Compilers and Compiler Generators © P.D. Terry, 2000

8 GRAMMARSAND THEIR CLASSIFICATION

In this chapter we shall explore the underlying ideas behind grammars further, identify som
potential problem areas in designing grammars, and examine the ways in which grammars
classified. Designing a grammar to describe the syntax of a programming language is not n
interesting academic exercise. The effort is, in practice, usually made so as to be able to ali
development of a translator for the language (and, of course so that programmers who use
language may have a reference to consult when All Else Fails and they have to Read The
Instructions). Our study thus serves as a prelude to the next chapter, where we shall addre
important problem of parsing rather more systematically than we have done until now.

8.1 Equivalent grammars

As we shall see, not all grammars are suitable as the starting point for developing practical
algorithms, and an important part of compiler theory is concerned with the ability to find
equivalent grammars. Two grammars are said to be equivalent if they describe the same lal
that is, can generate exactly the same set of sentences (not necessarily using the same se
sentential forms or parse trees).

In general we may be able to find several equivalent grammars for any language. A distinct
problem in this regard is a tendency to introduce far too few non-terminals, or alternatively,
many. It should not have escaped attention that the names chosen for non-terminals usuall
some semantic implication to the reader, and the way in which productions are written (that
way in which the grammar is factorized) often serves to emphasize this still further. Choosii
few non-terminals means that semantic implications are very awkward to discern at all, too
means that one runs the risk of ambiguity, and of hiding the semantic implications in a mas
to follow alternatives.

It may be of some interest to give an approximate count of the numbers of non-terminals ar
productions that have been used in the definition of a few languages:

Language Non-term nals Productions
Pascal (Jensen + Wrth report) 110 180
Pascal (|SO standard) 160 300
Edi son 45 90
C 75 220
C++ 110 270
ADA 180 320
Modul a-2 (Wrth) 74 135
Mbdul a-2 (| SO st andar d) 225 306

8.2 Case study - equivalent grammarsfor describing expressions

One problem with the grammars found in text books is that, like many complete programs f
text books, their final presentation often hides the thought which has gone into their develo
To try to redress the balance, let us look at a typical language construct - arithmetic expres
and explore several grammars which seem to define them.

Consider the following EBNF descriptions of simple algebraic expressions. One set is
left-recursive, while the other is right-recursive:

(E1) Goal = Expression . (1)
Expression = Term| Term"-" Expression . (2,3)
Term = Factor | Factor "*" Term. (4, 5)
Fact or = "a" | "b" | "c" . (6, 7, 8)

(E2) Goal = Expression . (1)
Expression = Term| Expression "-" Term. (2, 3)
Term = Factor | Term"*" Factor . (4, 5)
Fact or = "a" | "b" | "c" (6, 7, 8)

Either of these grammars can be used to derive the atribg ¢, and we show the correspondit
phrase structure trees in Figure 8.1 below.

[E1) E?al [EZ) Goal
1
Expression Expression
|
I I I |
Term Expression Expression Term
1
Term
Factor Term Term Term Factor
| | |
Factor | Fa?tnr Fa?tor Fa?tnr
|
a - b * = E] - b * =4

Figure 2.1 Parse trees for the exdpression a — b # ¢ arising from two grammars

We have already commented that it is frequently the case that the semantic structure of a <
reflected in its syntactic structure, and that this is a very useful property for programming la
specification. The terminalsand* fairly obviously have the "meaning” of subtraction and
multiplication. We can reflect this by drawing the abstract syntax tree (AST) equivalents of
above diagrams; ones constructed essentially by eliding out the names of the non-terminal:
depicted in Figure 8.2. Both grammars lead to the same AST, of course.

(E1] | [EZ) |

N N

Figure 8.2 HAbstract swntad trees for the edpression a — b # o

a a

The appropriate meaning can then be extracted from such a tree by performing a post-orde
tree walk.

While the two sets of productions lead to the same sentences, the second set of productior
corresponds to the usual implied semantics of "left to right" associativity of the operatuts,
while the first set has the awkward implied semantics of "right to left" associativity. We can
by considering the parse trees for each grammar for the atribg ¢, depicted in Figure 8.3.

