLE vars), entry>.

DeS| gnat or <AST &D, cl assset all owed, TABLE entries &entry>
(. TABLE al fa nane;
AST index, size;

bool found;
D = CGen->enptyast(); .)
| dent <name> (. Tabl e->search(nanme, entry, found);

if (!found) SenError(202);
if ('allowed. menb(entry.idclass)) SenError(206);

if (entry.idclass != TABLE vars) return;
CGen- >st ackaddress(D, entry.v.offset); .)
" r" (. if (entry.v.scalar) SenError(204); .)
Expr essi on<i ndex> (. if ('entry.v.scalar)

/* determ ne size for bounds check */
{ CGen->stackconstant(size, entry.v.size);
CGen->subscript(D, entry.v.offset,
size, index); } .)
"
| (. if ('entry.v.scalar) SenError(205); .)
) .

Expr essi on<AST &E>
= (. AST T,

CCGEN _operators op;

E = CGen->enptyast(); .)

("+" Ter nkE>
"-" Ter nkE> (. CGen->negateinteger(E); .)
| Ter nxE>
)
{ AddOp<op> Ter nxT> (. CGen->bi naryi ntegerop(op, E T); .)
} .

Ter nkAST &T>
= (. AST F;
CGEN_operators op; .)
Fact or <T>
{ (. Ml Op<op>
/* mssing op */ (. SynError(92); op = CGEN_opnul;
) Factor<F> (. CGen->bi naryi ntegerop(CGENop, T, F); .)

Fact or <AST &F>
= (. TABLE entries entry;
int val ue;
= CGen->enptyast(); .)
Desi gnat or <F, cl assset (TABLE consts, TABLE vars), entry>

(. switch (entry.idclass)
{ case TABLE consts :
CGen->st ackconstant (F, entry.c.value);
br eak;
default : break;

3
| Number <val ue> (. CGen->stackconstant(F, value); .)
| "(" Expression<F> ")"

The reader should note that:

® This grammar is very close to that presented earlier. The code generator interface is ¢
only in that the various routines need extra parameters specifying the subtrees that th
manipulate.

® The productions fobesignator, Expression andFactor take the precaution of initializing
their formal parameter to point to an "empty" node, so that if a syntax error is detectec
nodes of a tree will still be well defined.

In a simple system, the various routines kkackconst ant, stackaddress and
bi naryi nt eger op do little more than call upon the appropriate class constructors. As an exe
the routine fombi nar yi nt eger op is merely

voi d bi naryi nt eger op(CGEN _operators op, AST & eft, AST & ight)
{ left = new BI NOPNCDE(op, left, right); }

where we note that thef t parameter is used both for input and output (this is done to keep
code generation interface as close as possible to that used in the previous system). These
simply build the tree, and do not actually generate code.

Code generation is left in the charge of routinesdid« gn, j unponf al se andr eadval ue, which
take new parameters denoting the tree structures that they are required to walk. This may |
exemplified by code for thessi gn routine, as it would be developed to generate code for our
simple stack machine

voi d CGEN: : assi gn(AST dest, AST expr)
{ if (dest) beware of corrupt trees
{ dest->emt2(); generate code to push address of destination
del ete dest; recovery nmenory used for tree

~—
~—

}
if (expr)
{ expr->emti();
del ete expr;
emt(int(STKMC sto));
}
}

In typical OOP fashion, each subtree "knows" how to generate its own codeVArRcaE, for
example, and for our stack machine, we would definerthe members as follows:

beware of corrupt trees

generate code to push val ue of expression
recovery menory used for tree

generate the store instruction

~———
~———

voi d VARNCDE: : emi t 1(voi d) /1 load variable value onto stack
{ emt2(); CGen->enit(int(STKMC val)); }

voi d VARNCDE: : eni t 2(voi d) /1 load variable address onto stack
{ CGen->enit(int(STKMC adr)); CGen->enit(-offset); }

15.3.3 Simple optimizations - constant folding

The reader may need to be convinced that the construction of a tree is of any real value, es
when used to generate code for a simple stack machine. To back up the assertion that
transformations on a tree are easily effected and can lead to the generation of better code,
reconsider the statement

ALX+4] := (A3 +2) *(5-4*1) -Y

It is easy to identify opportunities for code improvement:

® Al 3] represents an array access with a constant index. There is no real need to comp
additional offset for| 3] at run-time. It can be done at compile-time, along with a
compile-time (rather than run-time) check that the subscript expression is "in bounds".

