
HLA Standard Library Reference
14 File Class Module (fileclass.hhf)

The HLA Standard Library provides an object-oriented file access mechanism implemented via the file_t
and virtualfile_t classes. Unless otherwise specified, this document will use the term "file class" to describe the
generic file class rather than the specific instance of the file_t class (which uses static linking for all functions).

Note: HLA also provides a fileio library module that does file I/O using traditional procedures rather than
class objects. If you’re more comfortable using such a programming paradigm, or you prefer your code to be a
bit more efficient, you should use the fileio module.

Note: Currently, the file_t class is implemented as a thin layer over the fileio module. That is, functions in
the file class simply pass their parameters on to the corresponding functions in the fileio module. The ultimate
intent, however, is for the file_t class to implement buffered I/O to improve performance. Because of the wide
variety of operating systems that the HLA Standard Library supports (and will support), this may lead to some
functionality limitations in future versions of the file_t class. In particular, you should only use file_t class
objects to access files on block structured (disk) devices and avoid accessing character-oriented or other device
types. Also, file_t objects will provide the best performance for sequential files. Though the intent is to fully
support random-access to file data via file_t objects, you may get better performance by using the traditional file
I/O functions in the fileio module.

Note: the virtualFile_t class is completely different from the file_t class. In particular, it is not a thin layer
over the fileio module. All of the functions in the virtualFile_t class ultimately call the virtualFile_t.read and
virtualFile_t.write functions to do file I/O. If you override these two functions (read and write), you will override
the behavior of all methods in the virtualFile_t class. Note that this is not true for file_t objects.

Warning: Don’t forget that HLA objects modify the values in the ESI and EDI registers whenever you call a
class procedure, method, or iterator. Do not leave any important values in either of these register when making
calls to the following routines. If the use of ESI and EDI is a problem for you, you might consider using the fileio
module that does not suffer from this problem.

A Note About Thread Safety: The file class functions and the operating system maintain system-wide
values to track things like file position within a file. Currently, these values apply to all threads in a process (and,
in the case of the OS, all processes in the system). When accessing the same file object from different threads,
you should use synchronization to serialize access to the file object.

Note about function overloading: the functions in the file classes use function overloading in order to
allow you to specify the parameter lists in different ways. The macro that handles the overloading generally
coerces the possible parameter types into a single object that it passes to the underlying function. The
documentation for the specific functions will tell you whether a symbol is a macro or a function. For the most
part, this should matter to you unless you are taking the address of a function (which you cannot do with a
macro). See the HLA documentation for more details on function overloading via macros.

14.1 File Class Methods/Procedures
In most HLA classes, there are three types of functions: (static) procedures, (dynamic) methods, and

dynamic iterators. The only difference between a method and a procedure is how the program actually calls the
function: the program calls procedures directly, it calls methods indirectly through an entry in the virtual method
table (VMT). The system always calls iterators indirectly through the VMT, so we will not consider them further.
Static procedure calls are very efficient, but you lose the benefits of inheritence and functional polymorphism
when you define a function as a static procedure in a class. Methods, on the other hand, fully support
polymorphic calls, but introduce some efficiency issues.

First of all, unlike static procedures, your program will link in all methods defined in your program even if
you don’t explicitly call those methods in your program. Because the call is indirect, there really is no way for the
assembler and linker to determine whether you’ve actually called the function, so it must assume that you do call
it and links in the code for each method in the class. This can make your program a little larger because it may be
including several date class functions that you don’t actually call.

The second efficiency issue concerning method calls is that they use the EDI register to make the indirect
call (static procedure calls do not disturb the value in EDI). Therefore, you must ensure that EDI is free and
available before making a virtual method call, or take the effort to preserve EDI’s value across such a call.

A third, though extremely minor, efficiency issue concerning methods is that the class’ VMT will need an
extra entry in the virtual method table. As this is only four bytes per class (not per object), this probably isn’t
much of a concern.

The predefined file_t and virtualFile_t objects differ in how they define the functions appearing in the class
types. The file_t type uses static procedures for all functions, the virtualFile_t type uses methods for all class
functions. Therefore, file_t object types will make direct calls to all the functions (and only link in the
procedures you actually call); however, file_t objects do not support function polymorphism in derived classes.
The virtualFile_t type does support polymorphism for all the class methods, but whenever you use this data type
Released to the Public Domain Page 313

HLA Standard Library
you will link in all the methods (even if you don’t call them all) and calls to these methods will require the use of
the EDI register.

It is important to understand that file_t and virtualFile_t are two separate types. Neither is derived from the
other. Nor are the two types compatible with one another. You should take care not to confuse objects of these
two types if you’re using both types in the same program.

14.2 A Quick Note
The following sections do not include sample code demonstrating the calling sequences for a couple of

reasons:
For high level calls, the syntax depends on the object name and type.
Low-level calling sequences don’t appear here because it doesn’t really make sense to make a low-level

object invocation; people wanting to make low-level calls will probably use the standard
fileio procedures rather than the object-oriented ones.
These functions are really intended for use by programmers experienced with HLA’s Object-oriented

assembly facilities.
For the same reasons, there are no stack diagrams for these function calls. If you want more information on

making calls to HLA class methods and procedures, please consult the HLA documentation.
In the following function descriptions, the symbol <object> is used to specify a file class object or a pointer

to a file_t class object. This wherever this document uses the name "file_t", you may substitute (as appropriate)
"virtualFile_t". Note that class invocations of static procedures (e.g., "file_t.open") are illegal with the single
exception of the constructor (the create procedure). If you call a file class procedure directly, the system will
raise an exception (as ESI, which should be pointing at the object’s data, will contain NULL).

14.3 General File Operations
The functions in this category let you initialize file objects, access fields of the file objects, and perform

other housekeeping tasks.

