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6 SIMPLE ASSEMBLERS

In this chapter we shall be concerned with the implementation of simple assembler languac
translator programs. We assume that the reader already has some experience in programn
assembler level; readers who do not will find excellent discussions of this topic in the books
Wakerly (1981) and MacCabe (1993). To distinguish between programs written in "assemb
code”, and the "assembler program" which translates these, we shall use the convention th
ASSEMBLER means the language and "assembler" means the translator.

The basic purpose of an assembler is to translate ASSEMBLER language mnemonics into
hexadecimal machine code. Some assemblers do little more than this, but most modern as
offer a variety of additional features, and the boundary between assemblers and compilers
become somewhat blurred.

6.1 A smple ASSEMBL ER language

Rather than use an assembler for a real machine, we shall implement one for a rudimentar
ASSEMBLER language for the hypothetical single-accumulator machine discussed in secti

An example of a program in our proposed language is given below, along with its equivaler
code. We have, as is conventional, used hexadecimal notation for the object code; numeric
in the source have been specified in decimal.

Assenbler 1.0 on 01/06/96 at 17:40: 45

00 BEG ; count the bits in a nunber
00 0A I'NI ; Read(A)

01 LOOP . REPEAT

01 16 SHR i A:=ADV2

02 3A 0D BCC EVEN ;. IFAMDZ2# 0 THEN
04 1E 13 STA TEMP ; TEMP : = A

06 19 14 LDA BI TS

08 05 I NC

09 1E 14 STA BI TS ; BITS:=BITS + 1
0B 19 13 LDA TEMP ; A = TEMP

oD 37 01 EVEN BNZ LOOP ; UNTIL A=0

OF 19 14 LDA BI TS ;

11 OE OTl ; Wite(BITS)

12 18 HLT ; termi nate execution
13 TEMP DS 1 ; VAR TEMP : BYTE

14 00 BI TS DC 0 ; BITS : BYTE

15 END

ASSEMBLER programs like this usually consist of a sequence of statements or instructions
written one to a line. These statements fall into two main classes.

Firstly, there are thexecutable instructions that correspond directly to executable code. Thes
be recognized immediately by the presence of a distineth@monic for anopcode. For our
machine these executable instructions divide further into two classes: there are those that 1
address or operand as part of the instruction (astia TEMP) and occupy two bytes of object co
and there are those that stand alone (IdeandHLT). When it is necessary to refer to such
statements elsewhere, they may be labelled with an introductory distittelédentifier of the
programmer’s choice (as BVEN BNz LOOP), and may include eomment, extending from an
introductory semicolon to the end of a line.



The address or operand for those instructions that requires them is denoted most simply by
numeric literal, or by an identifier of the programmer’s choice. Such identifiers usually corre
to the ones that are used to label statements - when an identifier is used to label a stateme
we speak of defining occurrence of a label; when an identifier appears as an address or opt
we speak of aapplied occurrence of a label.

The second class of statement includeglthectives. In source form these appear to be decept
similar to executable instructions - they are often introduced by a label, terminated with a c
and have what may appear to be mnemonic and address components. However, directives
rather different role to play. They do not generally correspond to operations that will form p:
the code that is to be executeduat-time, but rather denote actions that direct the action of the
assembler atompile-time - for example, indicating where in memory a block of code or data |
be located when the object code is later loaded, or indicating that a block of memory isto b
with literal values, or that a name is to be given to a literal to enhance readability.

For our ASSEMBLER we shall introduce the following directives and their associated
compile-time semantics, as a representative sample of those found in more sophisticated

Label Menonic Addr ess Ef f ect

not used BEG not used Mark the begi nning of the code
not used END not used Mark the end of the code

not used ORG | ocation Specify |l ocation where the follow ng code
is to be | oaded

optional DC val ue Define an (optionally |abelled) byte,
to have a specified initial value

optional DS I ength Reserve | ength bytes (optional |abel associated
with the first byte)

name EQU val ue Set name to be a synonym for the given val ue

Besides lines that contain a full statement, most assemblers usually permit incomplete line:
may be completely blank (so as to enhance readability), or may contain only a label, or ma:
only a comment, or may contain only a label and a comment.

Our first task might usefully be to try to find a grammar that describes this (and similar) prot
This can be done in several ways. Our informal description has already highlighted various
syntactic classes that will be useful in specifying the phrase structure of our programs, as v
various token classes that a scanner may need to recognize as part of the assembly proce:
possible grammar - which leaves the phrase structure very loosely defined - is given below
has been expressed in Cocol, the EBNF variant introduced in section 5.9.5.

COWPI LER ASM

CHARACTERS
eol = CHR(13) .
letter = " ABCDEFCHI JKLMNOPQRSTUVWKYZabcdef ghi j kl mopgr st uvwxyz" .
digit = "0123456789" .
printable = CHR(32) .. CHR(127) .

GNORE CHR(9) .. CHR(12)

TOKENS
nunber =digit { digit } .
identifier = letter { letter | digit } .
ECL = eol .
comment =";" { printable } .
PRODUCTI ONS
ASM ={ Statement } EOCF .
Statement = [ Label ] [ Menonic [ Address ] ] [ comment ] EOL .
Addr ess = Label | nunber .
Mhenoni ¢ = identifier .
Label = identifier .

