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8 GRAMMARS AND THEIR CLASSIFICATION 

In this chapter we shall explore the underlying ideas behind grammars further, identify some
potential problem areas in designing grammars, and examine the ways in which grammars can be
classified. Designing a grammar to describe the syntax of a programming language is not merely an
interesting academic exercise. The effort is, in practice, usually made so as to be able to aid the
development of a translator for the language (and, of course so that programmers who use the
language may have a reference to consult when All Else Fails and they have to Read The
Instructions). Our study thus serves as a prelude to the next chapter, where we shall address the
important problem of parsing rather more systematically than we have done until now. 

8.1 Equivalent grammars 

As we shall see, not all grammars are suitable as the starting point for developing practical parsing
algorithms, and an important part of compiler theory is concerned with the ability to find
equivalent grammars. Two grammars are said to be equivalent if they describe the same language,
that is, can generate exactly the same set of sentences (not necessarily using the same set of
sentential forms or parse trees). 

In general we may be able to find several equivalent grammars for any language. A distinct
problem in this regard is a tendency to introduce far too few non-terminals, or alternatively, far too
many. It should not have escaped attention that the names chosen for non-terminals usually convey
some semantic implication to the reader, and the way in which productions are written (that is, the
way in which the grammar is factorized) often serves to emphasize this still further. Choosing too
few non-terminals means that semantic implications are very awkward to discern at all, too many
means that one runs the risk of ambiguity, and of hiding the semantic implications in a mass of hard
to follow alternatives. 

It may be of some interest to give an approximate count of the numbers of non-terminals and
productions that have been used in the definition of a few languages: 

           Language                            Non-terminals  Productions

           Pascal  (Jensen + Wirth report)          110          180
           Pascal  (ISO standard)                   160          300
           Edison                                    45           90
           C                                         75          220
           C++                                      110          270
           ADA                                      180          320
           Modula-2 (Wirth)                          74          135
           Modula-2 (ISO standard)                  225          306

8.2 Case study - equivalent grammars for describing expressions

One problem with the grammars found in text books is that, like many complete programs found in
text books, their final presentation often hides the thought which has gone into their development.
To try to redress the balance, let us look at a typical language construct - arithmetic expressions -
and explore several grammars which seem to define them. 



Consider the following EBNF descriptions of simple algebraic expressions. One set is
left-recursive, while the other is right-recursive: 

  (E1)      Goal        =  Expression .                        (1)
            Expression  =  Term | Term "-" Expression .        (2 ,3)
            Term        =  Factor | Factor "*" Term .          (4, 5)
            Factor      =  "a" | "b" | "c" .                   (6, 7, 8)

  (E2)      Goal        =  Expression .                        (1)
            Expression  =  Term | Expression "-" Term .        (2, 3)
            Term        =  Factor | Term "*" Factor .          (4, 5)
            Factor      =  "a" | "b" | "c" .                   (6, 7, 8)

Either of these grammars can be used to derive the string a - b * c, and we show the corresponding
phrase structure trees in Figure 8.1 below. 

We have already commented that it is frequently the case that the semantic structure of a sentence is
reflected in its syntactic structure, and that this is a very useful property for programming language
specification. The terminals - and * fairly obviously have the "meaning" of subtraction and
multiplication. We can reflect this by drawing the abstract syntax tree (AST) equivalents of the
above diagrams; ones constructed essentially by eliding out the names of the non-terminals, as
depicted in Figure 8.2. Both grammars lead to the same AST, of course. 

The appropriate meaning can then be extracted from such a tree by performing a post-order (LRN)
tree walk. 

While the two sets of productions lead to the same sentences, the second set of productions
corresponds to the usual implied semantics of "left to right" associativity of the operators - and *,
while the first set has the awkward implied semantics of "right to left" associativity. We can see this
by considering the parse trees for each grammar for the string a - b - c, depicted in Figure 8.3. 



Another attempt at writing a grammar for this language is of interest: 

  (E3)      Goal        =  Expression .                        (1)
            Expression  =  Term | Term "*" Expression .        (2, 3)
            Term        =  Factor | Factor "-" Term .          (4, 5)
            Factor      =  "a" | "b" | "c" .                   (6, 7, 8)

Here we have the unfortunate situation that not only is the associativity of the operators wrong; the
relative precedence of multiplication and subtraction has also been inverted from the norm. This
can be seen from the parse tree for the expression a - b * c shown in Figure 8.4. 

