
Compilers and Compiler Generators © P.D. Terry, 2000

1 INTRODUCTION 

1.1 Objectives 

The use of computer languages is an essential link in the chain between human and computer. In
this text we hope to make the reader more aware of some aspects of 

Imperative programming languages - their syntactic and semantic features; the ways of
specifying syntax and semantics; problem areas and ambiguities; the power and usefulness of
various features of a language. 

Translators for programming languages - the various classes of translator (assemblers,
compilers, interpreters); implementation of translators. 

Compiler generators - tools that are available to help automate the construction of translators
for programming languages. 

This book is a complete revision of an earlier one published by Addison-Wesley (Terry, 1986). It
has been written so as not to be too theoretical, but to relate easily to languages which the reader
already knows or can readily understand, like Pascal, Modula-2, C or C++. The reader is expected
to have a good background in one of those languages, access to a good implementation of it, and,
preferably, some background in assembly language programming and simple machine architecture.
We shall rely quite heavily on this background, especially on the understanding the reader should
have of the meaning of various programming constructs. 

Significant parts of the text concern themselves with case studies of actual translators for simple
languages. Other important parts of the text are to be found in the many exercises and suggestions
for further study and experimentation on the part of the reader. In short, the emphasis is on "doing"
rather than just "reading", and the reader who does not attempt the exercises will miss many, if not
most, of the finer points. 

The primary language used in the implementation of our case studies is C++ (Stroustrup, 1990).
Machine readable source code for all these case studies is to be found on the IBM-PC compatible
diskette that is included with the book. As well as C++ versions of this code, we have provided
equivalent source in Modula-2 and Turbo Pascal, two other languages that are eminently suitable
for use in a course of this nature. Indeed, for clarity, some of the discussion is presented in a
pseudo-code that often resembles Modula-2 rather more than it does C++. It is only fair to warn the
reader that the code extracts in the book are often just that - extracts - and that there are many
instances where identifiers are used whose meaning may not be immediately apparent from their
local context. The conscientious reader will have to expend some effort in browsing the code.
Complete source for an assembler and interpreter appears in the appendices, but the discussion
often revolves around simplified versions of these programs that are found in their entirety only on
the diskette. 



1.2 Systems programs and translators 

Users of modern computing systems can be divided into two broad categories. There are those who
never develop their own programs, but simply use ones developed by others. Then there are those
who are concerned as much with the development of programs as with their subsequent use. This
latter group - of whom we as computer scientists form a part - is fortunate in that program
development is usually aided by the use of high-level languages for expressing algorithms, the use
of interactive editors for program entry and modification, and the use of sophisticated job control
languages or graphical user interfaces for control of execution. Programmers armed with such tools
have a very different picture of computer systems from those who are presented with the hardware
alone, since the use of compilers, editors and operating systems - a class of tools known generally
as systems programs - removes from humans the burden of developing their systems at the
machine level. That is not to claim that the use of such tools removes all burdens, or all possibilities
for error, as the reader will be well aware. 

Well within living memory, much program development was done in machine language - indeed,
some of it, of necessity, still is - and perhaps some readers have even tried this for themselves when
experimenting with microprocessors. Just a brief exposure to programs written as almost
meaningless collections of binary or hexadecimal digits is usually enough to make one grateful for
the presence of high-level languages, clumsy and irritating though some of their features may be. 

However, in order for high-level languages to be usable, one must be able to convert programs
written in them into the binary or hexadecimal digits and bitstrings that a machine will understand.
At an early stage it was realized that if constraints were put on the syntax of a high-level language
the translation process became one that could be automated. This led to the development of
translators or compilers - programs which accept (as data) a textual representation of an algorithm
expressed in a source language, and which produce (as primary output) a representation of the
same algorithm expressed in another language, the object or target language. 

