Compilers and Compiler Generators © P.D. Terry, 2000

4 MACHINE EMULATION

In Chapter 2 we discussed the use of emulation or interpretation as a tool for programming
language translation. In this chapter we aim to discuss hypothetical machine languages an
emulation of hypothetical machines for these languages in more detail. Modern computers
among the most complex machines ever designed by the human mind. However, thisis a t
programming language translation and not on electronic engineering, and our restricted dis
will focus only on rather primitive object languages suited to the simple translators to be dis
in later chapters.

4.1 Simple machine ar chitecture

Many CPU (central processor unit) chips used in modern computers have one or more inte
registers or accumulators, which may be regarded as highly local memory where simple
arithmetic and logical operations may be performed, and between which local data transfer
take place. These registers may be restricted to the capacity of a single byte (8 bits), or, as
of most modern processors, they may come in a variety of small multiples of bytes or mach
words.

One fundamental internal register is thetruction register (IR), through which moves the
bitstrings (bytes) representing the fundamental machine-level instructions that the processc
obey. These instructions tend to be extremely simple - operations such as "clear a register'
"move a byte from one register to another” being the typical order of complexity. Some of tt
instructions may be completely defined by a single byte value. Others may need two or mo
for a complete definition. Of these multi-byte instructions, the first usually denotes an opera
and the rest relate either to a value to be operated upon, or to the address of a location in r
which can be found the value to be operated upon.

The simplest processors have only a tataregisters, and are very limited in what they can
actually do with their contents, and so processors invariably make provision for interfacing f
memory of the computer, and allow transfers to take place along so{madlédes between the
internal registers and the far greater number of external memory locations. When informati
be transferred to or from memory, the CPU places the appropriate address information on 1
address bus, and then transmits or receives the data itself on the data bus. This is illustrate
Figure 4.1.

MEMary
1 bytel 5]

Address bus

CPU —— FRead enable —————H

—OR A3 00
[}

— Write enable ————H

" Oata Bus ”

Figure 4.1 The CPU is linked to memory by address and data buses

The memory may simplistically be viewed as a one-dimensional array of byte values, analo
what might be described in high-level language terms by declarations like the following

TYPE
ADDRESS
BYTES

VAR
Mem : ARRAY ADDRESS OF BYTES;

CARDI NAL [0 .. MenSize - 1];
CARDI NAL [0 .. 255];

in Modula-2, or, in @+ (which does not provide for the subrange types so useful in this rega

typedef unsigned char BYTES;
BYTES Men{ MenSi ze] ;

Since the memory is used to store not only "data" but also "instructions”, another important
register in a processor, the so-caledgram counter orinstruction pointer (denoted by PC or
IP), is used to keep track of the address in memory of the next instruction to be fed to the
processor’s instruction register (IR).

Perhaps it will be helpful to think of the processor itself in high-level terms:

TYPE

PROCESSOR = struct processor {
RECORD BYTES I R
IR BYTES Rl, R2, R3;
Rl, R2, R3 : BYTES; unsi gned PC,
PC : ADDRESS; ;
END;
VAR processor cpu;

CPU : PROCESSOR,

The operation of the machine is repeatedlyetoh a byte at a time from memory (along the dat
bus), place it in the IR, and thexecute the operation which this byte represents. Multi-byte
instructions may require the fetching of further bytes before the instruction itself can be dec
fully by the CPU, of course. After the instruction denoted by the contents of IR has been ex
the value of PC will have been changed to point to the next instruction to be fetched. This
fetch-execute cycle may be described by the following algorithm:

BEG N
CPU.PC : = initial Value; (* address of first code instruction *)
LooP
CPU. IR := Men{ CPU. PC]; (* fetch *)
I ncrenent (CPU. PC) ; * bump PC in anticipation *)
Execut e(CPU. I R); (* affecting other registers, nenory, PC *)
* handl e machine interrupts if necessary *)
END
END.

Normally the value of PC alters by small steps (since instructions are usually stored in men
sequence); execution of branch instructions may, however, have a rather more dramatic ef
might the occurrence of hardware interrupts, although we shall not discuss interrupt handlir
further.

A program for such a machine consists, in the last resort, of a long string of byte values. W
to be written on paper (as binary, decimal, or hexadecimal values), they would appear prett
meaningless to the human reader. We might, for example, find a section of program readin

25 45 21 34 34 30 45
Although it may not be obvious, this might be equivalent to a high-level statement like
Price := 2 * Price + MarkUp;

Machine-level programming is usually performed by associatimemnonics with the recognizable

operations, likedLT for "halt" or ADD for "add to register”. The above code is far more
comprehensible when written (with commentary) as

LDA 45 ; load accumulator with value stored in nmenory |ocation 45
SHL ; shift accunulator one bit left (multiply by 2)

ADI 34 ; add 34 to the accunul ator

STA 45 ; store the value in the accurmul ator at nmenory |ocation 45

Programs written in an assembly language - which have first to be assembled before they (
executed - usually make use of other named entities, for example

MarkUp EQU 34 ; CONST MarkUp = 34;
LDA Price ; CPU. A := Price;
SHL ; CPU.A =2 * CPUA
ADl Mar kUp ; CPU. A := CPU A + 34;
STA Price ; Price := CPU. A

When we use code fragments such as these for illustration we shall make frequent use of
commentary showing an equivalent fragment written in a high-level language. Commentary
the semicolon on each line, a common convention in assembler languages.

4.2 Addressing modes

As the examples given earlier suggest, programs prepared at or near the machine level fre
consist of a sequence of simple instructions, each involving a machine-level operation and
more parameters.

An example of a simple operation expressed in a high-level language might be
Amount Due : = Price + Tax;

Some machines and assembler languages provide for such operations in terms of so-calle«
three-address code, in which anoperation - denoted by a mnemonic usually calleddpeode - is
followed by twooperands and adestination. In general this takes the form

operation destination, operand,, operand,
for example
ADD Anount Due, Price, Tax

We may also express this in a general sense as a function call
destination := operation(operand;, operand,)

which helps to stress the important idea thabfieeands really denote "values”, while the
destination denotes a processor register, or an address in memory where the result is to be

In many cases this generality is restricted (that is, the machine suffers from non-orthogonal
design). Typically the value of omperand is required to be the value originally stored at the
destination. This corresponds to high-level statements like

Price := Price * InflationFactor;
and is mirrored at the low-level by so-callseb-addr ess code of the general form

operation destination, operand

for example
MJL Price, InflationFactor

In passing, we should point out an obvious connection between some of the assignment of
in C++ and two-address code. In€Cthe above assignment would probably have been written

Price *= InflationFactor;

which, while less transparent to a Modula-2 programmer, is surely a hintto@@piler to
generate code of this form. (Perhaps this example may help you understang+wwhyeggarded b
some as the world’s finest assembly language!)

In many real machines even general two-address code is not found at the machine level. C
destination andoperand might be restricted to denoting a machine register (the other one mic
denote a machine register, or a constant, or a machine address). This is oftemealhela half
address code, and is exemplified by

MoV R1, Val ue ; CPU. Rl := Val ue
ADD Answer, R1 ; Answer := Answer + CPU. Rl
MOV Result, R2 ; Result := CPU R2

Finally, in so-callechccumulator machines we may be restricted tme-addr ess code, where the
destination is always a machine register (except for those operations that copy (store) the ¢
of a machine register into memory). In some assembler languages such instructions may s
to be of the two-address form, as above. Alternatively they might be written in terms of opc
that have the register implicit in the mnemonic, for example

LDA Val ue ; CPU. A := Val ue
ADA Answer ; CPU. A := CPU A + Answer
STB Resul t ; Result := CPU. B

Although many of these examples might give the impression that the corresponding machir
operations require multiple bytes for their representation, this is not necessarily true. For ex
operations that only involve machine registers, exemplified by

MoV Rl, R2 ;7 CPURL := CPUR2
LDA B ; CPU.A:= CPUB
TAX ; CPU.X := CPU A

might require only a single byte - as would be most obvious in an assembler language that
third representation. The assembly of such programs is be eased considerably by a simple
self-consistent notation for the source code, a subject that we shall consider further in a lat:
chapter.

