
HLA Standard Library Reference
30 The HLA Standard Template Library

The following sections provide a basic description of some of the routines in the HLA Standard Template
Library. Keep in mind that the HLA Standard Template Library is a work in progress and the following sections
may not be totally up to date. The HLA Standard Template Library header file and source code is the final
arbitor if there is a question how the routines operate.

Unless otherwise noted, you can assume that the Standard Library routines preserve all the general purpose
registers. They generally do not preserve the flags.

30.1 Introduction to the HLA STL
The HLA Standard Template Library (STL) was designed to be similar to the C++ STL. The idea is not only

to provide similar functionality to the C++ STL, but also to help make the transition from C++ to assembly
language an easier process. Though the HLA STL is by no means an exact replicate of the C++ STL, the
concepts are sufficiently close to allow someone to use the HLA STL in the same way they’d use the C++ STL
without having to learn a new programming paradigm.

Though the HLA STL is especially easy to learrn by those who are familiar with templates in C++, it’s also
a relatively straight-forward package to learn by those who are not C++ programmers. The HLA STL package
provides convenient code for declaring dynamic arrays, queues, lists, lookup tables, and other advanced data
structures. By using HLA STL code, you’ll find it much easier to write advanced assembly language code taking
advantage of these sophisticated data structures.

"Template" is a special C++ term that is effectively a synonym for macro1. Therefore, one big difference
you’ll find between the HLA STL and the HLA Standard Library is that there are not object files you link in with
code that uses the HLA STL. The STL is simply a set of macros that you incorporate into your program by
including the "stl.hhf" header file and then invoking the templates (macros) that interest you. Therefore, to use
the HLA STL package, the first thing you must do is include the following statement in your HLA program:

#include("stl.hhf")
Note that HLA "stdlib.hhf" header file does not automatically include the STL header file. The STL and the

HLA Standard Library are two separate packages and you must explicitly include "stl.hhf" to use the HLA STL
facilities.

The HLA STL is a set of macros (templates) that create user-defined class objects when you invoke them.
To a programmer, these macros look somewhat like user-defined types that you use in a type declaration section.
For example, consider the following vector type declaration:

type
int32Vector :stl.vector(int32);

The principle difference between an STL type declaration and a standard type declaration is the fact that STL
declarations are parameterized. STL types are abstract data types that usually contain some other type. A vector
type, for example, is a dynamic array type, with each element of the vector being some base type (int32 in the
vector example above). It is possible to have vectors of 32-bit integers (int32), characters, strings, or any other
built-in or user-defined data type. The parameter associated with an STL declaration specifies the underlying
data type on which the new type is built. Consider the following two vector declarations:

type
int32Vector :stl.vector(int32);
stringVector :stl.vector(string);

These two declarations create two new class types, an int32 vector and a string vector, that one can use to
declare integer and string vectors. It’s inportant to realize that the vector template creates different types, not
variables. It’s also important to realize that vector types are different. That is, int32Vector and stringVector,
although both vectors, are not compatible types.

1. Technically, this is not true, but we’ll ignore the distinction in this document.
Released to the Public Domain Page 817

HLA Standard Library
30.2 Type Declarations Created by a Template
Templates only create types, not variables. In order to create actual variable objects, you must declare such

objects in an HLA var, static, or storage section (because all template types are classes, you cannot create
initialized class objects in a readonly [or static] section).

Template expansions may only occur in an HLA type section at the global level of a program or unit. This is
because the template expansion, in addition to creating the data type, emits the code for all the class methods and
the VMT for the class. After a template expansion, the template will leave the program in the type declaration
section, but keep in mind that internally, the template expands to code and data in addition to type declarations.

In addition to the user-specified type name, an STL declaration typically creates two or three other types
during expansion. Most templates will also create the following types:

type
p_name :pointer to name;
name_cursor: pointer to XXXX;

where name is the user-specified type name (e.g., int32Vector and stringVector from the previous examples,
yielding int32Vector_cursor and p_int32Vector). XXXX represents an unimportant type name for our purposes;
Cursor types are opaque insofar as an HLA application will use a cursor type to pass data amongst template class
methods without needing to know what the type actually references.