Beginners often fail to distinguish between the compilation (compile-time) and execution (run-time)
phases in developing and using programs written in high-level languages. This is an easy trap to fall
into, since the translation (compilation) is often hidden from sight, or invoked with a special
function key from within an integrated development environment that may possess many other
magic function keys. Furthermore, beginners are often taught programming with this distinction
deliberately blurred, their teachers offering explanations such as "when a computer executes a read
statement it reads a number from the input data into a variable". This hides several low-level
operations from the beginner. The underlying implications of file handling, character conversion,
and storage allocation are glibly ignored - as indeed is the necessity for the computer to be
programmed to understand the word read in the first place. Anyone who has attempted to program
input/output (I/O) operations directly in assembler languages will know that many of them are
non-trivial to implement. 

A translator, being a program in its own right, must itself be written in a computer language, known
as its host or implementation language. Today it is rare to find translators that have been
developed from scratch in machine language. Clearly the first translators had to be written in this
way, and at the outset of translator development for any new system one has to come to terms with
the machine language and machine architecture for that system. Even so, translators for new
machines are now invariably developed in high-level languages, often using the techniques of
cross-compilation and bootstrapping that will be discussed in more detail later. 

The first major translators written may well have been the Fortran compilers developed by Backus



and his colleagues at IBM in the 1950’s, although machine code development aids were in
existence by then. The first Fortran compiler is estimated to have taken about 18 person-years of
effort. It is interesting to note that one of the primary concerns of the team was to develop a system
that could produce object code whose efficiency of execution would compare favourably with that
which expert human machine coders could achieve. An automatic translation process can rarely
produce code as optimal as can be written by a really skilled user of machine language, and to this
day important components of systems are often developed at (or very near to) machine level, in the
interests of saving time or space. 

Translator programs themselves are never completely portable (although parts of them may be), and
they usually depend to some extent on other systems programs that the user has at his or her
disposal. In particular, input/output and file management on modern computer systems are usually
controlled by the operating system. This is a program or suite of programs and routines whose job
it is to control the execution of other programs so as best to share resources such as printers,
plotters, disk files and tapes, often making use of sophisticated techniques such as parallel
processing, multiprogramming and so on. For many years the development of operating systems
required the use of programming languages that remained closer to the machine code level than did
languages suitable for scientific or commercial programming. More recently a number of successful
higher level languages have been developed with the express purpose of catering for the design of
operating systems and real-time control. The most obvious example of such a language is C,
developed originally for the implementation of the UNIX operating system, and now widely used in
all areas of computing. 

1.3 The relationship between high-level languages and translators 

The reader will rapidly become aware that the design and implementation of translators is a subject
that may be developed from many possible angles and approaches. The same is true for the design
of programming languages. 

Computer languages are generally classed as being "high-level" (like Pascal, Fortran, Ada,
Modula-2, Oberon, C or C++) or "low-level" (like ASSEMBLER). High-level languages may
further be classified as "imperative" (like all of those just mentioned), or "functional" (like Lisp,
Scheme, ML, or Haskell), or "logic" (like Prolog). 

High-level languages are claimed to possess several advantages over low-level ones: 

Readability: A good high-level language will allow programs to be written that in some ways
resemble a quasi-English description of the underlying algorithms. If care is taken, the coding
may be done in a way that is essentially self-documenting, a highly desirable property when
one considers that many programs are written once, but possibly studied by humans many
times thereafter. 

Portability: High-level languages, being essentially machine independent, hold out the
promise of being used to develop portable software. This is software that can, in principle
(and even occasionally in practice), run unchanged on a variety of different machines -
provided only that the source code is recompiled as it moves from machine to machine. 

To achieve machine independence, high-level languages may deny access to low-level
features, and are sometimes spurned by programmers who have to develop low-level machine
dependent systems. However, some languages, like C and Modula-2, were specifically
designed to allow access to these features from within the context of high-level constructs. 



Structure and object orientation: There is general agreement that the structured programming
movement of the 1960’s and the object-oriented movement of the 1990’s have resulted in a
great improvement in the quality and reliability of code. High-level languages can be
designed so as to encourage or even subtly enforce these programming paradigms. 

