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6 SIMPLE ASSEMBLERS 

In this chapter we shall be concerned with the implementation of simple assembler language
translator programs. We assume that the reader already has some experience in programming at the
assembler level; readers who do not will find excellent discussions of this topic in the books by
Wakerly (1981) and MacCabe (1993). To distinguish between programs written in "assembler
code", and the "assembler program" which translates these, we shall use the convention that
ASSEMBLER means the language and "assembler" means the translator. 

The basic purpose of an assembler is to translate ASSEMBLER language mnemonics into binary or
hexadecimal machine code. Some assemblers do little more than this, but most modern assemblers
offer a variety of additional features, and the boundary between assemblers and compilers has
become somewhat blurred. 

6.1 A simple ASSEMBLER language

Rather than use an assembler for a real machine, we shall implement one for a rudimentary
ASSEMBLER language for the hypothetical single-accumulator machine discussed in section 4.3. 

An example of a program in our proposed language is given below, along with its equivalent object
code. We have, as is conventional, used hexadecimal notation for the object code; numeric values
in the source have been specified in decimal. 

            Assembler 1.0 on 01/06/96 at 17:40:45

            00                   BEG                  ; count the bits in a number
            00    0A             INI                  ; Read(A)
            01           LOOP                         ; REPEAT
            01    16             SHR                  ;  A := A DIV 2
            02    3A 0D          BCC     EVEN         ;  IF A MOD 2 # 0 THEN
            04    1E 13          STA     TEMP         ;    TEMP := A
            06    19 14          LDA     BITS
            08    05             INC
            09    1E 14          STA     BITS         ;    BITS := BITS + 1
            0B    19 13          LDA     TEMP         ;    A := TEMP
            0D    37 01  EVEN    BNZ     LOOP         ; UNTIL A = 0
            0F    19 14          LDA     BITS         ;
            11    0E             OTI                  ; Write(BITS)
            12    18             HLT                  ; terminate execution
            13           TEMP    DS      1            ; VAR TEMP : BYTE
            14    00     BITS    DC      0            ;     BITS : BYTE
            15                   END

ASSEMBLER programs like this usually consist of a sequence of statements or instructions,
written one to a line. These statements fall into two main classes. 

Firstly, there are the executable instructions that correspond directly to executable code. These can
be recognized immediately by the presence of a distinctive mnemonic for an opcode. For our
machine these executable instructions divide further into two classes: there are those that require an
address or operand as part of the instruction (as in STA TEMP) and occupy two bytes of object code,
and there are those that stand alone (like INI and HLT). When it is necessary to refer to such
statements elsewhere, they may be labelled with an introductory distinctive label identifier of the
programmer’s choice (as in EVEN BNZ LOOP), and may include a comment, extending from an
introductory semicolon to the end of a line. 



The address or operand for those instructions that requires them is denoted most simply by either a
numeric literal, or by an identifier of the programmer’s choice. Such identifiers usually correspond
to the ones that are used to label statements - when an identifier is used to label a statement itself
we speak of a defining occurrence of a label; when an identifier appears as an address or operand
we speak of an applied occurrence of a label. 

The second class of statement includes the directives. In source form these appear to be deceptively
similar to executable instructions - they are often introduced by a label, terminated with a comment,
and have what may appear to be mnemonic and address components. However, directives have a
rather different role to play. They do not generally correspond to operations that will form part of
the code that is to be executed at run-time, but rather denote actions that direct the action of the
assembler at compile-time - for example, indicating where in memory a block of code or data is to
be located when the object code is later loaded, or indicating that a block of memory is to be preset
with literal values, or that a name is to be given to a literal to enhance readability. 

For our ASSEMBLER we shall introduce the following directives and their associated
compile-time semantics, as a representative sample of those found in more sophisticated languages:

   Label Mnemonic   Address    Effect

  not used   BEG    not used   Mark the beginning of the code
  not used   END    not used   Mark the end of the code
  not used   ORG    location   Specify location where the following code
                               is to be loaded
  optional   DC     value      Define an (optionally labelled) byte,
                               to have a specified initial value
  optional   DS     length     Reserve length bytes (optional label associated
                               with the first byte)
  name       EQU    value      Set name to be a synonym for the given value

Besides lines that contain a full statement, most assemblers usually permit incomplete lines. These
may be completely blank (so as to enhance readability), or may contain only a label, or may contain
only a comment, or may contain only a label and a comment. 

Our first task might usefully be to try to find a grammar that describes this (and similar) programs.
This can be done in several ways. Our informal description has already highlighted various
syntactic classes that will be useful in specifying the phrase structure of our programs, as well as
various token classes that a scanner may need to recognize as part of the assembly process. One
possible grammar - which leaves the phrase structure very loosely defined - is given below. This
has been expressed in Cocol, the EBNF variant introduced in section 5.9.5. 

  COMPILER ASM

    CHARACTERS
      eol        = CHR(13) .
      letter     = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
      digit      = "0123456789" .
      printable  = CHR(32) .. CHR(127) .

    IGNORE  CHR(9) .. CHR(12)

    TOKENS
      number     = digit { digit } .
      identifier = letter { letter | digit } .
      EOL        = eol .
      comment    = ";" { printable } .