END ASM



This grammar has the advantage of simplicity, but makes no proper distinction between dir
and executable statements, nor does it indicate which stateresnte labels or address fields.
is possible to draw these distinctions quite easily if we introduce a few more non-terminals
phrase structure grammar:

COWPI LER ASM

CHARACTERS
eol = CHR(13) .
letter = " ABCDEFCHI JKLMNOPQRSTUVWKYZabcdef ghi j kl mopqgr st uvwxyz" .
digit = "0123456789" .
printable = CHR(32) .. CHR(127) .
I GNORE CHR(9) .. CHR(12)
TOKENS
nunber =digit { digit } .
identifier = letter { letter | digit } .
ECL = eol .
comment =";" { printable } .
PRODUCTI ONS
ASM = St at ement Sequence "END' EOF .
St at enent Sequence = { Statement [ coment ] EOL } .
St at ement = Executable | Directive .
Execut abl e = [ Label ] [ OneByteOp | TwoByteOp Address ] .
OneByt eOp = "HLT" | "PSH' | "POP" (* | . . . . etc *) .
TwoByt eOp = "LDA" | "LDX" | "LDI" (* ]| . . . . etc *) .
Addr ess = Label | nunber .
Directive = Label "EQJ' KnownAddress
| [ Label ] ( "DC'" Address | "DS" KnownAddress )
| "ORG' KnownAddress | "BEG' .
Label identifier .

KnownAddr ess Address .

END ASM

When it comes to developing a practical assembler, the first of these grammars appears to
advantage of simplicity so far as syntax analysis is concerned - but this simplicity comes at
in that the static semantic constrainer would have to expend effort in distinguishing the vari
statement forms from one another. An assembler based on the second grammar would not
much to the semantic constrainer, but would apparently require a more complex parser. In
sections, using the simpler description as the basis of a parser, we shall see how both it an
constrainer are capable of development imGhoc way.

Neither of the above syntactic descriptions illustrates some of the pragmatic features that n
a programmer using the ASSEMBLER language. Typical of these are restrictions or relaxa
case-sensitivity of identifiers, or constraints that labels may have to appear immediately at f
of a line, or that identifiers may not have more than a limited number of significant characte
unfortunately, can the syntactic description enforce some essential static semantic constrai
as the requirement that each alphanumeric symbol used as an address should also occur t
a label field of an instruction, or that the values of the address fields that appear with directi
DS andorG must have been defined before the corresponding directives are first encountere
description mayppear to enforce these so-calledntext-sensitive features of the language,
because the non-terminals have been given suggestive namewlikeddr ess, but it turns out
that a simple parser will not be able to enforce them on its own.

As it happens, neither of these grammars yet provides an adequate description for a compi
generator like Coco/R, for reasons that will become apparent after studying Chapter 9. The
modifications needed for driving Coco/R may be left as an interesting exercise when the re
had more experience in parsing techniques.




6.2 One- and two-pass assemblers, and symbol tables

Readers who care to try the assembly translation process for themselves will realize that th
easily be done on a single pass through the ASSEMBLER source code. In the example giv
earlier, the instruction

BCC EVEN

cannot be translated completely until one knows the addresggfwhich is only revealed wher
the statement

EVEN BNz LOOP

is encountered. In general the process of assembly is always non-trivial, the complication a
even with programs as simple as this one - from the inevitable presdoceafd refer ences.

An assembler may solve these problems by performing two distinct passes over the user p
The primary aim of the first pass ofwo-pass assembler is to draw up aymbol table. Once the
first pass has been completed, all necessary information on each user defined identifier shq
been recorded in this table. A second pass over the program then allows full assembly to te
quite easily, referring to the symbol table whenever it is necessary to determine an address
named label, or the value of a named constant.

The first pass can perform other manipulations as well, such as some error checking. The ¢
pass depends on being able to rescan the program, and so the first pass usually makes a ¢
on some backing store, usually in a slightly altered form from the original.

The behaviour of a two-pass assembler is summarized in Figure 6.1.

Sumbol Table

Source Code —+ Pass 1 + Pass 2 —— Object Code

Il

Figure 6.1 Flow of information through a two-—pass assembler

+ Listing

The other method of assembly is viaree-pass assembler. Here the source is scanned but onci
and the construction of the symbol table is rather more complicated, since outstanding refe
must be recorded for latéixup or backpatching once the appropriate addresses or values are
revealed. In a sense, a two-pass assembler may be thought of as making two passes over
program, while a one-pass assembler makes a single pass over the source program, follow
later partial pass over the object program.

As will become clear, construction of a sophisticated assembler, using either approach, cal
fair amount of ingenuity. In what follows we shall illustrate several principles rather simply
naively, and leave the refinements to the interested reader in the form of exercises.

Assemblers all make considerable use of tables. There are always (conceptually at least) t
these:

® TheOpcode Trandation Table. In this will be found matching pairs of mnemonics and th
numerical equivalents. This table is of fixed length in simple assemblers.



® The Symbol Table. In this will be entered the user defined identifiers, and their correspo
addresses or values. This table varies in length with the program being assembled.

Two other commonly found tables are:

® TheDirective Table. In this will be found mnemonics for the directives or pseudo-opera
The table is of fixed length, and is usually incorporated into the opcode translation tab
simple assemblers.