In those instructions thalb involve the manipulation of values other than those in the machin
registers alone, multi-byte instructions are usually required. The first byte typically specifies
operation itself (and possibly the register or registers that are involved), while the remaining
specify the other values (or the memory addresses of the other values) involved. In such
instructions there are several ways in which the ancillary bytes might be used. This variety
rise to what are known as differeattdr essing modes for the processor, and whose purpose it i
provide areffective addressto be used in an instruction. Exactly which modes are available
tremendously from processor to processor, and we can mention only a few representative ¢
here. The various possibilities may be distinguished in some assembler languages by the L
different mnemonics for what at first sight appear to be closely related operations. In other
assembler languages the distinction may be drawn by different syntactic forms used to spe
registers, addresses or values. One may even find different assembler languages for a con

processor.

In inherent addressing the operand is implicit in the opcode itself, and often the instruction is
contained in a single byte. For example, to clear a machine register naveadight have

CLA or CLR A 7 CPUA:=0
Again we stress that, though the second form seems to have two components, it does not ¢
imply the use of two bytes of code at the machine level.

In immediate addressing the ancillary bytes for an instruction typically give dotual value that
is to be combined with a value in a register. Examples might be

ADI 34 or ADD A, #34 ;7 CPUA:=CPUA+ 34

In these two addressing modes the use of the word "address" is almost misleading, as the
the ancillary bytes may often have nothing to do with a memory address at all. In the mode
be discussed the connection with memory addresses is far more obvious.

In direct or absolute addressing the ancillary bytes typically specify tingemory address of the
value that is to be retrieved or combined with the value in a register, or specify where a reg
value is to be stored. Examples are

LDA 34 or MOV A 34 ;o CPU A = Menf 34]
STA 45 MOV 45, A ; Men{45] := CPU A
ADD 38 ADD A 38 ; CPU A := CPU A + Meni 38]

Beginners frequently confuse immediate and direct addressing, a situation not improved by
that there is no consistency in notation between different assembler languages, and there r
be a variety of ways of expressing a particular addressing mode. For example, for the Intel
processors as used in the IBM-PC and compatibles, low-level code is written in a two-addre
similar to that shown above - but the immediate mode is denoted without needing a special
like #, while the direct mode may have the address in brackets:

CPU. AX + 34 | mmedi ate
Mend 34] Direct

ADD AX, 34 ; CPU. AX :
MOV AX, [34] ; CPU. AX :

In register-indexed addressing one of the operands in an instruction specifies both an addre:
also anndex register, whose value at the time of execution may be thought of as specifying 1
subscript to an array stored from that address

LDX 34 or MOV A 34[X ; CPUA := Mni34 + CPU. X
STX 45 MV 45[X], A : Men{45+CPU. X := CPU A
ADX 38 ADD A, 38[X] ; CPUA := CPUA + Meni38+CPU. X]

In register-indirect addressing one of the operands in an instruction specifies a register who
value at the time of execution gives the effective address where the value of the operand is
found. This relates to the conceptpointers as used in Modula-2, Pascal ang-C

MoV R1, @r2 ; CPURL :
MV AX [BX] ;. CPU. AX :

Men| CPU. R2]
Men{ CPU. BX]

Not all the registers in a machine can necessarily be used in these ways. Indeed, some ma
have rather awkward restrictions in this regard.

Some processors allow for very powerful variations on indexed and indirect addressing mo
example, ifmemory-indexed addressing, a single operand may specify two memory address
the first of which gives the address of the first element of an array, and the second of whict

the address of a variable whose value will be used as a subscript to the array.
MOV R1, 400[100] : CPU.RL := Men{400 + Meni100]]

Similarly, inmemory-indirect addressing one of the operands in an instruction specifies a
memory address at which will be found a value that forms the effective address where anot
operand is to be found.

MV RL, @00 ' CPU.RL := MeniMeni100]]

This mode is not as commonly found as the others; where it does occur it directly correspol
the use of pointer variables in languages that support them. Code like

TYPE

ARROW = PO NTER TO CARDI NAL; typedef int *ARROW
VAR

Arrow : ARROW ARROW Ar r ow;,

Target : CARDI NAL; int Target;
BEG N

Target := Arrow'; Target = *Arrow,

might translate to equivalent code in assembler like

MOV AX, @\ row
MOV Target, AX

or even

MOV Target, @\rrow

where, once again, we can see an immediate correspondence between the syatardntia:
corresponding assembler.

Finally, inrelative addressing an operand specifies an amount by which the current program
register PC must be incremented or decremented to find the actual address of interest. Thi:
chiefly found in "branching" instructions, rather than in those that move data between variol
registers and/or locations in memory.

Further reading

Most books on assembler level programming have far deeper discussions of the subject of
addressing modes than we have presented. Two very readable accounts are to be found ir
by Wakerly (1981) and MacCabe (1993). A deeper discussion of machine architectures is t
found in the book by Hennessy and Patterson (1990).

4.3 Case study 1 - A single-accumulator machine

Although sophisticated processors may have several registers, their basic principles - espe
they apply to emulation - may be illustrated by the following model of a single-accumulator
processor and computer, very similar to one suggested by Wakerly (1981). Here we shall t:
things to extremes and presume the existence of a system with all registers only 1 byte (8 t
wide.

4.3.1 M achine ar chitecture

Diagrammatically we might represent this machine as in Figure 4.2.

CFU

I interface

2
F ALU =% : F==
II!I
I-0 dewvices

Figure 4.2 A simple single—acourulator CPU and computer

Memory and
input-output

il e

The symbols in this diagram refer to the following components of the machine

ALU is thearithmetic logic unit, where arithmetic and logical operations are actually
performed.

Ais the 8-bitaccumulator, a register for doing arithmetic or logical operations.

SP is an 8-bitstack pointer, a register that points to an area in memory that may be
utilized as a stack.

X is an 8-bitindex register, which is used in indexing areas of memory which
conceptually form data arrays.

Z, P, care single bitondition flags or status registers, which are set "true” when an
operation causes a register to change to a zero value, or to a positive value, or to
propagate a carry, respectively.

I Ris the 8-bitinstruction register, in which is held the byte value of the instruction
currently being executed.

PC is the 8-bitprogram counter, which contains the address in memory of the
instruction that is next to be executed.

EAR is theeffective address register, which contains the address of the byte of data
which is being manipulated by the current instruction.

The programmer’s model of this sort of machine is somewhat simpler - it consists of a num
"variables" (in the &+ or Modula-2 sense), each of which is one byte in capacity. Some of tr
correspond to processor registers, while the others form the random access read/write (RA
memory, of which we have assumed there to be 256 bytes, addressed by the values 0 thro
In this memory, as usual, will be stored both the data and the instructions for the program L
execution. The processor, its registers, and the associated RAM memory can be thought of
though they were described by declarations like

TYPE

BYTES = CARDINAL [0 .. 255]; typedef unsigned char bytes;
PROCESSOR = RECORD struct processor {
A SP, X, IR PC: BYTES; bytes a, sp, x, ir, pc;
Z, P, C: BOCLEAN, bool z, p, c;

END; b

TYPE STATUS = (running, finished, typedef enum { running, finished,

nodat a, baddat a, nodat a, baddata, badop
badop) ; } status;
VAR
CPU : PROCESSOR; processor cpu;
Mem : ARRAY BYTES OF BYTES; byt es nenf 256] ;
PS : STATUS; status ps;

where the concept of ther ocessor status PS has been introduced in terms of an enumeration 1
defines the states in which an emulator might find itself.

