
Compilers and Compiler Generators © P.D. Terry, 2000

4 MACHINE EMULATION 

In Chapter 2 we discussed the use of emulation or interpretation as a tool for programming
language translation. In this chapter we aim to discuss hypothetical machine languages and the
emulation of hypothetical machines for these languages in more detail. Modern computers are
among the most complex machines ever designed by the human mind. However, this is a text on
programming language translation and not on electronic engineering, and our restricted discussion
will focus only on rather primitive object languages suited to the simple translators to be discussed
in later chapters. 

4.1 Simple machine architecture 

Many CPU (central processor unit) chips used in modern computers have one or more internal
registers or accumulators, which may be regarded as highly local memory where simple
arithmetic and logical operations may be performed, and between which local data transfers may
take place. These registers may be restricted to the capacity of a single byte (8 bits), or, as is typical
of most modern processors, they may come in a variety of small multiples of bytes or machine
words. 

One fundamental internal register is the instruction register (IR), through which moves the
bitstrings (bytes) representing the fundamental machine-level instructions that the processor can
obey. These instructions tend to be extremely simple - operations such as "clear a register" or
"move a byte from one register to another" being the typical order of complexity. Some of these
instructions may be completely defined by a single byte value. Others may need two or more bytes
for a complete definition. Of these multi-byte instructions, the first usually denotes an operation,
and the rest relate either to a value to be operated upon, or to the address of a location in memory at
which can be found the value to be operated upon. 

The simplest processors have only a few data registers, and are very limited in what they can
actually do with their contents, and so processors invariably make provision for interfacing to the
memory of the computer, and allow transfers to take place along so-called bus lines between the
internal registers and the far greater number of external memory locations. When information is to
be transferred to or from memory, the CPU places the appropriate address information on the
address bus, and then transmits or receives the data itself on the data bus. This is illustrated in
Figure 4.1. 



The memory may simplistically be viewed as a one-dimensional array of byte values, analogous to
what might be described in high-level language terms by declarations like the following 

  TYPE
    ADDRESS = CARDINAL [0 .. MemSize - 1];
    BYTES   = CARDINAL [0 .. 255];
  VAR
    Mem : ARRAY ADDRESS OF BYTES;

in Modula-2, or, in C++ (which does not provide for the subrange types so useful in this regard) 

  typedef unsigned char BYTES;
  BYTES Mem[MemSize];

Since the memory is used to store not only "data" but also "instructions", another important internal
register in a processor, the so-called program counter or instruction pointer (denoted by PC or
IP), is used to keep track of the address in memory of the next instruction to be fed to the
processor’s instruction register (IR). 

Perhaps it will be helpful to think of the processor itself in high-level terms: 

  TYPE
    PROCESSOR =                   struct processor {
      RECORD                        BYTES IR;
        IR,                         BYTES R1, R2, R3;
        R1, R2, R3 : BYTES;         unsigned PC;
        PC : ADDRESS;             };
      END;
  VAR                             processor cpu;
    CPU : PROCESSOR;

The operation of the machine is repeatedly to fetch a byte at a time from memory (along the data
bus), place it in the IR, and then execute the operation which this byte represents. Multi-byte
instructions may require the fetching of further bytes before the instruction itself can be decoded
fully by the CPU, of course. After the instruction denoted by the contents of IR has been executed,
the value of PC will have been changed to point to the next instruction to be fetched. This
fetch-execute cycle may be described by the following algorithm: 

  BEGIN
    CPU.PC := initialValue;  (* address of first code instruction *)
    LOOP
      CPU.IR := Mem[CPU.PC]; (* fetch *)
      Increment(CPU.PC);     (* bump PC in anticipation *)
      Execute(CPU.IR);       (* affecting other registers, memory, PC *)
                             (* handle machine interrupts if necessary *)
    END
  END.

Normally the value of PC alters by small steps (since instructions are usually stored in memory in
sequence); execution of branch instructions may, however, have a rather more dramatic effect. So
might the occurrence of hardware interrupts, although we shall not discuss interrupt handling
further. 

A program for such a machine consists, in the last resort, of a long string of byte values. Were these
to be written on paper (as binary, decimal, or hexadecimal values), they would appear pretty
meaningless to the human reader. We might, for example, find a section of program reading 

         25  45  21  34  34  30  45

Although it may not be obvious, this might be equivalent to a high-level statement like 

         Price := 2 * Price + MarkUp; 

Machine-level programming is usually performed by associating mnemonics with the recognizable



operations, like HLT for "halt" or ADD for "add to register". The above code is far more
comprehensible when written (with commentary) as 

         LDA  45   ; load accumulator with value stored in memory location 45
         SHL       ; shift accumulator one bit left (multiply by 2)
         ADI  34   ; add 34 to the accumulator
         STA  45   ; store the value in the accumulator at memory location 45

Programs written in an assembly language - which have first to be assembled before they can be
executed - usually make use of other named entities, for example 

  MarkUp EQU  34       ; CONST MarkUp = 34;
         LDA  Price    ; CPU.A := Price;
         SHL           ; CPU.A := 2 * CPU.A;
         ADI  MarkUp   ; CPU.A := CPU.A + 34;
         STA  Price    ; Price := CPU.A;

When we use code fragments such as these for illustration we shall make frequent use of
commentary showing an equivalent fragment written in a high-level language. Commentary follows
the semicolon on each line, a common convention in assembler languages. 

4.2 Addressing modes 

As the examples given earlier suggest, programs prepared at or near the machine level frequently
consist of a sequence of simple instructions, each involving a machine-level operation and one or
more parameters. 

An example of a simple operation expressed in a high-level language might be 

         AmountDue := Price + Tax;

Some machines and assembler languages provide for such operations in terms of so-called
three-address code, in which an operation - denoted by a mnemonic usually called the opcode - is
followed by two operands and a destination. In general this takes the form 

         operation     destination, operand1, operand2

for example 

         ADD      AmountDue, Price, Tax

We may also express this in a general sense as a function call 

         destination  :=  operation(operand1, operand2 )

which helps to stress the important idea that the operands really denote "values", while the
destination denotes a processor register, or an address in memory where the result is to be stored. 

In many cases this generality is restricted (that is, the machine suffers from non-orthogonality in
design). Typically the value of one operand is required to be the value originally stored at the
destination. This corresponds to high-level statements like 

         Price := Price * InflationFactor; 

and is mirrored at the low-level by so-called two-address code of the general form 

         operation     destination, operand



for example 

         MUL      Price, InflationFactor

In passing, we should point out an obvious connection between some of the assignment operations
in C++ and two-address code. In C++ the above assignment would probably have been written 

         Price *= InflationFactor; 

which, while less transparent to a Modula-2 programmer, is surely a hint to a C++ compiler to
generate code of this form. (Perhaps this example may help you understand why C++ is regarded by
some as the world’s finest assembly language!) 

In many real machines even general two-address code is not found at the machine level. One of
destination and operand might be restricted to denoting a machine register (the other one might
denote a machine register, or a constant, or a machine address). This is often called one and a half
address code, and is exemplified by 

         MOV     R1, Value     ; CPU.R1 := Value
         ADD     Answer, R1    ; Answer := Answer + CPU.R1
         MOV     Result, R2    ; Result := CPU.R2

Finally, in so-called accumulator machines we may be restricted to one-address code, where the
destination is always a machine register (except for those operations that copy (store) the contents
of a machine register into memory). In some assembler languages such instructions may still appear
to be of the two-address form, as above. Alternatively they might be written in terms of opcodes
that have the register implicit in the mnemonic, for example 

         LDA     Value        ; CPU.A := Value
         ADA     Answer       ; CPU.A := CPU.A + Answer
         STB     Result       ; Result := CPU.B

Although many of these examples might give the impression that the corresponding machine level
operations require multiple bytes for their representation, this is not necessarily true. For example,
operations that only involve machine registers, exemplified by 

         MOV     R1, R2       ;  CPU.R1 := CPU.R2
         LDA     B            ;  CPU.A := CPU.B
         TAX                  ;  CPU.X := CPU.A

might require only a single byte - as would be most obvious in an assembler language that used the
third representation. The assembly of such programs is be eased considerably by a simple and
self-consistent notation for the source code, a subject that we shall consider further in a later
chapter. 

