
Compilers and Compiler Generators © P.D. Terry, 2000

3 COMPILER CONSTRUCTION AND BOOTSTRAPPING 

By now the reader may have realized that developing translators is a decidedly non-trivial exercise.
If one is faced with the task of writing a full-blown translator for a fairly complex source language,
or an emulator for a new virtual machine, or an interpreter for a low-level intermediate language,
one would probably prefer not to implement it all in machine code. 

Fortunately one rarely has to contemplate such a radical step. Translator systems are now widely
available and well understood. A fairly obvious strategy when a translator is required for an old
language on a new machine, or a new language on an old machine (or even a new language on a
new machine), is to make use of existing compilers on either machine, and to do the development in
a high level language. This chapter provides a few examples that should make this clearer. 

3.1 Using a high-level host language 

If, as is increasingly common, one’s dream machine M is supplied with the machine coded version
of a compiler for a well-established language like C, then the production of a compiler for one’s
dream language X is achievable by writing the new compiler, say XtoM, in C and compiling the
source (XtoM.C) with the C compiler (CtoM.M) running directly on M (see Figure 3.1). This
produces the object version (XtoM.M) which can then be executed on M. 

Even though development in C is much easier than development in machine code, the process is
still complex. As was mentioned earlier, it may be possible to develop a large part of the compiler
source using compiler generator tools - assuming, of course, that these are already available either
in executable form, or as C source that can itself be compiled easily. The hardest part of the
development is probably that associated with the back end, since this is intensely machine
dependent. If one has access to the source code of a compiler like CtoM one may be able to use this
to good avail. Although commercial compilers are rarely released in source form, source code is
available for many compilers produced at academic institutions or as components of the GNU
project carried out under the auspices of the Free Software Foundation. 

3.2 Porting a high level translator 

The process of modifying an existing compiler to work on a new machine is often known as



porting the compiler. In some cases this process may be almost trivially easy. Consider, for
example, the fairly common scenario where a compiler XtoC for a popular language X has been
implemented in C on machine A by writing a high-level translator to convert programs written in X
to C, and where it is desired to use language X on a machine M that, like A, has already been
blessed with a C compiler of its own. To construct a two-stage compiler for use on either machine,
all one needs to do, in principle, is to install the source code for XtoC on machine M and recompile
it. 

Such an operation is conveniently represented in terms of T-diagrams chained together. Figure
3.2(a) shows the compilation of the X to C compiler, and Figure 3.2(b) shows the two-stage
compilation process needed to compile programs written in X to M-code. 

The portability of a compiler like XtoC.C is almost guaranteed, provided that it is itself written in
"portable" C. Unfortunately, or as Mr. Murphy would put it, "interchangeable parts don’t" (more
explicitly, "portable C isn’t"). Some time may have to be spent in modifying the source code of
XtoC.C before it is acceptable as input to CtoM.M, although it is to be hoped that the developers of
XtoC.C will have used only standard C in their work, and used pre-processor directives that allow
for easy adaptation to other systems. 

If there is an initial strong motivation for making a compiler portable to other systems it is, indeed,
often written so as to produce high-level code as output. More often, of course, the original
implementation of a language is written as a self-resident translator with the aim of directly
producing machine code for the current host system. 

3.3 Bootstrapping 

All this may seem to be skirting around a really nasty issue - how might the first high-level
language have been implemented? In ASSEMBLER? But then how was the assembler for
ASSEMBLER produced? 

A full assembler is itself a major piece of software, albeit rather simple when compared with a
compiler for a really high level language, as we shall see. It is, however, quite common to define
one language as a subset of another, so that subset 1 is contained in subset 2 which in turn is
contained in subset 3 and so on, that is: 



One might first write an assembler for subset 1 of ASSEMBLER in machine code, perhaps on a
load-and-go basis (more likely one writes in ASSEMBLER, and then hand translates it into
machine code). This subset assembler program might, perhaps, do very little other than convert
mnemonic opcodes into binary form. One might then write an assembler for subset 2 of
ASSEMBLER in subset 1 of ASSEMBLER, and so on. 

This process, by which a simple language is used to translate a more complicated program, which
in turn may handle an even more complicated program and so on, is known as bootstrapping, by
analogy with the idea that it might be possible to lift oneself off the ground by tugging at one’s
boot-straps. 

3.4 Self-compiling compilers 

Once one has a working system, one can start using it to improve itself. Many compilers for popular
languages were first written in another implementation language, as implied in section 3.1, and then
rewritten in their own source language. The rewrite gives source for a compiler that can then be
compiled with the compiler written in the original implementation language. This is illustrated in
Figure 3.3. 

Clearly, writing a compiler by hand not once, but twice, is a non-trivial operation, unless the
original implementation language is close to the source language. This is not uncommon: Oberon
compilers could be implemented in Modula-2; Modula-2 compilers, in turn, were first implemented
in Pascal (all three are fairly similar), and C++ compilers were first implemented in C. 