4.3.2 Instruction set

Some machine operations are described by a single byte. Others require two bytes, and he
format

Byte 1 Opcode
Byte 2 Address field

The set of machine code functions available is quite small. Those marked * affeeinitie flags,
and those markedaffect thec flag. An informal description of their semantics follows:

Mnemonic Hex Decimal Function

opcode

NOP ooh 0 No operation (this might be used to set a break point in an emulator)
CLA 0ith 1 Clear accumulatox

CLC + 02h 2 Clear carry bit

CLX 03h 3 Clearindex registex

cve + 04h 4 Complement carry bit

I NC * 05h 5 Increment accumulaterby 1

DEC * 06h 6 Decrementaccumulaterby 1

I NX * 07h 7 Incrementindex registerby 1

DEX * 08h 8 Decrementindex registarby 1

TAX o9h 9 Transfer accumulatarto index registex

I NI * 0Ah 10 Load accumulatos with integer read from input in decimal

I NH * oBh 11 Load accumulatos with integer read from input in hexadecimal

| NB * 0ch 12 Load accumulatos with integer read from input in binary

| NA * obh 13 Load accumulatoswith ASCII value read from input (a single character)
ol OEh 14 Write value of accumulatarto output as a signed decimal number
orc OFh 15 Write value of accumulatarto output as an unsigned decimal number
OTH 10h 16 Write value of accumulatarto output as an unsigned hexadecimal number
OTB 11h 17 Write value of accumulatarto output as an unsigned binary number
aTA 12h 18 Write value of accumulatorto output as a single character

PSH 13h 19 Decremensp and push value of accumulatoonto stack

POP * 14h 20 Pop stack into accumulatarand incremensp

SHL + * 15h 21 Shift accumulaton one bit left

SHR + * 16h 22 Shift accumulaton one bit right

RET 17h 23 Return from subroutine (return address popped from stack)
HLT 18h 24 Halt program execution

The above are all single-byte instructions. The following are all double-byte instructions.

LDA B * 19h 25 Load accumulatos directly with contents of location whose address is
given ass

LDX B * 1Ah 26 Load accumulatos with contents of location whose address is gives, as
indexed by the value of(that is, an address computed as the valgetof)

LD B * 1Bh 27 Load accumulatos with the immediate valug

LSP B 1ch 28 Load stack pointesP with contents of location whose address is givem as

LSl B 1Dh 29 Load stack pointesP immediately with the value

STA B 1Eh 30 Store accumulatox on the location whose address is giveB as

STX B 1Fh 31 Store accumulatox on the location whose address is giveB,asdexed
by the value ok

ADD B + * 20h 32 Addtoaccumulatosthe contents of the location whose address is given as

ADX B + * 21h 33 Add to accumulatosthe contents of the location whose address is given as
B,indexed by the value of

ADI B + * 22h 34 Addthe immediate valugto accumulatoa

ADC B + * 23h 35 Add to accumulatosthe value of the carry hitplus the contents of the
location whose address is givengas

ACX B + * 24h 36 Add to accumulatosthe value of the carry bitplus the contents of the
location whose address is giversagndexed by the value of

ACl B + * 25h 37 Addthe immediate valugplus the value of the carry litto accumulatoa

SsuB B + * 26h 38 Subtract from accumulaterthe contents of the location whose address is
given ass

SBX B + * 27h 39 Subtract from accumulaterthe contents of the location whose address is
given asg, indexed by the value of

SBl B + * 28h 40 Subtractthe immediate valedrom accumulaton

SBC B + * 29h 41 Subtract from accumulaterthe value of the carry bitplus the contents
of the location whose address is giverBas

SCX B + * 2Ah 42 Subtract from accumulaterthe value of the carry bitplus the contents
of the location whose address is givemasdexed by the value of

sa B + * 2Bh 43 Subtract the immediate valeelus the value of the carry latfrom
accumulatorn

CW B + * 2Ch 44 Compare accumulaterwith the contents of the location whose address is
given asB

CPX B + * 2Dh 45 Compare accumulaterwith the contents of the location whose address is
given asg, indexed by the value of

CPl B +* 2Eh 46 Compare accumulaterdirectly with the valus

These comparisons are done by virtual subtraction of the operand,feord setting the flags
andz as appropriate

ANA B + * 2Fh 47 Bitwise AND accumulatoa with the contents of the location whose address
is given as

ANX B + * 30h 48 Bitwise AND accumulatoa with the contents of the location whose address
is given as, indexed by the value of

ANl B + * 31h 49 Bitwise AND accumulaton with the immediate valug

ORA B + * 32h 50 Bitwise OR accumulatox with the contents of the location whose address
is given as

ORX B + * 33h 51 Bitwise OR accumulatox with the contents of the location whose address
is given as, indexed by the value of

ORI B + * 34h 52 Bitwise OR accumulatox with the immediate valug

BRN B 35h 53 Branch to the address givenms

BZE B 36h 54 Branch to the address giveneai$ the z condition flag is set

BNZ B 37h 55 Branch to the address givengi$ the z condition flag is unset

BPZ B 38h 56 Branch to the address givensai$ the p condition flag is set

BNG B 39h 57 Branch to the address givengai$ the P condition flag is unset

BCC B 3Ah 58 Branch to the address givengai$ the c condition flag is unset

BCS B 3Bh 59 Branch to the address givengai$ the c condition flag is set

JSR B 3ch 60 Call subroutine whose addressjgpushing return address onto the stack

Most of the operations listed above are typical of those found in real machines. Notable exc
are provided by the I/O (input/output) operations. Most real machines have extremely primi
facilities for doing anything like this directly, but for the purposes of this discussion we shall
somewhat and assume that our machine has several very powerful single-byte opcodes fol
I/0. (Actually this is not cheating too much, for some macro-assemblers allow instructions |
which are converted into procedure calls into part of an underlying operating system, store(
in a ROM BIOS).

A careful examination of the machine and its instruction set will show some featuraethat
typical of real machines. Although there are three data registessandsp, two of them X and
SP) can only be used in very specialized ways. For example, it is possible to transfer a val
to X, but not vice versa, and while it is possible to load a valuesiiiis not possible to examint
the value ofsP at a later stage. The logical operations affect the carry bit (they all unset it), b
surprisingly, the NC andDEC operations do not.

It is this model upon which we shall build an emulator in section 4.3.4. In a sense the forme
semantics of these opcodes are then embodied directly apéhational semantics of the machin
(or pseudo-machine) responsible for executing them.

Exercises

4.1 Which addressing mode is used in each of the operations defined above? Which addre
modes are not represented?

4.2 Many 8-bit microprocessors have 2-byte (16-bit) index registers, and one, two, and thre
instructions (and even longer). What peculiar or restrictive features does our machine poss
compared to such processors?

4.3 As we have already commented, informal descriptions in English, as we have above, al
precise as semantics that are formulated mathematically. Compare the informal descriptior
| NC operation with the following:

INC * 05h 5 A:=(A+1) nod 256; Z:=A=0; P:=AIN{O ... 127}
Try to express the semantics of each of the other machine instructions in a similar way.

4.3.3 A specimen program

Some examples of code for this machine may help the reader’s understanding. Consider tr
problem of reading a number and then counting the number of non-zero bits in its binary
representation.

Example 4.1
The listing below shows a program to solve this problem coded in an ASSEMBLER langua

based on the mnemonics given previously, as it might be listed by an assembler program, ¢
the hexadecimal representation of each byte and where it is located in memory.

00 BEG ; Count the bits in a nunber
00 0A I'NI ; Read(A)

01 LOOP ;. REPEAT

01 16 SHR i A:=ADV2

02 3A 0D BCC EVEN i IFAMDZ2# 0 THEN
04 1E 13 STA TEMP ; TEMP : = A

06 19 14 LDA BI TS

08 05 I NC

09 1E 14 STA BI TS ; BITS:=BITS + 1
0B 19 13 LDA TEMP ; A = TEMP

oD 37 01 EVEN BNz LOOP ; UNTIL A=0

OF 19 14 LDA BI TS ;

11 OE arl ;. Wite(BITS)

12 18 HLT ; term nate execution
13 TEMP DS 1 ; VAR TEMP : BYTE

14 00 BI TS DC 0 ; BITS : BYTE

15 END

Example 4.2 (absolute byte values)

In a later chapter we shall discuss how this same program can be translated into the follow
corresponding absolute format (expressed this time as decimal numbers):

10 22 58 13 30 19 25 20 5 30 20 25 19 55 125201424 0 O

Example 4.3 (mnemonics with absolute addressfields)

For the moment, we shall allow ourselves to consider the absolute form as equivalent to a 1
which the mnemonics still appear for the sake of clarity, but where the operands have all be
converted into absolute (decimal) addresses and values:

I'NI
SHR

BCC 13

STA 19

LDA 20

I NC

STA 20

LDA 19

BNZ 1

LDA 20

(o]]]

HLT

0

0
Exercises

4.4 The machine does not possess an instruction for negating the value in the accumulator
code would one have to write to be able to achieve this?