In those instructions that do involve the manipulation of values other than those in the machine
registers alone, multi-byte instructions are usually required. The first byte typically specifies the
operation itself (and possibly the register or registers that are involved), while the remaining bytes
specify the other values (or the memory addresses of the other values) involved. In such
instructions there are several ways in which the ancillary bytes might be used. This variety gives
rise to what are known as different addressing modes for the processor, and whose purpose it is to
provide an effective address to be used in an instruction. Exactly which modes are available varies
tremendously from processor to processor, and we can mention only a few representative examples
here. The various possibilities may be distinguished in some assembler languages by the use of
different mnemonics for what at first sight appear to be closely related operations. In other
assembler languages the distinction may be drawn by different syntactic forms used to specify the
registers, addresses or values. One may even find different assembler languages for a common



processor. 

In inherent addressing the operand is implicit in the opcode itself, and often the instruction is
contained in a single byte. For example, to clear a machine register named A we might have 

         CLA          or       CLR  A         ;  CPU.A := 0

Again we stress that, though the second form seems to have two components, it does not always
imply the use of two bytes of code at the machine level. 

In immediate addressing the ancillary bytes for an instruction typically give the actual value that
is to be combined with a value in a register. Examples might be 

         ADI  34      or       ADD  A, #34    ;  CPU.A := CPU.A + 34

In these two addressing modes the use of the word "address" is almost misleading, as the value of
the ancillary bytes may often have nothing to do with a memory address at all. In the modes now to
be discussed the connection with memory addresses is far more obvious. 

In direct or absolute addressing the ancillary bytes typically specify the memory address of the
value that is to be retrieved or combined with the value in a register, or specify where a register
value is to be stored. Examples are 

         LDA  34      or       MOV  A, 34     ;  CPU.A := Mem[34]
         STA  45               MOV  45, A     ;  Mem[45] := CPU.A
         ADD  38               ADD  A, 38     ;  CPU.A := CPU.A + Mem[38]

Beginners frequently confuse immediate and direct addressing, a situation not improved by the fact
that there is no consistency in notation between different assembler languages, and there may even
be a variety of ways of expressing a particular addressing mode. For example, for the Intel 80x86
processors as used in the IBM-PC and compatibles, low-level code is written in a two-address form
similar to that shown above - but the immediate mode is denoted without needing a special symbol
like #, while the direct mode may have the address in brackets: 

         ADD  AX, 34    ;  CPU.AX := CPU.AX + 34  Immediate
         MOV  AX, [34]  ;  CPU.AX := Mem[34]      Direct

In register-indexed addressing one of the operands in an instruction specifies both an address and
also an index register, whose value at the time of execution may be thought of as specifying the
subscript to an array stored from that address 

         LDX  34      or       MOV  A, 34[X]  ;  CPU.A := Mem[34 + CPU.X]
         STX  45               MOV  45[X], A  ;  Mem[45+CPU.X] := CPU.A
         ADX  38               ADD  A, 38[X]  ;  CPU.A := CPU.A + Mem[38+CPU.X]

In register-indirect addressing one of the operands in an instruction specifies a register whose
value at the time of execution gives the effective address where the value of the operand is to be
found. This relates to the concept of pointers as used in Modula-2, Pascal and C++. 

         MOV   R1, @R2     ;  CPU.R1 := Mem[CPU.R2]
         MOV   AX, [BX]    ;  CPU.AX := Mem[CPU.BX]

Not all the registers in a machine can necessarily be used in these ways. Indeed, some machines
have rather awkward restrictions in this regard. 

Some processors allow for very powerful variations on indexed and indirect addressing modes. For
example, in memory-indexed addressing, a single operand may specify two memory addresses -
the first of which gives the address of the first element of an array, and the second of which gives



the address of a variable whose value will be used as a subscript to the array. 

         MOV   R1, 400[100]    ;  CPU.R1 := Mem[400 + Mem[100]]

Similarly, in memory-indirect addressing one of the operands in an instruction specifies a
memory address at which will be found a value that forms the effective address where another
operand is to be found. 

         MOV   R1, @100    ;  CPU.R1 := Mem[Mem[100]]

This mode is not as commonly found as the others; where it does occur it directly corresponds to
the use of pointer variables in languages that support them. Code like 

  TYPE
    ARROW = POINTER TO CARDINAL;          typedef int *ARROW;
  VAR
    Arrow  : ARROW;                       ARROW Arrow;
    Target : CARDINAL;                    int Target;
  BEGIN
    Target := Arrow^;                     Target = *Arrow;

might translate to equivalent code in assembler like 

         MOV   AX, @Arrow
         MOV   Target, AX

or even 

         MOV   Target, @Arrow

where, once again, we can see an immediate correspondence between the syntax in C++ and the
corresponding assembler. 

Finally, in relative addressing an operand specifies an amount by which the current program count
register PC must be incremented or decremented to find the actual address of interest. This is
chiefly found in "branching" instructions, rather than in those that move data between various
registers and/or locations in memory. 

Further reading 

Most books on assembler level programming have far deeper discussions of the subject of
addressing modes than we have presented. Two very readable accounts are to be found in the books
by Wakerly (1981) and MacCabe (1993). A deeper discussion of machine architectures is to be
found in the book by Hennessy and Patterson (1990). 

4.3 Case study 1 - A single-accumulator machine 

Although sophisticated processors may have several registers, their basic principles - especially as
they apply to emulation - may be illustrated by the following model of a single-accumulator
processor and computer, very similar to one suggested by Wakerly (1981). Here we shall take
things to extremes and presume the existence of a system with all registers only 1 byte (8 bits)
wide. 



4.3.1 Machine architecture 

Diagrammatically we might represent this machine as in Figure 4.2. 

The symbols in this diagram refer to the following components of the machine 

ALU is the arithmetic logic unit, where arithmetic and logical operations are actually
performed. 

A is the 8-bit accumulator, a register for doing arithmetic or logical operations. 

SP is an 8-bit stack pointer, a register that points to an area in memory that may be
utilized as a stack. 

X is an 8-bit index register, which is used in indexing areas of memory which
conceptually form data arrays. 

Z, P, C are single bit condition flags or status registers, which are set "true" when an
operation causes a register to change to a zero value, or to a positive value, or to
propagate a carry, respectively. 

IR is the 8-bit instruction register, in which is held the byte value of the instruction
currently being executed. 

PC is the 8-bit program counter, which contains the address in memory of the
instruction that is next to be executed. 

EAR is the effective address register, which contains the address of the byte of data
which is being manipulated by the current instruction. 

The programmer’s model of this sort of machine is somewhat simpler - it consists of a number of
"variables" (in the C++ or Modula-2 sense), each of which is one byte in capacity. Some of these
correspond to processor registers, while the others form the random access read/write (RAM)
memory, of which we have assumed there to be 256 bytes, addressed by the values 0 through 255.
In this memory, as usual, will be stored both the data and the instructions for the program under
execution. The processor, its registers, and the associated RAM memory can be thought of as
though they were described by declarations like 

  TYPE
    BYTES = CARDINAL [0 .. 255];                 typedef unsigned char bytes;
    PROCESSOR = RECORD                           struct processor {
      A, SP, X, IR, PC : BYTES;                    bytes a, sp, x, ir, pc;
      Z, P, C : BOOLEAN;                           bool z, p, c;
    END;                                         };



  TYPE STATUS = (running, finished,              typedef enum { running, finished,
                 nodata, baddata,                  nodata, baddata, badop
                 badop);                         } status;
  VAR
    CPU : PROCESSOR;                             processor cpu;
    Mem : ARRAY BYTES OF BYTES;                  bytes mem[256];
    PS  : STATUS;                                status ps;

where the concept of the processor status PS has been introduced in terms of an enumeration that
defines the states in which an emulator might find itself. 

