
HLA Standard Library Reference
37 Zero-terminated String Functions (zstring.hhf)

Although HLA’s string format is more efficient (with respect to speed) than the zero-terminated string
format that languages like C, C++, and Java use, HLA programs must often interact with code that expects zero-
terminated strings. Examples include HLA (assembly) code you like with C/C++/Java programs and calls you
make to operating systems like Windows and Linux (that expect zero terminated strings). Therefore, the HLA
Standard Library provides a limited amount of support for zero-terminated strings so it can efficiently interact
with external code that requires such strings.

When passing read-only string data to some code that expects a zero-terminated string, HLA’s string format
is upwards compatible with zero-terminated strings. No conversion is necessary. An HLA string variable holds
the address of a sequence of characters that end with a zero byte (the zero-terminated format). So as long as the
code you’re calling doesn’t attempt to write any data to the string object, you can pass HLA string objects to
functions and procedures that expect zero-terminated strings.

If the procedure or function you’re calling stores data into a destination string variable, then you generally
should not pass an HLA string to that function. There are two problems with this: first, the function does not
check the HLA string’s maximum length field to ensure that string overflow does not occur; second, the external
function does not properly set the HLA string’s length field before returning. Furthermore, the external code
may create it’s own string data in some buffer and does not even allocate space for HLA’s maximum length and
dynamic length fields. To workaround these limitations, HLA provides various procedures in the Standard
Library that manipulate zero-terminated strings so your programs can effectively communicate with external
code that operates on such strings.

Before describing the support functions that HLA provides for zero-terminated strings, it’s probably
worthwhile to first discuss how one writes code that comfortably co-exists with such strings. As noted above,
there are three major problems one must deal with when external code processes zero-terminated strings. We’ll
deal with these issues one at a time.

The first problem is that the external code does not check the maximum string length field before writing
character data to a string object. Therefore, the external code cannot determine if a buffer overflow will occur
when that function extends the string’s length. Algorithms that depend upon the string function raising an
exception when a buffer overflow occurs will not work properly when calling external code that manipulates
zero-terminated strings. The solution to this problem is the same as the solution in C and C++: the programmer
must take the responsibility of ensuring that there is sufficient buffer space available to hold the string the
external function produces. Exactly how much space you must allocate as a maximum varies on a call by call
basis, but usually you can pick a sufficiently large value that is safe and preallocate storage for an HLA string
whose maximum length satisifies the program’s requirements. Note that most operating system API functions
that return variable length strings will let you specify a maximum length parameter so the OS will not overflow
your string buffer; well-written library routines and other code that create variable length zero-terminated strings
and generally provide this same functionality.

The second problem, the fact that the external code that manipulates the string’s data does not update HLA’s
string length field, is solvable by computing the length of the zero-terminated string upon return from the
external code and updating the length field yourself. A convenient way to handle this operation is to write a
wrapper function that you call from your code. The wrapper function calls the external code and then computes
and updates the HLA string length field before returning to the original caller. This saves having to compute the
length on each and every invocation of the external code. The HLA Standard Library provides a string length
function that efficiently computes the length of a zero-terminated string. You can call this function upon return
from the external code and then store the return result into the HLA dynamic length field.

Some external functions may create their own zero-terminated strings rather than store their string data in a
buffer you supply. Such functions will probably not allocate storage for the dynamic and maximum length fields
that the HLA string format requires. Therefore, you cannot directly use such string data as an HLA string in your
assembly code. There are two ways to handle such string data: (1) copy the zero-terminated string to an HLA
string and then manipulate the HLA string, or, (2) process the zero-terminated string using functions that directly
manipulate such strings. The HLA strings module provides a set of zero-terminated string functions that let you
choose either mechanism. The choice of method (1) or (2) depends entirely upon how you intend to use the
string data upon return to your HLA code. If you’re going to do considerable string manipulation on that string
data within your HLA code (and you want to use the full set of HLA string and pattern matching functions on the
string data), it makes a lot of sense to first convert the string to the HLA format. On the other hand, if you’re
going to do very little manipulation, or if the external function expects your code to update the string data in
place (so it can refer to a modified version of the original string data at the original address the external code
allocates), then it’s probably best to manipulate the string data in-place using a set of zero-terminated string
functions. If you need to do considerable string manipulation on some data, but the external code expects you to
leave the manipulated string in the original buffer it allocates, you can convert the string to an HLA string, do the
modification, and then copy the resulting string back into the original buffer; however, all this copying can be
expensive, so you should be careful about using this approach.
Released to the Public Domain Page 1001