    PRODUCTIONS
      ASM        = { Statement } EOF .
      Statement  = [ Label ] [ Mnemonic [ Address ] ] [ comment ] EOL .
      Address    = Label | number .
      Mnemonic   = identifier .
      Label      = identifier .
  END ASM.



This grammar has the advantage of simplicity, but makes no proper distinction between directives
and executable statements, nor does it indicate which statements require labels or address fields. It
is possible to draw these distinctions quite easily if we introduce a few more non-terminals into the
phrase structure grammar: 

  COMPILER ASM

    CHARACTERS
      eol        = CHR(13) .
      letter     = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
      digit      = "0123456789" .
      printable  = CHR(32) .. CHR(127) .

    IGNORE  CHR(9) .. CHR(12)

    TOKENS
      number     = digit { digit } .
      identifier = letter { letter | digit } .
      EOL        = eol .
      comment    = ";" { printable } .

    PRODUCTIONS
      ASM               = StatementSequence "END" EOF .
      StatementSequence = { Statement [ comment ] EOL } .
      Statement         = Executable | Directive .
      Executable        = [ Label ] [ OneByteOp | TwoByteOp Address ] .
      OneByteOp         = "HLT" | "PSH" | "POP"  (* | . . . . etc *) .
      TwoByteOp         = "LDA" | "LDX" | "LDI"  (* | . . . . etc *) .
      Address           = Label | number .
      Directive         =   Label "EQU" KnownAddress
                          | [ Label ] ( "DC" Address | "DS" KnownAddress )
                          | "ORG" KnownAddress | "BEG" .
      Label             = identifier .
      KnownAddress      = Address .
  END ASM.

When it comes to developing a practical assembler, the first of these grammars appears to have the
advantage of simplicity so far as syntax analysis is concerned - but this simplicity comes at a price,
in that the static semantic constrainer would have to expend effort in distinguishing the various
statement forms from one another. An assembler based on the second grammar would not leave so
much to the semantic constrainer, but would apparently require a more complex parser. In later
sections, using the simpler description as the basis of a parser, we shall see how both it and the
constrainer are capable of development in an ad hoc way. 

Neither of the above syntactic descriptions illustrates some of the pragmatic features that may beset
a programmer using the ASSEMBLER language. Typical of these are restrictions or relaxations on
case-sensitivity of identifiers, or constraints that labels may have to appear immediately at the start
of a line, or that identifiers may not have more than a limited number of significant characters. Nor,
unfortunately, can the syntactic description enforce some essential static semantic constraints, such
as the requirement that each alphanumeric symbol used as an address should also occur uniquely in
a label field of an instruction, or that the values of the address fields that appear with directives like
DS and ORG must have been defined before the corresponding directives are first encountered. The
description may appear to enforce these so-called context-sensitive features of the language,
because the non-terminals have been given suggestive names like KnownAddress, but it turns out
that a simple parser will not be able to enforce them on its own. 

As it happens, neither of these grammars yet provides an adequate description for a compiler
generator like Coco/R, for reasons that will become apparent after studying Chapter 9. The
modifications needed for driving Coco/R may be left as an interesting exercise when the reader has
had more experience in parsing techniques. 



6.2 One- and two-pass assemblers, and symbol tables

Readers who care to try the assembly translation process for themselves will realize that this cannot
easily be done on a single pass through the ASSEMBLER source code. In the example given
earlier, the instruction 

                       BCC  EVEN

cannot be translated completely until one knows the address of EVEN, which is only revealed when
the statement 

                EVEN   BNZ  LOOP

is encountered. In general the process of assembly is always non-trivial, the complication arising -
even with programs as simple as this one - from the inevitable presence of forward references. 

An assembler may solve these problems by performing two distinct passes over the user program.
The primary aim of the first pass of a two-pass assembler is to draw up a symbol table. Once the
first pass has been completed, all necessary information on each user defined identifier should have
been recorded in this table. A second pass over the program then allows full assembly to take place
quite easily, referring to the symbol table whenever it is necessary to determine an address for a
named label, or the value of a named constant. 

The first pass can perform other manipulations as well, such as some error checking. The second
pass depends on being able to rescan the program, and so the first pass usually makes a copy of this
on some backing store, usually in a slightly altered form from the original. 

The behaviour of a two-pass assembler is summarized in Figure 6.1. 

The other method of assembly is via a one-pass assembler. Here the source is scanned but once,
and the construction of the symbol table is rather more complicated, since outstanding references
must be recorded for later fixup or backpatching once the appropriate addresses or values are
revealed. In a sense, a two-pass assembler may be thought of as making two passes over the source
program, while a one-pass assembler makes a single pass over the source program, followed by a
later partial pass over the object program. 

As will become clear, construction of a sophisticated assembler, using either approach, calls for a
fair amount of ingenuity. In what follows we shall illustrate several principles rather simply and
naïvely, and leave the refinements to the interested reader in the form of exercises. 

Assemblers all make considerable use of tables. There are always (conceptually at least) two of
these: 

The Opcode Translation Table. In this will be found matching pairs of mnemonics and their
numerical equivalents. This table is of fixed length in simple assemblers. 