4.3.2 Instruction set 

Some machine operations are described by a single byte. Others require two bytes, and have the
format 

                    Byte 1     Opcode
                    Byte 2     Address field

The set of machine code functions available is quite small. Those marked * affect the P and Z flags,
and those marked + affect the C flag. An informal description of their semantics follows: 

Mnemonic Hex Decimal Function 
opcode 

NOP          00h   0  No operation (this might be used to set a break point in an emulator)
CLA          01h   1  Clear accumulator A
CLC    +     02h   2  Clear carry bit C 
CLX          03h   3  Clear index register X
CMC    +     04h   4  Complement carry bit C
INC       *  05h   5  Increment accumulator A by 1
DEC       *  06h   6  Decrement accumulator A by 1
INX       *  07h   7  Increment index register X by 1
DEX       *  08h   8  Decrement index register X by 1
TAX          09h   9  Transfer accumulator A to index register X
INI       *  0Ah  10  Load accumulator A with integer read from input in decimal
INH       *  0Bh  11  Load accumulator A with integer read from input in hexadecimal
INB       *  0Ch  12  Load accumulator A with integer read from input in binary
INA       *  0Dh  13  Load accumulator A with ASCII value read from input (a single character)
OTI          0Eh  14  Write value of accumulator A to output as a signed decimal number
OTC          0Fh  15  Write value of accumulator A to output as an unsigned decimal number
OTH          10h  16  Write value of accumulator A to output as an unsigned hexadecimal number
OTB          11h  17  Write value of accumulator A to output as an unsigned binary number
OTA          12h  18  Write value of accumulator A to output as a single character
PSH          13h  19  Decrement SP and push value of accumulator A onto stack
POP       *  14h  20  Pop stack into accumulator A and increment SP
SHL    +  *  15h  21  Shift accumulator A one bit left
SHR    +  *  16h  22  Shift accumulator A one bit right
RET          17h  23  Return from subroutine (return address popped from stack)
HLT          18h  24  Halt program execution

The above are all single-byte instructions. The following are all double-byte instructions. 

LDA  B    *  19h  25  Load accumulator A directly with contents of location whose address is
                      given as B 
LDX  B    *  1Ah  26  Load accumulator A with contents of location whose address is given as B,
                      indexed by the value of X (that is, an address computed as the value of B + X)
LDI  B    *  1Bh  27  Load accumulator A with the immediate value B
LSP  B       1Ch  28  Load stack pointer SP with contents of location whose address is given as B

LSI  B       1Dh  29  Load stack pointer SP immediately with the value B
                      

STA  B       1Eh  30  Store accumulator A on the location whose address is given as B



STX  B       1Fh  31  Store accumulator A on the location whose address is given as B, indexed
                      by the value of X
ADD  B  + *  20h  32  Add to accumulator A the contents of the location whose address is given as B

ADX  B  + *  21h  33  Add to accumulator A the contents of the location whose address is given as
                      B,indexed by the value of X

ADI  B  + *  22h  34  Add the immediate value B to accumulator A
ADC  B  + *  23h  35  Add to accumulator A the value of the carry bit C plus the contents of the
                      location whose address is given as B

ACX  B  + *  24h  36  Add to accumulator A the value of the carry bit C plus the contents of the
                      location whose address is given as B, indexed by the value of X

ACI  B  + *  25h  37  Add the immediate value B plus the value of the carry bit C to accumulator A
SUB  B  + *  26h  38  Subtract from accumulator A the contents of the location whose address is
                      given as B
SBX  B  + *  27h  39  Subtract from accumulator A the contents of the location whose address is
                      given as B, indexed by the value of X

SBI  B  + *  28h  40  Subtract the immediate value B from accumulator A
SBC  B  + *  29h  41  Subtract from accumulator A the value of the carry bit C plus the contents
                      of the location whose address is given as B

SCX  B  + *  2Ah  42  Subtract from accumulator A the value of the carry bit C plus the contents
                      of the location whose address is given as B, indexed by the value of X

SCI  B  + *  2Bh  43  Subtract the immediate value B plus the value of the carry bit C from
                      accumulator A 
CMP  B  + *  2Ch  44  Compare accumulator A with the contents of the location whose address is
                      given as B
CPX  B  + *  2Dh  45  Compare accumulator A with the contents of the location whose address is
                      given as B, indexed by the value of X

CPI  B  + *  2Eh  46  Compare accumulator A directly with the value B

These comparisons are done by virtual subtraction of the operand from A, and setting the flags P

and Z as appropriate 

ANA  B  + *  2Fh  47  Bitwise AND accumulator A with the contents of the location whose address
                      is given as B
ANX  B  + *  30h  48  Bitwise AND accumulator A with the contents of the location whose address
                      is given as B, indexed by the value of X

ANI  B  + *  31h  49  Bitwise AND accumulator A with the immediate value B
ORA  B  + *  32h  50  Bitwise OR accumulator A with the contents of the location whose address
                      is given as B 
ORX  B  + *  33h  51  Bitwise OR accumulator A with the contents of the location whose address
                      is given as B, indexed by the value of X

ORI  B  + *  34h  52  Bitwise OR accumulator A with the immediate value B

BRN  B       35h  53  Branch to the address given as B

BZE  B       36h  54  Branch to the address given as B if the Z condition flag is set
BNZ  B       37h  55  Branch to the address given as B if the Z condition flag is unset
BPZ  B       38h  56  Branch to the address given as B if the P condition flag is set
BNG  B       39h  57  Branch to the address given as B if the P condition flag is unset
BCC  B       3Ah  58  Branch to the address given as B if the C condition flag is unset
BCS  B       3Bh  59  Branch to the address given as B if the C condition flag is set

JSR  B       3Ch  60  Call subroutine whose address is B, pushing return address onto the stack

Most of the operations listed above are typical of those found in real machines. Notable exceptions
are provided by the I/O (input/output) operations. Most real machines have extremely primitive
facilities for doing anything like this directly, but for the purposes of this discussion we shall cheat
somewhat and assume that our machine has several very powerful single-byte opcodes for handling
I/O. (Actually this is not cheating too much, for some macro-assemblers allow instructions like this
which are converted into procedure calls into part of an underlying operating system, stored perhaps
in a ROM BIOS). 



A careful examination of the machine and its instruction set will show some features that are
typical of real machines. Although there are three data registers, A, X and SP, two of them (X and
SP) can only be used in very specialized ways. For example, it is possible to transfer a value from A

to X, but not vice versa, and while it is possible to load a value into SP it is not possible to examine
the value of SP at a later stage. The logical operations affect the carry bit (they all unset it), but,
surprisingly, the INC and DEC operations do not. 

It is this model upon which we shall build an emulator in section 4.3.4. In a sense the formal
semantics of these opcodes are then embodied directly in the operational semantics of the machine
(or pseudo-machine) responsible for executing them. 

Exercises 

4.1 Which addressing mode is used in each of the operations defined above? Which addressing
modes are not represented? 

4.2 Many 8-bit microprocessors have 2-byte (16-bit) index registers, and one, two, and three-byte
instructions (and even longer). What peculiar or restrictive features does our machine possess,
compared to such processors? 

4.3 As we have already commented, informal descriptions in English, as we have above, are not as
precise as semantics that are formulated mathematically. Compare the informal description of the
INC operation with the following: 

     INC  *  05h   5   A := (A + 1) mod 256;  Z := A = 0;  P := A IN {0 ... 127} 

Try to express the semantics of each of the other machine instructions in a similar way. 

4.3.3 A specimen program 

Some examples of code for this machine may help the reader’s understanding. Consider the
problem of reading a number and then counting the number of non-zero bits in its binary
representation. 

Example 4.1 

The listing below shows a program to solve this problem coded in an ASSEMBLER language
based on the mnemonics given previously, as it might be listed by an assembler program, showing
the hexadecimal representation of each byte and where it is located in memory. 