HLA Standard Library
The HLA Standard Library provides a small handful of important zero-terminated string functions. This set
certainly isn’t as extensive as the set of functions available for HLA strings, nor is it as extensive as the set of
functions available, for example, in the C Standard Library. However, this small set of functions will probably
cover 90-95% of the requirements you’ll have for processing zero-terminated strings in HLA code. Generally, if
you need other functionality, you can obtain it by calling C Standard Library functions from your HLA code or
by first converting the string to an HLA string (and then copying the data back to the original buffer, if
necessary). The following subsections describe the functions that the HLA Standard Library provides to support
zero-terminated strings.

37.1 ZStrings Module
To use the zero-terminated string functions in your application, you will need to include one of the following

statements at the beginning of your HLA application:

#include("zstrings.hhf")
or
#include("stdlib.hhf")

37.2 Zstring Functions
procedure zstr.len(zstr:zstring); @returns("eax");

The single parameter is the address of a zero-terminated string. This function returns the length of that
string in the EAX register.

Note that the zstr.len function has a single untyped reference parameter. Generally, you’d pass the name of
a buffer variable as the parameter to this function. If the address of the zero-terminated string appears in a
register, you’ll need to use one of the following three invocations to call this function:

// Manual invocation- assumes the string pointer is in EBX:

push(ebx);
call zstr.len;
<< length is in EAX >>

.

.

.
zstr.len([ebx]); // zlen expects a memory operand

.

.

.
zstr.len(val ebx); // Tell HLA to use value of ebx.

The zstr.len function is especially useful for updating the length field of an HLA string you’ve passed to
some external code that generates a zero-terminated string. Consider the following code that updates the length
upon return from an external function:

// Allocate sufficient storage to hold the string result the external
// code will produce. 1024 was chosen at random for this example, you’ll
// have to pick an appropriate value based on the size of the string
// the external procedure in your code produces.

str.alloc(1024);
mov(eax, strVar);

.

.

.
externalFunction(strVal); // externalFunction overwrites strVal data.
zstr.len(strVal); // Compute the result string’s length
Page 1002 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(strVar, ebx); // Get pointer to string data.
if(eax > (type str.strRec [ebx]).MaxStrLen)) then

// If there was a string overflow, the overflow may
// have wiped out some important data somewhere, so
// it may be too late to raise this exception. However,
// better late than not notifying the caller at all.
// Because the buffer overflow may have corrupted the application’s
// data, the application should attempt to terminate as
// gracefully as possible at this point.

raise(ex.StringOverflow);

endif;

// Okay, the string didn’t overflow the buffer, update the
// HLA string dynamic length field:

mov(eax, (type str.strRec [ebx]).length);

HLA high-level calling sequence examples:

zstr.len(zstrValue);
mov(eax, zlen);

HLA low-level calling sequence examples:

pushd(&zstrValue);
call zstr.len;
mov(eax, zlen);

.

.

.
lea(eax, zStrVar);
push(eax);
call zstr.len;
mov(eax, zlen2);

procedure zstr.zcmp(zsrc1:zstring; zsrc2:zstring); @returns("eax");

The zstr.zcmp function compares two zero-terminated strings and returns the comparison results in the EAX
register and in the x86 flags. This comparison function sets the condition code bits so you can use the standard
unsigned condition instructions (jump and set instructions) immediately upon return to test for less than, less than
or equal, equal, not equal, greater than, or greater than or equal. This function also returns -1 ($FFFF_FFFF),
zero, or one in EAX to indicate less than, equal, or greater than (respectively). Note that this function compares
zsrc1 to zsrc2. Therefore, this function returns -1 if zsrc1 < zrc2, zero if zsrc1 = zsrc2, and one if zsrc1 > zsrc2.

This function is especiially useful for comparing two zero-terminated strings that some external code returns
to your HLA program if you don’t need to do any further manipulation of the string data. This function is also
useful for comparing an HLA string against a zero-terminated string (since HLA strings are zero terminated).
Technically, you could use this function to compare two HLA strings (since they are zero-terminated), but the
standard HLA string comparison functions are probably more efficient for this purpose.