4.5 Similarly, it does not possess instructions for multiplication and division. Is it possible to
the existing instructions to develop code for doing these operations? If so, how efficiently c:
be done?

4.6 Try to write programs for this machine that will

(a) Find the largest of three numbers.

(b) Find the largest and the smallest of a list of numbers terminated by a zero (which i
not regarded as a member of the list).

(c) Find the average of a list of non-zero numbers, the list being terminated by a zero.
(d) Compute N! for small N. Try using an iterative as well as a recursive approach.

(e) Read a word and then write it backwards. The word is terminated with a period. Tr
using an "array", or alternatively, the "stack".

(f) Determine the prime numbers between 0 and 255.

(g) Determine the longest repeated sequence in a sequence of digits terminated with

zero. For example, for datareading123333454444444655 report that "4
appeared 7 times".

(h) Read an input sequence of numbers terminated with zero, and then extract the
embedded monotonically increasing sequence. For example, from 12 127 4 14 6 23
extract the sequence 1 2 12 14 23.

() Read a small array of integers or characters and sort them into order.
()) Search for and report on the largest byte in the program code itself.
(k) Search for and report on the largest byte currently in memaory.

(I) Read a piece of text terminated with a period, and then report on how many times
each letter appeared. To make things interesting, ignore the difference between uppe
and lower case.

(m) Repeat some of the above problems using 16-bit arithmetic (storing values as pai
of bytes, and using the "carry" operations to perform extended arithmetic).

4.7 Based on your experiences with Exercise 4.6, comment on the usefulness, redundancy
other features of the code set for the machine.

4.3.4 An emulator for the single-accumulator machine

Although a processor for our machine almost certainly does not exist "in silicon", its action |
easily be simulated "in software". Essentially we need only to write an emulator that models
fetch-execute cycle of the machine, and we can do this in any suitable language for which w
already have a compiler on a real machine.

Languages like Modula-2 or+& are highly suited to this purpose. Not only do they have
"bit-twiddling" capabilities for performing operations like "bitwise and", they have the advan
that one can implement the various phases of translators and emulators as coherent, clear!
separated modules (in Modula-2) or classes i) (Extended versions of Pascal, such as Turl
Pascal, also provide support for such modules in the form of units. C is also very suitable o
first score, but is less well equipped to deal with clearly separated modules, as the header 1
mechanism used in C is less watertight than the mechanisms in the other languages.

In modelling our hypothetical machine in Modula-2 er@ will thus be convenient to define ar
interface in the usual way by means of a definition module, or by the public interface to a cl
this text we shall illustrate code i€ equivalent code in Modula-2 and Turbo Pascal will be
found on the diskette that accompanies the book.)

The main responsibility of the interface is to declareramat or routine for interpreting the cod:
stored in the memory of the machine. For expediency we choose to extend the interface to
the values of the operations, and the memory itself, and to provide various other useful faci
that will help us develop an assembler or compiler for the machine in due course. (In this, €
other interfaces, "private" members are not shown.)

/'l machine instructions - order is significant

enum MC_opcodes {
MC nop, MC cla, MC.clc, MCclx, MCcnc, MC.inc, MC_dec, MC.inx, MC dex,
MC tax, MC.ini, MC.inh, MCinb, MC.ina, MCoti, MCotc, MCoth, MCoth,

MC ota, MC psh, MC pop, MC shl, MC shr, MCret, MC hlt, MC Ida, MCIdx,
MC Idi, MCIsp, MCIsi, MCsta, MC stx, MC add, MC adx, MC adi, MC_ adc,
MC_acx, MC aci, MC sub, MC sbx, MC shi, MC sbc, MC scx, MC sci, MC cnp,
MC cpx, MC cpi, MC_ana, MC anx, MC ani, MC ora, MC orx, MC ori, MC brn,
MC _bze, MC bnz, MC bpz, MC bng, MC bcc, MC bcs, MC jsr, MC bad = 255 };

typedef enum { running, finished, nodata, baddata, badop } status;
typedef unsigned char MC bytes;

class MC {
publi c:
MC_byt es nenf 256]; /1 virtual nachine nenory

voi d |istcode(void);
/1 Lists the 256 bytes stored in nemon requested output file

void enul ator (MC_bytes initpc, FILE *data, FILE *results, bool tracing);
/1 Enul ates action of the instructions stored in mem w th program counter
/1 initialized to initpc. data and results are used for I/Q

/1 Tracing at the code |level may be requested

voi d interpret(void);
/'l Interactively opens data and results files, and requests entry point.
/1 Then interprets instructions stored in nem

MC byt es opcode(char *str);
/1 Maps str to opcode, or to MC_bad (OFFH) if no match can be found

NC(?;

/1 Initializes accunul ator machi ne
b

The implementation afnul at or must model the typicditch-execute cycle of the hypothetical
machine. This is easily achieved by the repetitive execution of ashargeh or CASE statement,
and follows the lines of the algorithm given in section 4.1, but allowing for the possibility the
program may halt, or otherwise come to grief:

BEG N
InitializeProgranCounter(CPU. PC);
InitializeRegisters(CPU. A CPU X, CPUSP, CPU Z CPU P, CPUCO;
PS : = running;

REPEAT
CPU. IR : = Men{ CPU. PC] ; | ncrenent (CPU. PC) (* fetch *)
CASE CPU. IR OF (* execute *)
END

UNTIL PS # running;
IF PS # finished THEN Post Mortem END
END

A detailed implementation of the machine class is given as part of Appendix D, and the rea
urged to study it carefully.

Exercises

4.8 You will notice that the code in Appendix D makes no use of an exgiiciegister. Develop
an emulator that does have such a register, and investigate whether this is an improvemen

4.9 How well does the informal description of the machine instruction set allow you to deve
programs and an interpreter for the machine? Would a description in the form suggested b
Exercise 4.3 be better?

4.10 Do you suppose interpreters might find it difficult to handle 1/0O errors in user programs

4.11 Although we have required that the machine incorporate the three condition flagsdc,
we have not provided another one commonly found on such machines, namely for detectin

overflow. Introducev as such a flag into the definition of the machine, provide suitable instrus
for testing it, and modify the emulator so thias set and cleared by the appropriate operations

4.12 Extend the instruction set and the emulator to include operations for negating the acct
and for providing multiplication and division operations.

4.13 Enhance the emulator so that when it interprets a program, a full screen display is give
highlighting the instruction that is currently being obeyed and depicting the entire memory ¢
of the machine, as well as the state of the machine registers. For example we might have &
like that in Figure 4.3 for the program exemplified earlier, at the stage where it is about to e
the first instruction.