® TheSring Table. As a space saving measure, the various user-defined names are ofte
gathered into one closely packed table - effectively being stored in one long string, wit
distinctive separator such asla character between each sub-string. Each identifier in t
symbol table is then cross-linked to this table. For example, for the program given ear
might have a symbol table and string table as shown in Figure 6.2.

Hame Address or Ualue String table position
BITS 14 [hex) 28 [decimal) 5]
TEHMF 12 [hex) 19 [decimal) 5
EVEH 80 Chex) 13 (decimal) 18
LOar A1 [(her)l 1 (decimall 15

[Blrfr]s|afr]e[nfrfafeJufefn]afrfofor]a]
B 1 2 3 4 B & 7 8 @ 18 11 12 13 14 15 1& 17 18 19

Figure 6.2 Swmbol table and string table for a simple assembler program

More sophisticated macro-assemblers need several other tables, so as to be able to handle
user-defined opcodes, their parameters, and the source text which constitutes the definitior
macro. We return to a consideration of this point in the next chapter.

The first pass, as has been stated, has as its primary aim the creation of a symbol table. Tt
entries in this are easily made as the label fields of the source are read. In order to be able
complete the "address" entries, the first pass has to keep track, as it scans the source, of tt
so-calledocation counter - that is, the address at which each code and data value will later |
located (when the code generation takes place). Such addresses are controlled by the of®
andbs (which affect the location counter explicitly), as well as by the directiyand, of course,
by the opcodes which will later result in the creation of one or two machine words. The dire
EQUis a special case; it simply gives a naming facility.

Besides constructing the symbol table, this pass must supervise source handling, and lexic
syntactic and semantic analysis. In essence it might be described by something on the line
following, where, we hasten to add, considerable liberties have been taken with the pseudc
used to express the algorithm.

Initialize tables, and set Assenbling := TRUE;, Location := 0;
WH LE Assenbl i ng DO
Read |ine of source and unpack into constituent fields
Label , Menonic, AddressField (* which could be a Nane or Nunber *)
Use Mienpnic to identify Opcode from QpTabl e
Copy |line of source to work file for later use by pass two
CASE Menonic OF
"BEG' : Location :=0
"ORG' : Location := AddressFi el d. Nunber
"DS " : IF Line.Labell ed THEN Synbol Tabl e. Ent er (Label , Locati on)
Location := Location + AddressFi el d. Nunber
"EQU' : Synbol Tabl e. Ent er (Label , AddressFi el d. Nunber)
"END' : Assenbling := FALSE
all others (* including DC *):
I F Li ne. Label  ed THEN Synbol Tabl e. Ent er (Label , Locati on)
Location := Location + nunber of bytes to be generated
END



END

The second pass is responsible mainly for code generation, and may have to repeat some
source handling and syntactic analysis.

Rewi nd work file, and set Assenbling := TRUE
WH LE Assenbl i ng DO
Read a line fromwork file and unpack Menonic, Opcode, AddressField
CASE Mhenoni ¢ OF
"BEG' : Location :
"ORG' : Location := AddressFi el d. Nunber
"DS " : Location := Location + AddressFi el d. Nunber
"EQU' : no action (* EQU dealt with on pass one *)
"END' : Assenbling := FALSE

0

DC " : MeniLocation] := ValueO (AddressField); |NC(Location)
all others:
Meni Location] := Opcode; |NC(Location)
| F two-byte Opcode THEN
Meni Location] := Val ueOf (AddressFi el d); |NC(Location)

END

END

Produce source listing of this line

END

6.3 Towardsthe construction of an assembler

The ideas behind assembly may be made clearer by slowly refining a simple assembler for
language given earlier, allowing only for the creation of fixed address, as opposed to reloce
code. We shall assume that the assembler and the assembled code can co-reside in memc
confined to write a cross-assembler, not only because no such real machine exists, but als
the machine is far too rudimentary to support a resident assembler - let alone a+ange C
Modula-2 compiler.

In C++ we can define a general interface to the assembler by introducing a class with a pub
interface on the lines of the following:

class AS {
publi c:
voi d assenbl e(bool &errors);
/1 Assenbles and |ists program
/] Assenbled code is dunped to file for later interpretation, and |eft
/'l in pseudo-nmachine nmenory for inmediate interpretation if desired.
/1 Returns errors = true if assenbly fails

AS(char *sourcenane, char *listnane, char *version, MC*M;

/Il Instantiates version of the assenbler to process sourcenane, creating

. /1 listings in listname, and generating code for associated nachi ne M

This public interface allows for the development of a variety of assemblers (simple, sophisti
single-pass or multi-pass). Of course there are private members too, and these will vary so
depending on the techniques used to build the assembler. The constructor for the class cre
to an instance of a machine class we are aiming at the construction of an assembler for ou
hypothetical single-accumulator machine that will leave assembled code in the pseudo-max
memory, where it can be interpreted as we have already discussed in Chapter 4. The main
for our system will essentially be developed on the lines of the following code:

void main(int argc, char *argv[])
{ bool errors;
char SourceNane[ 256], Li st Nane[ 256];

/1 handl e comand |ine paraneters
strcpy(SourceNane, argv[1]);

if (argc > 2) strcpy(ListNanme, argv[2]);

el se appendext ensi on( SourceNane, ".Ist", ListNange);



/] instantiate assenbl er conponents
MC *Machi ne new MZ();
AS *Assenbl er new AS(Sour ceName, ListNane, "Assenbler version 1", Machine);

/] start assenbly
Assenbl er - >assenbl e(errors);

/] exami ne outcone and interpret if possible
if (errors) { printf("\nAssenbly failed\n"); }
else { printf("\nAssenbly successful\n"); Machine->interpret(); }
del et e Machi ne;
del ete Assenbl er;
}

This driver routine has made provision for extracting the file names for the source and listin
from command line parameters set up when the assembler program is invoked.