Of course, if we use the EBNF metasymbols it is possible to write grammars without using
recursive productions. Two such grammars follow: 

  (E4)      Goal        =  Expression .                        (1)
            Expression  =  Term { "-" Term } .                 (2)
            Term        =  Factor { "*" Factor } .             (3)
            Factor      =  "a" | "b" | "c" .                   (4, 5, 6)

  (E5)      Goal        =  Expression .                        (1)
            Expression  =  { Term "-" } Term .                 (2)
            Term        =  { Factor  "*" } Factor .            (3)
            Factor      =  "a" | "b" | "c" .                   (4, 5, 6)

Exercises

8.1 Draw syntax diagrams which reflect the different approaches taken to factorizing these
grammars. 

8.2 Comment on the associativity and precedence that seem to underpin grammars E4 and E5. 

8.3 Develop sets of productions for algebraic expressions that will describe the operations of
addition and division as well as subtraction and multiplication. Analyse your attempts in some
detail, paying heed to the issues of associativity and precedence. 



8.4 Develop sets of productions which describe expressions exemplified by 

- a + sin(b + c) * ( - ( b - a) )

that is to say, fairly general mathematical expressions, with bracketing, leading unary signs, the
usual operations of addition, subtraction, division and multiplication, and simple function calls.
Ensure that the productions correspond to the conventional precedence and associativity rules for
arithmetic expressions. 

8.5 Extend Exercise 8.4 to allow for exponentiation as well. 

8.3 Some simple restrictions on grammars 

Had he looked at our grammars, Mr. Orwell might have been tempted to declare that, while they
might be equal, some are more equal than others. Even with only limited experience we have seen
that some grammars will have features which will make them awkward to use as the basis of
compiler development. There are several standard restrictions which are called for by different
parsing techniques, among which are some fairly obvious ones. 

8.3.1 Useless productions and reduced grammars 

For a grammar to be of practical value, especially in the automatic construction of parsers and
compilers, it should not contain superfluous rules that cannot be used in parsing a sentence.
Detection of useless productions may seem a waste of time, but it may also point to a clerical error
(perhaps an omission) in writing the productions. An example of a grammar with useless
productions is 

              G = { N , T , S , P }
              N = { W , X , Y , Z }
              T = { a }
              S = W
              P =
                  W    aW                (1)
                  W    Z                 (2)
                  W    X                 (3)
                  Z    aZ                (4)
                  X    a                 (5)
                  Y    aa                (6)

The useful productions are (1), (3) and (5). Production (6) ( Y    aa ) is useless, because Y is
non-reachable or non-derivable - there is no way of introducing Y into a sentential form (that is,
S  >* Y  for any , ). Productions (2) and (4) are useless, because Z is non-terminating - if Z

appears in a sentential form then this cannot generate a terminal string (that is, Z  >*  for any
  T *). 

A reduced grammar is one that does not contain superfluous rules of these two types
(non-terminals that can never be reached from the start symbol, and non-terminals that cannot
produce terminal strings). 

More formally, a context-free grammar is said to be reduced if, for each non-terminal B we can
write 



S *  B 

for some strings  and , and where 

B * 

for some   T * . 

In fact, non-terminals that cannot be reached in any derivation from the start symbol are sometimes
added so as to assist in describing the language - an example might be to write, for C 

Comment = "/*" CommentString "*/" .
CommentString = character | CommentString character .

8.3.2 -free grammars 

Intuitively we might expect that detecting the presence of "nothing" would be a little awkward, and
for this reason certain compiling techniques require that a grammar should contain no -productions
(those which generate the null string). Such a grammar is referred to as an -free grammar. 

-productions are usually used in BNF as a way of terminating recursion, and are often easily
removed. For example, the productions 

        Integer        =  digit  RestOfInteger .
        RestOfInteger  =  digit  RestOfInteger |  .
        digit          =  "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" .

can be replaced by the -free equivalent 

        Integer        =  digit  |  Integer  digit .
        digit          =  "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" .

Such replacement may not always be so easy: the reader might like to look at the grammar of
Section 8.7, which uses -productions to express ConstDeclarations, VarDeclarations and
Statement, and try to eliminate them. 

