Compilers and Compiler Generators © P.D. Terry, 2000

11 SYNTAX-DIRECTED TRANSLATION

In this chapter we build on the ideas developed in the last two, and continue towards our g¢
developing translators for computer languages, by discussing how syntax analysis can forn
basis for driving a translator, or similar programs that process input strings that can be dest
a grammar. Our discussion will be limited to methods that fit in with the top-down approach
so far, and we shall make the further simplifying assumption that the sentences to be analy
essentially syntactically correct.

11.1 Embedding semantic actionsinto syntax rules

The primary goal of the types of parser studied in the last chapter - or, indeed, of any parse
recognition or rejection of input strings that claim to be valid sentences of the language unc
consideration. However, it does not take much imagination to see that once a parser has b
constructed it might be enhanced to perform specific actions whenever various syntactic cc
have been recognized.

As usual, a simple example will help to crystallize the concept. We turn again to the gramm
can describe simple algebraic expressions, and in this case to a variant that can handle
parenthesized expressions in addition to the usual four operators:

Expression = Term{ "+" Term| "-" Term} .
Term = Factor { "*" Factor | "/" Factor } .
Fact or = identifier | nunmber | "(" Expression ")"

It is easily verified that this grammar is LL(1). A simple recursive descent parser is readily
constructed, with the aim of accepting a valid input expression, or aborting with an appropri
message if the input expression is malformed.

voi d Expression(void); // function prototype

voi d Factor (voi d)
/Il Factor = identifier | nunber | "(" Expression ")"
{ switch (SYMsyn)
{ case identifier:
case numnber:
getsym(); break;
case | paren:
getsym(); Expression();
accept(rparen, " Error - ')’ expected"); break;
defaul t:
printf("Unexpected synmbol\n"); exit(1);

}

voi d Tern{voi d)
// Term= Factor { "*" Factor | "/" Factor } .
{ Factor();
while (SYMsym==tines || SYMsym == sl ash)
{ getsynm(); Factor(); }

voi d Expression(void)
/'l Expression = Term{ "+" Term| "-" Term} .
{ Tern();

while (SYMsym == plus || SYMsym == m nus)
y { getsyn(); Tern(); }

Note that in this and subsequent examples we have assumed the existence of a lower leve
that recognizes fundamental terminal symbols, and constructs a globally accessible sviabl
that has a structure declared on the lines of

enum synmt ypes {
unknown, eofsym identifier, nunber, plus, mnus, tinmes, slash,
| paren, rparen, equals

struct synbols {

syntypes sym /1 class
char nane; /'l | exene
int num /1 val ue

synbols SYM // Source token

The parser proper requires that an initial cajjdosyn() be made before callirgkpr essi on()
for the first time.

We have also assumed the existence of a severe error handler, similar to that used in the I
chapter:

voi d accept (syntypes expectedternminal, char *errormessage)
{ if (SYMsym!= expectedtermnal) { puts(errornmessage); exit(1); }
) getsyn();

Now consider the problem of reading a valid string in this language, and translating it into a
that has the same meaning, but which is expressaabifix (that is, "reverse Polish") notation.
Here the operators follow the pair-wise operands, and there is no need for parentheses. Fa
example, the infix expression

(a+b)* (c-d)
is to be translated into its postfix equivalent
ab+cd-~

This is a well-known problem, admitting of a fairly straightforward solution. As we read the i
string from left to right we immediately copy all the operands to the output stream as soon ¢
are recognized, but we delay copying the operators until we can do so in an order that relat
familiar precedence rules for the operations. With a little thought the reader should see thalt
grammar and the parser given above capture the spirit of these precedence rules. Given th
it is not difficult to see that the augmented routine below not only parses input strings; the e
of the carefully positioned output statements effectively produces the required postfix transl

voi d Factor (voi d)
/Il Factor = identifier | nunber | "(" Expression ")"
{ switch (SYMsym
{ case identifier:
case number:
printf(" % ", SYMnane); getsyn(); break;
case | paren:
getsym(); Expression();
accept(rparen, " Error - ')’ expected"); break;
defaul t:
printf("Unexpected synmbol\n"); exit(1);

}

voi d Tern{voi d)
// Term= Factor { "*" Factor | "/" Factor } .
{ Factor();

while (SYMsym==tines || SYMsym == sl ash)

{ switch (SYMsyn)
{ case tines: getsym(); Factor(); printf(" * "); break;
case slash: getsyn(); Factor(); printf(" / "); break;

}
}
}

voi d Expression(void)
/]l Expression = Term{ "+" Term| "-" Term} .
{ Term();
while (SYMsym== plus || SYM sym == m nus)
{ switch (SYM synm
{ case plus: getsym(); Tern(); printf(" + "); break;
case mnus: getsym(); Term(); printf(" - "),; break;

}
}

In a very real sense we have moved from a parser to a compiler in one easy move! What w
illustrated is a simple example of a syntax-directed program; one in which the underlying al
is readily developed from an understanding of an underlying syntactic structure. Compilers
obvious candidates for this sort of development, although the technique is more generally
applicable, as hopefully will become clear.