IR = BA [INI 1 PC = BE A = B8 (OEEEEEEE) @ = B0 SFP = BB 2=8 P=B C=@
BA @1 B2 B3 B4 BS B BY B8 B9 BA BE BC B0 BE BF

@E | INI SHR BCC @0 STA 13 LOA 14 IMC STA 14 LOA 13 BHE @1 LOA 513
1@ 14 OTI HLT FF @ FF FF FF FF F FF FF FF FF FF FF 1F
ZH FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF zF
=15 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 3F
41 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 4F
=15 FF FF FF FF FF FF FF FF FF FF FF FF FFE FFE FF FF 5F
[=15] FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF &F
L) FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF rF
F=15] FF FF FF FF FF FF FF FF FF FF FF FF FFE FFE FF FF gF
L) FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 3F
AA FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF AF
[=15] FF FF FF FF FF FF FF FF FF FF FF FF FFE FFE FF FF EF
[FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF CF
[u 5] FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF OF
EH FF FF FF FF FF FF FF FF FF FF FF FF FFE FFE FF FF EF
Fa FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

1 1 @Rl 2 2 Bglg 3 3 bEll 4 4 Bion 5 5 @inl

& & @Bll| 7T r @111 2 &8 looe 9 9 1o@l 1 A 1@1@
11 B 1811 12 C 1188 13 0 1181 14 E 1118 15 F 1111

Figure 4.3 Possible display format for an enhanced interpreter

4.3.5 A minimal assembler for the machine

Given the emulator as implemented above, and some way of assembling or compiling prog
becomes possible to implement a complete load-and-go system for developing and running
programs. An assembler can be provided through a class with a public interface like

class AS {
publi c:
AS(char *sourcenanme, MC *M;
/1 Opens source file from supplied sourcenane

~AS() ;
/1 O oses source file

voi d assenbl e(bool &errors);
/'l Assenbl es source code fromsrc file and | oads bytes of code directly
/1 into nenory. Returns errors = true if source code is corrupt

H
In terms of these two classes, a load-and-go system might then take the form

void main(int argc, char *argv[])
{ bool errors;
if (argc == 1) { printf("Usage: ASSEMBLE source\n"); exit(1l); }
MC *Machi ne = new MZ();
AS *Assenbl er = new AS(argv[1], Machine);
Assenbl er - >assenbl e(errors);
del ete Assenbl er;
if (errors)
printf("Unable to interpret code\n");
el se
{ printf("Interpreting code ...\n");
Machi ne->i nterpret();

}
del et e Machi ne;

A detailed discussion of assembler techniques is given in a later chapter. For the moment v
that various implementations matching this interface might be written, of various complexiti
very simplest of these might require the user to hand-assemble his or her programs and wc
amount to nothing more than a simple loader:

AS: :AS(char *sour cenane, MC *M
{ Machl ne = M
src = fopen(sourcenang, "r“)'
if (src == NULL) { printf("Could not open input file\n"); exit(1l); }

AS: : ~AS()
{ if (src) fclose(src); src = NULL; }

voi d AS::assenbl e(bool &errors)
{ int nunber;
errors = fal se;
for (int i = 0; i <= 255; i++)
{ if (fscanf(src, "%l", &nunber) != 1)
{ errors = true; nunber = MC bad; }
Machi ne->nmenfi] = nunber % 256;

}

However, it is not difficult to write an alternative implementation ofdeenbl e routine that
allows the system to accept a sequence of mnemonics and numerical address fields, like tt
in Example 4.3 earlier. We present possible code, with sufficient commentary that the read
be able to follow it easily.

voi d readmenoni c(FILE *src, char &ch, char *mmenoni c)
{int i =0;
while (ch >~
{ if (I <= 2) { nﬂenDniC[i] = ch; i++; }
ch = toupper(getc(src));

menonic[i] = '\0";

voi d readi nt (FILE *src, char &ch, int &unber, bool &okay)
{ okay = true;

nunber = O;

bool negative = (ch == "'-");

if (ch=="-"]] ch=="+) ch = getc(src);
while (ch >~

)
{ if (isdigit(ch))
nunber = nunber * 10 + ch - '0";
el se
okay = fal se;
ch = getc(src);

if (negative) nunber = -nunber;

voi d AS:: assenbl e(bo
{ char menonic[4]; menoni ¢ for matching
MC bytes Ic = 0; | ocati on counter

ol &errors)

/1

/1
MC_bytes op; /1 assenbl ed opcode

/1

/1

/1

int nunber; assenbl ed nunber
char ch; general character for input
bool okay; error checki ng on readi ng nunbers
printf("Assenbling code ... \n");
for (int i =0; i <= 255; i++) /1 fill with invalid opcodes
Machi ne->nmenfi] = MC _bad;
lc = 0; /1 initialize location counter
errors = fal se; /1 optimst!
do
{ do ch = toupper(getc(src))
whi | e (ch <= && Ifeof(src)) skip spaces and bl ank |ines

/1
if (!feof(src)) /'l there should be a line to assenble
{ if (isupper(ch)) /1 we should have a mmenonic
{ readmenoni c(src, ch, mmenonic); // unpack it
op = Machi ne- >opcode(menoni c) ; /1 look it up
if (op == MC_bad) /1 the opcode was unrecogni zabl e
{ printf("% - Bad menonic at %\n", menonic, Ic); errors = true; }
Machi ne->nmenil c] = op; /] store nun‘eri cal equi val ent

el se /1 we should have a nuneric constant

{ readint(src, ch, nunber, okay); /1 unpack it
if (lokay) { printf("Bad nunber at %\n", lc); errors = true; }
if (nunmber >= 0) // convert to proper byte val ue
Machi ne->nenflc] = nunber % 256;
el se

Machi ne->nenf{lc] = (256 - abs(nunber) % 256) % 256;
}
lc = (lc + 1) % 256; /1 bunmp up | ocation counter

} \};\hile (!feof(src));

4.4 Case study 2 - a stack-oriented computer

In later sections of this text we shall be looking at developing a compiler that generates obj:
for a hypothetical "stack machine", one that may have no general data registers of the sort
previously, but which functions primarily by manipulating a stack pointer and associated ste
architecture like this will be found to be ideally suited to the evaluation of complicated arithr
or Boolean expressions, as well as to the implementation of high-level languages which su
recursion. It will be appropriate to discuss such a machine in the same way as we did for th
single-accumulator machine in the last section.

4.4.1 M achine ar chitecture

Compared with normal register based machines, this one may at first seem a little strange,
of the paucity of registers. In common with most machines we shall still assume that it store
and data in a memory that can be modelled as a linear array. The elements of the memory
"words", each of which can store a single integer - typically using a 16 bit two’s-complemer
representation. Diagrammatically we might represent this machine as in Figure 4.4:

CRU [vF =

BF
]
Control Unit
IR ERAR
input<output
interface

PC
ALU F—— Temp F—
I-0 devices

Figure 4.4 H simple stack—oriented CPU and computer

1

Memory and

s

The symbols in this diagram refer to the following components of the machine

ALU is thearithmetic logic unit where arithmetic and logical operations are actually
performed.

Tenp is a set of 16-bit registers for holding intermediate results needed during arithme'
or logical operations. These registers cannot be accessed explicitly.

SP is the 16-bistack pointer, a register that points to the area in memory utilized as the
main stack.

BP is the 16-bibase pointer, a register that points to the base of an area of memory

within the stack, known asstack frame, which is used to store variables.

MP is the 16-bitmark stack pointer, a register used in handling procedure calls, whose
use will become apparent only in later chapters.

I Ris the 16-biinstruction register, in which is held the instruction currently being
executed.

PC is the 16-bitprogram counter, which contains the address in memory of the
instruction that is the next to be executed.

EAR is theeffective address register, which contains the address in memory of the data
that is being manipulated by the current instruction.

A programmer’s model of the machine is suggested by declarations like

CONST
MenSi ze = 512, const int MenSize = 512,
TYPE typedef short address;
ADDRESS = CARDINAL [0 .. MenSize - 1]; struct processor {
PROCESSOR = RECORD opcodes ir;
IR : OPCODES; address bp, np, sp, pc;
BP, MP, SP, PC : ADDRESS; };
END;

TYPE STATUS = (running, finished, typedef enum { running, finished,
badMem badDat a, badmem baddata, nodat a,
noDat a, divZero, di vzero, badop
badOP) ; } status;

VAR

CPU : PROCESSOR, processor cpu;
Mem : ARRAY ADDRESS OF | NTEGER; int nenif Menti ze] ;
PS : STATUS; status ps;

For simplicity we shall assume that the code is stored in the low end of memory, and that tt
part of memory is used as the stack for storing data. We shall assume that the topmost sec
this stack is diteral pool, in which are stored constants, such as literal character strings.
Immediately below this pool is trsack frame, in which the static variables are stored. The res
the stack is to be used for working storage. A typical memory layout might be as shown in |
4.5, where the markecadeTop andst kTop will be useful for providing memory protection in a
emulated system.