The Symbol Table. In this will be entered the user defined identifiers, and their corresponding
addresses or values. This table varies in length with the program being assembled. 

Two other commonly found tables are: 

The Directive Table. In this will be found mnemonics for the directives or pseudo-operations.
The table is of fixed length, and is usually incorporated into the opcode translation table in
simple assemblers. 

The String Table. As a space saving measure, the various user-defined names are often
gathered into one closely packed table - effectively being stored in one long string, with some
distinctive separator such as a NUL character between each sub-string. Each identifier in the
symbol table is then cross-linked to this table. For example, for the program given earlier we
might have a symbol table and string table as shown in Figure 6.2. 

More sophisticated macro-assemblers need several other tables, so as to be able to handle
user-defined opcodes, their parameters, and the source text which constitutes the definition of each
macro. We return to a consideration of this point in the next chapter. 

The first pass, as has been stated, has as its primary aim the creation of a symbol table. The "name"
entries in this are easily made as the label fields of the source are read. In order to be able to
complete the "address" entries, the first pass has to keep track, as it scans the source, of the
so-called location counter - that is, the address at which each code and data value will later be
located (when the code generation takes place). Such addresses are controlled by the directives ORG

and DS (which affect the location counter explicitly), as well as by the directive DC, and, of course,
by the opcodes which will later result in the creation of one or two machine words. The directive
EQU is a special case; it simply gives a naming facility. 

Besides constructing the symbol table, this pass must supervise source handling, and lexical,
syntactic and semantic analysis. In essence it might be described by something on the lines of the
following, where, we hasten to add, considerable liberties have been taken with the pseudo-code
used to express the algorithm. 

  Initialize tables, and set Assembling := TRUE; Location := 0;
  WHILE Assembling DO
    Read line of source and unpack into constituent fields
       Label, Mnemonic, AddressField (* which could be a Name or Number *)
    Use Mnemonic to identify Opcode from OpTable
    Copy line of source to work file for later use by pass two
    CASE Mnemonic OF
      "BEG" : Location := 0
      "ORG" : Location := AddressField.Number
      "DS " : IF Line.Labelled THEN SymbolTable.Enter(Label, Location)
              Location := Location + AddressField.Number
      "EQU" : SymbolTable.Enter(Label, AddressField.Number)
      "END" : Assembling := FALSE
      all others (* including DC *):
              IF Line.Labelled THEN SymbolTable.Enter(Label, Location)
              Location := Location + number of bytes to be generated
    END



  END

The second pass is responsible mainly for code generation, and may have to repeat some of the
source handling and syntactic analysis. 

  Rewind work file, and set Assembling := TRUE
  WHILE Assembling DO
    Read a line from work file and unpack Mnemonic, Opcode, AddressField
    CASE Mnemonic OF
      "BEG" : Location := 0
      "ORG" : Location := AddressField.Number
      "DS " : Location := Location + AddressField.Number
      "EQU" : no action (* EQU dealt with on pass one *)
      "END" : Assembling := FALSE
      "DC " : Mem[Location] := ValueOf(AddressField); INC(Location)
      all others:
              Mem[Location] := Opcode;  INC(Location)
              IF two-byte Opcode THEN
                Mem[Location] := ValueOf(AddressField); INC(Location)
              END
    END
    Produce source listing of this line
  END

6.3 Towards the construction of an assembler 

The ideas behind assembly may be made clearer by slowly refining a simple assembler for the
language given earlier, allowing only for the creation of fixed address, as opposed to relocatable
code. We shall assume that the assembler and the assembled code can co-reside in memory. We are
confined to write a cross-assembler, not only because no such real machine exists, but also because
the machine is far too rudimentary to support a resident assembler - let alone a large C++ or
Modula-2 compiler. 

In C++ we can define a general interface to the assembler by introducing a class with a public
interface on the lines of the following: 

  class AS {
    public:
      void assemble(bool &errors);
      // Assembles and lists program.
      // Assembled code is dumped to file for later interpretation, and left
      // in pseudo-machine memory for immediate interpretation if desired.
      // Returns errors = true if assembly fails

      AS(char *sourcename, char *listname, char *version, MC *M);
      // Instantiates version of the assembler to process sourcename, creating
      // listings in listname, and generating code for associated machine M
  };

This public interface allows for the development of a variety of assemblers (simple, sophisticated,
single-pass or multi-pass). Of course there are private members too, and these will vary somewhat
depending on the techniques used to build the assembler. The constructor for the class creates a link
to an instance of a machine class MC - we are aiming at the construction of an assembler for our
hypothetical single-accumulator machine that will leave assembled code in the pseudo-machine’s
memory, where it can be interpreted as we have already discussed in Chapter 4. The main program
for our system will essentially be developed on the lines of the following code: 

  void main(int argc, char *argv[])
  { bool errors;
    char SourceName[256], ListName[256];

    // handle command line parameters
    strcpy(SourceName, argv[1]);
    if (argc > 2) strcpy(ListName, argv[2]);
    else appendextension(SourceName, ".lst", ListName);



    // instantiate assembler components
    MC *Machine   = new MC();
    AS *Assembler = new AS(SourceName, ListName, "Assembler version 1", Machine);

    // start assembly
    Assembler->assemble(errors);

    // examine outcome and interpret if possible
    if (errors) { printf("\nAssembly failed\n"); }
    else { printf("\nAssembly successful\n"); Machine->interpret(); }
    delete Machine;
    delete Assembler;
  }

This driver routine has made provision for extracting the file names for the source and listing files
from command line parameters set up when the assembler program is invoked. 