The reader might wonder whether this idea could somehow be reflected back to the formal
grammar from which the parser was developed. Various schemes have been proposed for
this. Many of these use the idea of addiegantic actions into context-free BNF or EBNF
production schemes.

Unfortunately there is no clear winner among the notations proposed for this purpose. Mosi
however, incorporate the actions by writing statements in some implementation language (¢
example, Modula-2 or &) between suitably chosen meta-brackets that are not already besy
that language. For example, Coco/R uses EBNF for expressing the productions and bracke
actions with {. "and ") ", as in the example below.

Expr essi on

= Term
{ "+" Term (. Wite("+); .)
| "-" Term (. Wite('-"); .)
} .
Term
= Factor
"*" Factor (. Wite("*"); .)
| "/" Factor (. Wite('/"); .)

} .

Fact or
= (identifier | nunmber) (. Wite(SYMnnane); .)
| "(" Expression ")" .

Theyacc parser generator on UNIX systems uses unextended BNF for the productions and
braces{" and '} " around actions expressed in C.

Exercises

11.1 Extend the grammar and the parsers so as to handle an expression language in whicf
have an optional leading + orsign (as exemplified bya* (-b+c)).

11.2 Attribute grammars

A little reflection will show that, although an algebraic expression clearly has a semantic me
(in the sense of its "value"), this was not brought out when developing the last example. Wt
idea of incorporating actions into the context-free productions of a grammar gives a powerf
for documenting and developing syntax- directed programs, what we have seen so far is st
inadequate for handling the many situations where some deeper semantic meaning is requ

We have seen how a context-free grammar can be used to describe many features of prog
languages. Such grammars effectively define a derivation or parse tree for each syntactical
program in the language, and we have seen that with care we can construct the grammar <
parse tree in some way reflects the meaning of the program as well.

As an example, consider the usual old chestnut language, albeit expressed with a slightly ¢
(non-LL(1)) grammar

Goal = Expression .

Expression = Term | Expression "+" Term | Expression "-" Term
Term = Factor | Term "*" Factor | Term "/" Factor .
Fact or = identifier | nunmber | "(" Expression ")"

and consider the phrase structure trexfery * z, shown in Figure 11.1.

E?al

Expression

Expression Ii Term
Ter:~m Term Factor
Factor Factor
ldenéiFler ldenéiFler identifier
; ¥ g » 2

Figure 11.1 Phrase structure tres for 4 + w # 2

Suppose, y andz had associated numerical values of 3, 4 and 5, respectively. We can think
these asemantic attributes of the leaf nodes, y andz. Similarly we can think of the nodes '+
and ™ as having attributes of "add" and "multiply". Evaluation of the whole expression can |
regarded as a process where these various attributes are passed "up” the tree from the teri
nodes and are semantically transformed and combined at higher nodes to produce a final r
attribute at the root - the value (23) of theal symbol. This is illustrated in Figure 11.2.

23 Goal
l_ e EHDI‘?‘SElDI‘l
|| | |
. i)
ﬁ Expression —| Term
I | I
ﬁ Term ﬁ TE-Irm E Factor
ﬁ Facﬂl: or ﬁ Facltcur
|3 ldenTiFler ﬁ ldentIlFier identifier
1
H add + 4 u My Lt * E 2

Figure 11.2 Passing attributes up a parse tree

In principle, and indeed in practice, parsing algorithms can be written whose embedded aci
explicitly construct such trees as the input sentences are parsed, afet@iai@ or annotate the
nodes with the semantic attributes. Associated tree-walking algorithms can then later be in

process this semantic information in a variety of ways, possibly making several passes ove
before the evaluation is complete. This approach lends itself well to the construction of opti
compilers, where repeatedly walking the tree can be used to prune or graft nodes in a way
simpler compiler cannot hope to do.