In using a language like+& or Modula-2 to implement the assembler (or rather assemblers, :
we shall develop both one-pass and two-pass versions of the assembler class), it is conver
create classes or modules to be responsible for each of the main phases of the assembly
keeping with our earlier discussion we shall develop a source handler, scanner, and simple
In a two-pass assembler the parser is called from a first pass that follows parsing with static
semantic analysis; control then passes to the second pass that completes code generation
one-pass assembler the parser is called in combination with semantic analysis and code g¢

On the source diskette that accompanies this book can be found a great deal of code illustr
development, and the reader is urged to study this as he or she reads the text, since there
much code to justify printing it all in this chapter. Appendix D contains a complete listing of
source code for the assembler as finally developed by the end of the next chapter.

6.3.1 Sour ce handling

In terms of the overall translator structure illustrated in Figure 2.4, the first phase of an asse
will embrace the source character handler, which scans the source text, and analyses it int
from which the scanner will be then able to extract tokens or symbols. The public interface
class for handling this phase might be:

class SH {
publi c:
FILE *Ist; // listing file
char ch; /'l | atest character read

voi d nextch(void);
/! Returns ch as the next character on current source line, reading a new
/1 line where necessary. ch is returned as NUL if src is exhausted

bool endline(void);
/1 Returns true when end of current |ine has been reached

bool startline(void);
/!l Returns true if current chis the first on a line

void witehex(int i, int n);
/1 Wites (byte valued) i to Ist file as hex pair, left-justified in n spaces

void witetext(char *s, int n);
/Il Wites s to Ist file, left-justified in n spaces

SH() ;
/1 Default constructor

SH(char *sourcenane, char *listnanme, char *version);
/1 Opens src and |Ist files using given nanes
/1 Initializes source handler, and displays version infornation on Ist file

~SH() ;
/1 doses src and Ist files



Some aspects of this interface deserve further comment:

® [t is probably bad practice to declare variables dikes public, as this leaves them open 1
external abuse. However, we have compromised here in the interests of efficiency.

® Client routines (like those which cakxt ch) should not have to worry about anything otf
than the values provided by, st art1ine() andend! i ne(). The main client routine is, of
course, the lexical analyser.

® Little provision has been made here for producing a source listing, other than to expor
on which the listing might be made, and the mechanism for writing some version infor
and hexadecimal values to this file. A source line might be listed immediately it is reac
the case of a two-pass assembler the listing is usually delayed until the second pass,
can be made more complete and useful to the user. Furthermore, a free-format input «
converted to a fixed-format output, which will probably look considerably better.

The implementation of this class is straightforward and can be studied in Appendix D. As w
interface, some aspects of the implementation call for comment:

® next ch has to provide for situations in which it might be called after the input file has b
exhausted. This situation should only arise with erroneous source programs, of courst

® Internally the module stores the source on a line-buffered basis, and adds a blank che
the end of eachi ne (or aNUL character in the case where the source has ended). This
useful for ensuring that a symbol that extends to the end of a line can easily be recog!

Exercises

6.1 A source handler implemented in this way will be found to be very slow on many systen
where each call to a routine to read a single character may involve a call to an underlying o
system. Experiment with the idea that the source handler first reads the entire source into ¢
memory buffer in one fell swoop, and then returns characters by extracting them from this k
Since memory (even on microcomputers) now tends to be measured in megabytes, while s
programs are rather small, this idea is usually quite feasible. Furthermore, this suggestion
overcomes the problem of using a line buffer of restricted size, as is used in our simple
implementation.

6.3.2 Lexical analysis

The next phase to be tackled is that of lexical analysis. For our simple ASSEMBLER langu:
recognize immediately that source characters can only be assembled into numbers, alphar
names (as for labels or opcodes) or comment strings. Accordingly we adopt the following p
interface to our scanner class:

enum LA _syntypes {
LA unknown, LA eofsym LA eolsym LA idsym LA numsym LA conmsym
H

struct LA synbols {
bool i sl abel;
LA synmtypes sym

~—

/ if in first colum
| class



ASM strings str; /1 | exene
int num /1 value if nuneric

H

class LA {
public:
voi d getsyn(LA synbols &SYM bool &errors);
/1l Returns the next synmbol on current source line.
/1 Sets errors if necessary and returns SYM sym = unknown if no
/1 valid synmbol can be recognized

LA(SH *S);
/'l Associates scanner with its source handler S

H
where we draw the reader’s attention to the following points:

® ThelA synbol s structure allows the client to recognize that the first symbol found on ¢
has defined a label if it began in the very first column of the line - a rather messy featt
our ASSEMBLER language.