In using a language like C++ or Modula-2 to implement the assembler (or rather assemblers, since
we shall develop both one-pass and two-pass versions of the assembler class), it is convenient to
create classes or modules to be responsible for each of the main phases of the assembly process. In
keeping with our earlier discussion we shall develop a source handler, scanner, and simple parser.
In a two-pass assembler the parser is called from a first pass that follows parsing with static
semantic analysis; control then passes to the second pass that completes code generation. In a
one-pass assembler the parser is called in combination with semantic analysis and code generation. 

On the source diskette that accompanies this book can be found a great deal of code illustrating this
development, and the reader is urged to study this as he or she reads the text, since there is too
much code to justify printing it all in this chapter. Appendix D contains a complete listing of the
source code for the assembler as finally developed by the end of the next chapter. 

6.3.1 Source handling 

In terms of the overall translator structure illustrated in Figure 2.4, the first phase of an assembler
will embrace the source character handler, which scans the source text, and analyses it into lines,
from which the scanner will be then able to extract tokens or symbols. The public interface to a
class for handling this phase might be: 

  class SH {
    public:
      FILE *lst; // listing file
      char ch;   // latest character read

      void nextch(void);
      // Returns ch as the next character on current source line, reading a new
      // line where necessary.  ch is returned as NUL if src is exhausted

      bool endline(void);
      // Returns true when end of current line has been reached

      bool startline(void);
      // Returns true if current ch is the first on a line

      void writehex(int i, int n);
      // Writes (byte valued) i to lst file as hex pair, left-justified in n spaces

      void writetext(char *s, int n);
      // Writes s to lst file, left-justified in n spaces

      SH();
      // Default constructor

      SH(char *sourcename, char *listname, char *version);
      // Opens src and lst files using given names
      // Initializes source handler, and displays version information on lst file

      ~SH();
      // Closes src and lst files
  };



Some aspects of this interface deserve further comment: 

It is probably bad practice to declare variables like ch as public, as this leaves them open to
external abuse. However, we have compromised here in the interests of efficiency. 

Client routines (like those which call nextch) should not have to worry about anything other
than the values provided by ch, startline() and endline(). The main client routine is, of
course, the lexical analyser. 

Little provision has been made here for producing a source listing, other than to export the file
on which the listing might be made, and the mechanism for writing some version information
and hexadecimal values to this file. A source line might be listed immediately it is read, but in
the case of a two-pass assembler the listing is usually delayed until the second pass, when it
can be made more complete and useful to the user. Furthermore, a free-format input can be
converted to a fixed-format output, which will probably look considerably better. 

The implementation of this class is straightforward and can be studied in Appendix D. As with the
interface, some aspects of the implementation call for comment: 

nextch has to provide for situations in which it might be called after the input file has been
exhausted. This situation should only arise with erroneous source programs, of course. 

Internally the module stores the source on a line-buffered basis, and adds a blank character to
the end of each line (or a NUL character in the case where the source has ended). This is
useful for ensuring that a symbol that extends to the end of a line can easily be recognized. 

Exercises 

6.1 A source handler implemented in this way will be found to be very slow on many systems,
where each call to a routine to read a single character may involve a call to an underlying operating
system. Experiment with the idea that the source handler first reads the entire source into a large
memory buffer in one fell swoop, and then returns characters by extracting them from this buffer.
Since memory (even on microcomputers) now tends to be measured in megabytes, while source
programs are rather small, this idea is usually quite feasible. Furthermore, this suggestion
overcomes the problem of using a line buffer of restricted size, as is used in our simple
implementation. 

6.3.2 Lexical analysis 

The next phase to be tackled is that of lexical analysis. For our simple ASSEMBLER language we
recognize immediately that source characters can only be assembled into numbers, alphanumeric
names (as for labels or opcodes) or comment strings. Accordingly we adopt the following public
interface to our scanner class: 

  enum LA_symtypes {
    LA_unknown, LA_eofsym, LA_eolsym, LA_idsym, LA_numsym, LA_comsym
  };

  struct LA_symbols {
    bool islabel;           // if in first column
    LA_symtypes sym;        // class



    ASM_strings str;        // lexeme
    int num;                // value if numeric
  };

  class LA {
    public:
      void getsym(LA_symbols &SYM, bool &errors);
      // Returns the next symbol on current source line.
      // Sets errors if necessary and returns SYM.sym = unknown if no
      // valid symbol can be recognized

      LA(SH *S);
      // Associates scanner with its source handler S
  };

where we draw the reader’s attention to the following points: 

The LA_symbols structure allows the client to recognize that the first symbol found on a line
has defined a label if it began in the very first column of the line - a rather messy feature of
our ASSEMBLER language. 

In ASSEMBLER programs, the ends of lines become significant (which is not the case with
languages like C++, Pascal or Modula-2), so that it is useful to introduce LA_eolsym as a
possible symbol type. 