The parser constructed in the last section for recognizing this language did not, of course, «
an explicit parse tree. The grammar we have now employed seems to map immediately to
trees in which the usual associativity and precedence of the operators is correctly reflected
recursive, and thus unsuitable as the basis on which to construct a recursive descent parse
However, as we saw in section 10.6, it is possible to construct other forms of parser to han
grammars that employ left recursion. For the moment we shall not pursue the interesting pr
of whether or how a recursive descent parser could be modified to generate an explicit tree
shall content ourselves with the observation that the execution of such a parser effectively
implicit structure, whose nodes correspond to the various calls made to the sub-parsers as
proceeds.

Notwithstanding any apparent practical difficulties, our notions of formal grammars may be
extended to try to capture the essence of the attributes associated with the nodes, by exter
notation still further. In one scheme, attribute rules are associated with the context-free prou
in much the same way as we have already seen for actions, giving rise to what is known as
attribute grammar. As usual, an example will help to clarify:

Goal
= Expr essi on (. CGoal.Value := Expr.Value .) .
Expr essi on
= Term (. Expr.Value := Term Val ue .)

| Expression "+" Term (. Expr.Value := Expr.Value + Term Val ue .)

| Expression Term (. Expr.Value := Expr.Value - TermValue .) .
Term
= Factor (. Term Val ue := Fact. Val ue .

| Term "*" Factor (. TermValue := Term Value * Fact.Val ue .)

| Term "/" Factor (. TermValue := Term Value / Fact.Value .) .
Fact or
= identifier (. Fact.Value :=identifier.Value .)

| nunber (. Fact.Val ue : = nunber. Val ue .)

(=

| "(" Expression ")" ~ Fact. Val ue : Expr. Value .) .

Here we have employed the familiar "dot" notation that many imperative languages use in
designating the elements of record structures. Were we to employ a parsing algorithm that
constructed an explicit tree, this notation would immediately be consistent with the declarat
the tree nodes used for these structures.

It is important to note that the semantic rules for a given production specify the relationship.
between attributes of other symbols in $ame production, and are essentially "local".

It is not necessary to have a left recursive grammar to be able to provide attribute informati
could write an iterative LL(1) grammar in much the same way:

Goal
= Expression (. Goal.Value := Expr.Value .) .
Expr essi on
= Term (. Expr.Value := Term Val ue .
{ "+" Term (. Expr.Value := Expr.Value + Term Val ue .
| "-" Term (. Expr.Value := Expr.Value - Term Val ue .
} .
Term
= Factor (. Term Val ue : = Fact. Val ue .
{ "*" Factor (. TermValue := Term Value * Fact. Val ue .
| "/" Factor (. TermValue := Term Value / Fact. Val ue .
Fact or
= identifier (. Fact.Value := identifier.Value .)
| number (. Fact.Val ue := nunber. Val ue .)

| "(" Expression ")" (. Fact.Value := Expr.Value .) .

Our notation does yet lend itself immediately to the specification and construction of those |
that donot construct explicit structures of decorated nodes. However, it is not difficult to dev
suitable extension. We have already seen that the construction of parsers can be based on
that expansion of each non-terminal is handled by an associated routine. These routines ce
parameterized, and the parameters can transmit the attributes to where they are needed. L
idea we might express our expression grammar as follows (where we have introduced yet |
meta-brackets, this time denoted ky &nd '>"):

Goal < Value >
= Expression < Value > .
Expression < Val ue >
= Term< Val ue >
{ "+" Term < TernVal ue > (. Value :
| "-" Term< TernVal ue > (. Value :

Val ue + TernVal ue .)
Val ue - TernVal ue .)

Term < Val ue >
= Factor < Value >
{ "*" Factor < FactorValue > (. Value :
| "/" Factor < FactorValue > (. Value :

Val ue * FactorVal ue .)
Val ue / FactorVal ue .)

Factor < Val ue >
= identifier < Value >
| number < Value >
| "(" Expression < Value > ")"

11.3 Synthesized and inherited attributes

A little contemplation of the parse tree in our earlier example, and of the attributes as given
should convince the reader that (in this example at least) we have a situation in which the ¢
of any particular node depend only on the attributes of nodes in the subtrees of the node in
In a sense, information is always passed "up" the tree, or "out" of the corresponding routine
parameters must be passed "by reference”, and the grammar above maps into code of the
shown below (where we shall, for the moment, ignore the issue of how one attributes an idt
with an associated numeric value).