[E1) E?al [EZ2] G?al

Expression Expression

Term Expression Expression Term

Term Expression Edpression Term Factor
Faétnr Térm Térm Factor
FaTtnr Fa?tnr Fa%tnr
a - b - = a - b - =

Figure 8.2 Parse trees for the edpression a — b - o from two grammarcs

Another attempt at writing a grammar for this language is of interest:

(E3) Goal = Expression . (1)
Expression = Term| Term"*" Expression . (2, 3)
Term = Factor | Factor "-" Term. (4, 5)
Fact or = "a" | "b" | "c" (6, 7, 8)

Here we have the unfortunate situation that not only is the associativity of the operators wr¢
relative precedence of multiplication and subtraction has also been inverted from the norm.
can be seen from the parse tree for the expreasibrt ¢ shown in Figure 8.4.

[E3] E?al

Expression

Term Expression
Term
Factor Term
|
Factor Factor
| 1
a - b * =

Figure 2.4 Parse tree for the exdpression a — b # o arising from grammar EZ

Of course, if we use the EBNF metasymbols it is possible to write grammars without using
recursive productions. Two such grammars follow:

(E4) Goal = Expression . (1)
Expression = Term{ "-" Term} . (2)
Term = Factor { "*" Factor } . (3)
Fact or = "a" | "b" | "c¢c" . (4, 5, 6)
(E5) Goal = Expression . (1)
Expression = { Term"-" } Term. (2)
Term = { Factor "*" } Factor . (3)
Fact or = "a" | "b" | "c" (4, 5, 6)
Exercises

8.1 Draw syntax diagrams which reflect the different approaches taken to factorizing these
grammars.

8.2 Comment on the associativity and precedence that seem to underpin grammars E4 anc
8.3 Develop sets of productions for algebraic expressions that will describe the operations

addition and division as well as subtraction and multiplication. Analyse your attempts in sor
detail, paying heed to the issues of associativity and precedence.

8.4 Develop sets of productions which describe expressions exemplified by
-at+sinp+c)*(-(b-a))

that is to say, fairly general mathematical expressions, with bracketing, leading unary signs

usual operations of addition, subtraction, division and multiplication, and simple function ca

Ensure that the productions correspond to the conventional precedence and associativity ri

arithmetic expressions.

8.5 Extend Exercise 8.4 to allow for exponentiation as well.

8.3 Some simplerestrictionson grammars

Had he looked at our grammars, Mr. Orwell might have been tempted to declare that, while
might be equal, some are more equal than others. Even with only limited experience we ha
that some grammars will have features which will make them awkward to use as the basis
compiler development. There are several standard restrictions which are called for by differ
parsing techniques, among which are some fairly obvious ones.

8.3.1 Useless productions and reduced grammars

For a grammar to be of practical value, especially in the automatic construction of parsers ¢
compilers, it should not contain superfluous rules that cannot be used in parsing a sentenct
Detection of useless productions may seem a waste of time, but it may also point to a cleric
(perhaps an omission) in writing the productions. An example of a grammar with useless
productions is

(7]

SDEZ

[
x —
<
N T
e

Tn-HZO
o nn

aw
Z

(
(
X (
(
(
(

WN

)
)
)
az

a
aa

<xNEEE g
il

)
)
)
The useful productions are (1), (3) and (5). Production {6+ aa) is useless, becau¥ds

non-reachable or non-derivable - there is no way of introducinginto a sentential form (that is,
S +>" Y8 for anye, B). Productions (2) and (4) are useless, becZuseon-terminating - if Z

appears in a sentential form then this cannot generate a terminal string &h#tis; for any
«€T").

A reduced grammar is one that does not contain superfluous rules of these two types
(non-terminals that can never be reached from the start symbol, and non-terminals that car
produce terminal strings).

More formally, a context-free grammar is said to be reduced if, for each non-teBmveatan
write

S="«Bp

for some stringa and@, and where

*

B=%

for someve T .

In fact, non-terminals that cannot be reached in any derivation from the start symbol are so
added so as to assist in describing the language - an example might be to write, for C

Comment ="/ *" CommentString "*/ " .
CommentString = character | CommentString character .