Some template types (e.g., list and table) also create a node type, declared as follows:

type
name_node: record

data:parameter_type;
<<other_fields>>

endrecord;

where parameter_type is the type passed to the STL template as a parameter (e.g., int32 and string in the current
examples) and other_fields represent some opaque fields that the class’ methods reference and should be treated
as private data by all other code.

Once you invoke a template in a type declaration section, you can create actual objects using the template’s
resulting type. For example, to create int32Vector and stringVector objects, you could use declarations like the
following:

type
myInt32v :int32Vector;
myStringv :stringVector;

Note that you do not use an STL template when you define an actual variable. You use templates to create types
and then you use those types you’ve created to declare variables.

30.3 Template Objects are Classes
Though it is not particularly apparent from the invocation of a template, you should realize that HLA STL

templates create class types. When you declare a variable of some template type you’ve defined, you’re creating
a class object. Therefore, it helds if you’re familiar with the HLA object-oriented programming paradigm (and,
in particular, HLA classes, methods, class procedures, and class iterators).

Note that when you define a new type using an HLA template, that type definition also creates a set of
methods, procedures, and iterators specific to that class. That is, a type declaration like the following:

type
csetVector :stl.vector(cset);

does a lot more than simply define a type – it also expands to a lot of code to your source file. A typical template
class may have 2-4 dozen methods, class procedures, and class iterators associated with the class. Each time you
create a new class by expanding an STL template, you get a new copy of all those routines. Consider the
following pair of type declarations:

type
Page 818 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
int32Vector :stl.vector(int32);
i32Vector :stl.vector(int32);

Internally, these classes are exactly the same. Externally, however, they are different types. Therefore, the HLA
STL will create a separate set of methods that are absolutely identical in everything but name for these two types.
This is a waste of space. In general, you should only create one instance of a particular STL class, so that you
only expand one set of methods, procedures, and iterators (and a virtual method table [VMT]) for that one class.
If you really two different "vector of int32" types, you should consider a declaration like the following:

type
i32v :stl.vector(int32);
int32Vector :i32v;
i32Vector :i32v;

HLA only generates one set of methods/procedures/iterators and VMTs for the i32v class; the int32Vector and
i32Vector classes share this code and VMT (which is reasonable, as the operations on int32Vector and i32Vector
types will always be the same).

Note that the HLA STL macros emit different methods, procedures, and iterators for class objects with
differing underlying types. For example, the int32Vector and stringVector types both need their own set of
specific methods/procedures/iterators because those routines operate on completely different data types.

So keep in mind that everytime you expand an HLA STL template, you get a new set of routines associated
with the corresponding class you’ve defined. Of course, you only have one set of routines for each class you
create, regardless of how many instances (class variables) of that class you define. That is, declaring multiple
variables does not cause the emission of multiple sets of methods; only defining types will do this.

30.4 Class Traits
A template trait is a compile-time or run-time value that provides some information about the type of the

underlying class. The HLA STL defines several common trait objects that are testable within any STL type.
Advanced programmers may use conditional assembly to test compile-time traits or actual machine instructions
to test run-time traits. By utilizing traits, your code can behave differently, depending on the underlying
(template) data type.

Though most programmers can use STL class types without ever worrying about traits, the availability of
traits makes it possible to do some very sophisticated things with the HLA STL. Where traits might come in
handy is when you’re writing your own macros to which you pass different STL objects and you might need to
generate different code (or emit an error message) depending on the traits the object supports. Also, you soon
find out that it’s possible to create an object with fewer traits than the default object supports. For example, if
you’re using some simple int32 vector types and you don’t require any of the cursor capabilities, you can tell the
HLA STL to construct an int32 vector type without cursor support (thus reducing the amount of code the
template generates). However, if you pass one of these vector objects to a generic macro that works with vectors,
the lack of cursor support could create a problem. Fortunately, traits solve this problem by letting that macro (or
even some run-time code) test to see whether cursor support is present, generating an error (or otherwise
handling the situation) if cursors are not available.