<object>.create; @returns("esi");
file_t.create; @returns("esi"); [to create dynamic objects]
virtualFile_t.create; @returns("esi"); [to create dynamic objects]

The file class provides a file_t.create or virtualFile_t.create constructor which you should always call before
making use of a file variable. For file variables (as opposed to file pointer variables), you should call this routine
specifying the name of the file variable. For file pointer variables, you should call this routine using the class
name and store the pointer returned in EAX into your file variable. For example, to initialize the two following
two file objects, you would use code like the following:

var
MyOutputFile: file_t;
filePtr: pointer to file_t;
.
.
.

MyOutputFile.create();

file_t.create();
mov(eax, filePtr);

Note that the file_t.create constructor simply initializes the virtual method table
pointer and does other necessary internal initialization. The constructor does not
open a file or perform other file-related activities.
Page 314 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 <object>.handle; @returns("eax");

This function returns the file handle in the EAX register. The returned value is invalid if you have not
opened the file. You can pass this handle value to any of the Standard Library file routines (e.g., fileio.putc) that
expect a handle. You may also pass this value to OS API functions that expect a file handle.

HLA high-level calling sequence examples:

filePtr.handle();
mov(eax, fileHandle);

14.4 Opening and Closing Files
<object>.open(filename:string; access:dword)

This method opens an existing file. The filename parameter is a string specifying the name of the file you
wish to open. The access parameter is one of the following:

• fileio.r
• fileio.w
• fileio.rw
• fileio.a

The fileio.r constant tells <object>.open to open the file for read-only access. The fileio.w constant tells
<object>.open to open the file for writing. Using the fileio.rw constant tells <object>.open to open the file for
reading and writing. The fileio.a option tells the <object>.open function to open the file for writing and append
all written data to the end of the file.

Before accessing the data in a file, you must open the file (which initializes the file handle). The
<object>.open and <object>.openNew methods are excellent tools for this purpose. You may also open the file
using direct calls to the OS API, but you must initialize the <object>.fileHandle field of the class variable before
making any other method calls in the file class.

HLA high-level calling sequence examples:

filePtr.open("myfile.txt", fileio.r);

// Note: the Access parameter is almost always a constant in
// calls to fileio.open. However, if you want to pass a variable
// value or a register value in this parameter, you may certainly
// do so:

MyOutputFile.open(filenameStr, accessVarByte);

filePtr.open(someStr, al);

<object>.openNew(filename:string)

This function opens a new file for writing (if the file already exists, it is first deleted and then a new file is
opened for writing). The file is given the "normal" attribute.

Before accessing the data in a file, you must open the file (which initializes the file handle). The
<object>.open and <object>.openNew methods are excellent tools for this purpose. You may also open the file
using direct calls to the OS API, but you must initialize the <object>.fileHandle field of the class variable before
making any other method calls in the file class.

HLA high-level calling sequence examples:
Released to the Public Domain Page 315

HLA Standard Library
filePtr.openNew("myfile.txt");

// If the filename string pointer is in a register (EAX):

MyOutputFile.openNew(eax);

<object>.close;

This method closes a file opened via <object>.open or <object>.openNew and flushes any buffered data to
the disk.

HLA high-level calling sequence examples:

filePtr.close();
MyOutputFile.close();

14.5 File Predicates
The functions in this category test conditions associated with the file.

<object>.eof(); @returns("al");

This function returns true in the AL register if the file pointer is at the end of the file. It returns false if the
program can read additional data from the file.

Warning: <object>.eof only functions properly for actual disk files. If you attempt to read data from an
interactive device like the system console (keyboard) or a serial port, <object>.eof’s behavior is incorrect (it will
wind up eating a character from the interactive input stream every time you call it). Unfortunately, none of the
Oses that HLA supports provide a way to test for EOF until after you’ve actually read a character from the input
stream. A better solution, which works fine with both interactive input streams and file data is to use HLA’s
try..endtry statement to trap and EOF error when it occurs. For example, rather than writing the following:

while(!filePtr.eof(someHandle)) do
.
.
.
endwhile;

You should write the following:

try
forever

.

.

.
endfor;
 exception(ex.EndOfFile);

endtry;

Note: under Windows, <object>.eof always returns false for character device files (e.g., keyboard input) and
it returns false for all other non-disk file device types. Note that if the user presses ctrl-Z on the keyboard,
<object>.eof will not return true, but the system will return an ex.endOfFile exception. If there is any chance
you’ll be reading data from a device file rather than a disk file, always use the try..endtry block to test for EOF.

HLA high-level calling sequence examples:
Page 316 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
while(!filePtr.eof(fileHandle)) do

<<something while not at EOF>>

endwhile;

<object>.eoln(); @returns("al");

This function returns true in AL if the file pointer is currently pointing at the OS’ end-of-line sequence in the
file (carriage return/line feed for Windows, linefeed for other operating systems).

HLA high-level calling sequence examples:

filePtr.eoln();

14.6 Miscellaneous Output
The following file output routines all assume that you’ve opened the <object> file variable via a call to

<object>.open and you’ve successfully opened the file for output.

<object>.write(var buffer:var; count:dword)

This method writes the number of bytes specified by the count parameter to the file. The bytes starting at the
address of the buffer byte are written to the file. No range checking is done on the buffer, it is your responsibility
to ensure that the buffer contains at least count valid data bytes.

Note: Notice that the buffer parameter is an untyped reference parameter. Untyped reference parameters
have special properties, so be sure to read the chapter on "Passing Parameters to Standard Library Routines"
(parmpassing.rtf) if you are not absolutely sure you understand how untyped reference parameters operate.

HLA high-level calling sequence examples:

filePtr.write(buffer, count);

// If bufPtr is a dword object containing the
// address of the buffer whose data you wish to
// write to the file:

filePtr.write(val bufPtr, count);

// The following writes the four-byte value of
// the bufPtr variable to the file (an unusual
// operation):

filePtr.write(bufPtr, 4);

<object>.putbool(b:boolean);

This procedure writes the string "true" or "false" to the <object> output file depending on the value of the b
parameter.