Code +—— Stack — LVariables Literal Pool
5] I { El1
CodeTop StkTop
Base Pointer BP
Frogram Counter PC Stack Pointer 5P

Figure 4.5 Usage of memory in the simple stack-oriented computer

We assume that the program loader will load the code at the bottom of memory (leaving the
denoted bycodeTop pointing to the last word of code). It will also load the literals into the litel
pool (leaving the marker denoted $nkTop pointing to the low end of this pool). It will go on to
initialize both the stack pointsP and base point&pr to the value oft kTop. The first instruction
in any program will have the responsibility of reserving further space on the stack for its var
simply by decrementing the stack poinserby the number of words needed for these variable
variable can be addressed by adding an offset to the base regiSarce the stack "grows

downwards" in memory, from high addresses towards low ones, these offsets will usually h

negative values.
4.4.2 Instruction set

A minimal set of operations for this machine is described informally below; in later chapters
shall find it convenient to add more opcodes to this set. We shall use the mnemonics introd
here to code programs for the machine in what appears to be a simple assembler language
with addresses stipulated in absolute form.

Several of these operations belong to a category knowzer aaddr ess instructions. Even thougt
operands are clearly needed for operations such as addition and multiplication, the address
these are not specified by part of the instruction, but are implicitly derived from the value of
stack pointesP. The two operands are assumed to reside on the top of the stack and just be
top; in our informal descriptions their values are denotetddsy(for "top of stack") andos (for
"second on stack™). A binary operation is performed by popping its two operands from the <
into (inaccessible) internal registers in the CPU, performing the operation, and then pushing
result back onto the stack. Such operations can be very economically encoded in terms of
storage taken up by the program code itself - the high density of stack-oriented machine cc
another point in its favour so far as developing interpretive translators is concerned.

ADD PopTos andscs, addsos to Tos, push sum to form newos

SuB PopTos andsos, subtractras from sos, push result to form newos
MUL PopTos andsos, multiply sos by Tos, push result to form nemcs
DVD PopTos andsos, divide sos by Tos, push result to form newnos

EQL PopTos andsos, push 1 to form newos if sos = Tos, 0 otherwise
NEQ PopTos andsas, push 1 to form newos if sos # Tos, 0 otherwise
GTR PopTaos andsas, push 1 to form newoes if sos > 710s, 0 otherwise
LSS PopTos andsos, push 1 to form newos if Sos < Tos, 0 otherwise
LEQ PopTos andsos, push 1 to form newcs if sos <=T0s, 0 otherwise
GEQ PopTos andsos, push 1 to form newcs if sos >=T0s, 0 otherwise
NEG Negateros

STK Dump stack to output (useful for debugging)

PRN PopTos and write it to the output as an integer value

PRS A Write the nul-terminated string that was stacked in the literal pool ¥eafr]
NLN Write a newline (carriage-return-line-feed) sequence

I NN Read integer value, paps, store the value that was readvism{ TOS]

DsP A Decrement value of stack pointar by A

LT Push the integer valueonto the stack to form newos

ADR A Push the valuer + A onto the stack to form newes. (This value is conceptually the address
of a variable stored at an offgetvithin the stack frame pointed to by the base registgr

>

| ND PopTos to yieldsi ze; popTos andscs; if 0 <=TOS < Si ze
then subtractos from sos, push result to form newos

VAL PopTos, and push the value ®€n{ Tos] to form newros (an operation we
shall calldereferencing)

STO PopTos andsos; storeTos in Men{ SOS]

HLT Halt

BRN A Unconditional branch to instructian
BZE A PopTos, and branch to instructioxif Tos is zero
NOP No operation

The instructions in the first group are concerned with arithmetic and logical operations, thos
second group afford 1/O facilities, those in the third group allow for the access of data in me
by means of manipulating addresses and the stack, and those in the last group allow for ca
flow of the program itself. TheND operation allows for array indexing with subscript range

checking.

As before, the I/O operations are not typical of real machines, but will allow us to focus on t
principles of emulation without getting lost in the trivia and overheads of handling real I/0 s

Exercises

4.14 How closely does the machine code for this stack machine resemble anything you hay
before?

4.15 Notice that there isBzE operation, but not a complementa&nz (one that would branch if
TOS were non-zero). Do you suppose this is a serious omission? Are there any opcodes wh
been omitted from the set above which you can foresee as being absolutely essential (or af
very useful) for defining a viable "integer" machine?

4.16 Attempt to write down a mathematically oriented version of the semantics of each of tt
machine instructions, as suggested by Exercise 4.3.

4.4.3 Specimen programs
As before, some samples of program code for the machine may help to clarify various poin
Example 4.4

To illustrate how the memory is allocated, consider a simple section of program that corres
high-level code of the form

X:=8;, Wite("Y=",Y);
; Exanple 4.4
0 DSP 2 ; Xis at Men{CPU.BP-1], Y is at MenfCPU. BP-2]
2 ADR -1 ; push address of X
4 LIT 8 ; push 8
6 STO ; X:=8
7 STK ; dunp stack to look at it
8 PRS 'Y =" ; Wite string "Y ="
10 ADR -2 ; push address of Y
12 VAL ; dereference
13 PRN ; Wite integer Y
14 HLT ; term nate execution

This would be stored in memory as

DSP 2 ADR-1 LIT 8 STO STK PRS 510 ADR -2 VAL PRN HLT
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

() (X) 0 I oy 0
504 505 506 507 508 509 510 511

Immediately after loading this program (and before executingdhéstruction), the program
counterPC would have the value 0, while the base regi®eand stack pointesP would each hav
the value 506.

Example 4.5

Example 4.4 scarcely represents the epitome of the programmer’s art! A more ambitious pt
follows, as a translation of the simple algorithm

BEG N

Y :=0;

REPEAT READ(X); Y := X+ Y UNTIL X = 0;
WRI TE(' Total is ', VY);

END

This would require a stack frame of size two to contain the variat@dedy. The machine code
might read

; Exanple 4.5
0 DsP 2 ; Xis at Men{CPU.BP-1], Y is at Meni CPU. BP-2]
2 ADR -2 ; push address of Y (CPU.BP-2) on stack
4 LIT 0 ; push O on stack
6 STO ; store 0 as value of Y
7 ADR -1 ; push address of X (CPU.BP-1) on stack
9 INN ; read value, store on X
10 ADR -2 ; push address of Y on stack
12 ADR -1 ; push address of X on stack
14 VAL . dereference - value of X now on stack
15 ADR -2 ; push address of Y on stack
17 VAL ; dereference - value of Y now on stack
18 ADD ; add Xto Y
19 STO ; store result as new value of Y
20 ADR -1 ; push address of X on stack
22 VAL ; dereference - value of X now on stack
23 LIT 0 ; push constant 0 onto stack
25 EQL ; check equality
26 BZE 7 ; branch if X# 0
28 PRS ’'Total is’ ; I|abel output
30 ADR -2 ; push address of Y on stack
32 VAL . dereference - value of Y now on stack
33 PRN 7 wite result
34 HLT ; terminate execution
Exercises

4.17 Would you write code anything like that given in Example 4.5 if you had to translate th
corresponding algorithm into a familiar ASSEMBLER language directly?

4.18 How difficult would it be to hand translate programs written in this stack machine code
your favourite ASSEMBLER ?

4.19 Use the stack language (and, in due course, its interpreter) to write and test the simple
programs suggested in Exercises 4.6.