voi d Factor(int &val ue)
/Il Factor = identifier | nunber | "(" Expression ")"
{ switch (SYMsyn)
{ case identifier:
case number:
val ue = SYM num getsym(); break;
case | paren:
getsym(); Expression(value);
accept(rparen, " Error - ')’ expected"); break;
defaul t:
printf("Unexpected synmbol\n"); exit(1);

}

void Tern(int &val ue)
/! Term= Factor { "*" Factor | "/" Factor } .
{ int factorval ue;
Fact or (val ue);
while (SYMsym==tines || SYMsym == sl ash)
{ switch (SYMsym
{ case tinmes:
getsym(); Factor(factorvalue); value *= factorval ue; break;
case sl ash:
getsym(); Factor(factorvalue); value /= factorval ue; break;

}
}

voi d Expression(int &val ue)
/'l Expression = Term{ "+" Term| "-" Term} .
{ int ternval ue;

Tern(val ue);
while (SYMsym == plus || SYMsym == m nus)
{ switch (SYMsyn)
{ case plus:
getsym(); Term(ternval ue); value += ternval ue; break;
case m nus:
getsym(); Term(termval ue); value -= ternval ue; break;

}
}
Attributes that travel in this way are known as synthesized attributes. In general, given a
context-free production rule of the form

A=uBY
then an associated semantic rule of the form

A.attribute = f (oc.attributq, B.attributg, v.attribute)

is said to specify aynthesized attribute of A.

Attributes do not always travel up a tree. As a rather grander example, consider the very sr
CLANG program:

PROGRAM Si | | y;
CONST
Bonus = 4;
VAR
Pay;
BEG N
WRI TE(Pay + Bonus)
END.

which has the phrase structure tree shown in Figure 11.3.

Frogram
]
[I I I]
""PROGRAM™ iden?iFier L Elock LAt
TELL L™
[]
ConstDeclarat ions VarDeclarations CompoundStatement

[| [|
"COMST™ N "R e

T 1 identifier
ident if ier =" number I

| | gy
"EOHUS™ rrgrr

[I]
"EEGIM™ Statement ""EMHD™
WriteStatement
]
[I I |
"WRITE™ e Expréssion e
[]
Expression T?rm
Term Factor
Fa?tor ident if ier
iden?iFier

L e "Eonus"

Figure 11.3 Parse tree for a complete small program

In this case we can think of the Boolda@ionstant andlsVariable attributes of the nodesNST
andVAR as being passed up the tregnthesized), and then later passed back down iauhérited by

other nodes lik®onus andPay (see Figure 11.4). In a sense, the context in which the identifie
were declared is being remembered - the system is providing a way of handling context-sel
features of an otherwise context-free language.

ConstOeclarat ions VarDeclarat ions CompoundStatement
” 1 1
IsConstant "COMST™ i Islariable "UAR™ identifier LLHLU
|] P gy ——
ident ifier = number
| I
"Bonus" regre

Figure 11.4 Attributes passed up and down a parse tree

Of course, this idea must be taken much further. Attributes like this form part of what is usu
termed arenvironment. Compilation or parsing of programs in a language like Pascal or Mo
generally begins in a "standard" environment, into which pervasive identifierRlike FALSE,
ORD, CHRand so on are already incorporated. This environment is inheritébbsam and then
by Block and then byConstDeclarations, which augments it and passes it back up, to be inher
its augmented form byarDeclarations which augments it further and passes it back, so that i
then be passed down to tGempoundSatement. We may try to depict this as shown in Figure
11.5.

Program EMUE EMHUE

|
I [[
"PROGRAM™ ident if ier oy Elack s

gl Ly

EMU4 ConstDeclarations EMUt EHU4 UarDeclarat ions EHUY

I | | | EHL4
FCOMST™ LLpLY "UAR™ ident ifier LHL
T | "Pay'r Compound | tatement
ident ifier =" number +
"Bcu!uu-a" "tlt" | i—‘ 1
"EEGIN™ EMLI4 Stat Er;'uent "END™
EHL WriteStatenent
| T | I |
"WRITE™ L EHLIH- Ex pre?i Lon Ty
| | ' |
EHLE Expression Termn EHLE
ENU+ Tern Fattor ENU+
Enle Factor identifier ENU4
ENlL ident fier ‘
"Pay' Tt "Bonus"

Figure 11.5 Hodification of the parsing environment
More generally, given a context-free production rule of the form
A=cBY

an associated semantic rule of the form

B.attribute = f (oc.attributq, A.attribute, v.attribute)

is said to specify amherited attribute of B. The inherited attributes of a symbol are compute:
from information held in the environment of the symbol in the parse tree.