® Similarly, the subexpression (5 - 4 * 1) only has constant operands, and can also be e
at compile-time.

Before any code is generated, the trees for the above assignment could be reduced to thos
in Figure 15.2.

dest inat ion EHprEssion

|
IMDEXMHODE
DFngt ALE] EIMOPHODE
op -

index
size — left
right 1
EIMOFHODE COMSTHODE |
op _+ value 8 EIHOFHODE LJARHODE
[——— left op #* of fset Y

right] lefﬁt
right ———
LJARHODE COMSTHODE
of fset value 4 EIMOFHODE COMSTHODE
op + walue 1
left
right |

LJARMODE LARHODE
offset HLZ] offset £

Figure 15.2 Imorowed AST structures for the statement
ACX + 41 := (A[2] + 2) # (5 - 4 # 11 - %

These sorts of manipulations fall into the category knowsoagant folding. They are easily
added to the tree- building process, but are rather harder to do if code is generated on the
Constant folding is implemented by writing tree-building routines modelled on the following:

voi d CCEN: : subscript (AST &base, int offset, AST &size, AST & ndex)
{ if (lindex || !'index->defined /'l check for well defined
|| 'size || !size->defined) /1 trees and constant index
{ base = new | NDEXNCDE(of f set, size, index); return; }
if (unsigned(index->value) >= size->val ue)

Report->error(223); /1 report range error immediately
el se /'l sinple variabl e designator
base = new VARNODE(of f set + i ndex->val ue);
del ete index; delete size; /1 and del ete the unused debris
}
voi d CCEN: : bi nar yop(CGEN_operators op, AST & eft, AST &right)
{ if (left & right) /'l beware of corrupt trees
{ if (left->defined && right->defined) // both operands are constant
{ switch (op) /1 so do conpile-tine evaluation
{ case CCGEN opadd: |eft->value += right->val ue; break;
case CCGEN opsub: |eft->value -= right->val ue; break;
/1 ... others like this
delete right; return; /1 discard one operand

left = new BI NOPNODE(op, left, right); // construct proper bin op node
}

The reader should notice that such constant folding is essentially machine independent (as
that the arithmetic can be done at compile-time to the required precision). Tree constructior
represents the last phase of a machine-independent front end to a compiler; the routines th
the tree become machine dependent.

Recognition and evaluation of expressions in which every operand is constant is useful if o

wishes to extend the language in other ways. For example, we may now easily extend our
language to allow for constant expressions wionstDeclarations:

Const Decl ar ati ons
OneConst
Const Expr essi on

"CONST* OneConst { OneConst } .
identifier "=" ConstExpression ";"
Expression .

We can make use of the existing parsing routines to har@@astExpression. The attributes in a
Cocol specification would simply incorporate a constraint check that the expression was, in
"defined”, and if so, store the "value" in the symbol table.

15.3.4 Simple optimizations - removal of redundant code

Production quality compilers often expend considerable effort in the detection of structures
which no code need be generated at all. For example, a source statement of the form

WH LE TRUE DO Sonet hi ng

does not require the generation of code like

LAB | F NOT TRUE GOTO EXI T END
Sonet hi ng
GOTO LAB

EXIT

but can be reduced to

LAB Sonet hi ng
GOTO LAB

and, to take a more extreme case, if it were ever written, source code like

WH LE 15 < 6 DO Sonet hi ng

could be disregarded completely. Once again, optimizations of this sort are most easily atte
after an internal representation of the source program has been created in the form of a tre
graph. A full discussion of this fascinating subject is beyond the scope of this text, and it wil
suffice merely to mention a few improvements that might be incorporated into a simple
tree-walking code generator for expressions. For example, the remaining multiplication by :
expression we have used for illustration is redundant, and is easily eliminated. Similarly,
multiplications by small powers of 2 could be converted into shift operations if the machine
supports these, and multiplication by zero could be recognized as a golden opportunity to I
constant of O rather than perform any multiplications at all. To exemplify this, consider an e
from an improved routine that generates code to load the value resulting from a binary opel
onto the run-time stack of our simple machine:

voi d BI NOPNCDE: : emi t 1(voi d)
/1 load value onto stack resulting frombinary operation
{ bool folded = fal se;
if (left & right) /'l beware of corrupt trees
{ switch (op) /1 redundant operations?
{ case CGEN_ opadd:
if (right->defined & right->value == 0) // x + 0 = X
{ left->emt1(); folded = true; }
/Il ... other special cases
br eak;
case CCEN_opsub:
/1 ... other special cases
case CGEN_opmul :
if (right->defined & right->value == 1) // x * 1 = X
{ left->emt1(); folded = true; }
else if (right->defined & right->value == 0) // x * 0 =0
{ right->emit1(); folded = true; }
/1 ... other special cases

br eak;
case CCEN_ opdvd:

/1 ... other special cases

}
if (!folded) /1 still have to generate code
{if (left) left->emt1(); /'l beware of corrupt trees

if (right) right->emt1();

CGen->em t (int (STKMC add) + int(op)); /1 careful - ordering used
}
delete left; delete right; /1 remove debris

}

These sorts of optimizations can have a remarkable effect on the volume of code that is ge
assuming, of course, that the expressions are littered with constants.

So far we have assumed that the structures set up as we parse expressions are all binary t
node has subtrees that are disjoint. Other structures are possible, although creating these «
routines more complex than we have considered up till now. If we relax the restriction that ¢
must be disjoint, we introduce the possibility of using a so-cdilestted acyclic graph (DAG).
This finds application in optimizations in which common subexpressions are identified, so tl
for them is generated as few times as possible. For example, the expression
(@a*a+b*b)/(a* a-b* b) could be optimized so as to compute each’of andb * b only
once. A binary tree structure and a DAG for this expression are depicted in Figure 15.3, bu
treatment of this topic is beyond the scope of this text.

EHPrEssion EHprEssion
| g | g |
— T T T T)
I—*—||L—*—|LI—*—||L—*—|L .-u1 + .-u1
a a a a —*
-

Figure 15.32 (a) Binary tree corresponding o eppression
[z % a+b#hb »(a#*a-b#hl

(bl DAG correspondlng to EHpression

(2% a+b#*#bB ~(a#%3-Db#*hbl

15.3.5 Generation of assembler code

We should also mention another approach often taken in providing native code compilers,

especially on small machines. This is to generate output in the form of assembler code that
be processed in a second pass using a macro assembler. Although carrying an overhead il
compilation speed, this approach has some strong points - it relieves the compiler writer of
developing intensely machine dependent bit manipulating code (very tiresome in some lang
like the original Pascal), handling awkward forward referencing problems, dealing with opel
system and linkage conventions, and so forth. It is widely used on Unix systems, for examg

On the source diskette can be found such a code generator. This can be used to construct
that will translate Clang programs into the ASSEMBLER language for the tiny single-accun
machine discussed in Chapter 4, and for which assemblers were developed in Chapter 6. (
there is a very real restriction on the size of source program that can be handled by this sys
the code generator employs several optimizations of the sort discussed earlier, and is an e
example of code that the reader is encouraged to study. Space does not permit of a full de:
but the following points are worth emphasizing:

® An on-the-fly code generator for this machine would be very difficult to write, but the C
description of the phrase structure grammar can remain exactly the same as that use(

stack machine. Naturally, the internal definitions of some members of the node classe
different, as are the implementations of the tree- walking member functions.

® The single-accumulator machine has conditional branching instructions that are very ¢
from those used in the stack machine; it also has a rather non-orthogonal set of these
calls for some ingenuity in the generation of codeCamditions, IfStatements and
WhileSatements.

® The problem of handling the forward references needed in conditional statements is le
later assembler stage. However, the code generator still has to solve the problem of g
a self-consistent set of labels for those instructions that need them.

® The input/output facilities of the two machines are rather disparate. In particular the
single-accumulator machine does not have an special operation for writing strings. Th
handled by arranging for the code generator to create and call a standard output subr
this purpose when it is required. The approach of generating calls to standardized libr
routines is, of course, very widespread in real compilers.

® Although capable of handling access to array elements, the code generator does not |
any run-time subscript checks, as these would be prohibitively expensive on such a til
machine.

® The machine described in Chapter 4 does not have any operations for handling multig
and division. A compiler error is reported if it appears that such operations are needec

Exercises

Implementations of tree-based code generators for our simple stack machine can be found
source diskette, as can the parsers and Cocol grammars that match these. The Modula-2 ¢
implementations make use of variant records for discriminating between the various classe
nodes; G+ versions of these are also available.