   00                   BEG                  ; Count the bits in a number
   00    0A             INI                  ; Read(A)
   01           LOOP                         ; REPEAT
   01    16             SHR                  ;  A := A DIV 2
   02    3A 0D          BCC     EVEN         ;  IF A MOD 2 # 0 THEN
   04    1E 13          STA     TEMP         ;    TEMP := A
   06    19 14          LDA     BITS
   08    05             INC
   09    1E 14          STA     BITS         ;    BITS := BITS + 1
   0B    19 13          LDA     TEMP         ;    A := TEMP
   0D    37 01  EVEN    BNZ     LOOP         ; UNTIL A = 0
   0F    19 14          LDA     BITS         ;
   11    0E             OTI                  ; Write(BITS)
   12    18             HLT                  ; terminate execution
   13           TEMP    DS      1            ; VAR TEMP : BYTE
   14    00     BITS    DC      0            ;     BITS : BYTE



   15                   END

Example 4.2 (absolute byte values) 

In a later chapter we shall discuss how this same program can be translated into the following
corresponding absolute format (expressed this time as decimal numbers): 

  10 22 58 13 30 19 25 20  5 30 20 25 19 55  1 25 20 14 24  0  0

Example 4.3 (mnemonics with absolute address fields) 

For the moment, we shall allow ourselves to consider the absolute form as equivalent to a form in
which the mnemonics still appear for the sake of clarity, but where the operands have all been
converted into absolute (decimal) addresses and values: 

   INI
   SHR
   BCC   13
   STA   19
   LDA   20
   INC
   STA   20
   LDA   19
   BNZ   1
   LDA   20
   OTI
   HLT
   0
   0

Exercises 

4.4 The machine does not possess an instruction for negating the value in the accumulator. What
code would one have to write to be able to achieve this? 

4.5 Similarly, it does not possess instructions for multiplication and division. Is it possible to use
the existing instructions to develop code for doing these operations? If so, how efficiently can they
be done? 

4.6 Try to write programs for this machine that will 

(a) Find the largest of three numbers. 

(b) Find the largest and the smallest of a list of numbers terminated by a zero (which is
not regarded as a member of the list). 

(c) Find the average of a list of non-zero numbers, the list being terminated by a zero. 

(d) Compute N! for small N. Try using an iterative as well as a recursive approach. 

(e) Read a word and then write it backwards. The word is terminated with a period. Try
using an "array", or alternatively, the "stack". 

(f) Determine the prime numbers between 0 and 255. 

(g) Determine the longest repeated sequence in a sequence of digits terminated with



zero. For example, for data reading 1 2 3 3 3 3 4 5 4 4 4 4 4 4 4 6 5 5 report that "4
appeared 7 times". 

(h) Read an input sequence of numbers terminated with zero, and then extract the
embedded monotonically increasing sequence. For example, from 1 2 12 7 4 14 6 23
extract the sequence 1 2 12 14 23. 

(i) Read a small array of integers or characters and sort them into order. 

(j) Search for and report on the largest byte in the program code itself. 

(k) Search for and report on the largest byte currently in memory. 

(l) Read a piece of text terminated with a period, and then report on how many times
each letter appeared. To make things interesting, ignore the difference between upper
and lower case. 

(m) Repeat some of the above problems using 16-bit arithmetic (storing values as pairs
of bytes, and using the "carry" operations to perform extended arithmetic). 

4.7 Based on your experiences with Exercise 4.6, comment on the usefulness, redundancy and any
other features of the code set for the machine. 

4.3.4 An emulator for the single-accumulator machine 

Although a processor for our machine almost certainly does not exist "in silicon", its action may
easily be simulated "in software". Essentially we need only to write an emulator that models the
fetch-execute cycle of the machine, and we can do this in any suitable language for which we
already have a compiler on a real machine. 

Languages like Modula-2 or C++ are highly suited to this purpose. Not only do they have
"bit-twiddling" capabilities for performing operations like "bitwise and", they have the advantage
that one can implement the various phases of translators and emulators as coherent, clearly
separated modules (in Modula-2) or classes (in C++). Extended versions of Pascal, such as Turbo
Pascal, also provide support for such modules in the form of units. C is also very suitable on the
first score, but is less well equipped to deal with clearly separated modules, as the header file
mechanism used in C is less watertight than the mechanisms in the other languages. 

In modelling our hypothetical machine in Modula-2 or C++ it will thus be convenient to define an
interface in the usual way by means of a definition module, or by the public interface to a class. (In
this text we shall illustrate code in C++; equivalent code in Modula-2 and Turbo Pascal will be
found on the diskette that accompanies the book.) 

The main responsibility of the interface is to declare an emulator routine for interpreting the code
stored in the memory of the machine. For expediency we choose to extend the interface to expose
the values of the operations, and the memory itself, and to provide various other useful facilities
that will help us develop an assembler or compiler for the machine in due course. (In this, and in
other interfaces, "private" members are not shown.) 

  // machine instructions - order is significant
  enum MC_opcodes {
    MC_nop, MC_cla, MC_clc, MC_clx, MC_cmc, MC_inc, MC_dec, MC_inx, MC_dex,
    MC_tax, MC_ini, MC_inh, MC_inb, MC_ina, MC_oti, MC_otc, MC_oth, MC_otb,



    MC_ota, MC_psh, MC_pop, MC_shl, MC_shr, MC_ret, MC_hlt, MC_lda, MC_ldx,
    MC_ldi, MC_lsp, MC_lsi, MC_sta, MC_stx, MC_add, MC_adx, MC_adi, MC_adc,
    MC_acx, MC_aci, MC_sub, MC_sbx, MC_sbi, MC_sbc, MC_scx, MC_sci, MC_cmp,
    MC_cpx, MC_cpi, MC_ana, MC_anx, MC_ani, MC_ora, MC_orx, MC_ori, MC_brn,
    MC_bze, MC_bnz, MC_bpz, MC_bng, MC_bcc, MC_bcs, MC_jsr, MC_bad = 255 };

  typedef enum { running, finished, nodata, baddata, badop } status;
  typedef unsigned char MC_bytes;

  class MC {
    public:
      MC_bytes mem[256];    // virtual machine memory

      void listcode(void);
      // Lists the 256 bytes stored in mem on requested output file

      void emulator(MC_bytes initpc, FILE *data, FILE *results, bool tracing);
      // Emulates action of the instructions stored in mem, with program counter
      // initialized to initpc.  data and results are used for I/O.
      // Tracing at the code level may be requested

      void interpret(void);
      // Interactively opens data and results files, and requests entry point.
      // Then interprets instructions stored in mem

      MC_bytes opcode(char *str);
      // Maps str to opcode, or to MC_bad (0FFH) if no match can be found

      MC();
      // Initializes accumulator machine

  };

The implementation of emulator must model the typical fetch-execute cycle of the hypothetical
machine. This is easily achieved by the repetitive execution of a large switch or CASE statement,
and follows the lines of the algorithm given in section 4.1, but allowing for the possibility that the
program may halt, or otherwise come to grief: 

  BEGIN
    InitializeProgramCounter(CPU.PC);
    InitializeRegisters(CPU.A, CPU.X, CPU.SP, CPU.Z, CPU.P, CPU.C);
    PS := running;
    REPEAT
      CPU.IR := Mem[CPU.PC]; Increment(CPU.PC)    (* fetch *)
      CASE CPU.IR OF                              (* execute *)
          . . . .
      END
    UNTIL PS # running;
    IF PS # finished THEN PostMortem END
  END

A detailed implementation of the machine class is given as part of Appendix D, and the reader is
urged to study it carefully. 

Exercises 

4.8 You will notice that the code in Appendix D makes no use of an explicit EAR register. Develop
an emulator that does have such a register, and investigate whether this is an improvement. 

4.9 How well does the informal description of the machine instruction set allow you to develop
programs and an interpreter for the machine? Would a description in the form suggested by
Exercise 4.3 be better? 