HLA high-level calling sequence examples:
Released to the Public Domain Page 317

HLA Standard Library
filePtr.putbool(boolVar);

// If the boolean is in a register (AL):

MyOutputFile.putbool(al);

<object>.newln();

This function writes a newline sequence (carriage return/line feed under Windows, linefeed under other
operating systems) to the specified output file (<object>).

HLA high-level calling sequence examples:

filePtr.newln();
MyOutputFile.newln();

14.7 Character, Character Set, and String Output
The following file output routines all assume that you’ve opened the <object> file variable via a call to

<object>.open and you’ve successfully opened the file for output.

<object>.putc(c:char)

Writes the character specified by the c parameter to the file.

HLA high-level calling sequence examples:

filePtr.putc(charVar);

// If the character is in a register (AL):

MyOutputFile.putc(al);

<object>.putcSize(c:char; width:int32; fill:char)

Outputs the character c to the file filevar using at least width output positions. If the absolute value of width
is greater than one, then this function writes fill characters as padding characters during the output. If width is a
positive value greater than one, then <object>.putcSize writes c left justfied in a field of width characters; if
width is a negative value less than one, then <object>.putcSize writes c right justified in a field of width
characters.

HLA high-level calling sequence examples:

filePtr.putcSize(charVar, width, padChar);

<object>.putcset(cst:cset);

This function writes all the members of the cst character set parameter to the specified file variable.

HLA high-level calling sequence examples:
Page 318 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
filePtr.putcset(csVar);
MyOutputFile.putcset([ebx]); // EBX points at the cset.

<object>.puts(s:string);

This procedure writes the value of the string parameter to the file.

HLA high-level calling sequence examples:

filePtr.puts(strVar);
filePtr.puts(ebx); // EBX holds a string value.
MyOutputFile.puts("Hello World");

<object>.putsSize(s:string; width:int32; fill:char)

This function writes the s string to the file using at least width character positions. If the absolute value of
width is less than or equal to the length of s, then this function behaves exactly like <object>.puts. On the other
hand, if the absolute value of width is greater than the length of s, then <object>.putsSize writes width characters
to the output file. This procedure emits the fill character in the extra print positions. If width is positive, then
<object>.putsSize right justifies the string in the print field. If width is negative, then <object>.putsSize left
justifies the string in the print field. Generally, people expect the string to be left justified, so you should ensure
that this value is negative to achieve this.

HLA high-level calling sequence examples:

filePtr.putsSize(strVar, width, ‘ ‘);

// For the following, EBX holds the string value,
// ECX contains the width, and AL holds the pad
// character:

MyOutputFile.putsSize(ebx, ecx, al);

filePtr.putsSize("Hello World", 25, padChar);

14.8 Hexadecimal Numeric Output
The following file output routines all assume that you’ve opened the <object> file variable via a call to

<object>.open and you’ve successfully opened the file for output.

<object>.putb(b:byte);

This procedure writes the value of b to the file using exactly two hexadecimal digits (including a leading
zero if necessary).

HLA high-level calling sequence examples:

filePtr.putb(byteVar);

// If the character is in a register (AL):
Released to the Public Domain Page 319

HLA Standard Library
MyOutputFile.putb(al);

<object>.puth8(b:byte);

This procedure writes the value of b to the file using one or two hexadecimal digits (the minimum
necessary).

HLA high-level calling sequence examples:

filePtr.puth8(byteVar);

// If the character is in a register (AL):

MyOutputFile.puth8(al);

<object>.puth8Size(b:byte; width:dword; fill:char)

This procedure writes the value of b to the file using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

filePtr.puth8Size(byteVar, width, padChar);

<object>.putw(w:word);

This procedure writes the value of w to the file using exactly four hexadecimal digits (including leading
zeros if necessary).

HLA high-level calling sequence examples:

filePtr.putw(wordVar);

// If the word is in a register (AX):

MyOutputFile.putw(ax);

<object>.puth16(w:word);

This procedure writes the value of w to the file using 1-4 hexadecimal digits (the minimum necessary).

HLA high-level calling sequence examples:

filePtr.puth16(wordVar);

// If the word is in a register (AX):
Page 320 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
MyOutputFile.puth16(ax);

<object>.puth16Size(w:word; width:dword; fill:char)

This procedure writes the value of w to the file using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

filePtr.puth16Size(wordVar, width, padChar);

<object>.putd(dw:dword);

This procedure writes the value of d to the file using exactly eight hexadecimal digits (including leading
zeros if necessary). If the stdlib global underscores value (see the conversions module for details) contains true,
then this function will also print an underscore between the fourth and fifth digits.

HLA high-level calling sequence examples:

filePtr.putd(dwordVar);

// If the dword value is in a register (EAX):

MyOutputFile.putd(eax);

<object>.puth32(dw:dword);

This procedure writes the value of d to the file using the minimum number of hexadecimal required. If the
stdlib global underscores value (see the conversions module for details) contains true, then this function will also
print an underscore between the fourth and fifth digits (if there are at least five digits in the number).

HLA high-level calling sequence examples:

filePtr.puth32(dwordVar);

// If the dword is in a register (EAX):

MyOutputFile.puth32(eax);

<object>.puth32Size(d:dword; width:dword; fill:char)

This procedure writes the value of d to the file using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:
Released to the Public Domain Page 321

HLA Standard Library
filePtr.puth32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

MyOutputFile.puth32Size(eax, width, cl);

<object>.putq(q:qword);

This procedure writes the value of q to the file using exactly 16 hexadecimal digits (including leading zeros
if necessary). If the stdlib global underscores value (see the conversions module for details) contains true, then
this function will also print an underscore between each group of four digits.

HLA high-level calling sequence example:

filePtr.putq(qwordVar);

<object>.puth64(q:qword);

This procedure writes the value of q to the file using 1-16 hexadecimal digits (the minimum necessary). If
the stdlib global underscores value (see the conversions module for details) contains true, then this function will
also print an underscore between each group of four digits.