Similarly, we must make provision for not being able to recognize a symbol (by returning
LA_unknown), or not finding a symbol (LA_eofsym). 

Developing the getsym routine for the recognition of these symbols is quite easy. It is governed
essentially by the lexical grammar (defined in the TOKENS section of our Cocol specification given
earlier), and is sensibly driven by a switch or CASE statement that depends on the first character of
the token. The essence of this - again taking considerable liberties with syntax - may be expressed 

   BEGIN
     skip leading spaces, or to end of line
     recognize end-of-line and start-of-line conditions, else
     CASE CH OF
       letters: SYM.Sym := LA_idsym;  unpack word;
       digits : SYM.Sym := LA_numsym; unpack number;
       ’;’    : SYM.Sym := LA_comsym; unpack comment;
       ELSE   : SYM.Sym := LA_unknown
     END
   END

A detailed implementation may be found on the source diskette. It is worth pointing out the
following: 

All fields (attributes) of SYM are well defined after a call to getsym, even those of no
immediate interest. 

While determining the value of SYM.num we also copy the digits into SYM.name for the
purposes of later listing. At this stage we have assumed that overflow will not occur in the
computation of SYM.num. 

Identifiers and comments that are too long are ruthlessly truncated. 

Identifiers are converted to upper case for consistency. Comments are preserved unchanged. 



Exercises 

6.2 First extend the lexical grammar, and then extend the lexical analyser to allow hexadecimal
constants as alternatives in addresses, for example 

           LAB  LDI  $0A        ; 0A(hex) = 10(decimal)

6.3 Another convention is to allow hexadecimal constants like 0FFh or 0FFH, with the trailing H
implying hexadecimal. A hex number must, however, start with a digit in the range ’0’ .. ’9’, so that
it can be distinguished from an identifier. Extend the lexical grammar, and then implement this
option. Why is it harder to handle than the convention suggested in Exercise 6.2? 

6.4 Extend the grammar and the analyser to allow a single character as an operand or address, for
example 

           LAB    LDI  ’A’        ; load immediate ’A’ (ASCII 041H)

The character must, of course, be converted into the corresponding ordinal value by the assembler.
How can one allow the quote character itself to be used as an address? 

6.5 If the entire source of the program were to be read into memory as suggested in Exercise 6.1 it
would no longer be necessary to copy the name field for each symbol. Instead, one could use two
numeric fields to record the starting position and the length of each name. Modify the lexical
analyser to use such a technique. Clearly this will impact the detailed implementation of some later
phases of assembly as well - see Exercise 6.8. 

6.6 As an alternative to storing the entire source program in memory, explore the possibility of
constructing a string table on the lines of that discussed in section 6.2. 

6.3.3 Syntax analysis 

Our suggested method of syntax analysis requires that each free format source line be decomposed
in a consistent way. A suitable public interface for a simple class that handles this phase is given
below: 

  enum SA_addresskinds { SA_absent, SA_numeric, SA_alphameric };

  struct SA_addresses {
    SA_addresskinds kind;
    int number;     // value if known
    ASM_alfa name;  // character representation
  };

  struct SA_unpackedlines {
    // source text, unpacked into fields
    bool labelled, errors;
    ASM_alfa labfield, mnemonic;
    SA_addresses address;
    ASM_strings comment;
  };

  class SA {
    public:
      void parse(SA_unpackedlines &srcline);
      // Analyses the next source line into constituent fields

      SA(LA * L);
      // Associates syntax analyser with its lexical analyser L
  };

and, as before, some aspects of this deserve further comment: 



The SA_addresses structure has been introduced to allow for later extensibility. 

The SA_unpackedlines structure makes provision for recording whether a source line has
been labelled. It also makes provision for recording that the line is erroneous. Some errors
might be detected when the syntax analysis is performed; others might only be detected when
the constraint analysis or code generation are attempted. 

Not only does syntax analysis in the first pass of a two-pass assembler require that we unpack
a source line into its constituent fields, using the getsym routine, the first pass also has to be
able to write the source line information to a work file for later use by the second pass. It is
convenient to do this after unpacking, to save the necessity of re-parsing the source on the
second pass. 

The routine for unpacking a source line is relatively straightforward, but has to allow for various
combinations of present or absent fields. The syntax analyser can be programmed by following the
EBNF productions given in Cocol under the PRODUCTIONS section of the simpler grammar in
section 6.1, and the implementation on the source diskette is worthy of close study, bearing in mind
the following points: 

The analysis is very ad hoc. This is partly because it has to take into account the possibility of
errors in the source. Later in the text we shall look at syntax analysis from a rather more
systematic perspective, but it is usually true that syntax analysers incorporate various messy
devices for side-stepping errors. 

Every field is well defined when analysis is complete - default values are inserted where they
are not physically present in the source. 

Should the source text become exhausted, the syntax analyser performs "error correction",
effectively by creating a line consisting only of an END directive. 

When an unrecognizable symbol is detected by the scanner, the syntax analyser reacts by
recording that the line is in error, and then copies the rest of the line to the comment field. In
this way it is still possible to list the offending line in some form at a later stage. 

The simple routine for getaddress will later be modified to allow expressions as addresses. 