8.3.3 Cycle-free grammars 

A production in which the right side consists of a single non-terminal 

A    B      ( where A , B    N )

is termed a single production. Fairly obviously, a single production of the form 

A    A

serves no useful purpose, and should never be present. It could be argued that it causes no harm, for
it presumably would be an alternative which was never used (so being useless, in a sense not quite
that discussed above). A less obvious example is provided by the set of productions 

A    B
B    C



C    A

Not only is this useless in this new sense, it is highly undesirable from the point of obtaining a
unique parse, and so all parsing techniques require a grammar to be cycle-free - it should not permit
a derivation of the form 

A  +  A

8.4 Ambiguous grammars 

An important property which one looks for in programming languages is that every sentence that
can be generated by the language should have a unique parse tree, or, equivalently, a unique left (or
right) canonical parse. If a sentence produced by a grammar has two or more parse trees then the
grammar is said to be ambiguous. An example of ambiguity is provided by another attempt at
writing a grammar for simple algebraic expressions - this time apparently simpler than before: 

  (E6)          Goal          =   Expression .                 (1)
                Expression    =   Expression "-" Expression    (2)
                                  | Expression "*" Expression  (3)
                                  | Factor  .                  (4)
                Factor        =   "a" | "b" | "c" .            (5, 6, 7)

With this grammar the sentence a - b * c has two distinct parse trees and two canonical derivations.
We refer to the numbers to show the derivation steps. 

The parse tree shown in Figure 8.5 corresponds to the derivation 

    Goal     Expression                                    (1)
             Expression - Expression                       (2)
             Factor - Expression                           (4)
             a - Expression                                (5)
             a - Expression * Expression                   (3)
             a - Factor * Expression                       (4)
             a - b * Expression                            (6)
             a - b * Factor                                (4)
             a - b * c                                     (7)

while the second derivation 

    Goal     Expression                                    (1)
             Expression * Expression                       (3)
             Expression - Expression * Expression          (2)
             Factor - Expression * Expression              (4)
             a - Expression * Expression                   (5)
             a - Factor * Expression                       (4)
             a - b * Expression                            (6)
             a - b * Factor                                (4)
             a - b * c                                     (7)



corresponds to the parse tree depicted in Figure 8.6. 

If the only use for grammars was to determine whether a string belonged to the language, ambiguity
would be of little consequence. However, if the meaning of a program is to be tied to its syntactic
structure, then ambiguity must be avoided. In the example above, the two trees correspond to two
different evaluation sequences for the operators * and - . In the first case the "meaning" would be
the usual mathematical one, namely a - (b * c), but in the second case the meaning would
effectively be (a - b) * c . 

We have already seen various examples of unambiguous grammars for this language in an earlier
section, and in this case, fortunately, ambiguity is quite easily avoided. 

The most famous example of an ambiguous grammar probably relates to the IF ... THEN ...

ELSE statement in simple Algol-like languages. Let us demonstrate this by defining a simple
grammar for such a construct. 

            Program       =  Statement .
            Statement     =  Assignment | IfStatement .
            Assignment    =  Variable ":=" Expression .
            Expression    =  Variable .
            Variable      =  "i" | "j" | "k" | "a" | "b" | "c" .
            IfStatement   =  "IF" Condition "THEN" Statement
                             | "IF" Condition "THEN" Statement "ELSE" Statement .
            Condition     =  Expression "=" Expression
                             | Expression "#" Expression .

In this grammar the string 

                IF i = j THEN IF i = k THEN a := b ELSE a := c

has two possible parse trees. The reader is invited to draw these out as an exercise; the essential
point is that we can parse the string to correspond either to 

                IF i = j THEN (IF i = k THEN a := b ELSE a := c)
                         ELSE (nothing)

or to 

                IF i = j THEN (IF i = k THEN a := b ELSE nothing)
                         ELSE (a := c)

Any language which allows a sentence such as this may be inherently ambiguous unless certain
restrictions are imposed on it, for example, on the part following the THEN of an IfStatement, as was
done in Algol (Naur, 1963). In Pascal and C++, as is hopefully well known, an ELSE is deemed to
be attached to the most recent unmatched THEN, and the problem is avoided that way. In other
languages it is avoided by introducing closing tokens like ENDIF and ELSIF. It is, however, possible
to write productions that are unambiguous: 

    Statement     =   Matched | Unmatched .