HLA high-level calling sequence example:

MyOutputFile.puth64(qwordVar);

<object>.puth64Size(q:qword; width:dword; fill:char)

This procedure writes the value of q to the file using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence example:

MyOutputFile.puth64Size(qwordVar, width, ‘ ‘);

<object>.puttb(tb:tbyte)

This procedure writes the value of tb to the file using exactly 20 hexadecimal digits (including leading zeros
if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

filePtr.puttb(tbyteVar);

<object>.puth80(tb:tbyte)

This procedure writes the value of tb to the file using 1-20 hexadecimal digits (the minimum necessary) and
an intervening underscores if underscore output is enabled).
Page 322 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

filePtr.puth80(tbyteVar);

<object>.puth80Size(tb:tbyte; width:dword; fill:char)

This procedure writes the value of tb to the file using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

filePtr.puth80Size(tbyteVar, width, ‘ ‘);

<object>.putl(l:lword)

This procedure writes the value of l to the file using exactly 32 hexadecimal digits (including leading zeros if
necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

MyOutputFile.putl(lwordVar);

<object>.puth128(l:lword)

This procedure writes the value of l to the file using 1-32 hexadecimal digits (the minimum necessary) and an
intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

filePtr.puth128(lwordVar);

<object>.puth128Size(l:lword; width:dword; fill:char)

This procedure writes the value of l to the file using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

MyOutputFile.puth128Size(tbyteVar, width, ‘ ‘);

14.9 Signed Integer Numeric Output
The following file output routines all assume that you’ve opened the <object> file variable via a call to

<object>.open and you’ve successfully opened the file for output.
Released to the Public Domain Page 323

HLA Standard Library
These routines convert signed integer values to string format and write that string to the filevar file. The
<object>.putxxxSize functions contain width and fill parameters that let you specify the minimum field width
when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the output file. If width is non-negative, then these functions right-justify
the value in the output field; if value is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra print positions.

<object>.puti8 (b:byte);

This function converts the eight-bit signed integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.puti8(byteVar);

// If the character is in a register (AL):

MyOutputFile.puti8(al);

<object>.puti8Size (b:byte; width:int32; fill:char);

This function writes the eight-bit signed integer value you pass to the specified output file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

filePtr.puti8Size(byteVar, width, padChar);

<object>.puti16(w:word);

This function converts the 16-bit signed integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

MyOutputFile.puti16(wordVar);

// If the word is in a register (AX):

filePtr.puti16(ax);

xxxSize(value, width, fill);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxSize
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxSize functions produce the string

V A L U E f f f
Page 324 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.puti16Size(w:word; width:int32; fill:char);

This function writes the 16-bit signed integer value you pass to the specified output file using the width and
fill values as specified above.

HLA high-level calling sequence examples:

filePtr.puti16Size(wordVar, width, padChar);

<object>.puti32(d:dword);

This function converts the 32-bit signed integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.puti32(dwordVar);

// If the dword is in a register (EAX):

MyOutputFile.puti32(eax);

<object>.puti32Size(d:dword; width:int32; fill:char);

This function writes the 32-bit value you pass as a signed integer to the specified output file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

MyOutputFile.puti32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

filePtr.puti32Size(eax, width, cl);

<object>.puti64(q:qword);

This function converts the 64-bit signed integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

MyOutputFile.puti64(qwordVar);
Released to the Public Domain Page 325

HLA Standard Library
<object>.puti64Size(q:qword; width:int32; fill:char);

This function writes the 64-bit value you pass as a signed integer to the specified output file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

filePtr.puti64Size(qwordVar, width, ‘ ‘);

<object>.puti128(l:lword);

This function converts the 128-bit signed integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

MyOutputFile.puti128(lwordVar);

<object>.puti128Size(l:lword; width:int32; fill:char);

This function writes the 128-bit value you pass as a signed integer to the specified output file using the width
and fill values as specified above.

HLA high-level calling sequence examples:

filePtr.puti128Size(lwordVar, width, ‘ ‘);

14.10 Unsigned Integer Numeric Output
These routines convert unsigned integer values to string format and write that string to the file. The

<object>.putxxxSize functions contain width and fill parameters that let you specify the minimum field width
when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the output file. If width is non-negative, then these functions right-justify
the value in the output field; if value is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra print positions.

<object>.putu8 (b:byte)

This function converts theeight-bit unsigned integer you pass as a parameter to a string and writes this string
to the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.putu8(byteVar);

// If the character is in a register (AL):

MyOutputFile.putu8(al);
Page 326 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.putu8size(b:byte; width:int32; fill:char)

This function writes the unsigned eight-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

filePtr.putu8Size(byteVar, width, padChar);

<object>.putu16(w:word)

This function converts the 16-bit unsigned integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.putu16(wordVar);

// If the word is in a register (AX):

MyOutputFile.putu16(ax);

<object>.putu16size(w:word; width:int32; fill:char)

This function writes the unsigned 16-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

filePtr.putu16Size(wordVar, width, padChar);

<object>.putu32(d:dword)

This function converts the 32-bit unsigned integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.putu32(dwordVar);

// If the dword is in a register (EAX):

MyOutputFile.putu32(eax);

<object>.putu32Size(d:dword; width:int32; fill:char)

This function writes the unsigned 32-bit value you pass to the specified output file using the width and fill
values as specified above.
Released to the Public Domain Page 327

HLA Standard Library
HLA high-level calling sequence examples:

MyOutputFile.putu32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

filePtr.putu32Size(eax, width, cl);

<object>.putu64(q:qword)

This function converts the 64-bit unsigned integer you pass as a parameter to a string and writes this string to
the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.putu64(qwordVar);

<object>.putu64Size(q:qword; width:int32; fill:char);

This function writes the unsigned 64-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

MyOutputFile.putu64Size(qwordVar, width, ‘ ‘);

<object>.putu128(l:lword)

This function converts the 128-bit unsigned integer you pass as a parameter to a string and writes this string
to the file using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

filePtr.putu128(lwordVar);

<object>.putu128Size(l:lword; width:int32; fill:char);

This function writes the unsigned 128-bit value you pass to the specified output file using the width and fill
values as specified above.