15.25 If you program in Modula-2 or Pascal and have access to an implementation that suy
OOP extensions to these languages, derive a tree-walking code generator based-omtiaelC

15.26 The constant folding operations perform little in the way of range checks. Improve the

15.27 Adapt the tree-walking code generator for the stack machine to support the extensiol
have made to Clang or Topsy.

15.28 Adapt the tree-walking code generator for the single-accumulator machine to suppor
extensions you have made to Clang or Topsy.

15.29 Extend the single-accumulator machine to support multiplication and division, and ex
code generator for Clang or Topsy to permit these operations (one cannot do much multipli
and division in an 8-bit machine, but it is the principle that matters here).

15.30 Follow up the suggestion made earlier, and extend Clang or Topsy to allow constant
expressions to appear in constant declarations, for example

CONST

Max = 100;
Limt =2 * Max + 1;
Neghax = - Max;

15.31 Perusal of our example assignment should suggest the possibility of producing a still
tree for the right-hand side expression (Figure 15.4(a)). And, were the assignment to have

ALX +4] := (A3] +2) * (4-4%1) -Y

perhaps we could do better still (see Figure 15.4(b)). How would you modify the tree-buildir
routines to achieve this sort of improvement? Can you do this in a way that still allows your
compiler to support the notion of a constant expression as part of a constant declaration?

eHpression EHpression
EINMOFMHODE MOMOFHODE
op - op -
left operand
right]
EINMOFHODE LJARHODE LJARHODE
op + offset Y offset Y
left
right]
LIARMODE LARHODE
offset HAHLE] offset £
Figure 15.4 0Optimal AST struyctures for the edpressions
la [H[S]+E]*[5—4*1]—'~r‘ (b)Y (AC3] + 21 % (4 — 4 % 11 - ¢

15.32 (More extensive) Modify the attributed grammar and tree-building code generator so
node classes are introduced for the various categorf&atedent. Then develop code generatol
routines that can effect the sorts of optimizations hinted at earlier for removing redundant c
unreachable componentslfftatements andWhileStatements. Sophisticated compilers often isst
warnings when they discover code that can never be executed. Can you incorporate such ¢
into your compiler?

15.33 (Harder) Use a tree-based representation to generate code for Boolean expressions
require short- circuit semantics (see Exercises 13.10 and 15.19).

15.34 (More extensive) Develop a code generator for a register-based machine such as the
suggested in section 13.3. Can you do this without altering the Cocol specification, as we ¢
possible for the single-accumulator machine of Chapter 4?

15.35 Many development environments incorporate "debuggers" - sophisticated tools that \
the execution of a compiled program in conjunction with the source code, referring run-time
to source code statements, allowing the user to interrogate (and even alter) the values of vi
by using the identifiers of the source code, and so on. Development of such a system coulc
very open- ended project. As a less ambitious project, extend the interpretive compiler for (
Topsy that, in the event of a run-time error, will relate this to the corresponding line in the s
and then print a post-mortem dump showing the values of the variables at the time the erro
occurred. A system of this sort was described for the well-known subset of Pascal known a
Pascal-S (Wirth, 1981; Rees and Robson, 1987), and is also used in the implementation of
simple teaching language Umbriel (Terry, 1995).

15.36 Develop a code generator that produces correct €&aadde from Clang or Topsy source

Further reading

Our treatment of code generation has been dangerously superficial. "Real" code generatior
become highly machine dependent, and the literature reflects this. Although all of the stand
have a lot to say on the subject, those texts which do not confine themselves to generalities
stopping short of showing how it is actually done) inevitably relate their material to one or o
real machine, which can become confusing for a beginner who has little if any experience ¢
machine. Watson (1989) has a very readable discussion of the use of tree structures. Cons
more detail is given in the comprehensive books by Aho, Sethi and Ullman (1986) and Fisc
LeBlanc (1988, 1991). Various texts discuss code generation for familiar microprocessors.
example, the book by Mak (1991) develops a Pascal compiler that generates assembler co
Intel 80x86 range of machines, and the book by Ullman (1994) develops a subset Modula-:
compiler that generates a variant of Intel assembler. The recent book by Holmes (1995) us
orientation to develop a Pascal compiler, discussing the generation of assembler code for ¢
SPARC workstation. Wirth (1996) presents a tightly written account of developing a compile
subset of Oberon that generates code for a slightly idealized processor, modelled on the
hypothetical RISC processor named DLX by Hennessy and Patterson (1990) to resemble t
processor. Elder (1994) gives a thorough description of many aspects of code generation ft
advanced stack-based machine than the one described here.