    Matched       =   "IF" Condition "THEN" Matched "ELSE" Matched
                       | OtherStatement .

    Unmatched     =   "IF" Condition "THEN" Statement
                       | "IF" Condition "THEN" Matched "ELSE" Unmatched .

In the general case, unfortunately, no algorithm exists (or can exist) that can take an arbitrary
grammar and determine with certainty and in a finite amount of time whether it is ambiguous or
not. All that one can do is to develop fairly simple but non-trivial conditions which, if satisfied by a
grammar, assure one that it is unambiguous. Fortunately, ambiguity does not seem to be a problem
in practical programming languages. 

Exercises 

8.6 Convince yourself that the last set of productions for IF ... THEN ... ELSE statements is
unambiguous. 

8.5 Context sensitivity 

Some potential ambiguities belong to a class which is usually termed context-sensitive. Spoken
and written language is full of such examples, which the average person parses with ease, albeit
usually within a particular cultural context or idiom. For example, the sentences 

Time flies like an arrow

and 

Fruit flies like a banana

in one sense have identical construction 

Noun   Verb   Adverbial phrase

but, unless we were preoccupied with aerodynamics, in listening to them we would probably
subconsciously parse the second along the lines of 

Adjective   Noun   Verb   Noun phrase

Examples like this can be found in programming languages too. In Fortran a statement of the form 

A = B(J)

(when taken out of context) could imply a reference either to the Jth element of array B, or to the
evaluation of a function B with integer argument J. Mathematically there is little difference - an
array can be thought of as a mapping, just as a function can, although programmers may not often
think that way. 



8.6 The Chomsky hierarchy 

Until now all our practical examples of productions have had a single non-terminal on the left side,
although grammars may be more general than that. Based on pioneering work by a linguist
(Chomsky, 1959), computer scientists now recognize four classes of grammar. The classification
depends on the format of the productions, and may be summarized as follows: 

8.6.1 Type 0 Grammars (Unrestricted) 

An unrestricted grammar is one in which there are virtually no restrictions on the form of any of
the productions, which have the general form 

                with   (N  T )* N (N  T )* ,   (N  T )*

(thus the only restriction is that there must be at least one non-terminal symbol on the left side of
each production). The other types of grammars are more restricted; to qualify as being of type 0
rather than one of these more restricted types it is necessary for the grammar to contain at least one
production     with |  | > |  |, where |  | denotes the length of . Such a production can be used

to "erase" symbols - for example, aAB   aB erases A from the context aAB. This type is so rare in
computer applications that we shall consider it no further here. Practical grammars need to be far
more restricted if we are to base translators on them. 

8.6.2 Type 1 Grammars (Context-sensitive) 

If we impose the restriction on a type 0 grammar that the number of symbols in the string on the left
of any production is less than or equal to the number of symbols on the right side of that
production, we get the subset of grammars known as type 1 or context-sensitive. In fact, to qualify
for being of type 1 rather than of a yet more restricted type, it is necessary for the grammar to
contain at least one production with a left side longer than one symbol. 

Productions in type 1 grammars are of the general form 

               with |  |  |  | ,   (N  T )* N (N  T )* ,   (N  T )+ 

Strictly, it follows that the null string would not be allowed as a right side of any production.
However, this is sometimes overlooked, as -productions are often needed to terminate recursive
definitions. Indeed, the exact definition of "context-sensitive" differs from author to author. In
another definition, productions are required to be limited to the form 

A           with ,   (N  T )*, A  N+,   (N  T )+

although examples are often given where productions are of a more general form, namely 

A           with , , ,   (N  T )*, A  N+,   (N  T )+

(It can be shown that the two definitions are equivalent.) Here we can see the meaning of
context-sensitive more clearly - A may be replaced by  when A is found in the context of (that is,
surrounded by)  and . 



A much quoted simple example of such a grammar is as follows: 

            G = { N , T , S , P }
            N = { A , B , C }
            T = { a , b , c }
            S = A
            P =
                    A  aABC | abC              (1, 2)
                    CB  BC                     (3)
                    bB  bb                     (4)
                    bC  bc                     (5)
                    cC  cc                     (6)

Let us derive a sentence using this grammar. A is the start string: let us choose to apply production
(1) 

A  aABC

and then in this new string choose another production for A, namely (2) to derive 

A  a abC BC

and follow this by the use of (3). (We could also have chosen (5) at this point.) 