Generality: Most high-level languages allow the writing of a wide variety of programs, thus
relieving the programmer of the need to become expert in many diverse languages. 

Brevity: Programs expressed in high-level languages are often considerably shorter (in terms
of their number of source lines) than their low-level equivalents. 

Error checking: Being human, a programmer is likely to make many mistakes in the
development of a computer program. Many high-level languages - or at least their
implementations - can, and often do, enforce a great deal of error checking both at
compile-time and at run-time. For this they are, of course, often criticized by programmers
who have to develop time-critical code, or who want their programs to abort as quickly as
possible. 

These advantages sometimes appear to be over-rated, or at any rate, hard to reconcile with reality.
For example, readability is usually within the confines of a rather stilted style, and some beginners
are disillusioned when they find just how unnatural a high-level language is. Similarly, the
generality of many languages is confined to relatively narrow areas, and programmers are often
dismayed when they find areas (like string handling in standard Pascal) which seem to be very
poorly handled. The explanation is often to be found in the close coupling between the development
of high-level languages and of their translators. When one examines successful languages, one finds
numerous examples of compromise, dictated largely by the need to accommodate language ideas to
rather uncompromising, if not unsuitable, machine architectures. To a lesser extent, compromise is
also dictated by the quirks of the interface to established operating systems on machines. Finally,
some appealing language features turn out to be either impossibly difficult to implement, or too
expensive to justify in terms of the machine resources needed. It may not immediately be apparent
that the design of Pascal (and of several of its successors such as Modula-2 and Oberon) was
governed partly by a desire to make it easy to compile. It is a tribute to its designer that, in spite of
the limitations which this desire naturally introduced, Pascal became so popular, the model for so
many other languages and extensions, and encouraged the development of superfast compilers such
as are found in Borland’s Turbo Pascal and Delphi systems. 

The design of a programming language requires a high degree of skill and judgement. There is
evidence to show that one’s language is not only useful for expressing one’s ideas. Because
language is also used to formulate and develop ideas, one’s knowledge of language largely
determines how and, indeed, what one can think. In the case of programming languages, there has
been much controversy over this. For example, in languages like Fortran - for long the lingua
franca of the scientific computing community - recursive algorithms were "difficult" to use (not
impossible, just difficult!), with the result that many programmers brought up on Fortran found
recursion strange and difficult, even something to be avoided at all costs. It is true that recursive
algorithms are sometimes "inefficient", and that compilers for languages which allow recursion
may exacerbate this; on the other hand it is also true that some algorithms are more simply
explained in a recursive way than in one which depends on explicit repetition (the best examples
probably being those associated with tree manipulation). 

There are two divergent schools of thought as to how programming languages should be designed.
The one, typified by the Wirth school, stresses that languages should be small and understandable,



and that much time should be spent in consideration of what tempting features might be omitted
without crippling the language as a vehicle for system development. The other, beloved of
languages designed by committees with the desire to please everyone, packs a language full of
every conceivable potentially useful feature. Both schools claim success. The Wirth school has
given us Pascal, Modula-2 and Oberon, all of which have had an enormous effect on the thinking of
computer scientists. The other approach has given us Ada, C and C++, which are far more difficult
to master well and extremely complicated to implement correctly, but which claim spectacular
successes in the marketplace. 

Other aspects of language design that contribute to success include the following: 

Orthogonality: Good languages tend to have a small number of well thought out features that
can be combined in a logical way to supply more powerful building blocks. Ideally these
features should not interfere with one another, and should not be hedged about by a host of
inconsistencies, exceptional cases and arbitrary restrictions. Most languages have blemishes -
for example, in Wirth’s original Pascal a function could only return a scalar value, not one of
any structured type. Many potentially attractive extensions to well-established languages
prove to be extremely vulnerable to unfortunate oversights in this regard. 