8.3.2=-freegrammars
Intuitively we might expect that detecting the presence of "nothing" would be a little awkwat
for this reason certain compiling techniques require that a grammar should cortarmodoctions

(those which generate the null string). Such a grammar is referred te-ks@grammar.

e-productions are usually used in BNF as a way of terminating recursion, and are often easi
removed. For example, the productions

| nt eger = digit RestOlnteger .
RestOfInteger = digit RestOflnteger | £ .
digit = QT | AT | t2M | MBM | tAM | "BY | ve" | "7t | "e | "o

can be replaced by tedree equivalent

I nt eger

digit | Integer digit .
digit " won wan "

"1T]2 | "3 | 4" | "5" | "6 | "7" | "8 | "9

Inn
(D:‘

Such replacement may not always be so easy: the reader might like to look at the grammau
Section 8.7, which usegoroductions to expres3onstDeclarations, VarDeclarations and
Satement, and try to eliminate them.
8.3.3 Cycle-freegrammars
A production in which the right side consists of a single non-terminal

A— B (whereA,B € N)
is termed aingle production. Fairly obviously, a single production of the form

A— A
serves no useful purpose, and should never be present. It could be argued that it causes n
it presumably would be an alternative which was never used (so being useless, in a sense

that discussed above). A less obvious example is provided by the set of productions

A— B
B— C

C— A

Not only is this useless in this new sense, it is highly undesirable from the point of obtaining
unique parse, and so all parsing techniques require a grammaryidsfr ee - it should not perm

a derivation of the form

A=A

8.4 Ambiguous grammars

An important property which one looks for in programming languages is that every sentenc
can be generated by the language should have a unique parse tree, or, equivalently, a unic
right) canonical parse. If a sentence produced by a grammar has two or more parse trees t
grammar is said to bembiguous. An example of ambiguity is provided by another attempt at

writing a grammar for simple algebraic expressions - this time apparently simpler than befo

(E6) Goal

Expr essi on

Fact or

Expression "*"
| Factor
h g e

| "b"

Expression .
Expr essi on

"-" Expression

| “c

Expr essi on

(
(
(
(
(

1
2
3

)
)
)
4)

5 6, 7)

With this grammar the sentenae b * ¢ has two distinct parse trees and two canonical derivai
We refer to the numbers to show the derivation steps.

[EE)

Goal

Expression

Expression

Factor

a

Expression

Expression
1
Factor
1
b

*

E

HprEssion
[
Factor
1

(=]

Figure 2.5 0One parse tree for the edpression a — b # ¢ using grammar ES

The parse tree shown in Figure 8.5 corresponds to the derivation

Goal —* Expression
—+* Expression - Expression
—* Factor - Expression
—* a - Expression
—F a - Expression * Expression
—* a - Factor * Expression
—+* a - b * Expression
—+ a - b * Factor
—+ a-b*c

while the second derivation

Goal Expr essi on
Expression * Express
Expression -

Factor -

- Factor * Express
- b * Expression

- b * Factor

- b*c

LIl

DYDY

on

on

Expression * Expression
Expression * Expression
Expressi on * Expression

P T T e
~NRhRODNWORNNE
NSRS ANS NSNS NN

e T L T T
~NARODMORANWE
NSNS AN NN

corresponds to the parse tree depicted in Figure 8.6.

[E&] E?al

Expression

Expression Expression

Expression Expression Factor
Favlzt o Factor
[
a = b * [=

Figure 8.8 HAnother parse tres for the expression a — b # o using grammar EE&

If the only use for grammars was to determine whether a string belonged to the language, ¢
would be of little consequence. However, if the meaning of a program is to be tied to its syr
structure, then ambiguity must be avoided. In the example above, the two trees corresponc
different evaluation sequences for the operat@sd- . In the first case the "meaning” would b
the usual mathematical one, namaky(b * c), but in the second case the meaning would
effectively be §-b) * c.

We have already seen various examples of unambiguous grammars for this language in ar
section, and in this case, fortunately, ambiguity is quite easily avoided.

The most famous example of an ambiguous grammar probably relates ko.the THEN . . .
ELSE statement in simple Algol-like languages. Let us demonstrate this by defining a simple
grammar for such a construct.