A  aab BC C

We follow this by using (4) to derive 

A  aa bb CC

followed by the use of (5) to get 

A  aab bc C

followed finally by the use of (6) to give 

A  aabbcc

However, with this grammar it is possible to derive a sentential form to which no further
productions can be applied. For example, after deriving the sentential form 

aabCBC

if we were to apply (5) instead of (3) we would obtain 

aabcBC

but no further production can be applied to this string. The consequence of such a failure to obtain a
terminal string is simply that we must try other possibilities until we find those that yield terminal
strings. The consequences for the reverse problem, namely parsing, are that we may have to resort
to considerable backtracking to decide whether a string is a sentence in the language. 

Exercises 



8.7 Derive (or show how to parse) the strings 

abc and aaabbbccc

using the above grammar. 

8.8 Show informally that the strings 

abbc , aabc and abcc

cannot be derived using this grammar. 

8.9 Derive a context-sensitive grammar for strings of 0’s and 1’s so that the number of 0’s and 1’s
is the same. 

8.10 Attempt to write context-sensitive productions from which the English examples in section 8.5
could be derived. 

8.11 An attempt to use context-sensitive productions in an actual computer language was made by
Lee (1972), who gave such productions for the PRINT statement in BASIC. Such a statement may
be described informally as having the keyword PRINT followed by an arbitrary number of
Expressions and Strings. Between each pair of Expressions a Separator is required, but between
any other pair (String - Expression, String - String or Expression - String) the Separator is optional.

Study Lee’s work, criticize it, and attempt to describe the BASIC PRINT statement using a
context-free grammar. 

8.6.3 Type 2 Grammars (Context-free) 

A more restricted subset of context-sensitive grammars yields the type 2 or context-free grammars.
A grammar is context-free if the left side of every production consists of a single non-terminal, and
the right side consists of a non-empty sequence of terminals and non-terminals, so that productions
have the form 

                with |  |  |  | ,   N ,   (N  T )+

that is 

A                with A  N ,   (N  T )+

Strictly, as before, no -productions should be allowed, but this is often relaxed to allow

    (N  T)*. Such productions are easily seen to be context-free, because if A occurs in any

string, say A , then we may effect a derivation step A    without any regard for the particular

context (prefix or suffix) in which A occurs. 

Most of our earlier examples have been of this form, and we shall consider a larger example
shortly, for a complete small programming language. 



Exercises 

8.12 Develop a context-free grammar that specifies the set of REAL decimal literals that may be
written in Fortran. Examples of these literals are 

                 -21.5      0.25     3.7E-6    .5E7     6E6   100.0E+3

8.13 Repeat the last exercise for REAL literals in Modula-2 and Pascal, and float literals in C++. 

8.14 Find a context-free grammar that describes Modula-2 comments (unlike Pascal and C++, these
may be nested). 

8.15 Develop a context-free grammar that generates all palindromes constructed of the letters a and
b (palindromes are strings that read the same from either end, like ababbaba). 

8.6.4 Type 3 Grammars (Regular, Right-linear or Left-linear) 

Imposing still further constraints on productions leads us to the concept of a type 3 or regular
grammar. This can take one or other of two forms (but not both at once). It is right-linear if the
right side of every production consists of zero or one terminal symbols, optionally followed by a
single non-terminal, and if the left side is a single non-terminal, so that productions have the form 

A  a or A  aB     with a  T , A, B  N

It is left-linear if the right side of every production consists of zero or one terminals optionally
preceded by a single non-terminal, so that productions have the form 

A  a or A  Ba     with a  T , A, B  N

(Strictly, as before,  productions are ruled out - a restriction often overlooked). A simple example
of such a grammar is one for describing binary integers 

           BinaryInteger  = "0" BinaryInteger | "1" BinaryInteger | "0" | "1" .

Regular grammars are rather restrictive - local features of programming languages like the
definitions of integer numbers and identifiers can be described by them, but not much more. Such
grammars have the property that their sentences may be parsed by so-called finite state automata,
and can be alternatively described by regular expressions, which makes them of theoretical interest
from that viewpoint as well. 