® In ASSEMBLER programs, the ends of lines become significant (which is not the case
languages like &+, Pascal or Modula-2), so that it is useful to introdugesol symas a
possible symbol type.

® Similarly, we must make provision for not being able to recognize a symbol (by returni
LA_unknown), or not finding a symboL@ eof sym).

Developing theyet symroutine for the recognition of these symbols is quite easy. It is govern
essentially by the lexical grammar (defined inTheENS section of our Cocol specification give
earlier), and is sensibly driven by t ch or CASE statement that depends on the first characte
the token. The essence of this - again taking considerable liberties with syntax - may be ex

BEG N
skip | eadi ng spaces, or to end of line
recogni ze end-of-line and start-of-line conditions, else
CASE CH OF
letters: SYM Sym:
digits : SYM Sym:
Y : SYM Sym :
ELSE : SYM Sym :
END
END

LA idsym unpack word;
LA nunmsym unpack nunber;
LA consym unpack conment;
LA _unknown

A detailed implementation may be found on the source diskette. It is worth pointing out the
following:

o All fields (attributes) oisymare well defined after a call @t sym even those of no
immediate interest.

® \While determining the value &fvM numwe also copy the digits in&¥M nane for the
purposes of later listing. At this stage we have assumed that overflow will not occur in
computation o6YM num

® |dentifiers and comments that are too long are ruthlessly truncated.

® |dentifiers are converted to upper case for consistency. Comments are preserved unc




Exercises

6.2 First extend the lexical grammar, and then extend the lexical analyser to allow hexadec
constants as alternatives in addresses, for example

LAB LD $0A . 0A(hex) = 10(deci mal)

6.3 Another convention is to allow hexadecimal constants like OFFh or OFFH, with the trailir
implying hexadecimal. A hex number must, however, start with a digit in the range '0" .. '9’,
it can be distinguished from an identifier. Extend the lexical grammar, and then implement 1
option. Why is it harder to handle than the convention suggested in Exercise 6.27?

6.4 Extend the grammar and the analyser to allow a single character as an operand or add
example

LAB Lo A ; load immediate ' A" (ASCI |1 041H)

The character must, of course, be converted into the corresponding ordinal value by the as
How can one allow the quote character itself to be used as an address?

6.5 If the entire source of the program were to be read into memory as suggested in Exerci
would no longer be necessary to copyrthee field for each symbol. Instead, one could use tw
numeric fields to record the starting position and the length of each name. Modify the lexice
analyser to use such a technique. Clearly this will impact the detailed implementation of so
phases of assembly as well - see Exercise 6.8.

6.6 As an alternative to storing the entire source program in memory, explore the possibility
constructing a string table on the lines of that discussed in section 6.2.

6.3.3 Syntax analysis

Our suggested method of syntax analysis requires that each free format source line be dec
in a consistent way. A suitable public interface for a simple class that handles this phase is
below:

enum SA _addresski nds { SA absent, SA numeric, SA al phaneric };

struct SA addresses {
SA _addr esski nds ki nd;
int nunber; /1 value if known
ASM al fa nane; [/ character representation

struct SA unpackedlines {

/'l source text, unpacked into fields
bool |abelled, errors;

ASM al fa | abfield, menonic;

SA _addr esses address;

ASM strings conment;

b

class SA {
public:
voi d parse(SA unpackedl i nes &srcline);
/'l Anal yses the next source line into constituent fields

SA(LA * L);
/1 Associates syntax analyser with its lexical analyser L

H
and, as before, some aspects of this deserve further comment:



® TheSA addresses structure has been introduced to allow for later extensibility.

® TheSA unpackedl! i nes structure makes provision for recording whether a source line t
been labelled. It also makes provision for recording that the line is erroneous. Some e
might be detected when the syntax analysis is performed; others might only be detect
the constraint analysis or code generation are attempted.

® Not only does syntax analysis in the first pass of a two-pass assembler require that w:
a source line into its constituent fields, usingdbesymroutine, the first pass also has to |
able to write the source line information to a work file for later use by the second pass
convenient to do thiafter unpacking, to save the necessity of re-parsing the source on
second pass.

The routine for unpacking a source line is relatively straightforward, but has to allow for var
combinations of present or absent fields. The syntax analyser can be programmed by follo\
EBNF productions given in Cocol under #RODUCTI ONS section of the simpler grammar in
section 6.1, and the implementation on the source diskette is worthy of close study, bearing
the following points:

® The analysis is vergd hoc. This is partly because it has to take into account the possibi
errors in the source. Later in the text we shall look at syntax analysis from a rather mc
systematic perspective, but it is usually true that syntax analysers incorporate various
devices for side-stepping errors.

® Every field is well defined when analysis is complete - default values are inserted whe
are not physically present in the source.

® Should the source text become exhausted, the syntax analyser performs “error correc
effectively by creating a line consisting only of eND directive.

® When an unrecognizable symbol is detected by the scanner, the syntax analyser reac
recording that the line is in error, and then copies the rest of the linedanthent field. In
this way it is still possible to list the offending line in some form at a later stage.