Program = Statenent .
St at enent = Assignnent | |fStatenent .
Assi gnnment = Variable ":=" Expression
Expressi on = Variable .
Vari abl e = "it Uit "k"] "a" | "b" | "c"
| f St at ement = "IF" Condition "THEN' Statenent
| "I'F" Condition "THEN' Staterment "ELSE"' Statenent
Condi ti on = Expression "=" Expression

| Expression "#" Expression
In this grammar the string
IFi =j THENIFi =k THENa := b ELSEa :=¢

has two possible parse trees. The reader is invited to draw these out as an exercise; the es
point is that we can parse the string to correspond either to

IFi =j THEN(IFi =k THENa := b ELSE a := ¢)
ELSE (not hi ng)

or to

IFi =j THEN (IFi =k THEN a := b ELSE not hi ng)
ELSE (a := c)

Any language which allows a sentence such as this may be inherently ambiguous unless ¢
restrictions are imposed on it, for example, on the part followingHie of anlfStatement, as was
done in Algol (Naur, 1963). In Pascal ané+Cas is hopefully well known, a#.SE is deemed to
be attached to the most recent unmatat&nl, and the problem is avoided that way. In other
languages it is avoided by introducing closing tokensHiN@ F andeLSI F. It is, however, possib
to write productions thare unambiguous:

St at enment = Mat ched | Unmat ched

Mat ched "I F" Condition "THEN' Matched "ELSE' Matched

| QtherStatenment .

Unmat ched = "I F* Condition "THEN' Statenent
| "I'F" Condition "THEN' Matched "ELSE" Unnatched .

In the general case, unfortunately, no algorithm exists (or can exist) that can take an arbitre
grammar and determine with certainty and in a finite amount of time whether it is ambiguou
not. All that one can do is to develop fairly simple but non-trivial conditions which, if satisfie
grammar, assure one that it is unambiguous. Fortunately, ambiguity does not seem to be a
in practical programming languages.

Exercises

8.6 Convince yourself that the last set of productionsfor.. THEN ... ELSE statements is
unambiguous.

8.5 Context senditivity
Some potential ambiguities belong to a class which is usually tesonéekt-sensitive. Spoken
and written language is full of such examples, which the average person parses with ease,
usually within a particular cultural context or idiom. For example, the sentences

Time flies like an arrow
and

Fruit flies like a banana
in one sense have identical construction

Noun Verb Adverbial phrase

but, unless we were preoccupied with aerodynamics, in listening to them we would probabl
subconsciously parse the second along the lines of

Adjective Noun Verb Noun phrase
Examples like this can be found in programming languages too. In Fortran a statement of tl
A =B(J)
(when taken out of context) could imply a reference either to the Jth element of array B, or-
evaluation of a function B with integer argument J. Mathematically there is little difference -

array can be thought of as a mapping, just as a function can, although programmers may n
think that way.

8.6 The Chomsky hierarchy

Until now all our practical examples of productions have had a single non-terminal on the le
although grammars may be more general than that. Based on pioneering work by a linguist
(Chomsky, 1959), computer scientists now recognize four classes of grammar. The classifi
depends on the format of the productions, and may be summarized as follows:

8.6.1 Type 0 Grammars (Unrestricted)

An unrestricted grammar is one in which there are virtually no restrictions on the form of an
the productions, which have the general form

t—p withe€ (NUT)Y N(NUT)Y ,Be (NUT)

(thus the only restriction is that there must be at least one non-terminal symbol on the left s
each production). The other types of grammars are more restricted; to qualify as being of ty
rather than one of these more restricted types it is necessary for the grammar to contain at
productiore — B with |« | > | |, where ¢ | denotes the length @f Such a production can be us

to "erase" symbols - for exampbiAB — aB erasesA from the contexdAB. This type is so rare i
computer applications that we shall consider it no further here. Practical grammars need to
more restricted if we are to base translators on them.

8.6.2 Type 1 Grammars (Context-sensitive)

If we impose the restriction on a type O grammar that the number of symbols in the string o
of any production is less than or equal to the number of symbols on the right side of that
production, we get the subset of grammars known as typeadhiaxt-sensitive. In fact, to qualify
for being of type 1 rather than of a yet more restricted type, it is necessary for the grammar
contain at least one production with a left side longer than one symbol.

Productions in type 1 grammars are of the general form
o« — P with e [€[B],c€ (NUT) N(NUT) ,pe (NUT)*

Strictly, it follows that the null string would not be allowed as a right side of any production.
However, this is sometimes overlookeds-gsoductions are often needed to terminate recursi\
definitions. Indeed, the exact definition of "context-sensitive" differs from author to author. |
another definition, productions are required to be limited to the form

eAB—aB withe,F€ NUT), A€ N*,v€ (NUT)*
although examples are often given where productions are of a more general form, namely
A3 withe,B,g,E€ (NUT) A€ N, ve (NUT)'

(It can be shown that the two definitions are equivalent.) Here we can see the meaning of
context-sensitive more clearly™may be replaced kiywhenA is found in the context of (that is,
surrounded byg andg.