As before, our formal notation needs modification to reflect the different forms and flows of
attributes. A notation often used employs arrifvasid+ in conjunction with the parameters
mentioned in the > metabrackets. Inherited attributes are marked +yigimd synthesized
attributes wittT. In terms of actual codin{l,attributes correspond to "reference" parameters, v
| attributes correspond to "value" parameters. In practice, reference parameters may also t
manipulate features (such as an environment) that are inherited, modified, and then returne
are sometimes calladansmitted attributes, and are marked wit-? or?.

11.4 Classes of attribute grammars

Attribute grammars have other important features. If the action of a parser is in some way t
construct a tree whose nodes are decorated with semantic attributes relevant to each node
"walking" this tree after it has been constructed should constitute a possible mechanism for
developing the synthetic aspects of a translator, such as code generation. If this is this cast
order in which the tree is walked becomes crucially important, since attributes can depend
another. The simplest tree walk - the depth-first, left-to-right method - may not suffice. Inde:
have a situation completely analogous to that which arises in attempting single-pass assern
discovering forward references to labels. In principle we can, of course, perform multiple tre
walks, just as we can perform multiple-pass assembly. There are, however, two types of at
grammars for which this is not necessary.

® An S-attributed grammar is one that uses only synthesized attributes. For such a gran
the attributes can obviously be correctly evaluated using a bottom-up walk of the pars
Furthermore, such a grammar is easily handled by parsing algorithms (such as recurs
descent) that do not explicitly build the parse tree.

® An L-attributed grammar is one in which the inherited attributes of a particular symbo
any given production are restricted in certain ways. For each production of the genera

A—B,;B,..B,

the inherited attributes &, may depend only on the inherited attribute#\afr synthesized
attributes oBy, B, ... B, 1. For such a grammar the attributes can be correctly evaluatec

a left- to-right depth-first walk of the parse tree, and such grammars are usually easily
handled by recursive descent parsers, which implicitly walk the parse tree in this way.

We have already pointed out that there are various aspects of computer languages that inv
context sensitivity, even though the general form of the syntax might be expressed in a con
way. Context-sensitive constraints on such languages - often catkest conditions - are often
conveniently expressed by conditions included in its attribute grammar, specifying relations
must be satisfied between the attribute values in the parse tree of a valid program. For exa
might have a production like

Assi gnment = VarDesignator < Type\/T > ":=" Expression < TypeET >
(. where Assignnent Conpati bl e(Typevl‘, TypeEl‘) L)

Alternatively, and more usefully in the construction of real parsers, the context conditions
expressed in the same notation as for semantic actions, for example

Assignment = VarDesignator < Type\/T > ":=" Expression < TypeET >
(. if (Inconpati bl e(TypeVvr, TypeEl‘))
Semanti cError ("l nconpatible types"); .) .
Finally, we should note that the concept of an attribute grammar may be formally defined in
ways. Waite and Goos (1984) and Rechenberg and Méssenbdéck (1989) suggest:

An attribute grammar is a quadrupl&{A, R, K }, whereG={ N, T,SP}isa
reduced context-free grammajs a finite set of attribute® is a finite set of semantic
actions, and is a finite set of context conditions. Zero or more attributes fkare
associated with each symb¢€ N U T, and zero or more semantic actions frierand
zero or more context conditions frdfnare associated with each productiofirFor
each occurrence of a non-termibain the parse tree of a sentencé& (@) the attributes
of X can be computed in at most one way by semantic actions.

Further reading

Good treatments of the material discussed in this section can be found in the books by Got
(1988), Bennett (1990), and Rechenberg and Mdssenbdck (1989). As always, the text by A
and Ullman (1986) is a mine of information.

11.5 Case study - a small student database

As another example of using an attribute grammar to construct a system, consider the prok
constructing a database of the members of a student group. In particular, we wish to recorc
names, along with their intended degrees, after extracting information from an original data
has records like the following:

ConpSci ence3
BSc : Mke, Juanito, Rob, Keith, Bruce ;
BScS : Erik, Arne, Paul, Rory, Andrew, Carl, Jeffrey ;
BSc : Nico, Kirsten, Peter, Luanne, Jackie, Mark .

Although we are not involved with constructing a compiler in this instance, we still have an
example of a syntax directed computation. This data can be described by the context-free
productions

ClassList = CassNane [Goup { ";" Goup }] ".
Group = Degree ":" Student { "," Student } .
Degr ee = "BSc" | "BScS" .