HLA high-level calling sequence examples:
Released to the Public Domain Page 1003

HLA Standard Library
zstr.zcmp(zstr1, zstr2);
if(@ae) then // zstr1 >= zstr2

.

.

.
endif;
zstr.zcmp(someZStr, "Hello World");
mov(eax, cmpResult);

HLA low-level calling sequence examples:

lea(eax, SomeCharBuffer);
push(eax);
push(zStrVar);// Note: zstring vars are pointer vars
call zstr.zcmp;
jnae notAE;

.

.

.
notAE:

push(someZStr);
push(HelloWorldStr);
call zstr.zcmp;
mov(eax, cmpResult);

procedure zstr.cpy(src:zstring; dest:zstring);

The zstr.cpy function copies one zero-terminated string to another. The destination buffer must be large
enough to hold the source string and it is the caller’s responsbility to ensure this. The zstr.cpy routine has no way
to determine the maximum size of the destination buffer, so it cannot check for buffer overflow (this is typical for
zero-terminated string functions).

Since HLA strings are zero-terminated, you can use this function to copy an HLA string to a zero-terminated
string:

// Assumptions: hlaString is the name of an HLA String variable and
// destZStr is the name of an array of characters or byte array.

zstr.cpy(hlaString, destZStr);

Of course, you can also use the zstr.cpy function to copy one zero-terminated string to another. You’d
typically use zstr.cpy in this capacity to copy a string returned by one external function to a buffer for use by
another external function that expects a zero-terminated string.

procedure zstr.cat(src:zstring; dest:zstring);

This function concatenates one zero-terminated string to the end of another. The caller must ensure that the
destination buffer is large enough to hold the resulting string; the zstr.cat function has no way to verify the size
of the destination buffer, so it cannot check for buffer overflow (this is typical for zero-terminated string
functions).

This string is useful for manipulating zero-terminated strings some external code provides without the
overhead of first converting the strings to HLA strings. If you call two external functions that return zero-
terminated strings and you need to pass their concatenated result to some other external function that expects a
zero-terminated string, and there is no string manipulation in your HLA code, then using zstr.cat is more efficent
than converting the strings to an HLA string and using the HLA string concation function.
Page 1004 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
When using this function, don’t forget that it’s parameters are untyped reference parameters. When passing
the address of a buffer variable you may specify the name of the buffer directly. However, when passing a
pointer to the buffer, you’ll probably need to use the VAL operator to tell HLA to pass the pointer’s value rather
than the pointer’s address. Here are some examples of zstr.cat invocations:
static

buffer1 :char[256];
buffer2 :char[254];
bufptr1 :zstring;
bufptr2 :zstring;

.

.

.
lea(eax, buffer1);
mov(eax, bufptr1);
lea(eax, buffer2);
mov(eax, bufptr2);

.

.

.
zstr.cat(bufptr1, bufptr2);
zstr.cat(buffer2, edi);
zstr.cat(bufptr2, esi);

You can also use the zstr.cat procedure to copy data from an HLA string to a zero-terminated string:
static

hlaStr :string;
zs :char[256];
zPtr :zstring;

.

.

.
lea(eax, zs);
mov(eax, zPtr);

.

.

.
zstr.zcat(hlaStr, zPtr);
zstr.zcat(hlaStr, esi);

It really does not make any sense to specify an HLA string variable as the destination operand. zstr.cat does
not update the HLA string’s length field, so if you supply an HLA string as the destination operand, the zstr.cat
procedure may corrupt the HLA string, forcing you to manually compute the length yourself. If you need to
copy a zero-terminated string to an HLA string, use the zstr.cat function instead.
Released to the Public Domain Page 1005

HLA Standard Library
Page 1006 Version: 4/28/10 Written by Randall Hyde

	37 Zero-terminated String Functions (zstring.hhf)
	37.1 ZStrings Module
	37.2 Zstring Functions
	procedure zstr.len(zstr:zstring); @returns("eax");
	procedure zstr.zcmp(zsrc1:zstring; zsrc2:zstring); @returns("eax");
	procedure zstr.cpy(src:zstring; dest:zstring);
	procedure zstr.cat(src:zstring; dest:zstring);