Developing a self-compiling compiler has four distinct points to recommend it. Firstly, it
constitutes a non-trivial test of the viability of the language being compiled. Secondly, once it has
been done, further development can be done without recourse to other translator systems. Thirdly,
any improvements that can be made to its back end manifest themselves both as improvements to
the object code it produces for general programs and as improvements to the compiler itself. Lastly,
it provides a fairly exhaustive self-consistency check, for if the compiler is used to compile its own
source code, it should, of course, be able to reproduce its own object code (see Figure 3.4). 

Furthermore, given a working compiler for a high-level language it is then very easy to produce
compilers for specialized dialects of that language. 



3.5 The half bootstrap 

Compilers written to produce object code for a particular machine are not intrinsically portable.
However, they are often used to assist in a porting operation. For example, by the time that the first
Pascal compiler was required for ICL machines, the Pascal compiler available in Zürich (where
Pascal had first been implemented on CDC mainframes) existed in two forms (Figure 3.5). 

The first stage of the transportation process involved changing PasToCDC.Pas to generate ICL
machine code - thus producing a cross compiler. Since PasToCDC.Pas had been written in a
high-level language, this was not too difficult to do, and resulted in the compiler PasToICL.Pas. 

Of course this compiler could not yet run on any machine at all. It was first compiled using
PasToCDC.CDC, on the CDC machine (see Figure 3.6(a)). This gave a cross-compiler that could
run on CDC machines, but still not, of course, on ICL machines. One further compilation of
PasToICL.Pas, using the cross-compiler PasToICL.CDC on the CDC machine, produced the final
result, PasToICL.ICL (Figure 3.6(b)). 



The final product (PasToICL.ICL) was then transported on magnetic tape to the ICL machine, and
loaded quite easily. Having obtained a working system, the ICL team could (and did) continue
development of the system in Pascal itself. 

This porting operation was an example of what is known as a half bootstrap system. The work of
transportation is essentially done entirely on the donor machine, without the need for any translator
in the target machine, but a crucial part of the original compiler (the back end, or code generator)
has to be rewritten in the process. Clearly the method is hazardous - any flaws or oversights in
writing PasToICL.Pas could have spelled disaster. Such problems can be reduced by minimizing
changes made to the original compiler. Another technique is to write an emulator for the target
machine that runs on the donor machine, so that the final compiler can be tested on the donor
machine before being transferred to the target machine. 

3.6 Bootstrapping from a portable interpretive compiler 

Because of the inherent difficulty of the half bootstrap for porting compilers, a variation on the full
bootstrap method described above for assemblers has often been successfully used in the case of
Pascal and other similar high-level languages. Here most of the development takes place on the
target machine, after a lot of preliminary work has been done on the donor machine to produce an
interpretive compiler that is almost portable. It will be helpful to illustrate with the well-known
example of the Pascal-P implementation kit mentioned in section 2.5. 

Users of this kit typically commenced operations by implementing an interpreter for the P-machine.
The bootstrap process was then initiated by developing a compiler (PasPtoM.PasP) to translate
Pascal-P source programs to the local machine code. This compiler could be written in Pascal-P
source, development being guided by the source of the Pascal-P to P-code compiler supplied as part
of the kit. This new compiler was then compiled with the interpretive compiler (PasPtoP.P) from
the kit (Figure 3.7(a)) and the source of the Pascal to M-code compiler was then compiled by this



new compiler, interpreted once again by the P-machine, to give the final product, PasPtoM.M
(Figure 3.7(b)). 

The Zürich P-code interpretive compiler could be, and indeed was, used as a highly portable
development system. It was employed to remarkable effect in developing the UCSD Pascal system,
which was the first serious attempt to implement Pascal on microcomputers. The UCSD Pascal
team went on to provide the framework for an entire operating system, editors and other utilities -
all written in Pascal, and all compiled into a well-defined P-code object code. Simply by providing
an alternative interpreter one could move the whole system to a new microcomputer system
virtually unchanged. 

3.7 A P-code assembler 

There is, of course, yet another way in which a portable interpretive compiler kit might be used.
One might commence by writing a P-code to M-code assembler, probably a relatively simple task.
Once this has been produced one would have the assembler depicted in Figure 3.8. 

The P-codes for the P-code compiler would then be assembled by this system to give another cross
compiler (Figure 3.9(a)), and the same P-code/M-code assembler could then be used as a back-end
to the cross compiler (Figure 3.9(b)). 

Exercises 

3.1 Draw the T-diagram representations for the development of a P-code to M-code assembler,
assuming that you have a C++ compiler available on the target system. 

3.2 Later in this text we shall develop an interpretive compiler for a small language called Clang,



using C++ as the host language. Draw T-diagram representations of the various components of the
system as you foresee them. 

Further reading 

A very clear exposition of bootstrapping is to be found in the book by Watt (1993). The ICL
bootstrap is further described by Welsh and Quinn (1972). Other early insights into bootstrapping
are to be found in papers by Lecarme and Peyrolle-Thomas (1973), by Nori et al. (1981), and
Cornelius, Lowman and Robson (1984). 