HLA high-level calling sequence examples:

MyOutputFile.putu128Size(lwordVar, width, ‘ ‘);
Page 328 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
14.11 Floating-Point Numeric Output Using Scientific Notation
The floating point numeric output routines translate the three different binary floating point formats to their

string representation and then write this string to the file that filevar specifies. There are two generic classes of
these routines: those that convert their values to exponential/scientific notation and those that convert their string
to a decimal form.

The <object>.pute80, <object>.pute64, and <object>.pute32 routines convert their values to a string using
scientific notation. These three routines each have two parameters: the value to output and the field width of the
result. These routines produce a string with the following format:

<object>.pute32(r:real32; width:uns32)

This function writes the 32-bit single precision floating point value passed in r to the file using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 32-bit extended precision floating point values support about 6-7 significant digits. So a width value
that yeilds more than seven mantissa digits will produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

MyOutputFile.pute32(r32Var, width);

// If the real32 value is in an FPU register (ST0):

var
r32Temp:real32;
.
.
.

fstp(r32Temp);
filePtr.pute32(r32Temp, 12);

<object>.pute64(r:real64; width:uns32)

This function writes the 64-bit double precision floating point value passed in r to the file using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 64-bit double precision floating point values support about 15 significant digits. So a width value that
yeilds more than 15 mantissa digits will produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

filePtr.pute64(r64Var, width);

// If the real64 value is in an FPU register (ST0):

s i . f f f f f E ± x

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
x is one or more base-10 exponent digits.
Released to the Public Domain Page 329

HLA Standard Library
var
r64Temp:real64;
.
.
.

fstp(r64Temp);
filePtr.pute64(r64Temp, 12);

<object>.pute80(r:real80; width:uns32)

This function writes the 80-bit extended precision floating point value passed in r to the file using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 80-bit extended precision floating point values support about 18 significant digits. So a width value
that yeilds more than 18 mantissa digits will produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

filePtr.pute80(r80Var, width);

// If the real80 value is in an FPU register (ST0):

var
r80Temp:real80;
.
.
.

fstp(r80Temp);
MyOutputFile.pute80(r80Temp, 12);

14.12 Floating-Point Numeric Output Using Decimal Notation
Although scientific (exponential) notation is the most general display format for real numbers, real numbers

you display in this format are very difficult to read. Therefore, the HLA file class module also provides a set of
functions that output real values using the decimal representation. Although you cannot (practically) use these
decimal output routines for all real values, they are applicable to a wide variety of common numbers you will use
in your programs.

These functions come in two varieties. The first variety requires four parameters: the real value to convert,
the width of the converted value, the number of digit positions to the right of the decimal point, and a padding
character. The second variety only requires the first three parameters and assumes the padding character is a
space. These functions write their values using the following string format:

s i i i . f f f f f f

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
Page 330 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.putr32(r:real32; width:uns32; decpts:uns32; fill:char)

This procedure writes a 32-bit single precision floating point value to the file as a string. The string
consumes exactly width characters in the output file. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the fill value as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

filePtr.putr32(r32Var, width, decpts, fill);
filePtr.putr32(r32Var, 10, 2, ‘*’);

// If the real32 value is in an FPU register (ST0):

var
r32Temp:real32;
.
.
.

fstp(r32Temp);
filePtr.putr32(r32Temp, 12, 2, al);

<object>.putr64(r:real64; width:uns32; decpts:uns32; fill:char)

This procedure writes a 64-bit double precision floating point value to the filevar file as a string. The string
consumes exactly width characters in the output file. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the value of fill as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

MyOutputFile.putr64(r64Var, width, decpts, fill);
MyOutputFile.putr64(r64Var, 10, 2, ‘*’);

// If the real64 value is in an FPU register (ST0):

var
r64Temp:real64;
.
.
.

fstp(r64Temp);
MyOutputFile.putr64(r64Temp, 12, 2, al);

<object>.putr80(r:real80; width:uns32; decpts:uns32; fill:char)

This procedure writes an 80-bit extended precision floating point value to the file as a string. The string
consumes exactly width characters in the output file. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the value of fill as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:
Released to the Public Domain Page 331

HLA Standard Library
filePtr.putr80(r80Var, width, decpts, fill);
filePtr.putr80(r80Var, 10, 2, ‘*’);

// If the real80 value is in an FPU register (ST0):

var
r80Temp:real80;
.
.
.

fstp(r80Temp);
filePtr.putr80(r80Temp, 12, 2, al);

14.13 Generic File Output
<object>.put(parameter_list)

<object>.put is a macro that automatically invokes an appropriate <object> output routine based on the
type of the parameter(s) you pass it. This is a very convenient output routine and is probably the file class output
call you will use most often in your programs. Keep in mind that this macro is not a single function call; instead,
HLA translates this macro into a sequence of calls to procedures like <object>.puti32, <object>.puts, etc.

<object>.put is a macro that provides a flexible syntax for outputting data to the standard output device.
This macro allows a variable number of parameters. For each parameter present in the list, <object>.put will
call the appropriate routine to emit that data, according to the type of the parameter. Parameters may be
constants, registers, or memory locations. You must separate each macro parameter with a comma.