 30.4.1 isSTL_c Trait
The most fundamental trait assocated with all template classes is the isSTL_c trait. This is a compile-time

constant (const class declaration) that is defined and set to TRUE for all STL types. You can use the HLA
compile-time @defined function to test whether or not the isSTL_c field is defined for a given class type. If this
symbol is defined, then you can generally assume that the underlying class is an HLA STL class and you can test
for any of the other STL traits2. Here’s how you’d typically use this trait:

#if(@defined(someType.isSTL_c))
<< code to compile, knowing that this is an STL type >>

#endif

2. Of course, there is nothing stopping someone from defining this constant in some arbitrary non-STL class, but you can
generally assume that someone won’t hijack your program’s logic by doing this.
Released to the Public Domain Page 819

HLA Standard Library
 30.4.2 Compile-Time Traits
If the isSTL_c field is defined, then the class will also define three dword constants: hierarchy_c,

capabilities_c, and performance_c. These constants are bit maps with each (defined) bit posititon corresponding
to some capability, or lack thereof, of the current class object. If the bit position contains one, then the class
possesses the corresponding capability; if the bit position contains zero, then the class lacks that capability.

The hierarchical traits specify which subclasses are associated with a given type. The capability traits
specify which general methods are available to a given class. The performance traits provide an indication of the
performance of the methods available to a given class.

The STL defines the following constants (which are all values with a single bit set):

Hierarchical traits (testable in hierarchy_c):

• stl.isContainer_c
• stl.isRandomAccess_c
• stl.IsArray_c
• stl.isVector_c
• stl.isDeque_c
• stl.isList_c
• stl.isTable_c

Capability traits (testable in capabilities_c):

• stl.supportsOutput_c
• stl.supportsCompare_c
• stl.supportsInsert_c
• stl.supportsRemove_c
• stl.supportsAppend_c
• stl.supportsPrepend_c
• stl.supportsSwap_c
• stl.supportsForEach_c
• stl.supportsrForEach_c
• stl.supportsCursor_c
• stl.supportsSearch_c
• stl.supportsElementSwap_c
• stl.supportsObjSwap_c
• stl.elementsAreObjects_c

Performance traits (testable in performance_c):

• stl.fastInsert_c
• stl.fastRemove_c
• stl.fastAppend_c
• stl.fastPrepend_c
• stl.fastSwap_c
• stl.fastSearch_c
• stl.fastElementSwap_c

As their category suggests, you use these constants to test particular bits in the hierarchy_c, capability_c,
and performance_c compile-time variables, respectively. For example, if you have an STL class and you want to
determine if it is a vector class, you could use code like the following:

#if((mySTLObject.hierarchy_c & stl.isVector_c) <> 0)

<< you can assume mySTLObject is a vector object here >>

#endif

 30.4.3 Run-Time Traits
If the isSTL_c field is defined, then the class object provides three run-time dword variables containing

various set bits that determine the characteristics of that class. These run-time traits are the same as the compile-
time traits except, of course, you can test their values at run-time using machine instructions. These variables are
Page 820 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
hierarchy, capabilities, and performance. They are run-time analogs to the compile-time constants mentioned in
the previous section and are associated with the same set of trait constant, i.e.,

Hierarchical traits (testable in hierarchy_c):

• stl.isContainer_c
• stl.isRandomAccess_c
• stl.IsArray_c
• stl.isVector_c
• stl.isDeque_c
• stl.isList_c
• stl.isTable_c

Capability traits (testable in capabilities_c):

• stl.supportsOutput_c
• stl.supportsCompare_c
• stl.supportsInsert_c
• stl.supportsRemove_c
• stl.supportsAppend_c
• stl.supportsPrepend_c
• stl.supportsSwap_c
• stl.supportsForEach_c
• stl.supportsrForEach_c
• stl.supportsCursor_c
• stl.supportsSearch_c
• stl.supportsElementSwap_c
• stl.supportsObjSwap_c
• stl.elementsAreObjects_c