A much quoted simple example of such a grammar is as follows:

G={N, T, S, P}

N={A, B, C}

T={ a b, c}

S=A

P =
A —F aABC | abC (1, 2)
CB —* BC (3)
bB —* bb (4)
bC —# bc (5)
cC —* cc (6)

Let us derive a sentence using this gramias.the start string: let us choose to apply produci

1)
A— aABC

and then in this new string choose another productioA,foamely (2) to derive
A— aabCBC

and follow this by the use of (3). (We could also have chosen (5) at this point.)
A—aabBCC

We follow this by using (4) to derive
A— aabb CC

followed by the use of (5) to get
A—aabbcC

followed finally by the use of (6) to give
A— aabbcc

However, with this grammar it is possible to derive a sentential form to which no further
productions can be applied. For example, after deriving the sentential form

aabCBC
if we were to apply (5) instead of (3) we would obtain

aabcBC
but no further production can be applied to this string. The consequence of such a failure tc
terminal string is simply that we must try other possibilities until we find those that yield tern

strings. The consequences for the reverse problem, namely parsing, are that we may have
to considerabl®acktracking to decide whether a string is a sentence in the language.

Exercises

8.7 Derive (or show how to parse) the strings
abc andaaabbbccc

using the above grammar.

8.8 Show informally that the strings
abbc , aabc andabcc

cannot be derived using this grammar.

8.9 Derive a context-sensitive grammar for strings of 0’s and 1's so that the number of 0's ¢
is the same.

8.10 Attempt to write context-sensitive productions from which the English examples in sec
could be derived.

8.11 An attempt to use context-sensitive productions in an actual computer language was r
Lee (1972), who gave such productions forrReNT statement in BASIC. Such a statement mi
be described informally as having the keywprdNT followed by an arbitrary number of
Expressions andStrings. Between each pair &xpressions a Separator is required, but between
any other pair&ring - Expression, String - Siring or Expression - String) the Separator is optional.

Study Lee’s work, criticize it, and attempt to describe the BARIQIT statement using a
context-free grammar.

8.6.3 Type 2 Grammar s (Context-fr ee)

A more restricted subset of context-sensitive grammars yields the typeext-free grammars
A grammar is context-free if the left side of every production consists of a single non-termir
the right side consists of a non-empty sequence of terminals and non-terminals, so that pro
have the form

& with§ [<|B],«€ N,p€ (NUT)*
that is
A B withA€ N ,pe (NUT)*

Strictly, as before, naproductions should be allowed, but this is often relaxed to allow

B € (NUT)". Such productions are easily seen to be context-free, becausedfirs in any
string, saytAs, then we may effect a derivation s = ¥ without any regard for the particule
context (prefix or suffix) in whichA occurs.

Most of our earlier examples have been of this form, and we shall consider a larger exampl
shortly, for a complete small programming language.

Exercises

8.12 Develop a context-free grammar that specifies the senofdecimal literals that may be
written in Fortran. Examples of these literals are

-21.5 0. 25 3.7E-6 . 5E7 6E6 100. OE+3
8.13 Repeat the last exercise RaaL literals in Modula-2 and Pascal, andat literals in G-+.

8.14 Find a context-free grammar that describes Modula-2 comments (unlike Pascat,ahd<g
may be nested).

8.15 Develop a context-free grammar that generates all palindromes constructed of tleedett
b (palindromes are strings that read the same from either endbéikbaba).

8.6.4 Type 3 Grammars (Regular, Right-linear or L eft-linear)

Imposing still further constraints on productions leads us to the concept of a typegGlar
grammar. This can take one or other of two forms (but not both at once)ghtdinear if the
right side of every production consists of zero or one terminal symbols, optionally followed |
single non-terminal, and if the left side is a single non-terminal, so that productions have th

A—+aorA—+aB withae T,A Be N

It is left-linear if the right side of every production consists of zero or one terminals optional
preceded by a single non-terminal, so that productions have the form

A—+aorA—Ba withae T,ABEN

(Strictly, as before;, productions are ruled out - a restriction often overlooked). A simple exar
of such a grammar is one for describing binary integers

Bi narylnteger = "0" Binarylnteger | "1" Binarylnteger | "O0" | "1"

Regular grammars are rather restrictive - local features of programming languages like the
definitions of integer numbers and identifiers can be described by them, but not much more
grammars have the property that their sentences may be parsed by sbrotdiechte automata,
and can be alternatively described by regular expressions, which makes them of theoretica
from that viewpoint as well.