Here is an example of a typical invocation of an <object>.put :

<object>.put("I=", i, " j=", j, nl);

The above is roughly equivalent to

<object>.puts("I=");
<object>.puti32(i);
<object>.puts(" j=");
<object>.puti32(j);
<object>.newln();

This assumes, of course, that i and j are int32 variables.
The <object>.put macro also lets you specify the minimum field width for each parameter you specify. To

print a value using a minimum field width, follow the object you wish to print with a colon and the value of the
minimum field width. The previous example, using field widths, could look like the following:

<object>.put("I=", i:2, " j=", j:5, nl);

Although this example used the literal decimal constants two and five for the field widths, keep in mind that
register values and memory value (integers, anyway) are prefectly legal here.

For floating point numbers you wish to display in decimal form, you can specify both the minimum field
width and the number of digits to print to the right of the decimal point by using the following syntax:

<object>.put("Real value is ", f:10:3, nl);

The <object>.put macro can handle all the basic primitive types, including boolean, unsigned (8, 16, 32, 64,
128), signed (8, 16, 32, 64, 128), character, character set, real (32, 64, 80), string, and hexadecimal (byte, word,
dword, qword, tbyte, lword).

If you specify a class variable (object) and that class defines a toString method, the <object>.put macro will
call the associated toString method and output that string to the file. Note that the toString method must
dynamically allocate storage for the string by calling str.alloc. This is because <object>.put will call str.free on
the string once it outputs the string.
Page 332 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
There is a known "design flaw" in the <object>.put macro. You cannot use it to print HLA intermediate
variables (i.e., non-local VAR objects). The problem is that HLA’s syntax for non-local accesses takes the form
"reg32:varname" and <object>.put cannot determine if you want to print reg32 using varname print positions
versus simply printing the non-local varname object. If you want to display non-local variables you must copy
the non-local object into a register, a static variable, or a local variable prior to using <object>.put to print it. Of
course, there is no problem using the other <object>.putXXXX functions to display non-local VAR objects, so
you can use those as well.

Important(!), don’t forget that method calls (e.g., the routines that <object>.put translates into) modify the
values in the ESI and EDI registers. Therefore, it never makes any sense to attempt to print the values of ESI and
EDI within the parameter list. All you will wind up doing is printing the address of the file variable (ESI) or the
address of its virtual method table (EDI). If you need to write these two values to a file, move them to another
register or a memory location first.

14.14 Generic File Input
The following file input routines behave just like their standard input and file input counterparts (unless

otherwise noted):

<object>.read(var buffer:var; count:dword)

This function reads count bytes from the file and stores them into memory starting with the first byte of the
buffer variable. This routine does not do any range checking. It is your responsibility to ensure that buffer is
large enough to hold the data read.

Note: Notice that the buffer parameter is an untyped reference parameter. Untyped reference parameters
have special properties, so be sure to read the chapter on "Passing Parameters to Standard Library Routines"
(parmpassing.rtf) if you are not absolutely sure you understand how untyped reference parameters operate.

HLA high-level calling sequence examples:

MyInputFile.read(buffer, count);
MyInputFile.read([eax], 1024);

<object>.readln;
This function reads and discards all characters up to and including the newline

sequence in the file.

HLA high-level calling sequence examples:

filePtr.readLn();

14.15 Character and String Input
The following functions read character data from an input file. Note that HLA’s file class module does not

provide the ability to read character set data directly from the user. However, you can always read a string and
then convert that string to a character set using the appropriate function in the cset module.

<object>.getc; @returns("al");

This function reads a single character from the file and returns that chraacter in the AL register. This
function assumes that the file you’ve opened is a text file. Note that <object>.getc does not return the end of line
sequence as part of the input stream. Use the <object>..eoln function to determine when you’ve reached the end
of a line of text. Because <object>..getc preprocesses the text file (removing end of line sequences) you should
not use it to read binary data, use it only to read text files.

HLA high-level calling sequence examples:

filePtr.getc();
Released to the Public Domain Page 333

HLA Standard Library
mov(al, charVar);

<object>.gets(s:string);

This function reads a sequence of characters from the current file position through to the next end of line
sequence and stores these characters (without the end of line sequence) into the string variable you pass as a
parameter. Before calling this routine, you must allocate sufficient storage for the string. If <object>.gets
attempts to read a larger string than the string’s MaxLen value, <object>.gets raises a string overflow exception.

Note that this function does not store the end of line sequence into the string, though it does consume the end
of line sequence. The next character a file class function will read from the file will be the first character of the
following line.

If the current file position is at the end of some line of text, then <object>.gets consumes the end of line and
stores the empty string into the s parameter.

HLA high-level calling sequence examples:

filePtr.gets(inputStr);
filePtr.gets(eax); // EAX contains string value

<object>.a_gets; @returns("eax");

Like <object>.gets, this function also reads a string from the file. However, rather than storing the string
data into a string you supply, this function allocates storage for the string on the heap and returns a pointer to this
string in the EAX register. You code should call str.free to release this storage when you’re done with the string
data.

The <object>.a_gets function imposes a line length limit of 4,096 characters. If this is a problem, you
should modify the source code for this function to raise the limit. This functions raises an exception if you
attempt to read a line longer than this internal limit.

HLA high-level calling sequence examples:

MyInputFile.a_gets();
mov(eax, inputStr);

14.16 Signed Integer Input
The functions in this group read numeric values from the file using a signed decimal integer format. These

functions read the string data, translate it to numeric form, and return that numeric data in an appropriate
location.

 <object>.geti8; @returns("al");

This function reads a signed eight-bit decimal integer in the range -128..+127 from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by an optional minus sign and a string of one or more decimal
digits. The number must end with a valid delimiter character or the end of the file. This function allows
underscores in the interior of the number. The <object>.geti8 function raises an appropriate exception if the
input violates any of these rules or the value is outside the range -128..+127. This function returns the binary
form of the integer in the AL register.

HLA high-level calling sequence examples:

filePtr.geti8();
Page 334 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
mov(al, i8Var);

<object>.geti16; @returns("ax");

This function reads a signed 16-bit decimal integer in the range -32768..+32767 from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by an optional minus sign and a string of one or more decimal
digits. The number must end with a valid delimiter character or the end of the file. This function allows
underscores in the interior of the number. The <object>.geti16 function raises an appropriate exception if the
input violates any of these rules or the value is outside the range -32768..+32767. This function returns the
binary form of the integer in the AX register.