Performance traits (testable in performance_c):

• stl.fastInsert_c
• stl.fastRemove_c
• stl.fastAppend_c
• stl.fastPrepend_c
• stl.fastSwap_c
• stl.fastSearch_c
• stl.fastElementSwap_c

Because these are run-time values, you must you 80x86 machine instructions to test for these trait value,
e.g.,

test(stl.supportsCursor, mySTLObj.capabilities);
if(@nz) then

<< execute code that uses the cursor methods in the object >>

endif;

 30.4.4 Trait Constants
The following subsections define the meaning of each of the traits. Note that the term "true" means that the

trait value is non-zero (and will have a single set bit, the bit position determined by the particular triat) while
"false" means that the trait’s value is zero.

 30.4.4.1 stl.isContainer_c Trait
This bit is set in heirarchy_c or hierarchy if the STL object is (known to be) a container object. Currently,

almost all STL objects are containers so this trait will be true. (The only STL object that is not a container is the
base object, and you’ll generally not declare any STL objects using the base type).

A container is a type that holds elements of some other type. All common STL types are container types as
they are all composite data types (e.g., arrays, lists, tables, and so on).
Released to the Public Domain Page 821

HLA Standard Library
 30.4.4.2 stl.isRandomAccess_c Trait
This bit is set in heirarchy_c or hierarchy if the underlying STL object provides efficient (O(1) time)

random access to the underlying type’s elements. Vectors and deques are examples of objects that support
random access as it takes the same amount of time to access any arbitrary element of these types.

 30.4.4.3 stl.isArray_c Trait
This bit is set in heirarchy_c or hierarchy if the underlying class is an array object. Currently, this value is

true for vector and deque types.

 30.4.4.4 stl.isVector_c Trait
This bit is set in heirarchy_c or hierarchy if the underlying class is a vector class type.

 30.4.4.5 stl.isDeque_c Trait
This bit is set in heirarchy_c or hierarchy if the underlying class is a deque class type.

 30.4.4.6 stl.isList_c Trait
This bit is set in heirarchy_c or hierarchy if the underlying class is a list class type.

 30.4.4.7 stl.isTable_c Trait
This bit is set in heirarchy_c or hierarchy if the underlying class is a table class type.

 30.4.4.8 stl.supportsOutput_c Trait
This bit is set in capabilities_c or capabilities if the underlying class supports a toString method that the

HLA Standard Library can employ in macro invocations such as stdout.put or fileio.put to write the class’ data to
some output stream. By default, this value is false. If you provide a toString method for a given data type you
define, then you’ll set this constant to true.

 30.4.4.9 stl.supportsCompare_c Trait
This bit is set in capabilities_c or capabilities if the underlying class supports the isEqual, isLess, and

isLessEqual methods. Some classes may only support an isEqual method, in which case the supportsCompare_c
trait will be false; you may test for isEqual by using the @defined compile-time function.

 30.4.4.10 stl.supportsInsert_c Trait
This bit is set in capabilities_c or capabilities if the class supports data insertion into an object. Generally,

this implies that you have at least an insertVal and an insertRef method available. Other insertion methods may
also be available, use @defined to test for their presence if you need to determine whether they exist for a
particular class object. Not all class types accept the same parameter lists for their insert methods, thus limiting
the generic usefulness of these methods (e.g., table insertions are based on strings rather than an integer index).
You can test the is****_c traits (e.g., isTable_c) to handle such cases.

 30.4.4.11 stl.supportsRemove_c Trait
This bit is set in capabilities_c or capabilitiese if it is possible to remove objects from an STL object at run-

time. Some STL data types (e.g., tables) do not allow the removal of an object once it’s been inserted into the
object; such types will (obviously) set supportsRemove_c to false.