® The simple routine foget addr ess will later be modified to allow expressions as address

Exercises

6.7 At present mnemonics and user defined identifiers are both handled in the same way. F
stronger distinction should be drawn between the two. Then again, perhaps one should allc
mnemonics to appear in address fields, so that an instruction like

LAB LDl LDI v A= 27

would become legal. What modifications to the underlying grammar and to the syntax analy
would be needed to implement any ideas you may have on these issues?

6.8 How would the syntax analyser have to be modified if we were to adopt the suggestion
the source code be retained in memory during the assembly process? Would it be necessa
unpack each line at all?



6.3.4 The symbol tableinterface

We define a clean public interface to a symbol table handler, thus allowing us to implement
strategies for symbol table construction without disturbing the rest of the system. The interf
chosen is

typedef void (*ST_patch)(MC bytes nen{], MC bytes b, MC bytes v);

class ST {
publi c:
voi d printsynbol tabl e(bool &errors);
/1 Summarizes synbol table at end of assenbly, and alters errors
/1 to true if any synbols have renai ned undefi ned

voi d enter(char *nane, MC bytes val ue);
/1 Adds name to table with known val ue

voi d val ueof synbol (char *nane, MC bytes location, MC bytes &val ue,
bool &undefi ned);

/'l Returns value of required name, and sets undefined if not found.

/1 location is the current value of the instruction |ocation counter

voi d out standi ngreferences(MC_bytes nmen{], ST_patch fix);
/1 Wal ks synbol table, applying fix to outstanding references in nem

ST(SH *S);
/] Associates table handler with source handler S (for |istings)

6.4 Two-pass assembly

For the moment we shall focus attention on a two-pass assembler, and refine the code fron
simple algorithms given earlier. The first pass is mainly concerned with static semantics, ar
constructing a symbol table. To be able to do this, it needs to keep track of a location count
which is updated as opcodes are recognized, and which may be explicitly altered by the dir
ORG, DS andDC.

6.4.1 Symbol table structures

A simple implementation of the symbol table handler outlined in the last section, suited to t
assembly, is to be found on the source diskette. It uses a dynamically allocated stack, in a
should readily be familiar to students of elementary data structures. More sophisticated tab
handlers usually employ a so-calleabkh table, and are the subject of later discussion. The ree
should note the following:

® For a two-pass assembler, labels are entered into the table (by making eailsrgronly
when theirdefining occurrences are encountered during the first pass.

® On the second pass, calls/to ueof synbol will be made wheiapplied occurrences of labels
are encountered.

® For a two-pass assembler, function tgpepat ch and functiorout st andi ngr ef er ences are
irrelevant - as, indeed, is thecat i on parameter toal ueof synbol .

® The symbol table entries are very simple structures defined by

struct ST _entries {
ASM al f a nane; /1 name



MC_ byt es val ue; /1 val ue once defined
bool defi ned; /1 true after defining occurrence encountered
ST entries *slink; // to next entry

}i
6.4.2 Thefirst pass - static semantic analysis

Even though no code is generated until the second pass, the location counter (marking the
of each byte of code that is to be generated) must be tracked on both passes. To this end i
convenient to introduce the concept aode line - a partial translation of eashurceline. The
fields in this structure keep track of the location counter, opcode value, and address value |
two-byte instructions), and are easily assigned values after extending the analysis already
performed by the syntax analyser. These extensions effectively constitute static semantic a
For each unpacked source line the analysis is required to examimethei c field and - if
present - to attempt to convert this to an opcode, or to a directive, as appropriaieoibesalue
is then used as the despatcher in a switching construct that keeps track of the location coui
creates appropriate entries in the symbol table whenever defining occurrences of labels are

The actual code for the first pass can be found on the source diskette, and essentially folloy
basic algorithm outlined in section 6.2. The following points are worth noting:

® Conversion frommenoni ¢ to opcode requires the use of some form of opcode table. In-
implementation we have chosen to construct a table that incorporates both the machil
opcodes and the directive pseudo-opcodes in one simple sorted list, allowing a simple
search to locate a possible opcode entry quickly.

An alternative strategy might be to incorporate the opcode table into the scanner, and
handle the conversion as part of the syntax analysis, but we have chosen to leave tha
subject of an exercise.

® The attempt to convert a mnemonic may fail in two situations. In the case of a line witl
blank opcode field we may sensibly return a fictitious legal empty opcode. However, v
opcode is present, but cannot be recognized (and must thus be assumed to be in errc
return a fictitious illegal opcode r .

® The system makes use of an intermediate work file for communicating between the tw
passes. This file can be discarded after assembly has been completed, and so can, ir
remain hidden from the user.

® The arithmetic on the location countercat i on must be donenodulo 256 because of the
limitations of the target machine.

® Our assembler effectively requires that all identifiers used as labels must be "declarec
context this means that all the identifiers in the symbol table must have appeared in tr
field of some source line, and should all have been entered into the symbol table by tf
the first pass. When appropriate, we determine the value of an address, either directly
the symbol table, by calling the table handler routiiaieof synbol , which returns a
parameter indicating the success of the search. It might be thought that failure is rulec
and that calls to this routine are made only in the second pass. However, source lines
the directive€Qu, DS andorRG may have address fields specified in terms of labels, anc
even on the first pass the assembler may have to refer to the values of these labels. C
chaos will arise if the labels used in the address fields for these directives are not dec
before use, and the assembler must be prepared to flag violations of this principle as



6.4.3 The second pass - code gener ation

The second pass rescans the program by extracting partially assembled lines from the inte
file, and then passing each of these to the code generator. The code generator has to keef
further errors that might arise if any labels were not properly defined on the first pass. Beca
the work already done in the first pass, handling the directives is now almost trivial in this p.