Exercises 

8.16 Can you describe signed integers and Fortran identifiers in terms of regular grammars as well
as in terms of context-free grammars? 

8.17 Can you develop a regular grammar that specifies the set of float decimal literals that may be
written in C++? 

8.18 Repeat the last exercise for REAL literals in Modula-2, Pascal and Fortran. 



8.6.5 The relationship between grammar type and language type 

It should be clear from the above that type 3 grammars are a subset of type 2 grammars, which
themselves form a subset of type 1 grammars, which in turn form a subset of type 0 grammars (see
Figure 8.7). 

A language L(G) is said to be of type k if it can be generated by a type k grammar. Thus, for
example, a language is said to be context-free if a context-free grammar may be used to define it.
Note that if a non context- free definition is given for a particular language, it does not necessarily
imply that the language is not context-free - there may be an alternative (possibly
yet-to-be-discovered) context-free grammar that describes it. Similarly, the fact that a language can,
for example, most easily be described by a context-free grammar does not necessarily preclude our
being able to find an equivalent regular grammar. 

As it happens, grammars for modern programming languages are usually largely context-free, with
some unavoidable context-sensitive features, which are usually handled with a few extra ad hoc
rules and by using so- called attribute grammars, rather than by engaging on the far more difficult
task of finding suitable context- sensitive grammars. Among these features are the following: 

The declaration of a variable must precede its use. 

The number of formal and actual parameters in a procedure call must be the same. 

The number of index expressions or fields in a variable designator must match the number
specified in its declaration. 

Exercises 

8.19 Develop a grammar for describing scanf or printf statements in C. Can this be done in a
context-free way, or do you need to introduce context-sensitivity? 

8.20 Develop a grammar for describing Fortran FORMAT statements. Can this be done in a
context-free way, or do you need to introduce context-sensitivity? 

Further reading 

The material in this chapter is very standard, and good treatments of it can be found in many books.
The keen reader might do well to look at the alternative presentation in the books by Gough (1988),
Watson (1989), Rechenberg and Mössenböck (1989), Watt (1991), Pittman and Peters (1992), Aho,



Sethi and Ullman (1986), or Tremblay and Sorenson (1985). The last three references are
considerably more rigorous than the others, drawing several fine points which we have glossed
over, but are still quite readable. 

8.7 Case study - Clang 

As a rather larger example, we give here the complete syntactic specification of a simple
programming language, which will be used as the basis for discussion and enlargement at several
points in the future. The language is called Clang, an acronym for Concurrent Language (also
chosen because it has a fine ring to it), deliberately contains a mixture of features drawn from
languages like Pascal and C++, and should be immediately comprehensible to programmers familiar
with those languages. 

The semantics of Clang, and especially the concurrent aspects of the extensions that give it its
name, will be discussed in later chapters. It will suffice here to comment that the only data
structures (for the moment) are the scalar INTEGER and simple arrays of INTEGER. 

8.7.1 BNF Description of Clang 

In the first set of productions we have used recursion to show the repetition: 

  COMPILER Clang

  IGNORE CASE
  IGNORE CHR(9) .. CHR(13)
  COMMENTS FROM "(*" TO "*)"

  CHARACTERS
    cr         = CHR(13) .
    lf         = CHR(10) .
    letter     = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
    digit      = "0123456789" .
    instring   = ANY - "’" - cr - lf .

  TOKENS
    identifier = letter { letter | digit } .
    number     = digit { digit } .
    string     = "’" (instring | "’’") { instring | "’’" } "’" .

  PRODUCTIONS
    Clang             = "PROGRAM" identifier ";" Block "." .
    Block             = Declarations CompoundStatement .
    Declarations      = OneDeclaration Declarations | .
    OneDeclaration    = ConstDeclarations | VarDeclarations .
    ConstDeclarations = "CONST" ConstSequence .
    ConstSequence     = OneConst | ConstSequence OneConst .
    OneConst          = identifier "=" number ";" .
    VarDeclarations   = "VAR" VarSequence ";" .
    VarSequence       = OneVar | VarSequence "," OneVar .
    OneVar            = identifier UpperBound .
    UpperBound        = "[" number "]" | .
    CompoundStatement = "BEGIN" StatementSequence "END" .
    StatementSequence = Statement | StatementSequence ";" Statement .
    Statement         =   CompoundStatement | Assignment
                        | IfStatement       | WhileStatement
                        | ReadStatement     | WriteStatement | .
    Assignment        = Variable ":=" Expression .
    Variable          = Designator .
    Designator        = identifier Subscript .
    Subscript         = "[" Expression "]" | .
    IfStatement       = "IF" Condition "THEN" Statement .
    WhileStatement    = "WHILE" Condition "DO" Statement .
    Condition         = Expression RelOp Expression .
    ReadStatement     = "READ" "(" VariableSequence ")" .
    VariableSequence  = Variable | VariableSequence "," Variable .
    WriteStatement    = "WRITE" WriteParameters .