4.4.4 An emulator for the stack machine

Once again, to emulate this machine by means of a program written in Modula—2 anv@ll be
convenient to define an interface to the machine by means of a definition module or approg
class. As in the case of the accumulator machine, the main exported facility is a routine to |
the emulation itself, but for expediency we shall export further entities that make it easy to ¢
an assembler, compiler, or loader that will leave pseudo-code directly in memory after trans
of some source code.

const int STKMC nensize = 512; // Limt on menory

/1 machine instructions - order is significant

enum STKMC opcodes {
STKMC adr, STKMC lit, STKMC dsp, STKMC brn, STKMC bze, STKMC prs, STKMC add,
STKMC _sub, STKMC mul, STKMC dvd, STKMC eql, STKMC neq, STKMC |ss, STKMC gegq,
STKMC gtr, STKMC | eq, STKMC neg, STKMC val, STKMC sto, STKMC.ind, STKMC stk,
STKMC_hlt, STKMC_ inn, STKMC prn, STKMC nln, STKMC nop, STKMC nul

typedef enum {

runni ng, finished, badmem baddata, nodata, divzero, badop, badind
} status;
typedef int STKMC address;

class STKMC {
public:
int men]{ STKMC nensi ze]; // virtual machine nmenory

voi d |istcode(char *filenane, STKMC address codel en);
Il Lists the codelen instructions stored in memon naned output file

voi d emul at or (STKMC_address i nitpc, STKMC address codel en,

STKMC address initsp, FILE *data, FILE *results,

bool tracing);
/1 Emul ates action of the codelen instructions stored in mem wth
/Il programcounter initialized to initpc, stack pointer initialized to
/1 initsp. data and results are used for I1/O Tracing at the code I|evel
/'l may be requested

voi d interpret(STKMC address codel en, STKMC address initsp);

/1 Interactively opens data and results files. Then interprets the
/1 codelen instructions stored in mem with stack pointer initialized
/1 to initsp

STKMC_opcodes opcode(char *str);
/1 Maps str to opcode, or to STKMC nul if no match can be found

STKMX() ;

/1 Initializes stack machine

3

The emulator itself has to model the typiéetch-execute cycle of an actual machine. This is ea:
achieved as before, and follows an almost identical pattern to that used for the other machi
implementation is to be found on the accompanying diskette; only the important parts are li
here for the reader to study:

bool STKMC: :i nbounds(int p)
/1 Check that nenory pointer p does not go out of bounds. This should not
/1 happen with correct code, but it is just as well to check
{ if (p < stackmin || p >= STKMC_nensi ze) ps = badnem
return (ps == running);

voi d STKMC: : st ackdunp(STKMC address initsp, FILE *results, STKMC address pcnow)
/1 Dunp data area - useful for debugging
{ int online = 0;

fprintf(results, "\nStack dunp at %id", pcnow);

fprintf(results, " SP:%d BP: %d SM %ld\n", cpu.sp, cpu.bp, stackmn);

for (int | = stackmax - 1; | >= cpu.sp; |--)
{ fprintf(results, "%d:%d", |, menil]);
online++; if (online %6 == 0) putc('\n’, results);

putc(’\n’, results);

}

voi d STKMC: :trace(FI LE *results, STKMC address pcnow)
/!l Sinple trace facility for run tine debuggi ng
{ fprintf(results, " PC %d BP: %d SP: %ld TCS:", pcnow, cpu.bp, cpu.sp);
if (cpu.sp < STKMC nensi ze)
fprintf(results, "%d", nmenfcpu.sp]);

el se
fprintf(results, "??2?2?");
fprintf(results, " %", menonics[cpu.ir]);

switch (cpu.ir)
{ case STKMC adr:
case STKMC prs:
case STKMC |it:
case STKMC dsp:
case STKMC brn:
case STKMC bze:
fprintf(results, "%d", menf{cpu.pc]); break;
/1 no default needed

putc('\n', results);

}

voi d STKMC: : postnorten(FILE *results, STKMC address pcnow)
/1 Report run time error and position
{ putc(’\n", results);

swi tch
{ case
case
case
case
case
case

(ps)
badop:
nodat a:
baddat a:
divzero:
badmem
badi nd:

fprintf(results,

voi d STKMC: : enul at or (STKMC_addr ess i ni t pc,
STKMC _addr ess initsp,

{ STKMC_ address pcnow,

fprintf(results,
fprintf(results,
fprintf(results,
fprintf(results,
fprintf(results,
fprintf(results,

" at %ld\n",

"Il egal opcode");
"No nore data");
"Invalid data");
"Division by zero");
"Menory violation");
" Subscript out of

pcnow) ;

range");

br eak;
br eak;
br eak;

br eak;
br eak;
br eak;

STKMC _addr ess codel en,

bool t

stackmax = initsp;
stackm n = codel en;

ps = running;

cpu.sp = initsp;

cpu.bp = initsp; I
cpu.pc = initpc; 11
do

{ pcnow = cpu. pc;

if (unsigned(nmenfcpu.pc]) > int(STKMC nul)) ps

el se
{ cp

if (tracing) trace(results,

u.ir =

switch (cpu.ir)

{

case STKMC adr:
cpu. sp--;
if (inbounds(cpu.

{ menfcpu. sp]

br eak;

case STKMC |it:
cpu. sp--;
if (inbounds(cpu.
br eak;

case STKMC dsp:

STKMC_opcodes(menf cpu. pcl);

raci ng)

/1 current program counter

initialize registers

initialize program counter

pcnow) ;

sp))

= cpu. bp + nenicpu. pc];

sp)) { menfcpu.sp] =

cpu.sp -= nenicpu. pcl;

if (inbounds(cpu.
br eak;
case STKMC_brn:
cpu. pc = nenicpu.
case STKMC bze:
Cpu. sp++;
if (inbounds(cpu.
{ if (menfcpu.sp
br eak;
case STKMC prs:
if (tracing) fput
int
Cpu. pc++;
whi | e (i nbounds(|

br eak;
case STKMC add:
cpu. sp++;
i f (inbounds(cpu.
br eak;
case STKMC sub:
Cpu. sp++;
if (inbounds(cpu.
br eak;
case STKMC nul :
Cpu. sp++;
i f (inbounds(cpu.
br eak;
case STKMC dvd:
cpu. sp++;
if (inbounds(cpu.
{ if (menfcpu.sp
ps = divzero;
el se

meni cpu. sp] /= nmen{cpu.sp -

br eak;

case STKMC eql :
Cpu. sSp++;
if (inbounds(cpu.
br eak;

case STKMC neq:
Cpu. sp++;

SP)) CPU. pCc++;

pc]; break;

sp))

- 1] == 0) cpu.pc =

S(BLANKS, results);

| oop = meni cpu. pc];

results); |oop--;
results);

Cpu. pc++;

meni cpu. pc];

meni cpu. pcl;

oop) && nmeniloop] != 0)
{ putc(meniloop], }
if (tracing) putc(’'\n’,

FI LE *data, FILE *results,

badop;

Il fetch

/'l execute

cpu. pc++; }

cpu. pc++; }

el se cpu. pc++;

sp)) nenfcpu.sp] += men{cpu.sp - 1];
sp)) menjcpu.sp] -= nmenfcpu.sp - 1];
sp)) nenfcpu.sp] *= men{cpu.sp - 1];
sp))
-]_] == O)
1];
sp)) menicpu.sp] = (menfcpu.sp] == nenicpu.sp -

}

11);

(menfcpu.sp] !'= nenfcpu.sp - 1]);

if (inbounds(cpu.sp)) nenicpu.sp]
br eak;
case STKMC | ss:
Cpu. sp++;
if (inbounds(cpu.sp)) menicpu.sp]
br eak;
case STKMC geq:
Cpu. spt+;
if (inbounds(cpu.sp)) menfcpu.sp] = (nenicpu.sp] >= nmenjcpu.sp - 1]);
br eak;
case STKMC gtr:
Cpu. sp++;
if (inbounds(cpu.sp)) menfcpu.sp] = (nenficpu.sp] > nenfcpu.sp - 1]);
br eak;
case STKMC | eq:
Cpu. sp++;
if (inbounds(cpu.sp)) menicpu.sp]
br eak;
case STKMC neg:
if (inbounds(cpu.sp)) menfcpu.sp] = -nenicpu.sp];
br eak;
case STKMC val:
if (inbounds(cpu.sp) && inbounds(menicpu.sp]))
menf cpu. sp] = men{ men{ cpu. sp]];
br eak;
case STKMC_st o:
Cpu. sp++;
if (inbounds(cpu.sp) && inbounds(menicpu.sp]))
men{ menf cpu. sp]] = nmenfcpu.sp - 1];
Cpu. spt++;
br eak;
case STKMC i nd:
if ((mrenfcpu.sp + 1] < 0) || (nmenfcpu.sp + 1] >= nenjcpu.sp]))
ps = badi nd;
el se
{ cpu.sp += 2;
if (inbounds(cpu.sp)) menfcpu.sp] -= nenfcpu.sp - 1];