Exercises 

6.7 At present mnemonics and user defined identifiers are both handled in the same way. Perhaps a
stronger distinction should be drawn between the two. Then again, perhaps one should allow
mnemonics to appear in address fields, so that an instruction like 

           LAB   LDI   LDI      ;  A := 27

would become legal. What modifications to the underlying grammar and to the syntax analyser
would be needed to implement any ideas you may have on these issues? 

6.8 How would the syntax analyser have to be modified if we were to adopt the suggestion that all
the source code be retained in memory during the assembly process? Would it be necessary to
unpack each line at all? 



6.3.4 The symbol table interface 

We define a clean public interface to a symbol table handler, thus allowing us to implement various
strategies for symbol table construction without disturbing the rest of the system. The interface
chosen is 

  typedef void (*ST_patch)(MC_bytes mem[], MC_bytes b, MC_bytes v);

  class ST {
    public:
      void printsymboltable(bool &errors);
      // Summarizes symbol table at end of assembly, and alters errors
      // to true if any symbols have remained undefined

      void enter(char *name, MC_bytes value);
      // Adds name to table with known value

      void valueofsymbol(char *name, MC_bytes location, MC_bytes &value,
                         bool &undefined);
      // Returns value of required name, and sets undefined if not found.
      // location is the current value of the instruction location counter

      void outstandingreferences(MC_bytes mem[], ST_patch fix);
      // Walks symbol table, applying fix to outstanding references in mem

      ST(SH *S);
      // Associates table handler with source handler S (for listings)
  };

6.4 Two-pass assembly 

For the moment we shall focus attention on a two-pass assembler, and refine the code from the
simple algorithms given earlier. The first pass is mainly concerned with static semantics, and with
constructing a symbol table. To be able to do this, it needs to keep track of a location counter,
which is updated as opcodes are recognized, and which may be explicitly altered by the directives
ORG, DS and DC. 

6.4.1 Symbol table structures 

A simple implementation of the symbol table handler outlined in the last section, suited to two-pass
assembly, is to be found on the source diskette. It uses a dynamically allocated stack, in a form that
should readily be familiar to students of elementary data structures. More sophisticated table
handlers usually employ a so-called hash table, and are the subject of later discussion. The reader
should note the following: 

For a two-pass assembler, labels are entered into the table (by making calls on enter) only
when their defining occurrences are encountered during the first pass. 

On the second pass, calls to valueofsymbol will be made when applied occurrences of labels
are encountered. 

For a two-pass assembler, function type ST_patch and function outstandingreferences are
irrelevant - as, indeed, is the location parameter to valueofsymbol. 

The symbol table entries are very simple structures defined by 

         struct ST_entries {
           ASM_alfa name;      // name



           MC_bytes value;     // value once defined
           bool defined;       // true after defining occurrence encountered
           ST_entries *slink;  // to next entry
         };

6.4.2 The first pass - static semantic analysis 

Even though no code is generated until the second pass, the location counter (marking the address
of each byte of code that is to be generated) must be tracked on both passes. To this end it is
convenient to introduce the concept of a code line - a partial translation of each source line. The
fields in this structure keep track of the location counter, opcode value, and address value (for
two-byte instructions), and are easily assigned values after extending the analysis already
performed by the syntax analyser. These extensions effectively constitute static semantic analysis.
For each unpacked source line the analysis is required to examine the mnemonic field and - if
present - to attempt to convert this to an opcode, or to a directive, as appropriate. The opcode value
is then used as the despatcher in a switching construct that keeps track of the location counter and
creates appropriate entries in the symbol table whenever defining occurrences of labels are met. 

The actual code for the first pass can be found on the source diskette, and essentially follows the
basic algorithm outlined in section 6.2. The following points are worth noting: 

Conversion from mnemonic to opcode requires the use of some form of opcode table. In this
implementation we have chosen to construct a table that incorporates both the machine
opcodes and the directive pseudo-opcodes in one simple sorted list, allowing a simple binary
search to locate a possible opcode entry quickly. 

An alternative strategy might be to incorporate the opcode table into the scanner, and to
handle the conversion as part of the syntax analysis, but we have chosen to leave that as the
subject of an exercise. 

The attempt to convert a mnemonic may fail in two situations. In the case of a line with a
blank opcode field we may sensibly return a fictitious legal empty opcode. However, when an
opcode is present, but cannot be recognized (and must thus be assumed to be in error) we
return a fictitious illegal opcode err. 

The system makes use of an intermediate work file for communicating between the two
passes. This file can be discarded after assembly has been completed, and so can, in principle,
remain hidden from the user. 

The arithmetic on the location counter location must be done modulo 256 because of the
limitations of the target machine. 

Our assembler effectively requires that all identifiers used as labels must be "declared". In this
context this means that all the identifiers in the symbol table must have appeared in the label
field of some source line, and should all have been entered into the symbol table by the end of
the first pass. When appropriate, we determine the value of an address, either directly, or from
the symbol table, by calling the table handler routine valueofsymbol, which returns a
parameter indicating the success of the search. It might be thought that failure is ruled out,
and that calls to this routine are made only in the second pass. However, source lines using
the directives EQU, DS and ORG may have address fields specified in terms of labels, and so
even on the first pass the assembler may have to refer to the values of these labels. Clearly
chaos will arise if the labels used in the address fields for these directives are not declared
before use, and the assembler must be prepared to flag violations of this principle as errors. 