4.10 Do you suppose interpreters might find it difficult to handle I/O errors in user programs? 

4.11 Although we have required that the machine incorporate the three condition flags P, Z and C,
we have not provided another one commonly found on such machines, namely for detecting



overflow. Introduce V as such a flag into the definition of the machine, provide suitable instructions
for testing it, and modify the emulator so that V is set and cleared by the appropriate operations. 

4.12 Extend the instruction set and the emulator to include operations for negating the accumulator,
and for providing multiplication and division operations. 

4.13 Enhance the emulator so that when it interprets a program, a full screen display is given,
highlighting the instruction that is currently being obeyed and depicting the entire memory contents
of the machine, as well as the state of the machine registers. For example we might have a display
like that in Figure 4.3 for the program exemplified earlier, at the stage where it is about to execute
the first instruction. 

4.3.5 A minimal assembler for the machine 

Given the emulator as implemented above, and some way of assembling or compiling programs, it
becomes possible to implement a complete load-and-go system for developing and running simple
programs. An assembler can be provided through a class with a public interface like 

  class AS {
    public:
      AS(char *sourcename, MC *M);
      // Opens source file from supplied sourcename

      ~AS();
      // Closes source file

      void assemble(bool &errors);
      // Assembles source code from src file and loads bytes of code directly
      // into memory.  Returns errors = true if source code is corrupt
  };

In terms of these two classes, a load-and-go system might then take the form 

  void main(int argc, char *argv[])
  { bool errors;
    if (argc == 1) { printf("Usage: ASSEMBLE source\n"); exit(1); }
    MC *Machine = new MC();
    AS *Assembler = new AS(argv[1], Machine);
    Assembler->assemble(errors);
    delete Assembler;
    if (errors)
      printf("Unable to interpret code\n");
    else
    { printf("Interpreting code ...\n");
      Machine->interpret();
    }
    delete Machine;
  }



A detailed discussion of assembler techniques is given in a later chapter. For the moment we note
that various implementations matching this interface might be written, of various complexities. The
very simplest of these might require the user to hand-assemble his or her programs and would
amount to nothing more than a simple loader: 

  AS::AS(char *sourcename, MC *M)
  { Machine = M;
    src = fopen(sourcename, "r");
    if (src == NULL) { printf("Could not open input file\n"); exit(1); }
  }

  AS::~AS()
  { if (src) fclose(src); src = NULL; }

  void AS::assemble(bool &errors)
  { int number;
    errors = false;
    for (int i = 0; i <= 255; i++)
    { if (fscanf(src, "%d", &number) != 1)
        { errors = true; number = MC_bad; }
      Machine->mem[i] = number % 256;
    }
  }

However, it is not difficult to write an alternative implementation of the assemble routine that
allows the system to accept a sequence of mnemonics and numerical address fields, like that given
in Example 4.3 earlier. We present possible code, with sufficient commentary that the reader should
be able to follow it easily. 

  void readmnemonic(FILE *src, char &ch, char *mnemonic)
  { int i = 0;
    while (ch > ’ ’)
    { if (i <= 2) { mnemonic[i] = ch; i++; }
      ch = toupper(getc(src));
    }
    mnemonic[i] = ’\0’;
  }

  void readint(FILE *src, char &ch, int &number, bool &okay)
  { okay = true;
    number = 0;
    bool negative = (ch == ’-’);
    if (ch == ’-’ || ch == ’+’) ch = getc(src);
    while (ch > ’ ’)
    { if (isdigit(ch))
        number = number * 10 + ch - ’0’;
      else
        okay = false;
      ch = getc(src);
    }
    if (negative) number = -number;
  }

  void AS::assemble(bool &errors)
  { char mnemonic[4]; // mnemonic for matching
    MC_bytes lc = 0;  // location counter
    MC_bytes op;      // assembled opcode
    int number;       // assembled number
    char ch;          // general character for input
    bool okay;        // error checking on reading numbers

    printf("Assembling code ... \n");
    for (int i = 0; i <= 255; i++)          // fill with invalid opcodes
      Machine->mem[i] = MC_bad;
    lc = 0;                                 // initialize location counter
    errors = false;                         // optimist!
    do
    { do ch = toupper(getc(src));
      while (ch <= ’ ’ && !feof(src));      // skip spaces and blank lines
      if (!feof(src))                       // there should be a line to assemble
      { if (isupper(ch))                    // we should have a mnemonic
        { readmnemonic(src, ch, mnemonic);  // unpack it
          op = Machine->opcode(mnemonic);   // look it up
          if (op == MC_bad)                 // the opcode was unrecognizable
            { printf("%s - Bad mnemonic at %d\n", mnemonic, lc); errors = true; }
          Machine->mem[lc] = op;            // store numerical equivalent



        }
        else                                // we should have a numeric constant
        { readint(src, ch, number, okay);   // unpack it
          if (!okay) { printf("Bad number at %d\n", lc); errors = true; }
          if (number >= 0)                  // convert to proper byte value
            Machine->mem[lc] = number % 256;
          else
            Machine->mem[lc] = (256 - abs(number) % 256) % 256;
        }
        lc = (lc + 1) % 256;                // bump up location counter
      }
    } while (!feof(src));
  }

4.4 Case study 2 - a stack-oriented computer 

In later sections of this text we shall be looking at developing a compiler that generates object code
for a hypothetical "stack machine", one that may have no general data registers of the sort discussed
previously, but which functions primarily by manipulating a stack pointer and associated stack. An
architecture like this will be found to be ideally suited to the evaluation of complicated arithmetic
or Boolean expressions, as well as to the implementation of high-level languages which support
recursion. It will be appropriate to discuss such a machine in the same way as we did for the
single-accumulator machine in the last section. 

4.4.1 Machine architecture 

Compared with normal register based machines, this one may at first seem a little strange, because
of the paucity of registers. In common with most machines we shall still assume that it stores code
and data in a memory that can be modelled as a linear array. The elements of the memory are
"words", each of which can store a single integer - typically using a 16 bit two’s-complement
representation. Diagrammatically we might represent this machine as in Figure 4.4: 

The symbols in this diagram refer to the following components of the machine 

ALU is the arithmetic logic unit where arithmetic and logical operations are actually
performed. 

Temp is a set of 16-bit registers for holding intermediate results needed during arithmetic
or logical operations. These registers cannot be accessed explicitly. 

SP is the 16-bit stack pointer, a register that points to the area in memory utilized as the
main stack. 

BP is the 16-bit base pointer, a register that points to the base of an area of memory



within the stack, known as a stack frame, which is used to store variables. 

MP is the 16-bit mark stack pointer, a register used in handling procedure calls, whose
use will become apparent only in later chapters. 

IR is the 16-bit instruction register, in which is held the instruction currently being
executed. 

PC is the 16-bit program counter, which contains the address in memory of the
instruction that is the next to be executed. 

EAR is the effective address register, which contains the address in memory of the data
that is being manipulated by the current instruction. 

A programmer’s model of the machine is suggested by declarations like 

  CONST
    MemSize = 512;                                    const int MemSize = 512;
  TYPE                                                typedef short address;
    ADDRESS = CARDINAL [0 .. MemSize - 1];            struct processor {
    PROCESSOR = RECORD                                  opcodes ir;
      IR : OPCODES;                                     address bp, mp, sp, pc;
      BP, MP, SP, PC : ADDRESS;                       };
    END;
  TYPE STATUS = (running, finished,                   typedef enum { running, finished,
                 badMem, badData,                       badmem, baddata, nodata,
                 noData, divZero,                       divzero, badop
                 badOP);                              } status;
  VAR
    CPU : PROCESSOR;                                 processor cpu;
    Mem : ARRAY ADDRESS OF INTEGER;                  int mem[MemSize];
    PS : STATUS;                                     status ps;

For simplicity we shall assume that the code is stored in the low end of memory, and that the top
part of memory is used as the stack for storing data. We shall assume that the topmost section of
this stack is a literal pool, in which are stored constants, such as literal character strings.
Immediately below this pool is the stack frame, in which the static variables are stored. The rest of
the stack is to be used for working storage. A typical memory layout might be as shown in Figure
4.5, where the markers CodeTop and StkTop will be useful for providing memory protection in an
emulated system. 