Exercises

8.16 Can you describe signed integers and Fortran identifiers in terms of regular grammars
as in terms of context-free grammars?

8.17 Can you develop a regular grammar that specifies thefgetanf decimal literals that may |
written in G-+?

8.18 Repeat the last exercise RaaL literals in Modula-2, Pascal and Fortran.

8.6.5 Therelationship between grammar type and language type

It should be clear from the above that type 3 grammars are a subset of type 2 grammars, W
themselves form a subset of type 1 grammars, which in turn form a subset of type 0 gramir
Figure 8.7).

Tupe 3 Tupe 2 Tupe 1 Tups @

Reau Lar Contert—fres Contedt— Unrestricted
SENS Lt Lve

Figure 8.7 The Chomskw hierarchy of grammars

A languagd_(G) is said to be of typk if it can be generated by a typggrammar. Thus, for
example, a language is said to be context-free if a context-free grammar may be used to de
Note that if a non context- free definition is given for a particular language, it does not nece
imply that the language is not context-free - there may be an alternative (possibly
yet-to-be-discovered) context-free grammar that describes it. Similarly, the fact that a langL
for example, most easily be described by a context-free grammar does not necessarily pre«
being able to find an equivalent regular grammar.

As it happens, grammars for modern programming languages are usually largely context-fr

some unavoidable context-sensitive features, which are usually handled with a fead értra

rules and by using so- callattribute grammars, rather than by engaging on the far more diffi

task of finding suitable context- sensitive grammars. Among these features are the followin
® The declaration of a variable must precede its use.

® The number of formal and actual parameters in a procedure call must be the same.

® The number of index expressions or fields in a variable designator must match the nu
specified in its declaration.

Exercises

8.19 Develop a grammar for describswganf orprintf statements in C. Can this be done in a
context-free way, or do you need to introduce context-sensitivity?

8.20 Develop a grammar for describing Fortran FORMAT statements. Can this be done in
context-free way, or do you need to introduce context-sensitivity?

Further reading

The material in this chapter is very standard, and good treatments of it can be found in mar
The keen reader might do well to look at the alternative presentation in the books by Gougt
Watson (1989), Rechenberg and Mdssenbdck (1989), Watt (1991), Pittman and Peters (19

Sethi and Ullman (1986), or Tremblay and Sorenson (1985). The last three references are
considerably more rigorous than the others, drawing several fine points which we have glos
over, but are still quite readable.

8.7 Case study - Clang

As a rather larger example, we give here the complete syntactic specification of a simple
programming language, which will be used as the basis for discussion and enlargement at
points in the future. The language is called Clang, an acrony@ofocurrent. anguage (also
chosen because it has a fine ring to it), deliberately contains a mixture of features drawn frc
languages like Pascal and+C and should be immediately comprehensible to programmers fe
with those languages.

The semantics of Clang, and especially the concurrent aspects of the extensions that give |
name, will be discussed in later chapters. It will suffice here to comment that the only data
structures (for the moment) are the scaMIiEGER and simple arrays ofNTEGER.

8.7.1 BNF Description of Clang

In the first set of productions we have used recursion to show the repetition:

COWPI LER Cl ang

| GNORE CASE
| GNORE CHR(9) .. CHR(13)
COMMENTS FROM " (*" TO "*)"

CHARACTERS
cr = CHR(13) .
| f = CHR(10) .
letter = " ABCDEFCHI JKLMNOPQRSTUWWKYZabcdef ghi j kl mopgr st uvwxyz" .
digit = "0123456789" .
instring = ANY - """ - ¢cr - If .
TOKENS
identifier = letter { letter | digit } .
nunber =digit { digit } .
string ="'" (instring | ""'") { instring | """ } "'"
PRODUCTI ONS
Cl ang "PROGRAM' identifier ";" Block "."
Bl ock Decl arati ons ConpoundSt at enent .

OneDecl aration Decl arations |

Const Decl arations | VarDecl arations .
" CONST" Const Sequence .

OneConst | Const Sequence OneConst .