Once again, complete code for a simple implementation is to be found on the source diskelt
should be necessary only to draw attention to the following points:

® For our simple machine, all the generated objected code can be contained in an array
256. A more realistic assembler might not be able to contain the entire object code in
memory, because of lack of space. For a two-pass assembler few problems would ari
code could be written out to a file as soon as it was generated.

® Exactly how the object code is finally to be treated is a matter for debate. Here we hay
on thel i st code routine from the class defining the pseudo-machine, which dumps the
bytes in a form that is suitable for input to a simple loader. However, the driver progra
suggested earlier also allows this code to be interpreted immediately after assembly
successful.

® An assembler program typically gives the user a listing of the source code, usually wit
assembled code alongside it. Occasionally extra frills are provided, like cross referenc
for identifiers and so on. Our one is quite simple, and an example of a source listing p
by this assembler was given earlier.

Exercises

6.9 Make an extension to the ASSEMBLER language, to its grammar, and to the assemble
program, to allow a character string as an operand ipdthi@ective. For example

TYRANT DC " TERRY"
should be treated as equivalent to

TYRANT DC
oC
oC
oC
oC

<AQxm-

Is it desirable or necessary to delimit strings with different quotes from those used by single
characters?

6.10 Change the table handler so that the symbol table is stored in a binary search tree, fol
efficiency.

6.11 The assembler will accept a line consisting only of a non-ampgy. field. Is there any
advantage in being able to do this?

6.12 What would happen if a label were todefned more than once?



6.13 What would happen if a label were left undefined by the end of the first pass?

6.14 How would the symbol table handling alter if the source code were all held in memory
throughout assembly (see Exercise 6.1), or if a string table were used (see Exercise 6.6)?

6.5 One-pass assembly

As we have already mentioned, the main reason for having the second pass is to handle th
of forward references - that is, the use of labels before their locations or values have been dt
Most of the work of lexical analysis and assembly can be accomplished directly on the first
can be seen from a close study of the algorithms given earlier and the complete code used
implementation.

6.5.1 Symbol table structures

Although a one-pass assembler not always be able to determine the value of an address fit
immediately it is encountered, it is relatively easy to cope with the problem of forward refere
We create an additional fietd i nk in the symbol table entries, which then take the form

struct ST entries {
ASM al fa nane
MC_bytes val ue

bool defined

ST entries *slink

ST forwardrefs *flink;

b

Thef | nk field points to entries in forward reference table, which is maintained as a set of
linked lists, with nodes defined by

nanme
val ue once defined

true after defining occurrence encountered
to next entry

to forward references

~————
~————

struct ST forwardrefs { /1 forward references for undefined |abels
MC_bytes byte; /1 to be patched
ST forwardrefs *nlink; // to next reference

}i
Thebyt e fields of theST_f or war dr ef s nodes record the addresses of as yet incompletely de
object code bytes.

6.5.2 Thefirst pass - analysis and code generation

When reference is made to a label in the address field of an instructieal tleef synbol routine
searches the symbol table for the appropriate entry, as before. Several possibilities arise:

o [f the label has already been defined, it will already be in the symbol table, marked as
defined = true, and the corresponding address or value can immediately be obtaine:
theval ue field.

® [f the label is not yet in the symbol table, an entry is made in this table, markefd asd =
fal se. Theflink field is then initialized to point to a newly created entry in the forward
reference table, in thegt e field of which is recorded the address of the object byte who
value has still to be determined.

® [f the label is already in the symbol table, but still flaggede@sned = fal se, then a
further entry is made in the forward reference table, linked to the earlier entries for this



This may be made clearer by considering the same program as before (shown fully asseml
convenience).

00 BEG ; count the bits in a nunber
00 0A I'NI ; Read(A)

01 LOOP . REPEAT

01 16 SHR ;. A:=ADV2

02 3A 0D BCC EVEN ;. IFAMDZ2# 0 THEN
04 1E 13 STA TEMP ; TEMP : = A

06 19 14 LDA BI TS

08 05 I NC

09 1E 14 STA BI TS ; BITS:=BITS + 1
0B 19 13 LDA TEMP ; A = TEMP

oD 37 01 EVEN BNZ LOOP ; UNTIL A=0

OF 19 14 LDA BI TS ;

11 OE OTl ; Wite(BITS)

12 18 HLT ; term nate execution
13 TEMP DS 1 ;. VAR TEMP : BYTE

14 00 BI TS DC 0 ; BITS : BYTE

15 END

When the instruction at 02B{C EVEN) is encounteredVEN is entered in the symbol table,
undefined, linked to an entry in the forward reference table, which refers to 03h. Assembly
next instruction enterseMP in the symbol table, undefined, linked to a new entry in the forwair
reference table, which refers to 05h. The next instruction Bdusto the symbol table, and whe
the instruction at 09rsfA BI TS) is encountered, another entry is made to the forward referer
table, which refers to OAh, itself linked to the entry which refers to 07h. This continues in ths
vein, until by the time the instruction at ODFVEN BNz LOOP) is encountered, the tables are as
shown in Figure 6.3.