We assume that the program loader will load the code at the bottom of memory (leaving the marker
denoted by CodeTop pointing to the last word of code). It will also load the literals into the literal
pool (leaving the marker denoted by StkTop pointing to the low end of this pool). It will go on to
initialize both the stack pointer SP and base pointer BP to the value of StkTop. The first instruction
in any program will have the responsibility of reserving further space on the stack for its variables,
simply by decrementing the stack pointer SP by the number of words needed for these variables. A
variable can be addressed by adding an offset to the base register BP. Since the stack "grows
downwards" in memory, from high addresses towards low ones, these offsets will usually have



negative values. 

4.4.2 Instruction set 

A minimal set of operations for this machine is described informally below; in later chapters we
shall find it convenient to add more opcodes to this set. We shall use the mnemonics introduced
here to code programs for the machine in what appears to be a simple assembler language, albeit
with addresses stipulated in absolute form. 

Several of these operations belong to a category known as zero address instructions. Even though
operands are clearly needed for operations such as addition and multiplication, the addresses of
these are not specified by part of the instruction, but are implicitly derived from the value of the
stack pointer SP. The two operands are assumed to reside on the top of the stack and just below the
top; in our informal descriptions their values are denoted by TOS (for "top of stack") and SOS (for
"second on stack"). A binary operation is performed by popping its two operands from the stack
into (inaccessible) internal registers in the CPU, performing the operation, and then pushing the
result back onto the stack. Such operations can be very economically encoded in terms of the
storage taken up by the program code itself - the high density of stack-oriented machine code is
another point in its favour so far as developing interpretive translators is concerned. 

ADD     Pop TOS and SOS, add SOS to TOS, push sum to form new TOS 

SUB     Pop TOS and SOS, subtract TOS from SOS, push result to form new TOS 

MUL     Pop TOS and SOS, multiply SOS by TOS, push result to form new TOS 

DVD     Pop TOS and SOS, divide SOS by TOS, push result to form new TOS 

EQL     Pop TOS and SOS, push 1 to form new TOS if SOS = TOS, 0 otherwise
NEQ     Pop TOS and SOS, push 1 to form new TOS if SOS # TOS, 0 otherwise
GTR     Pop TOS and SOS, push 1 to form new TOS if SOS > TOS, 0 otherwise
LSS     Pop TOS and SOS, push 1 to form new TOS if SOS < TOS, 0 otherwise
LEQ     Pop TOS and SOS, push 1 to form new TOS if SOS <= TOS, 0 otherwise
GEQ     Pop TOS and SOS, push 1 to form new TOS if SOS >= TOS, 0 otherwise
NEG     Negate TOS 
        

STK     Dump stack to output (useful for debugging)
PRN     Pop TOS and write it to the output as an integer value
PRS  A  Write the nul-terminated string that was stacked in the literal pool from Mem[A] 

NLN     Write a newline (carriage-return-line-feed) sequence
INN     Read integer value, pop TOS, store the value that was read in Mem[TOS]
        

DSP  A  Decrement value of stack pointer SP by A
LIT  A  Push the integer value A onto the stack to form new TOS

ADR  A  Push the value BP + A onto the stack to form new TOS. (This value is conceptually the address
        of a variable stored at an offset A within the stack frame pointed to by the base register BP.)
IND     Pop TOS to yield Size; pop TOS and SOS; if 0 <= TOS < Size
        then subtract TOS from SOS, push result to form new TOS

VAL     Pop TOS, and push the value of Mem[TOS] to form new TOS (an operation we
        shall call dereferencing)
STO     Pop TOS and SOS; store TOS in Mem[SOS]

HLT     Halt
BRN  A  Unconditional branch to instruction A

BZE  A  Pop TOS, and branch to instruction A if TOS is zero
NOP     No operation

The instructions in the first group are concerned with arithmetic and logical operations, those in the
second group afford I/O facilities, those in the third group allow for the access of data in memory
by means of manipulating addresses and the stack, and those in the last group allow for control of
flow of the program itself. The IND operation allows for array indexing with subscript range



checking. 

As before, the I/O operations are not typical of real machines, but will allow us to focus on the
principles of emulation without getting lost in the trivia and overheads of handling real I/O systems.

Exercises 

4.14 How closely does the machine code for this stack machine resemble anything you have seen
before? 

4.15 Notice that there is a BZE operation, but not a complementary BNZ (one that would branch if
TOS were non-zero). Do you suppose this is a serious omission? Are there any opcodes which have
been omitted from the set above which you can foresee as being absolutely essential (or at least
very useful) for defining a viable "integer" machine? 

4.16 Attempt to write down a mathematically oriented version of the semantics of each of the
machine instructions, as suggested by Exercise 4.3. 

4.4.3 Specimen programs 

As before, some samples of program code for the machine may help to clarify various points. 

Example 4.4 

To illustrate how the memory is allocated, consider a simple section of program that corresponds to
high-level code of the form 

   X := 8; Write("Y = ", Y);

                       ; Example 4.4
   0 DSP    2          ; X is at Mem[CPU.BP-1], Y is at Mem[CPU.BP-2]
   2 ADR   -1          ; push address of X
   4 LIT    8          ; push 8
   6 STO               ;        X := 8
   7 STK               ; dump stack to look at it
   8 PRS   ’Y = ’      ;        Write string "Y = "
  10 ADR   -2          ; push address of Y
  12 VAL               ; dereference
  13 PRN               ;        Write integer Y
  14 HLT               ; terminate execution

This would be stored in memory as 

    DSP  2  ADR -1  LIT  8  STO STK PRS 510 ADR -2  VAL PRN HLT
     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14

     ...   (Y)   (X)   0   ’ ’  ’=’  ’ ’  ’Y’   0
           504   505  506  507  508  509  510  511

Immediately after loading this program (and before executing the DSP instruction), the program
counter PC would have the value 0, while the base register BP and stack pointer SP would each have
the value 506. 

Example 4.5 

Example 4.4 scarcely represents the epitome of the programmer’s art! A more ambitious program
follows, as a translation of the simple algorithm 



  BEGIN
    Y := 0;
    REPEAT  READ(X);  Y := X + Y   UNTIL X = 0;
    WRITE(’Total is ’, Y);
  END

This would require a stack frame of size two to contain the variables X and Y. The machine code
might read 

                       ;  Example 4.5
   0 DSP    2          ;  X is at Mem[CPU.BP-1], Y is at Mem[CPU.BP-2]
   2 ADR   -2          ;  push address of Y (CPU.BP-2) on stack
   4 LIT    0          ;  push 0 on stack
   6 STO               ;  store 0 as value of Y
   7 ADR   -1          ;  push address of X (CPU.BP-1) on stack
   9 INN               ;  read value, store on X
  10 ADR   -2          ;  push address of Y on stack
  12 ADR   -1          ;  push address of X on stack
  14 VAL               ;  dereference - value of X now on stack
  15 ADR   -2          ;  push address of Y on stack
  17 VAL               ;  dereference - value of Y now on stack
  18 ADD               ;  add X to Y
  19 STO               ;  store result as new value of Y
  20 ADR   -1          ;  push address of X on stack
  22 VAL               ;  dereference - value of X now on stack
  23 LIT    0          ;  push constant 0 onto stack
  25 EQL               ;  check equality
  26 BZE    7          ;  branch if X # 0
  28 PRS   ’Total is’  ;  label output
  30 ADR   -2          ;  push address of Y on stack
  32 VAL               ;  dereference - value of Y now on stack
  33 PRN               ;  write result
  34 HLT               ;  terminate execution

Exercises 

4.17 Would you write code anything like that given in Example 4.5 if you had to translate the
corresponding algorithm into a familiar ASSEMBLER language directly? 

4.18 How difficult would it be to hand translate programs written in this stack machine code into
your favourite ASSEMBLER ? 

4.19 Use the stack language (and, in due course, its interpreter) to write and test the simple
programs suggested in Exercises 4.6. 