Decl ar ati ons
OneDecl arati on
Const Decl ar ati ons
Const Sequence

ReadSt at enent
Vari abl eSequence
Wit eStat enent

"READ' " (" Vari abl eSequence ")" .
Variable | Variabl eSequence "," Variable .
"WRI TE" WiteParaneters .

OneConst identifier "=" nunber ";"
Var Decl ar ati ons "VAR' Var Sequence ";" .
Var Sequence OneVar | Var Sequence "," OneVar .
OneVar identifier UpperBound .
Upper Bound "[" number "]" | .
ConpoundSt at enment "BEG N' St at ement Sequence "END' .
St at enent Sequence Statenent | StatenentSequence ";" Statenent .
St at enent ConmpoundSt at ement | Assi gnnent
| f St at enent | Wi | eSt at enent

| ReadSt at emrent | WiteStatenent |
Assi gnnment = Variable ":=" Expression .
Vari abl e = Designator .
Desi gnat or = identifier Subscript .
Subscri pt = "[" Expression "]1" | .
| f St at enent = "IF" Condition "THEN' Statenent .
Whi | eSt at enent = "WH LE" Condition "DO' Statenent .
Condi tion = Expression Rel Op Expression .

WiteParaneters
Wit eSequence
Wit eEl enent
Expr essi on

"(" WiteSequence ")" | .

WiteEl enent | WiteSequence "," WiteEl enent .
string | Expression .

Term | AddOp Term | Expression AddOp Term .

Term Factor | Term Mul Op Factor .

Fact or Desi gnator | nunber | "(" Expression ")"

AddOp R

Ml Op e |

Rel Op I e I BN B
END d ang.

8.7.2 EBNF description of Clang

As usual, an EBNF description is somewhat more concise:

COMPI LER O ang

| GNORE CASE
I GNORE CHR(9) .. CHR(13)
COMMENTS FROM " (*" TO "*)*"

CHARACTERS
cr = CHR(13) .
| f = CHR(10) .
letter = " ABCDEFGHI JKLMNOPQRSTUVWKYZabcdef ghi j kIl mopqgr st uvwxyz"
digit = "0123456789" .
instring = ANY - """ - cr - If .
TOKENS
identifier = letter { letter | digit } .
nunber =digit { digit }
string ="'" (instring | *"’") { instring | """ } """
PRODUCTI ONS
Cl ang = "PROGRAM' identifier ";" Block "." .
Bl ock = { ConstDeclarations | VarDeclarations }

ConpoundSt at enent .

Const Decl ar ati ons "CONST" (OneConst { OneConst } .

OneConst = identifier "=" nunmber ";" .
Var Decl ar ati ons = "VAR' Onevar { "," Onevar } ";" .
OneVar = identifier [UpperBound]
Upper Bound = "[" nunmber "]" .
ConpoundSt atenent = "BEG N' Statenment { ";" Statenent } "END'
St at enent =[ConmpoundSt at ement | Assi gnment
| 1fStatenent | Wi | eSt at enent
| ReadSt at emrent | WiteStatenent]
Assi gnnent = Variable ":=" Expression .
Vari abl e = Designator .
Desi gnat or = identifier ["[" Expression "]"]
| f St at enent = "IF" Condition "THEN' Statenent .
Wi | eSt at emrent = "WHI LE" Condition "DO'" Statenent .
Condi tion = Expression Rel Op Expression .
ReadsSt at enment = "READ"' "(" Variable { "," Variable } ")" .
Wit eSt at enent = "WRI TE"
["(" WiteElement { "," WiteElement } ")"]
Wit eEl ement = string | Expression .
Expr essi on =("+" Term]| "-" Term| Term) { AddOp Term} .
Term = Factor { Mul Op Factor } .
Fact or = Designator | nunber | "(" Expression ")"
AddOp ="+t
Mul Op = mEnopo
Rel Op CRE A RS o RS I I I
END d ang.

8.7.3 A sample program

It is fairly common practice to illustrate a programming language description with an examp
program illustrating many of the language’s features. To keep up with tradition, we follow sl
rather obtuse way in whidh i gi bl e is incremented before being used in a subscripting expre
in line 16 is simply to illustrate that a subscript can be an expression.