6.4.3 The second pass - code generation 

The second pass rescans the program by extracting partially assembled lines from the intermediate
file, and then passing each of these to the code generator. The code generator has to keep track of
further errors that might arise if any labels were not properly defined on the first pass. Because of
the work already done in the first pass, handling the directives is now almost trivial in this pass. 

Once again, complete code for a simple implementation is to be found on the source diskette, and it
should be necessary only to draw attention to the following points: 

For our simple machine, all the generated objected code can be contained in an array of length
256. A more realistic assembler might not be able to contain the entire object code in
memory, because of lack of space. For a two-pass assembler few problems would arise, as the
code could be written out to a file as soon as it was generated. 

Exactly how the object code is finally to be treated is a matter for debate. Here we have called
on the listcode routine from the class defining the pseudo-machine, which dumps the 256
bytes in a form that is suitable for input to a simple loader. However, the driver program
suggested earlier also allows this code to be interpreted immediately after assembly has been
successful. 

An assembler program typically gives the user a listing of the source code, usually with
assembled code alongside it. Occasionally extra frills are provided, like cross reference tables
for identifiers and so on. Our one is quite simple, and an example of a source listing produced
by this assembler was given earlier. 

Exercises 

6.9 Make an extension to the ASSEMBLER language, to its grammar, and to the assembler
program, to allow a character string as an operand in the DC directive. For example 

                TYRANT  DC  "TERRY"

should be treated as equivalent to 

                TYRANT  DC  ’T’
                        DC  ’E’
                        DC  ’R’
                        DC  ’R’
                        DC  ’Y’

Is it desirable or necessary to delimit strings with different quotes from those used by single
characters? 

6.10 Change the table handler so that the symbol table is stored in a binary search tree, for
efficiency. 

6.11 The assembler will accept a line consisting only of a non-empty LABEL field. Is there any
advantage in being able to do this? 

6.12 What would happen if a label were to be defined more than once? 



6.13 What would happen if a label were left undefined by the end of the first pass? 

6.14 How would the symbol table handling alter if the source code were all held in memory
throughout assembly (see Exercise 6.1), or if a string table were used (see Exercise 6.6)? 

6.5 One-pass assembly 

As we have already mentioned, the main reason for having the second pass is to handle the problem
of forward references - that is, the use of labels before their locations or values have been defined.
Most of the work of lexical analysis and assembly can be accomplished directly on the first pass, as
can be seen from a close study of the algorithms given earlier and the complete code used for their
implementation. 

6.5.1 Symbol table structures 

Although a one-pass assembler not always be able to determine the value of an address field
immediately it is encountered, it is relatively easy to cope with the problem of forward references.
We create an additional field flink in the symbol table entries, which then take the form 

  struct ST_entries {
    ASM_alfa name;          // name
    MC_bytes value;         // value once defined
    bool defined;           // true after defining occurrence encountered
    ST_entries *slink;      // to next entry
    ST_forwardrefs *flink;  // to forward references
  };

The flink field points to entries in a forward reference table, which is maintained as a set of
linked lists, with nodes defined by 

  struct ST_forwardrefs {   // forward references for undefined labels
    MC_bytes byte;          // to be patched
    ST_forwardrefs *nlink;  // to next reference
  };

The byte fields of the ST_forwardrefs nodes record the addresses of as yet incompletely defined
object code bytes. 

6.5.2 The first pass - analysis and code generation 

When reference is made to a label in the address field of an instruction, the valueofsymbol routine
searches the symbol table for the appropriate entry, as before. Several possibilities arise: 

If the label has already been defined, it will already be in the symbol table, marked as
defined = true, and the corresponding address or value can immediately be obtained from
the value field. 

If the label is not yet in the symbol table, an entry is made in this table, marked as defined =

false. The flink field is then initialized to point to a newly created entry in the forward
reference table, in the byte field of which is recorded the address of the object byte whose
value has still to be determined. 

If the label is already in the symbol table, but still flagged as defined = false, then a
further entry is made in the forward reference table, linked to the earlier entries for this label. 



This may be made clearer by considering the same program as before (shown fully assembled, for
convenience). 

            00                   BEG                  ; count the bits in a number
            00    0A             INI                  ; Read(A)
            01           LOOP                         ; REPEAT
            01    16             SHR                  ;  A := A DIV 2
            02    3A 0D          BCC     EVEN         ;  IF A MOD 2 # 0 THEN
            04    1E 13          STA     TEMP         ;    TEMP := A
            06    19 14          LDA     BITS
            08    05             INC
            09    1E 14          STA     BITS         ;    BITS := BITS + 1
            0B    19 13          LDA     TEMP         ;    A := TEMP
            0D    37 01  EVEN    BNZ     LOOP         ; UNTIL A = 0
            0F    19 14          LDA     BITS         ;
            11    0E             OTI                  ; Write(BITS)
            12    18             HLT                  ; terminate execution
            13           TEMP    DS      1            ; VAR TEMP : BYTE
            14    00     BITS    DC      0            ;     BITS : BYTE
            15                   END

When the instruction at 02h (BCC EVEN) is encountered, EVEN is entered in the symbol table,
undefined, linked to an entry in the forward reference table, which refers to 03h. Assembly of the
next instruction enters TEMP in the symbol table, undefined, linked to a new entry in the forward
reference table, which refers to 05h. The next instruction adds BITS to the symbol table, and when
the instruction at 09h (STA BITS) is encountered, another entry is made to the forward reference
table, which refers to 0Ah, itself linked to the entry which refers to 07h. This continues in the same
vein, until by the time the instruction at 0Dh (EVEN BNZ LOOP) is encountered, the tables are as
shown in Figure 6.3. 