4.4.4 An emulator for the stack machine 

Once again, to emulate this machine by means of a program written in Modula-2 or C++, it will be
convenient to define an interface to the machine by means of a definition module or appropriate
class. As in the case of the accumulator machine, the main exported facility is a routine to perform
the emulation itself, but for expediency we shall export further entities that make it easy to develop
an assembler, compiler, or loader that will leave pseudo-code directly in memory after translation
of some source code. 

  const int STKMC_memsize = 512;  // Limit on memory

  // machine instructions - order is significant
  enum STKMC_opcodes {
    STKMC_adr, STKMC_lit, STKMC_dsp, STKMC_brn, STKMC_bze, STKMC_prs, STKMC_add,
    STKMC_sub, STKMC_mul, STKMC_dvd, STKMC_eql, STKMC_neq, STKMC_lss, STKMC_geq,
    STKMC_gtr, STKMC_leq, STKMC_neg, STKMC_val, STKMC_sto, STKMC_ind, STKMC_stk,
    STKMC_hlt, STKMC_inn, STKMC_prn, STKMC_nln, STKMC_nop, STKMC_nul
  };



  typedef enum {
    running, finished, badmem, baddata, nodata, divzero, badop, badind
  } status;
  typedef int STKMC_address;

  class STKMC {
    public:
      int mem[STKMC_memsize];  // virtual machine memory

      void listcode(char *filename, STKMC_address codelen);
      // Lists the codelen instructions stored in mem on named output file

      void emulator(STKMC_address initpc, STKMC_address codelen,
                    STKMC_address initsp, FILE *data, FILE *results,
                    bool tracing);
      // Emulates action of the codelen instructions stored in mem, with
      // program counter initialized to initpc, stack pointer initialized to
      // initsp.  data and results are used for I/O.  Tracing at the code level
      // may be requested

      void interpret(STKMC_address codelen, STKMC_address initsp);
      // Interactively opens data and results files.  Then interprets the
      // codelen instructions stored in mem, with stack pointer initialized
      // to initsp

      STKMC_opcodes opcode(char *str);
      // Maps str to opcode, or to STKMC_nul if no match can be found

      STKMC();
      // Initializes stack machine
  };

The emulator itself has to model the typical fetch-execute cycle of an actual machine. This is easily
achieved as before, and follows an almost identical pattern to that used for the other machine. A full
implementation is to be found on the accompanying diskette; only the important parts are listed
here for the reader to study: 

  bool STKMC::inbounds(int p)
  // Check that memory pointer p does not go out of bounds.  This should not
  // happen with correct code, but it is just as well to check
  { if (p < stackmin || p >= STKMC_memsize) ps = badmem;
    return (ps == running);
  }

  void STKMC::stackdump(STKMC_address initsp, FILE *results, STKMC_address pcnow)
  // Dump data area - useful for debugging
  { int online = 0;
    fprintf(results, "\nStack dump at %4d", pcnow);
    fprintf(results, " SP:%4d BP:%4d SM:%4d\n", cpu.sp, cpu.bp, stackmin);
    for (int l = stackmax - 1; l >= cpu.sp; l--)
    { fprintf(results, "%7d:%5d", l, mem[l]);
      online++; if (online % 6 == 0) putc(’\n’, results);
    }
    putc(’\n’, results);
  }

  void STKMC::trace(FILE *results, STKMC_address pcnow)
  // Simple trace facility for run time debugging
  { fprintf(results, " PC:%4d BP:%4d SP:%4d TOS:", pcnow, cpu.bp, cpu.sp);
    if (cpu.sp < STKMC_memsize)
      fprintf(results, "%4d", mem[cpu.sp]);
    else
      fprintf(results, "????");
    fprintf(results, " %s", mnemonics[cpu.ir]);
    switch (cpu.ir)
    { case STKMC_adr:
      case STKMC_prs:
      case STKMC_lit:
      case STKMC_dsp:
      case STKMC_brn:
      case STKMC_bze:
        fprintf(results, "%7d", mem[cpu.pc]); break;
      // no default needed
    }
    putc(’\n’, results);
  }

  void STKMC::postmortem(FILE *results, STKMC_address pcnow)
  // Report run time error and position
  { putc(’\n’, results);



    switch (ps)
    { case badop:    fprintf(results, "Illegal opcode"); break;
      case nodata:   fprintf(results, "No more data"); break;
      case baddata:  fprintf(results, "Invalid data"); break;
      case divzero:  fprintf(results, "Division by zero"); break;
      case badmem:   fprintf(results, "Memory violation"); break;
      case badind:   fprintf(results, "Subscript out of range"); break;
    }
    fprintf(results, " at %4d\n", pcnow);
  }

  void STKMC::emulator(STKMC_address initpc, STKMC_address codelen,
                       STKMC_address initsp, FILE *data, FILE *results,
                       bool tracing)
  { STKMC_address pcnow;  // current program counter
    stackmax = initsp;
    stackmin = codelen;
    ps = running;
    cpu.sp = initsp;
    cpu.bp = initsp;      // initialize registers
    cpu.pc = initpc;      // initialize program counter
    do
    { pcnow = cpu.pc;
      if (unsigned(mem[cpu.pc]) > int(STKMC_nul)) ps = badop;
      else
      { cpu.ir = STKMC_opcodes(mem[cpu.pc]); cpu.pc++;  // fetch
        if (tracing) trace(results, pcnow);
        switch (cpu.ir)                                 // execute
        { case STKMC_adr:
            cpu.sp--;
            if (inbounds(cpu.sp))
              { mem[cpu.sp] = cpu.bp + mem[cpu.pc]; cpu.pc++; }
            break;
          case STKMC_lit:
            cpu.sp--;
            if (inbounds(cpu.sp)) { mem[cpu.sp] = mem[cpu.pc]; cpu.pc++; }
            break;
          case STKMC_dsp:
            cpu.sp -= mem[cpu.pc];
            if (inbounds(cpu.sp)) cpu.pc++;
            break;
          case STKMC_brn:
            cpu.pc = mem[cpu.pc]; break;
          case STKMC_bze:
            cpu.sp++;
            if (inbounds(cpu.sp))
            { if (mem[cpu.sp - 1] == 0) cpu.pc = mem[cpu.pc]; else cpu.pc++; }
            break;
          case STKMC_prs:
            if (tracing) fputs(BLANKS, results);
            int loop = mem[cpu.pc];
            cpu.pc++;
            while (inbounds(loop) && mem[loop] != 0)
              { putc(mem[loop], results); loop--; }
            if (tracing) putc(’\n’, results);
            break;
          case STKMC_add:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] += mem[cpu.sp - 1];
            break;
          case STKMC_sub:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] -= mem[cpu.sp - 1];
            break;
          case STKMC_mul:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] *= mem[cpu.sp - 1];
            break;
          case STKMC_dvd:
            cpu.sp++;
            if (inbounds(cpu.sp))
            { if (mem[cpu.sp - 1] == 0)
                ps = divzero;
              else
                mem[cpu.sp] /= mem[cpu.sp - 1];
            }
            break;
          case STKMC_eql:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] == mem[cpu.sp - 1]);
            break;
          case STKMC_neq:
            cpu.sp++;