HLA high-level calling sequence examples:

filePtr.geti16();
mov(ax, i16Var);

<object>.geti32; @returns("eax");

This function reads a signed 32-bit decimal integer in the (approximate) range ±2 Billion from the file. The
number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by an optional minus sign and a string of one or more
decimal digits. The number must end with a valid delimiter character or the end of the file. This function allows
underscores in the interior of the number. The <object>.geti32 function raises an appropriate exception if the
input violates any of these rules or the value is outside the range plus or minus two billion. This function returns
the binary form of the integer in the EAX register.

HLA high-level calling sequence examples:

filePtr.geti32();
mov(eax, i32Var);

<object>.geti64; @returns("edx:eax");

This function reads a signed 64-bit decimal integer from the file. The number may begin with any number
of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the delimiter
characters) followed by an optional minus sign and a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The <object>.geti64 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range of a 64-bit signed integer. This function returns the 64-bit result in the EDX:EAX
register pair (it returns the H.O. dword in EDX and the L.O. dword in EAX).

HLA high-level calling sequence examples:

filePtr.geti64();
mov(edx, (type dword i64Var[4]));
mov(eax, (type dword i64Var[0]));
Released to the Public Domain Page 335

HLA Standard Library
<object>.geti128(var l:lword);

This function reads a signed 128-bit decimal integer from the file. The number may begin with any number
of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the delimiter
characters) followed by an optional minus sign and a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The <object>.geti128 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range of a 128-bit signed integer. This function stores the 128-bit result into the lword
you pass as a reference parameter.

HLA high-level calling sequence examples:

filePtr.geti128(lwordVar);

14.17 Unsigned Integer Input
The functions in this group read numeric values from the file using a signed decimal integer format. These

functions read the string data, translate it to numeric form, and return that numeric data in an appropriate
location.

<object>.getu8; @returns("al");

This function reads an unsigned eight-bit decimal integer in the range 0..+255 from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The <object>.getu8 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..255. This function returns the binary form of the integer in the AL register.

HLA high-level calling sequence examples:

MyInputFile.getu8();
mov(al, u8Var);

<object>.getu16; @returns("ax");

This function reads an unsigned 16-bit decimal integer in the range 0..+65535 from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The <object>.getu16 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..65535. This function returns the binary form of the integer in the AX register.

HLA high-level calling sequence examples:

filePtr.getu16();
mov(ax, u16Var);

<object>.getu32; @returns("eax");

This function reads an unsigned 32-bit decimal integer in the range 0..+4,294,967,295 from the file. The
number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by a string of one or more decimal digits. The number
must end with a valid delimiter character or the end of the file. This function allows underscores in the interior of
the number. The <object>.getu32 function raises an appropriate exception if the input violates any of these rules
Page 336 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
or the value is outside the range 0..4,294,967,295. This function returns the binary form of the integer in the
EAX register.

HLA high-level calling sequence examples:

filePtr.getu32();
mov(eax, u32Var);

<object>.getu64; @returns("edx:eax");

This function reads an unsigned 64-bit decimal integer from the file. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more decimal digits. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
<object>.getu64 function raises an appropriate exception if the input violates any of these rules or the value is
outside the range 0..264-1. This function returns the binary form of the integer in EDX:EAX register pair (EDX
contains the H.O. dword, EAX holds the L.O. dword).

HLA high-level calling sequence examples:

filePtr.getu32();
mov(eax, (type dword u64Var));
mov(edx, (type dword u64Var[4]));

<object>.getu128(var l:lword);

This function reads an unsigned 128-bit decimal integer from the file. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more decimal digits. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
<object>.getu64 function raises an appropriate exception if the input violates any of these rules or the value is
outside the range 0..2128-1. This function returns the binary form of the integer in the lword parameter you pass
by reference.

HLA high-level calling sequence examples:

fileio.getu128(u128Var);

14.18 Hexadecimal Input
<object>.geth8; @returns("al");

This function reads an eight-bit hexadecimal integer in the range 0..$FF from the file. The number may
begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for
details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value
may not have a leading "$" unless you add this character to the delimiter character set. The number must end
with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The <object>.geth8 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..$FF. This function returns the binary form of the value in the AL register.

HLA high-level calling sequence examples:

filePtr.geth8();
Released to the Public Domain Page 337

HLA Standard Library
mov(al, h8Var);

<object>.geth16; @returns("ax");

This function reads a 16-bit hexadecimal integer in the range 0..$FFFF from the file. The number may begin
with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on
the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value may not
have a leading "$" unless you add this character to the delimiter character set. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
<object>.geth16 function raises an appropriate exception if the input violates any of these rules or the value is
outside the range 0..$FFFF. This function returns the binary form of the value in the AX register.

HLA high-level calling sequence examples:

MyInputFile.geth16();
mov(ax, h16Var);

<object>.geth32; @returns("eax");

This function reads a 32-bit hexadecimal integer in the range 0..$FFFF_FFFF from the file. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the
value may not have a leading "$" unless you add this character to the delimiter character set. The number must
end with a valid delimiter character or the end of the file. This function allows underscores in the interior of the
number. The <object>.geth32 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..$FFFF_FFFF. This function returns the binary form of the value in the EAX
register.

HLA high-level calling sequence examples:

filePtr.geth32();
mov(eax, h32Var);

<object>.geth64; @returns("edx:eax");

This function reads a 64-bit hexadecimal integer in the range 0..$FFFF_FFFF_FFFF_FFFF from the file.
The number may begin with any number of delimiter characters (see the conv.setDelimiter and
conv.getDelimiter functions for details on the delimiter characters) followed by a string of one or more
hexadecimal digits. Note that the value may not have a leading "$" unless you add this character to the delimiter
character set. The number must end with a valid delimiter character or the end of the file. This function allows
underscores in the interior of the number. The <object>.geth64 function raises an appropriate exception if the
input violates any of these rules or the value is outside the range 0..$FFFF_FFFF_FFFF_FFFF. This function
returns the 64-bit result in the EDX:EAX register pair (EDX contains the H.O. dword, EAX contains the L.O.
dword).