PROGRAM Debug;
CONST
Vot i ngAge = 18;
VAR
Eligible, Voters[100], Age, Total;

BEG N

Total := 0;
Eligible := 0;
READ(Age) ;
WH LE Age > 0 DO
BEG N
| F Age > VotingAge THEN
BEG N
Voters[Eligible] := Age;
Eligible := Eligible + 1;
Total := Total + Voters[Eligible - 1]
END;
READ(Age) ;
END;
WRI TE(Eligible, ' voters. Average age = ', Total / Eligible);
END.
Exercises

8.21 Do the BNF style productions use right or left recursion? Write an equivalent grammar
uses the opposite form of recursion.

8.22 Develop a set of syntax diagrams for Clang (see section 5.10).

8.23 We have made no attempt to describe the semantics of programs written in Clang; to
familiar with similar languages they should be self-evident. Write simple programs in the lar
to:

(a) Find the sum of the numbers between two input data, which can be supplied in eitl
order.

(b) Use Euclid’s algorithm to find the HCF of two integers.
(c) Determine which of a set of year dates correspond to leap years.

(d) Read a sequence of numbers and print out the embedded monotonic increasing
sequence.

(e) Use a "sieve" algorithm to determine which of the numbers less than 255 are prim

In the light of your experience in preparing these solutions, and from the intuition which you
from your background in other languages, can you foresee any gross deficiencies in Clang
language for handling problems in integer arithmetic (apart from its lack of procedural facilit
which we shall deal with in a later chapter)?

8.24 Suppose someone came to you with the following draft program, seeking answer to th
guestions currently found in the comments next to some statements. How many of these q|
can you answer by referrirggly to the syntactic description given earlier? (The program is nc
supposed to do anything useful!)

PROGRAM Query;

CONST
Header = "Title'; (* Can | declare a string constant? *)
VAR
L1[10], L2[10], (* Are these the sanme size? *)
L3[20], I, Query, (* Can | reuse the programnanme as a variable? *)
L3[15]; (* What happens if | use a variable nane again? *)
CONST (* Can | declare constants after variables? *)

Max = 1000;

Mn = -89; Can | define negative constants? *)

EE

VAR Can | have another variable section? *)
Bi gLi st [Max]; Can | use naned constants to set array sizes? *)
BEG N

(
(
(
Wit e(Headi ng) (
L1[10] := 34; (
(
(
(

Can | wite constants? *)
Does L[10] exist? *)

* % ok ok %

L1 := L2 Can | copy conpl ete arrays? *)

Wite(L3); Can | wite conplete arrays? *)

i o= Query; What about spurious sem col ons? *)
END.

8.25 As a more challenging exercise, consider a variation on Clang, one that resemédket
more closely than it does Pascal. Using the translation below of the sample program given
a guide, derive a grammar that you think describes this language (which we shall later call
"Topsy"). For simplicity, regardi n andcout as keywords leading to special statement forms.

void main (void) {
const VotingAge = 18;
int Eligible, Voters[100], Age, Total;

Total = O;
Eligible = 0;
cin >> Age;
while (Age > 0) {
if (Age > VotingAge) {

Voters[Eligible] = Age;

Eligible = Eligible + 1;

Total = Total + Voters[Eligible - 1];

cin >> Age;

cout << Eligible << " voters. Average age = " << Total / Eligible;

}

8.26 In the light of your experience with Exercises 8.24 and 8.25, discuss the ease of
"reverse-engineering" a programming language description by consulting only a few examg
programs? Why do you suppose so many students attempt to learn programming by imitati

8.27 Modify the Clang language definition to incorporate Pascal-like forms of:

(a) therREPEAT ... UNTIL statement

(b) thel F ... THEN ... ELSE statement
(c) thecAsk statement

(d) theFORr loop

(e) themoD operator.

8.28 Repeat the last exercise for the language suggested by Exercise 8.25, using syntax tr
resembles that found in+&.

8.29 In Modula-2, structured statements are each terminated with theanowrdow would you
have to change the Clang language definition to use Modula-2 forms for the existing staten
and for the extensions suggested in Exercise 8.27? What advantages, if any, do these forn
over those found in Pascal o¥?

8.30 Study how the specification of string tokens has been achieved in Cocol. Some languz
Modula- 2, allow strings to be delimited by either single or double quotes, but not to contair
delimiter as a member of the string (so that we might write "David’s Helen’s brother" or 'He
"Hello™, but not 'He said "That’s rubbish!""). How would you specify string tokens if these h¢
match those found in Modula-2, or those found # Gwhere various escape characters are
allowed within the string)?