            if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] != mem[cpu.sp - 1]);
            break;
          case STKMC_lss:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] < mem[cpu.sp - 1]);
            break;
          case STKMC_geq:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] >= mem[cpu.sp - 1]);
            break;
          case STKMC_gtr:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] > mem[cpu.sp - 1]);
            break;
          case STKMC_leq:
            cpu.sp++;
            if (inbounds(cpu.sp)) mem[cpu.sp] = (mem[cpu.sp] <= mem[cpu.sp - 1]);
            break;
          case STKMC_neg:
            if (inbounds(cpu.sp)) mem[cpu.sp] = -mem[cpu.sp];
            break;
          case STKMC_val:
            if (inbounds(cpu.sp) && inbounds(mem[cpu.sp]))
              mem[cpu.sp] = mem[mem[cpu.sp]];
            break;
          case STKMC_sto:
            cpu.sp++;
            if (inbounds(cpu.sp) && inbounds(mem[cpu.sp]))
              mem[mem[cpu.sp]] = mem[cpu.sp - 1];
            cpu.sp++;
            break;
          case STKMC_ind:
            if ((mem[cpu.sp + 1] < 0) || (mem[cpu.sp + 1] >= mem[cpu.sp]))
              ps = badind;
            else
            { cpu.sp += 2;
              if (inbounds(cpu.sp)) mem[cpu.sp] -= mem[cpu.sp - 1];
            }
            break;
          case STKMC_stk:
            stackdump(initsp, results, pcnow); break;
          case STKMC_hlt:
            ps = finished; break;
          case STKMC_inn:
            if (inbounds(cpu.sp) && inbounds(mem[cpu.sp]))
            { if (fscanf(data, "%d", &mem[mem[cpu.sp]]) == 0)
                ps = baddata;
              else
                cpu.sp++;
            }
            break;
          case STKMC_prn:
            if (tracing) fputs(BLANKS, results);
            cpu.sp++;
            if (inbounds(cpu.sp)) fprintf(results, " %d", mem[cpu.sp - 1]);
            if (tracing) putc(’\n’, results);
            break;
          case STKMC_nln:
            putc(’\n’, results); break;
          case STKMC_nop:
            break;
          default:
            ps = badop; break;
        }
      }
    } while (ps == running);
    if (ps != finished) postmortem(results, pcnow);
  }

We should remark that there is rather more error-checking code in this interpreter than we should
like. This will detract from the efficiency of the interpreter, but is code that is probably very
necessary when testing the system. 

Exercises 



4.20 Can you think of ways in which this interpreter can be improved, both as regards efficiency,
and user friendliness? In particular, try adding debugging aids over and above the simple stack
dump already provided. Can you think of any ways in which it could be made to detect infinite
loops in a user program, or to allow itself to be manually interrupted by an irate or frustrated user? 

4.21 The interpreter attempts to prevent corruption of the memory by detecting when the machine
registers go out of bounds. The implementation above is not totally foolproof so, as a useful
exercise, improve on it. One might argue that correct code will never cause such corruption to
occur, but if one attempts to write stack machine code by hand, it will be found easy to "push"
without "popping" or vice versa, and so the checks are very necessary. 

4.22 The interpreter checks for division by zero, but does no other checking that arithmetic
operations will stay within bounds. Improve it so that it does so, bearing in mind that one has to
predict overflow, rather than wait for it to occur. 

4.23 As an alternative, extend the machine so that overflow detection does not halt the program, but
sets an overflow flag in the processor. Provide operations whereby the programmer can check this
flag and take whatever action he or she deems appropriate. 

4.24 One of the advantages of an emulated machine is that it is usually very easy to extend it
(provided the host language for the interpreter can support the features required). Try introducing
two new operations, say INC and PRC, which will read and print single character data. Then rework
those of Exercises 4.6 that involve characters. 

4.25 If you examine the code in Examples 4.4 and 4.5 - and in the solutions to Exercises 4.6 - you
will observe that the sequences 

                 ADR x
                 VAL

and 

                 ADR x
                 (calculations)
                 STO

are very common. Introduce and implement two new operations 

                 PSH  A     Push   Mem[CPU.BP + A]   onto stack to form new  TOS
                 POP  A     Pop   TOS   and assign   Mem[CPU.BP + A] := TOS

Then rework some of Exercise 4.6 using these facilities, and comment on the possible advantages
of having these new operations available. 

4.26 As a further variation on the emulated machine, develop a variation where the branch
instructions are "relative" rather than "absolute". This makes for rather simpler transition to
relocatable code. 

4.27 Is it possible to accomplish Boolean (NOT, AND and OR) operations using the current
instruction set? If not, how would you extend the instruction set to incorporate these? If they are not
strictly necessary, would they be useful additions anyway? 

4.28 As yet another alternative, suppose the machine had a set of condition flags such as Z and P,
similar to those used in the single-accumulator machine of the last section. How would the
instruction set and the emulator need to be changed to use these? Would their presence make it



easier to write programs, particularly those that need to evaluate complex Boolean expressions? 

4.4.5 A minimal assembler for the machine 

To be able to use this system we must, of course, have some way of loading or assembling code
into memory. An assembler might conveniently be developed using the following interface, very
similar to that used for the single- accumulator machine. 

  class STKASM {
    public:
      STKASM(char *sourcename, STKMC *M);
      // Opens source file from supplied sourcename

      ~STKASM();
      // Closes source file

      void assemble(bool &errors, STKMC_address &codetop,
                    STKMC_address &stktop);
      // Assembles source code from an input file and loads codetop
      // words of code directly into memory mem[0 .. codetop-1],
      // storing strings in the string pool at the top of memory in
      // mem[stktop .. STKMC_memsize-1].
      //
      // Returns
      //    codetop = number of instructions assembled and stored
      //              in mem[0] .. mem[codetop - 1]
      //    stktop  = 1 + highest byte in memory available
      //              below string pool in mem[stktop] .. mem[STK_memsize-1]
      //    errors  = true if erroneous instruction format detected
      // Instruction format :
      //    Instruction  = [Label] Opcode [AddressField] [Comment]
      //    Label        = Integer
      //    Opcode       = STKMC_Mnemonic
      //    AddressField = Integer | ’String’
      //    Comment      = String
      //
      // A string AddressField may only be used with a PRS opcode
      // Instructions are supplied one to a line; terminated at end of input file
  };

This interface would allow us to develop sophisticated assemblers without altering the rest of the
system - merely the implementation. In particular we can write a load-and-go assembler/interpreter
very easily, using essentially the same system as was suggested in section 4.3.5. 

The objective of this chapter is to introduce the principles of machine emulation, and not to be too
concerned about the problems of assembly. If, however, we confine ourselves to assembling code
where the operations are denoted by their mnemonics, but all the addresses and offsets are written
in absolute form, as was done for Examples 4.4 and 4.5, a rudimentary assembler can be written
relatively easily. The essence of this is described informally by an algorithm like 

  BEGIN
    CodeTop := 0;
    REPEAT
      SkipLabel;
      IF NOT EOF(SourceFile) THEN
        Extract(Mnemonic);
        Convert(Mnemonic, OpCode);
        Mem[CodeTop] := OpCode; Increment(CodeTop);
        IF OpCode = PRS THEN
          Extract(String); Store(String, Address);
          Mem[CodeTop] := Address; Increment(CodeTop);
        ELSIF OpCode in {ADR, LIT, DSP, BRN, BZE} THEN
          Extract(Address); Mem[CodeTop] := Address; Increment(CodeTop);
        END;
        IgnoreComments;
      END
    UNTIL EOF(SourceFile)
  END

An implementation of this is to be found on the source diskette, where code is assumed to be



supplied to the machine in free format, one instruction per line. Comments and labels may be
added, as in the examples given earlier, but these are simply ignored by the assembler. Since
absolute addresses are required, any labels are more of a nuisance than they are worth. 

Exercises 

4.29 The assembler on the source diskette attempts some, but not much, error detection. Investigate
how it could be improved. 

4.30 The machine is rather wasteful of memory. Had we used a byte oriented approach we could
have stored the code and the literal strings far more compactly. Develop an implementation that
does this. 

4.31 It might be deemed unsatisfactory to locate the literal pool in high memory. An alternative
arrangement would be to locate it immediately above the executable code, on the lines of Figure
4.6. Develop a variation on the assembler (and, if necessary, the interpreter) to exploit this idea. 

Further reading 

Other descriptions of pseudo-machines and of stack machines are to be found in the books by
Wakerly (1981), Brinch Hansen (1985), Wirth (1986, 1996), Watt (1993), and Bennett (1990). 

The very comprehensive stack-based interpreter for the Zürich Pascal-P system is fully described in
the book by Pemberton and Daniels (1982). 