    WriteParameters   = "(" WriteSequence ")" | .
    WriteSequence     = WriteElement | WriteSequence "," WriteElement .
    WriteElement      = string | Expression .
    Expression        = Term | AddOp Term | Expression AddOp Term .
    Term              = Factor | Term MulOp Factor .
    Factor            = Designator | number | "(" Expression ")" .
    AddOp             = "+" | "-" .
    MulOp             = "*" | "/" .
    RelOp             = "=" | "<>" | "<" | "<=" | ">" | ">=" .
  END Clang.

8.7.2 EBNF description of Clang 

As usual, an EBNF description is somewhat more concise: 

  COMPILER Clang

  IGNORE CASE
  IGNORE CHR(9) .. CHR(13)
  COMMENTS FROM "(*" TO "*)"

  CHARACTERS
    cr         = CHR(13) .
    lf         = CHR(10) .
    letter     = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
    digit      = "0123456789" .
    instring   = ANY - "’" - cr - lf .

  TOKENS
    identifier = letter { letter | digit } .
    number     = digit { digit } .
    string     = "’" (instring | "’’") { instring | "’’" } "’" .

  PRODUCTIONS
    Clang             = "PROGRAM" identifier ";" Block "." .
    Block             = { ConstDeclarations | VarDeclarations }
                        CompoundStatement .
    ConstDeclarations = "CONST" OneConst { OneConst } .
    OneConst          = identifier "=" number ";" .
    VarDeclarations   = "VAR" OneVar { "," OneVar } ";" .
    OneVar            = identifier [ UpperBound ] .
    UpperBound        = "[" number "]" .
    CompoundStatement = "BEGIN" Statement { ";" Statement } "END" .
    Statement         = [   CompoundStatement | Assignment
                          | IfStatement       | WhileStatement
                          | ReadStatement     | WriteStatement ] .
    Assignment        = Variable ":=" Expression .
    Variable          = Designator .
    Designator        = identifier [ "[" Expression "]" ] .
    IfStatement       = "IF" Condition "THEN" Statement .
    WhileStatement    = "WHILE" Condition "DO" Statement .
    Condition         = Expression RelOp Expression .
    ReadStatement     = "READ" "(" Variable { "," Variable } ")" .
    WriteStatement    = "WRITE"
                        [ "(" WriteElement { "," WriteElement }  ")" ] .
    WriteElement      = string | Expression .
    Expression        = ( "+" Term | "-" Term | Term ) { AddOp Term } .
    Term              = Factor { MulOp Factor } .
    Factor            = Designator | number | "(" Expression ")" .
    AddOp             = "+" | "-" .
    MulOp             = "*" | "/" .
    RelOp             = "=" | "<>" | "<" | "<=" | ">" | ">=" .
  END Clang.

8.7.3 A sample program 

It is fairly common practice to illustrate a programming language description with an example of a
program illustrating many of the language’s features. To keep up with tradition, we follow suit. The
rather obtuse way in which Eligible is incremented before being used in a subscripting expression
in line 16 is simply to illustrate that a subscript can be an expression. 

   PROGRAM Debug;
     CONST
       VotingAge = 18;
     VAR
       Eligible, Voters[100], Age, Total;



     BEGIN
       Total := 0;
       Eligible := 0;
       READ(Age);
       WHILE Age > 0 DO
         BEGIN
           IF Age > VotingAge THEN
             BEGIN
               Voters[Eligible] := Age;
               Eligible := Eligible + 1;
               Total := Total + Voters[Eligible - 1]
             END;
           READ(Age);
         END;
       WRITE(Eligible, ’ voters.  Average age = ’, Total / Eligible);
     END.