In passing, we might comment that in a real system this strategy might lead to extremely large
structures. These can, fairly obviously, be kept smaller if the bytes labelled by the DC and DS
instructions are all placed before the "code" which manipulates them, and some assemblers might
even insist that this be done. 

Since we shall also have to examine the symbol table whenever a label is defined by virtue of its
appearance in the label field of an instruction or directive, it turns out to be convenient to introduce
a private routine findentry, internal to the table handler, to perform the symbol table searching. 

    void findentry(ST_entries *&symentry, char *name, bool &found);

This involves a simple algorithm to scan through the symbol table, being prepared for either finding
or not finding an entry. In fact, we go further and code the routine so that it always finds an
appropriate entry, if necessary creating a new node for the purpose. Thus, findentry is a routine
with side-effects, and so might be frowned upon by the purists. The parameter found records
whether the entry refers to a previously created node or not. 

The code for enter also changes somewhat. As already mentioned, when a non-blank label field



is encountered, the symbol table is searched. Two possibilities arise: 

If the label was not previously there, the new entry is completed, flagged as defined =

true, and its value field is set to the now known value. 

If it was previously there, but flagged defined = false, the extant symbol table entry is
updated, with defined set to true, and its value field set to the now known value. 

At the end of assembly the symbol table will, in most situations, contain entries in the forward
reference lists. Our table handler exports an outstandingreferences routine to allow the
assembler to walk through these lists. Rather than have the symbol table handler interact directly
with the code generation process, this pass is accomplished by applying a procedural parameter as
each node of the forward reference lists is visited. In effect, rather than making a second pass over
the source of the program, a partial second pass is made over the object code. 

This may be made clearer by considering the same program fragment as before. When the
definition of BITS is finally encountered at 14h, the symbol table and forward reference table will
effectively have become as shown in Figure 6.4. 

Exercises 

6.15 What modifications (if any) are needed to incorporate the extensions suggested as exercises at
the end of the last section into the simple one-pass assembler? 

6.16 We mentioned in section 6.4.3 that there was no great difficulty in assembling large programs
with a two-pass assembler. How does one handle programs too large to co-reside with a one-pass
assembler? 

6.17 What currently happens in our one-pass assembler if a label is redefined? Should one be
allowed to do this (that is, is there any advantage to be gained from being allowed to do so), and if
not, what should be done to prevent it? 

6.18 Constructing the forward reference table as a dynamic linked structure may be a little grander
than it needs to be. Explore the possibility of holding the forward reference chains within the code
being assembled. For example, if we allow the symbol table entries to be defined as follows 

             struct ST_entries {
               ASM_alfa name;      // name
               MC_bytes value;     // value once defined
               bool defined;       // true after defining occurrence encountered
               ST_entries *slink;  // to next entry
               MC_bytes flink;     // to forward references
             };

we can arrange that the latest forward reference "points" to a byte in memory in which will be



stored the label’s value once this is known. In the interim, this byte contains a pointer to an earlier
byte in memory where the same value has ultimately to be recorded. For the same program
fragment as was used in earlier illustrations, the code would be stored as follows, immediately
before the final END directive is encountered. Within this code the reader should note the chain of
values 0Ah, 07h, 00h (the last of which marks the end of the list) giving the list of bytes where the
value of BITS is yet to be stored. 

             00                  BEG          ; count the bits in a number
             00  0A              INI          ; read(A)
             01         LOOP                  ; REPEAT
             01  16              SHR          ;  A := A DIV 2
             02  3A 00           BCC EVEN     ;  IF A MOD 2 # 0 THEN
             04  1E 00           STA TEMP     ;    TEMP := A
             06  19 00           LDA BITS
             08  05              INC
             09  1E 07           STA BITS     ;    BITS := BITS + 1
             0B  19 05           LDA TEMP     ;    A := TEMP
             0D  37 01  EVEN     BNZ LOOP     ; UNTIL A = 0
             0F  19 0A           LDA BITS     ;
             11  0E              OTI          ; Write(BITS)
             12  18              HLT          ; terminate execution
             13         TEMP     DS  1        ; VAR TEMP : BYTE
             14  00     BITS     DC  0        ;     BITS : BYTE
             15                  END

By the end of assembly the forward reference table effectively becomes as shown below. The
outstanding references may be fixed up in much the same way as before, of course. 

             Name    Defined    Value   FLink

             BITS     true       14h     0Ah
             TEMP     true       13h     0Ch
             EVEN     true       0Dh     00h
             LOOP     true       01h     00h