ClassName = identifier .

St udent = identifier .

The attributes of greatest interest are, probably, those that relate to the students’ names ar
codes. An attribute grammar, with semantic actions that define how the database could be
as follows:

Cl asslLi st

= (assNane (. OpenDat aBase .)
[Goup { ";" Goup}] (. CoseDataBase .)
G'oub '

= Degree < DegreeOodeT >
St udent < DegreeCodel‘ >

{ "," Student < DegreeOodeJr >} .

Degree < DegreeCode T >
= " BSc" (. DegreeCode := bsc .)

| "BScS" (. DegreeCode := bscs .) .
Cl assNane
= identifier .
St udent < DegreeCodeJr >
= identifier < NameT > (. AddToDat aBase(NameJr, DegreeOodeL) L) .

It should be easy to see that this can be used to derive code on the lines of

voi d Student (codes DegreeCode)
{ if (SYMsym== identifier)
{ AddToDat aBase(SYM nane, DegreeCode); getsym(); }
el se
{ printf(" error - student nane expected\n"); exit(1); }

voi d Degree(codes &DegreeCode)
{ switch (SYMsyn)
{ case bscsym : DegreeCode bsc; break;
case bscssym : DegreeCode bscs; break;
default : printf(" error - invalid degree\n"); exit(1);

}
getsyn();

voi d G oup(void)
{ codes DegreeCode;
Degr ee(Degr eeCode) ;
accept(colon, " error - ':' expected");
St udent (Degr eeCode) ;
whil e (SYM sym == conma)
{ getsyn(); Student(DegreeCode); }

voi d d assNane(voi d)
{ accept(identifier, " error - class nane expected"); }

voi d d assLi st (void)
{ dassNane();
OpenDat aBase() ;
if (SYMsym == bscsym|| SYM sym == bscssyn)
{ Goup(); ,
whil e (SYM sym == semicolon) { getsynm(); Goup(); }

}
Cl oseDat aBase() ;
accept(period, " error - '.' expected");

}

Although all the examples so far have lent themselves to very easy implementation by a re:
descent parser, it is not difficult to find an example where difficulties arise. Considélatskei st
example again, but suppose that the input data had been of a form like

ConpSci ence3

M ke, Juanito, Rob, Keith, Bruce . BSc ;
Erik, Arne, Paul, Rory, Andrew, Carl, Jeffrey : BScS ;
Ni co, Kirsten, Peter, Luanne, Jackie, Mrk . BSc .

This data can be described by the context-free productions

ClassList = CassNane [Goup { ";" Goup }] .
Group = Student { "," Student } ":" Degree .
Degr ee = "BSc" | "BScS" .

ClassName = identifier .

St udent = identifier .

Now a moment’s thought should convince the reader that attributing the grammar as follow

G oup

= Student < NameT > (. AddToDat aBase(Namal‘, DegreeCodeJr))
{ "," Student < NarreT > (. AddToDat aBase(NarreJr, DegreeOodeJr))
} ":" Degree < DegreeCodeT > .

Student < Nane! >
= identifier < NameT >

does not create an L-attributed grammar, but has the unfortunate effect that at the point wh
seems natural to add a student to the database, his or her degree has not yet been ascerte

Just as we did for the one-pass assembler, so here we can sidestep the problem by creatir
forward reference table. It is not particularly difficult to handle this grammar with a recursive
descent parser, as the following amended code will reveal:

voi d Student (names &Nane)
{ if (SYMsym==identifier)
{ Name = SYM nan®e; getsym(); }
el se
{ printf(" error - student nane expected\n"); exit(1); }

voi d G oup(void)

{ codes DegreeCode;
names Nane[100] ;
int last = 0;

St udent (Nane[| ast]); /1 first forward reference
while (SYM sym == conmm)
{ getsyn();
|l ast ++; Student(Name[last]); // add to forward references
accept(colon, " error - ':' expected");
Degr ee(Degr eeCode) ;
for (int i =last; i >=0; i--) // process forward reference |ist

AddToDat aBase(Nane[i], DegreeCode);
}

Exercises

11.2 Develop an attribute grammar and corresponding parser to handle the evaluation of ai
expression where there may be an optional leadimg sign (as exemplified by
+9* (- 6+5)).

11.3 Develop an attribute grammar for the 8-bit ASSEMBLER language used in section 4.3
use it to build an assembler for this language.

11.4 Develop an attribute grammar for the stack ASSEMBLER language used in section 4..
use it to build an assembler for this language.