SYMEOL TRELE FORWARD REFERENCE TAELE
BITS Undefined 7 B3h —+——|
TEMF Undefined 7 —| B5h —+—|
EVEN Undefined 7 @7h —1"
LOOF Defined 81 I—» Ak E‘J

BCh

Figure 6.3 Symbol table and forward references part way through assembly

In passing, we might comment that in a real system this strategy might lead to extremely la
structures. These can, fairly obviously, be kept smaller if the bytes labelled bxydahdbs
instructions are all placed before the "code" which manipulates them, and some assembler
even insist that this be done.

Since we shall also have to examine the symbol table whenever a label is defined by virtue
appearance in the label field of an instruction or directive, it turns out to be convenient to in
a private routingi ndent ry, internal to the table handler, to perform the symbol table searchi

void findentry(ST _entries *&ynentry, char *nane, bool &found);

This involves a simple algorithm to scan through the symbol table, being prepared for eithe
or not finding an entry. In fact, we go further and code the routine so #hatyis finds an
appropriate entry, if necessary creating a new node for the purposet iTriugsit ry is a routine
with side-effects, and so might be frowned upon by the purists. The parameigrecords
whether the entry refers to a previously created node or not.

The code foent er also changes somewhat. As already mentioned, when a non-btamkfield



is encountered, the symbol table is searched. Two possibilities arise:

® [f thel abel was not previously there, the new entry is completed, flaggest ased =
true, and itsval ue field is set to the now known value.

® |[f it was previously there, but flaggedf i ned = fal se, the extant symbol table entry is
updated, withlef i ned set tot r ue, and itsval ue field set to the now known value.

At the end of assembly the symbol table will, in most situations, contain entries in the forwa
reference lists. Our table handler exporte@rst andi ngr ef er ences routine to allow the
assembler to walk through these lists. Rather than have the symbol table handler interact d
with the code generation process, this pass is accomplished by applying a procedural para
each node of the forward reference lists is visited. In effect, rather than making a second p:
the source of the program, a partial second pass is made over the object code.

This may be made clearer by considering the same program fragment as before. When the
definition ofBI TS is finally encountered at 14h, the symbol table and forward reference table
effectively have become as shown in Figure 6.4.

SYMBEOL THELE FORWARD REFEREMCE TRELE
BITS Defined 14h —m——+ 18h ——— BRh —— &@vh —|
TEMP  Defined 13h ———+  B@BCh —+— BEh ——|
EVEH Defined @0h ————  @Zh ——|
LOOP  Defined  @1h + 1l

Figure &.4 Swmbol table and forward references at the end of assembly

Exercises

6.15 What modifications (if any) are needed to incorporate the extensions suggested as ex
the end of the last section into the simple one-pass assembler?

6.16 We mentioned in section 6.4.3 that there was no great difficulty in assembling large pr
with a two-pass assembler. How does one handle programs too large to co-reside with a oi
assembler?

6.17 What currently happens in our one-pass assembler if a label is redefined? Should one
allowed to do this (that is, is there any advantage to be gained from being allowed to do so
not, what should be done to prevent it?

6.18 Constructing the forward reference table as a dynamic linked structure may be a little -
than it needs to be. Explore the possibility of holding the forward reference chains within thi
being assembled. For example, if we allow the symbol table entries to be defined as follows

struct ST entries {
ASM al f a nane
MC byt es val ue
bool defined
ST entries *slink
MC_bytes flink;

b

we can arrange that the latest forward reference "points" to a byte in memory in which will

nanme
val ue once defined

true after defining occurrence encountered
to next entry

to forward references

~————
~————



stored the label'sal ue once this is known. In the interim, this byte contains a pointer to an e
byte in memory where the sama ue has ultimately to be recorded. For the same program

fragment as was used in earlier illustrations, the code would be stored as follows, immediat
before the finakND directive is encountered. Within this code the reader should note the cha
values 0OAh, 07h, 00h (the last of which marks the end of the list) giving the list of bytes whe
value ofBl TS is yet to be stored.

00
00
01
01
02
04
06
08
09
0B
(0] D]
OF
11
12
13
14
15

0A

16
3A
1E
19
05
1E
19
37
19
OE
18

00

00
00
00

07
05
01
0A

LOooP

EVEN

TEMP
BI TS

BEG
I'NI

SHR
BCC
STA
LDA
I NC
STA
LDA
BNZ
LDA
arl

HLT
DS

DC

END

EVEN
TEMP
BI TS

BI TS
TEMP
LOOP
BI TS

; count the b

read(A)
REPEAT

A:=ADYV
2

IF A MOD

its in a nunber

2
# 0 THEN

TEMP : = A

BITS : =

BITS + 1

A = TEMP

UNTIL A=0

! Wite(BITS)
; term nate execution
;. VAR TEMP :

BITS :

BYTE
BYTE

By the end of assembly the forward reference table effectively becomes as shown below. T
outstanding references may be fixed up in much the same way as before, of course.

Name

BI TS
TEMP
EVEN
LOOP

Def i ned

true
true
true
true

Val ue

14h
13h
0Dh
01h

FLi nk

0Ah
0Ch
00h
00h