Exercises 

8.21 Do the BNF style productions use right or left recursion? Write an equivalent grammar which
uses the opposite form of recursion. 

8.22 Develop a set of syntax diagrams for Clang (see section 5.10). 

8.23 We have made no attempt to describe the semantics of programs written in Clang; to a reader
familiar with similar languages they should be self-evident. Write simple programs in the language
to: 

(a) Find the sum of the numbers between two input data, which can be supplied in either
order.

(b) Use Euclid’s algorithm to find the HCF of two integers.

(c) Determine which of a set of year dates correspond to leap years.

(d) Read a sequence of numbers and print out the embedded monotonic increasing
sequence.

(e) Use a "sieve" algorithm to determine which of the numbers less than 255 are prime.

In the light of your experience in preparing these solutions, and from the intuition which you have
from your background in other languages, can you foresee any gross deficiencies in Clang as a
language for handling problems in integer arithmetic (apart from its lack of procedural facilities,
which we shall deal with in a later chapter)? 

8.24 Suppose someone came to you with the following draft program, seeking answer to the
questions currently found in the comments next to some statements. How many of these questions
can you answer by referring only to the syntactic description given earlier? (The program is not
supposed to do anything useful!) 

          PROGRAM Query;
            CONST
              Header = ’Title’;  (* Can I declare a string constant? *)
            VAR
              L1[10], L2[10],    (* Are these the same size? *)
              L3[20], I, Query,  (* Can I reuse the program name as a variable? *)
              L3[15];            (* What happens if I use a variable name again? *)
            CONST                (* Can I declare constants after variables? *)
              Max = 1000;



              Min = -89;         (* Can I define negative constants? *)
            VAR                  (* Can I have another variable section? *)
              BigList[Max];      (* Can I use named constants to set array sizes? *)
            BEGIN
              Write(Heading)     (* Can I write constants? *)
              L1[10] := 34;      (* Does L[10] exist? *)
              L1 := L2;          (* Can I copy complete arrays? *)
              Write(L3);         (* Can I write complete arrays? *)
              ;; I := Query;;;   (* What about spurious semicolons? *)
            END.

8.25 As a more challenging exercise, consider a variation on Clang, one that resembles C++ rather
more closely than it does Pascal. Using the translation below of the sample program given earlier as
a guide, derive a grammar that you think describes this language (which we shall later call
"Topsy"). For simplicity, regard cin and cout as keywords leading to special statement forms. 

          void main (void) {
            const VotingAge = 18;
            int Eligible, Voters[100], Age, Total;

            Total = 0;
            Eligible = 0;
            cin >> Age;
            while (Age > 0) {
              if (Age > VotingAge) {
                Voters[Eligible] = Age;
                Eligible = Eligible + 1;
                Total = Total + Voters[Eligible - 1];
              }
              cin >> Age;
            }
            cout << Eligible << " voters.  Average age = " << Total / Eligible;
          }

8.26 In the light of your experience with Exercises 8.24 and 8.25, discuss the ease of
"reverse-engineering" a programming language description by consulting only a few example
programs? Why do you suppose so many students attempt to learn programming by imitation? 

8.27 Modify the Clang language definition to incorporate Pascal-like forms of: 

(a) the REPEAT ... UNTIL statement
(b) the IF ... THEN ... ELSE statement
(c) the CASE statement
(d) the FOR loop
(e) the MOD operator.

8.28 Repeat the last exercise for the language suggested by Exercise 8.25, using syntax that
resembles that found in C++. 

8.29 In Modula-2, structured statements are each terminated with their own END. How would you
have to change the Clang language definition to use Modula-2 forms for the existing statements,
and for the extensions suggested in Exercise 8.27? What advantages, if any, do these forms have
over those found in Pascal or C++? 

8.30 Study how the specification of string tokens has been achieved in Cocol. Some languages, like
Modula- 2, allow strings to be delimited by either single or double quotes, but not to contain the
delimiter as a member of the string (so that we might write "David’s Helen’s brother" or ’He said
"Hello"’, but not ’He said "That’s rubbish!"’). How would you specify string tokens if these had to
match those found in Modula-2, or those found in C++ (where various escape characters are
allowed within the string)? 