Familiar notation: Most computers are "binary" in nature. Blessed with ten toes on which to
check out their number-crunching programs, humans may be somewhat relieved that
high-level languages usually make decimal arithmetic the rule, rather than the exception, and
provide for mathematical operations in a notation consistent with standard mathematics.
When new languages are proposed, these often take the form of derivatives or dialects of
well-established ones, so that programmers can be tempted to migrate to the new language
and still feel largely at home - this was the route taken in developing C++ from C, Java from
C++, and Oberon from Modula-2, for example. 

Besides meeting the ones mentioned above, a successful modern high-level language will have
been designed to meet the following additional criteria: 

Clearly defined: It must be clearly described, for the benefit of both the user and the compiler
writer. 

Quickly translated: It should admit quick translation, so that program development time when
using the language is not excessive. 

Modularity: It is desirable that programs can be developed in the language as a collection of
separately compiled modules, with appropriate mechanisms for ensuring self-consistency
between these modules. 

Efficient: It should permit the generation of efficient object code. 

Widely available: It should be possible to provide translators for all the major machines and
for all the major operating systems. 

The importance of a clear language description or specification cannot be over-emphasized. This
must apply, firstly, to the so-called syntax of the language - that is, it must specify accurately what
form a source program may assume. It must apply, secondly, to the so-called static semantics of
the language - for example, it must be clear what constraints must be placed on the use of entities of
differing types, or the scope that various identifiers have across the program text. Finally, the



specification must also apply to the dynamic semantics of programs that satisfy the syntactic and
static semantic rules - that is, it must be capable of predicting the effect any program expressed in
that language will have when it is executed. 

Programming language description is extremely difficult to do accurately, especially if it is
attempted through the medium of potentially confusing languages like English. There is an
increasing trend towards the use of formalism for this purpose, some of which will be illustrated in
later chapters. Formal methods have the advantage of precision, since they make use of the clearly
defined notations of mathematics. To offset this, they may be somewhat daunting to programmers
weak in mathematics, and do not necessarily have the advantage of being very concise - for
example, the informal description of Modula-2 (albeit slightly ambiguous in places) took only some
35 pages (Wirth, 1985), while a formal description prepared by an ISO committee runs to over 700
pages. 

Formal specifications have the added advantage that, in principle, and to a growing degree in
practice, they may be used to help automate the implementation of translators for the language.
Indeed, it is increasingly rare to find modern compilers that have been implemented without the
help of so-called compiler generators. These are programs that take a formal description of the
syntax and semantics of a programming language as input, and produce major parts of a compiler
for that language as output. We shall illustrate the use of compiler generators at appropriate points
in our discussion, although we shall also show how compilers may be crafted by hand. 

Exercises 

1.1 Make a list of as many translators as you can think of that can be found on your computer
system. 

1.2 Make a list of as many other systems programs (and their functions) as you can think of that can
be found on your computer system. 

1.3 Make a list of existing features in your favourite (or least favourite) programming language that
you find irksome. Make a similar list of features that you would like to have seen added. Then
examine your lists and consider which of the features are probably related to the difficulty of
implementation. 

Further reading 

As we proceed, we hope to make the reader more aware of some of the points raised in this section.
Language design is a difficult area, and much has been, and continues to be, written on the topic.
The reader might like to refer to the books by Tremblay and Sorenson (1985), Watson (1989), and
Watt (1991) for readable summaries of the subject, and to the papers by Wirth (1974, 1976a,
1988a), Kernighan (1981), Welsh, Sneeringer and Hoare (1977), and Cailliau (1982). Interesting
background on several well-known languages can be found in ACM SIGPLAN Notices for August
1978 and March 1993 (Lee and Sammet, 1978, 1993), two special issues of that journal devoted to
the history of programming language development. Stroustrup (1993) gives a fascinating exposition
of the development of C++, arguably the most widely used language at the present time. The terms
"static semantics" and "dynamic semantics" are not used by all authors; for a discussion on this
point see the paper by Meek (1990). 