 30.4.4.12 stl.supportsAppend_c Trait
This bit is set in capabilities_c or capabilities if it iis possible to append a data element to the end of some

STL object in memory. Some STL data types (e.g., tables) do not support the notion of a data sequence and,
therefore, do not define an append operation. You can test this compile-time constant to check whether
appending is a valid object before attempting it.

 30.4.4.13 stl.supportsPrepend_c Trait
This bit is set in capabilities_c or capabilities if it iis possible to insert a data element at the front of some

STL object in memory. Some STL data types (e.g., tables) do not support the notion of a data sequence and,
Page 822 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
therefore, do not define a prepend operation. You can test this compile-time constant to check whether
appending is a valid object before attempting it.

 30.4.4.14 stl.supportsForEach_c and supportsrForeach_c Traits
These two compile-time constants (testable in capabilities_c and capabilities) tell you whether the template

type supports a forward iterator (ForEachElement) or a reverse iterator (rForEach). Most STL types, by default,
provide both types of iterators, even when the underlying data type is not a sequence (e.g., tables). For those data
types that do not enforce an underlying sequence, the iterators will sequence through each of the object’s
elements, but the order of the sequence is undefined.

 30.4.4.15 stl.supportsCursor_c Trait
Cursors are special opaque pointer objects that STL methods use to provide access to the underlying objects

of some STL type. If an STL type supports cursors and operations on the type via those cursors, then this trait
will be true for that type. This bit is set in capabilities_c or capabilities if the class supports cursors.

 30.4.4.16 stl.supportsSearch_c Trait
(to be defined; unused as this is being written.)

 30.4.4.17 stl.supportsElementSwap_c Trait
This bit is set in capabilities_c or capabilities if there is a swapElements method for the underlying class

type. This method physically swaps the data between two elements of the STL type. This operation is not
permitted for certain data types (e.g., tables), in which case the method will not exist and this trait will contain
false.

 30.4.4.18 stl.supportsObjSwap_c Trait
This bit is set in capabilities_c or capabilities if the swapObj method is present. swapObj will completely

swap the values of two STL variables (whole objects, not elements of those objects).

 30.4.4.19 stl.elementsAreObjects_c Trait
This bit is set in capabilities_c or capabilities if the elements of a given STL type are themselves class

objects. This trait is set to false if the underlying data type is something other than a class. You may test this
constant, for example, to determine if you should call constructors or destructors for each object created for an
STL container class.

 30.4.4.20 stl.fastInsert_c Trait
This bit is set in performance_c or performance if the class supports insertion and insertion can be

(typically) done in O(1) time. It will be set to false if the class does not support insertion or executes slowly
(generally O(lg n), O(n), or worse, time is considered "not fast").

 30.4.4.21 stl.fastRemove_c Trait
This bit is set in performance_c or performance if the class supports element removal and removal can be

(typically) done in O(1) time. It will be set to false if the class does not support removal or executes slowly
(generally O(lg n), O(n), or worse, time is considered "not fast").

 30.4.4.22 stl.fastAppend_c Trait
This bit is set in performance_c or performance if the class supports element append and append can be

(typically) done in O(1) time. It will be set to false if the class does not support append or executes slowly
(generally O(lg n), O(n), or worse, time is considered "not fast").

 30.4.4.23 stl.fastPrepend_c Trait
This bit is set in performance_c or performance if the class supports element prepend and prepend can be

(typically) done in O(1) time. It will be set to false if the class does not support prepend or it executes slowly
(generally O(lg n), O(n), or worse, time is considered "not fast").
Released to the Public Domain Page 823

HLA Standard Library
 30.4.4.24 stl.fastSwap_c Trait
This bit is set in performance_c or performance if the class supports whole object swap and swapping can be

(typically) done in O(1) time. It will be set to false if the class does not support object swap or it executes slowly
(generally O(lg n), O(n), or worse, time is considered "not fast").

 30.4.4.25 stl.fastSearch_c Trait
(as this was being written, this trait was undefined.)