(menf cpu. sp] < menfcpu.sp - 1]);

(menf cpu. sp] <= nmenfcpu.sp - 1]);

br eak;
case STKMC stk:
stackdunp(initsp, results, pcnow); break;
case STKMC hlt:
ps = finished; break;
case STKMC_inn:
if (inbounds(cpu.sp) && inbounds(menicpu.sp]))
{ if (fscanf(data, "%", &men{nenicpu.sp]]) == 0)

ps = baddat a;
el se
Cpu. sp++;
br eak;

case STKMC prn:
if (tracing) fputs(BLANKS, results);
Cpu. sp++;
if (inbounds(cpu.sp)) fprintf(results, " %", menfcpu.sp - 1]);
if (tracing) putc(’\n’, results);
br eak;
case STKMC nl n:
putc('\n’, results); break;
case STKMC_nop:
br eak;
defaul t:
ps = badop; break;

}
} while (ps == running);
if (ps !'= finished) postnortem(results, pcnow);

We should remark that there is rather more error-checking code in this interpreter than we :
like. This will detract from the efficiency of the interpreter, but is code that is probably very
necessary when testing the system.

Exercises

4.20 Can you think of ways in which this interpreter can be improved, both as regards effici
and user friendliness? In particular, try adding debugging aids over and above the simple s
dump already provided. Can you think of any ways in which it could be made to detect infin
loops in a user program, or to allow itself to be manually interrupted by an irate or frustratec

4.21 The interpreter attempts to prevent corruption of the memory by detecting when the m
registers go out of bounds. The implementation above is not totally foolproof so, as a usefu
exercise, improve on it. One might argue that correct code will never cause such corruptior
occur, but if one attempts to write stack machine code by hand, it will be found easy to "pus
without "popping" owice versa, and so the checks are very necessary.

4.22 The interpreter checks for division by zero, but does no other checking that arithmetic
operations will stay within bounds. Improve it so that it does so, bearing in mind that one he
predict overflow, rather than wait for it to occur.

4.23 As an alternative, extend the machine so that overflow detection does not halt the pro
sets an overflow flag in the processor. Provide operations whereby the programmer can ch
flag and take whatever action he or she deems appropriate.

4.24 One of the advantages of an emulated machine is that it is usually very easy to extenc
(provided the host language for the interpreter can support the features required). Try introc
two new operations, sayC andPrC, which will read and print single character data. Then rew
those of Exercises 4.6 that involve characters.

4.25 If you examine the code in Examples 4.4 and 4.5 - and in the solutions to Exercises 4.
will observe that the sequences

ADR x
VAL

and

ADR x
(cal cul ati ons)
STO

are very common. Introduce and implement two new operations

PSH A Push Men{ CPU. BP + A] onto stack to formnew TGOS
POP A Pop TOS and assign Meni CPU.BP + A] := TGS

Then rework some of Exercise 4.6 using these facilities, and comment on the possible advi
of having these new operations available.

4.26 As a further variation on the emulated machine, develop a variation where the branch
instructions are "relative" rather than "absolute”. This makes for rather simpler transition to
relocatable code.

4.27 Is it possible to accomplish Boolean (NOT, AND and OR) operations using the current
instruction set? If not, how would you extend the instruction set to incorporate these? If the
strictly necessary, would they be useful additions anyway?

4.28 As yet another alternative, suppose the machine had a set of condition flagzsariiras
similar to those used in the single-accumulator machine of the last section. How would the
instruction set and the emulator need to be changed to use these? Would their presence m

easier to write programs, particularly those that need to evaluate complex Boolean express
4.4.5 A minimal assembler for the machine

To be able to use this system we must, of course, have some way of loading or assembling
into memory. An assembler might conveniently be developed using the following interface,
similar to that used for the single- accumulator machine.

cl ass STKASM {
publi c:
STKASM char *sourcenanme, STKMC *M;
/1l Opens source file from supplied sourcenane

~STKASM) ;
/1 C oses source file

voi d assenbl e(bool &errors, STKMC address &codetop,
STKMC_addr ess &stktop);

Assenbl es source code froman input file and | oads codetop

words of code directly into menmory menfO .. codetop-1],

storing strings in the string pool at the top of menmory in

men] stktop .. STKMC nensize-1].

Ret ur ns
codetop = nunber of instructions assenbl ed and stored
in menf{0] .. menicodetop - 1]
stktop =1 + highest byte in nmenory avail abl e
bel ow string pool in men{stktop] .. men{STK_nensize-1]
errors = true if erroneous instruction fornmat detected

Instruction format :
Instruction [Label] Opcode [AddressFiel d] [Comrent]

Label = I nteger

Opcode = STKMC_Mhenoni ¢
AddressField = Integer | 'String
Coment = String

A string AddressField may only be used with a PRS opcode
Instructions are supplied one to a line; termnated at end of input file

e N UL
e L

}s

This interface would allow us to develop sophisticated assemblers without altering the rest
system - merely the implementation. In particular we can write a load-and-go assembler/int
very easily, using essentially the same system as was suggested in section 4.3.5.

The objective of this chapter is to introduce the principles of machine emulation, and not to
concerned about the problems of assembly. If, however, we confine ourselves to assemblir
where the operations are denoted by their mnemonics, but all the addresses and offsets ar
in absolute form, as was done for Examples 4.4 and 4.5, a rudimentary assembler can be v
relatively easily. The essence of this is described informally by an algorithm like

BEG N
CodeTop : = O;
REPEAT
Ski pLabel ;
I F NOT EOF(SourceFile) THEN
Ext ract (Mnenoni c) ;
Convert (Mhenoni c, OpCode);
Men{ CodeTop] := OpCode; | ncrenent (CodeTop);
| F OpCode = PRS THEN
Extract (String); Store(String, Address);
Meni CodeTop] := Address; |ncrenment(CodeTop);
ELSIF OpCode in {ADR, LIT, DSP, BRN, BZE} THEN
Extract (Address); Meni CodeTop] := Address; |ncrenent(CodeTop);
END;
I gnor eComent s;
END
UNTI L EOF(SourceFil e)
END

An implementation of this is to be found on the source diskette, where code is assumed to

supplied to the machine in free format, one instruction per line. Comments and labels may
added, as in the examples given earlier, but these are simply ignored by the assembler. Sir
absolute addresses are required, any labels are more of a nuisance than they are worth.

Exercises

4.29 The assembler on the source diskette attempts some, but not much, error detection. i
how it could be improved.

4.30 The machine is rather wasteful of memory. Had we used a byte oriented approach we
have stored the code and the literal strings far more compactly. Develop an implementatior
does this.

4.31 It might be deemed unsatisfactory to locate the literal pool in high memory. An alterna
arrangement would be to locate it immediately above the executable code, on the lines of F
4.6. Develop a variation on the assembler (and, if necessary, the interpreter) to exploit this

Code Literal Pool +— Stack - Uariables
z T
CodeTop
i StkTop
Frogram Counter PC Stack Pointer 5P Base Fointer EF

Figure 4.6 HAlternative memory yusage in & stack oriented computer

Further reading

Other descriptions of pseudo-machines and of stack machines are to be found in the books
Wakerly (1981), Brinch Hansen (1985), Wirth (1986, 1996), Watt (1993), and Bennett (199(

The very comprehensive stack-based interpreter for the Zirich Pascal-P system is fully des
the book by Pemberton and Daniels (1982).