 30.4.4.26 stl.fastElementSwap_c Trait
This bit is set in performance_c or performance if the class supports element swap and swapping can be

(typically) done in O(1) time. It will be set to false if the class does not support element swap or it executes
slowly (generally O(lg n), O(n), or worse, time is considered "not fast").

 30.4.5 Other Run-Time Traits
All objects possess two run-time fields: typeName and isAlloc. The typeName field is a string that provides

the actual name of the object. For example, given a declaration like the following:

type
int32Vector :stl.vector(int32);

then the typeName field will be initialized with the string "int32Vector". The typeName variable should be
treated as a read-only object; you should not modify the pointer or the string data associated with it (actually, the
string data is in a read-only section, so you cannot modify it, but you should modify the string pointer, either).

The isAlloc field will contain true if the object has been allocated on the heap, it will contain false if this
object was not allocated on the heap. The destructor method (destroy) uses this field to determine whether it
needs to deallocate storage when the object is deleted. You may read the value of this field, but you must not
change it.

Container objects (which is all STL objects at this point) have two additional fields: numElements and
containerName. The numElements field is a un32 variable that specifies the number of objects contained within
the container (e.g., the number of vector elements or list nodes). You must not modify this field; treat it as a read-
only object; indeed, there is a getSize method that you can use to retrieve the value of this field. You should use
the getSize method and avoid accessing this field directly.

The containerName field is a string that specifies the container type. This will typically be a string like
"vector", "deque", "list", or "table". You should treat this as a read-only field.

The arrayContainer, vector, deque, list, and table classes all contain their own private data fields. You
should treat all these fields as opaque – that is, private to the class – and you should not modify or even read their
values. Where necessary, these classes will provide accessor functions that return the values of these data fields.

30.5 The Vector Template
(to be written)

30.6 The Deque Template
(to be written)

30.7 The List Template
(to be written)

30.8 The Table Template
Page 824 Version: 4/28/10 Written by Randall Hyde

	30 The HLA Standard Template Library
	30.1 Introduction to the HLA STL
	30.2 Type Declarations Created by a Template
	30.3 Template Objects are Classes
	30.4 Class Traits
	30.4.1 isSTL_c Trait
	30.4.2 Compile-Time Traits
	30.4.3 Run-Time Traits
	30.4.4 Trait Constants
	30.4.4.1 stl.isContainer_c Trait
	30.4.4.2 stl.isRandomAccess_c Trait
	30.4.4.3 stl.isArray_c Trait
	30.4.4.4 stl.isVector_c Trait
	30.4.4.5 stl.isDeque_c Trait
	30.4.4.6 stl.isList_c Trait
	30.4.4.7 stl.isTable_c Trait
	30.4.4.8 stl.supportsOutput_c Trait
	30.4.4.9 stl.supportsCompare_c Trait
	30.4.4.10 stl.supportsInsert_c Trait
	30.4.4.11 stl.supportsRemove_c Trait
	30.4.4.12 stl.supportsAppend_c Trait
	30.4.4.13 stl.supportsPrepend_c Trait
	30.4.4.14 stl.supportsForEach_c and supportsrForeach_c Traits
	30.4.4.15 stl.supportsCursor_c Trait
	30.4.4.16 stl.supportsSearch_c Trait
	30.4.4.17 stl.supportsElementSwap_c Trait
	30.4.4.18 stl.supportsObjSwap_c Trait
	30.4.4.19 stl.elementsAreObjects_c Trait
	30.4.4.20 stl.fastInsert_c Trait
	30.4.4.21 stl.fastRemove_c Trait
	30.4.4.22 stl.fastAppend_c Trait
	30.4.4.23 stl.fastPrepend_c Trait
	30.4.4.24 stl.fastSwap_c Trait
	30.4.4.25 stl.fastSearch_c Trait
	30.4.4.26 stl.fastElementSwap_c Trait

	30.4.5 Other Run-Time Traits

	30.5 The Vector Template
	30.6 The Deque Template
	30.7 The List Template
	30.8 The Table Template