HLA high-level calling sequence examples:

MyInputFile.geth64();
mov(edx, (type dword h64Var[4]));
mov(eax, (type dword h64Var[0]));
Page 338 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.geth128(var l:lword);

This function reads a 128-bit hexadecimal integer in the range
0..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF from the file. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value may not have a
leading "$" unless you add this character to the delimiter character set. The number must end with a valid
delimiter character or the end of the file. This function allows underscores in the interior of the number. The
<object>.getq function raises an appropriate exception if the input violates any of these rules or the value is
outside the range 0..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF . This function stores the 128-bit
result into the variable you pass as a reference parameter.

HLA high-level calling sequence examples:

filePtr.geth128(lwordVar);

14.19 Floating-Point Input
<object>.getf; @returns("st0");

This function reads an 80-bit floating point value in either decimal or scientific from from the file and leaves
the result sitting on the FPU stack. The number may begin with any number of delimiter characters (see the
conv.setDelimiter and conv.getDelimiter functions for details on the delimiter characters) followed by an
optional minus sign and a sequence of characters that represent a floating point value. The number must end with
a valid delimiter character or the end of the file. This function allows underscores in the interior of the number.
This function raises an appropriate exception if an error occurs.

HLA high-level calling sequence examples:

filePtr.getf();
fstp(fpVar);

14.20 Generic File Input
<object>.get(List_of_items_to_read);

This is a macro that allows you to specify a list of variable names as parameters. The <object>.get macro
reads an input value for each item in the list and stores the resulting value in each corresponding variable. This
macro determines the type of each variable that you pass it and emits a call to the appropriate <object>.getxxx
function to read the actual value. As an example, consider the following call to <object>.get:

filePtr.get(i32, charVar, u16, strVar);

The macro invocation above expands into the following:

push(eax);
filePtr.geti32(i32);
filePtr.getc();
mov(al, charVar);
filePtr.geti16();
mov(ax, u16);
filePtr.gets(strVar);
pop(eax);
Released to the Public Domain Page 339

HLA Standard Library
Notice that <object>.get preserves the value in the EAX register even though various <object>.getxxx
functions use this register. Note that <object>.get automatically handles the case where you specify EAX as an
input variable and writes the value to [esp] so that in properly modifies EAX upon completion of the macro
expansion.

Note that <object>.get only supports eight-, sixteen-, and thirty-two bit integer input. If you need to read
64-bit or 128-bit values, you must use the appropriate <object>.getx64 or <object>.getx128 function to achieve
this.
Page 340 Version: 4/28/10 Written by Randall Hyde

	14 File Class Module (fileclass.hhf)
	14.1 File Class Methods/Procedures
	14.2 A Quick Note
	14.3 General File Operations
	<object>.create; @returns("esi"); file_t.create; @returns("esi"); [to create dynamic objects] virtualFile_t.create; @returns("esi"); [to create dynamic objects]
	<object>.handle; @returns("eax");

	14.4 Opening and Closing Files
	<object>.open(filename:string; access:dword)
	<object>.openNew(filename:string)
	<object>.close;

	14.5 File Predicates
	<object>.eof(); @returns("al");
	<object>.eoln(); @returns("al");

	14.6 Miscellaneous Output
	<object>.write(var buffer:var; count:dword)
	<object>.putbool(b:boolean);
	<object>.newln();

	14.7 Character, Character Set, and String Output
	<object>.putc(c:char)
	<object>.putcSize(c:char; width:int32; fill:char)
	<object>.putcset(cst:cset);
	<object>.puts(s:string);
	<object>.putsSize(s:string; width:int32; fill:char)

	14.8 Hexadecimal Numeric Output
	<object>.putb(b:byte);
	<object>.puth8(b:byte);
	<object>.puth8Size(b:byte; width:dword; fill:char)
	<object>.putw(w:word);
	<object>.puth16(w:word);
	<object>.puth16Size(w:word; width:dword; fill:char)
	<object>.putd(dw:dword);
	<object>.puth32(dw:dword);
	<object>.puth32Size(d:dword; width:dword; fill:char)
	<object>.putq(q:qword);
	<object>.puth64(q:qword);
	<object>.puth64Size(q:qword; width:dword; fill:char)
	<object>.puttb(tb:tbyte)
	<object>.puth80(tb:tbyte)
	<object>.puth80Size(tb:tbyte; width:dword; fill:char)
	<object>.putl(l:lword)
	<object>.puth128(l:lword)
	<object>.puth128Size(l:lword; width:dword; fill:char)

	14.9 Signed Integer Numeric Output
	<object>.puti8 (b:byte);
	<object>.puti8Size (b:byte; width:int32; fill:char);
	<object>.puti16(w:word);
	<object>.puti16Size(w:word; width:int32; fill:char);
	<object>.puti32(d:dword);
	<object>.puti32Size(d:dword; width:int32; fill:char);
	<object>.puti64(q:qword);
	<object>.puti64Size(q:qword; width:int32; fill:char);
	<object>.puti128(l:lword);
	<object>.puti128Size(l:lword; width:int32; fill:char);

	14.10 Unsigned Integer Numeric Output
	<object>.putu8 (b:byte)
	<object>.putu8size(b:byte; width:int32; fill:char)
	<object>.putu16(w:word)
	<object>.putu16size(w:word; width:int32; fill:char)
	<object>.putu32(d:dword)
	<object>.putu32Size(d:dword; width:int32; fill:char)
	<object>.putu64(q:qword)
	<object>.putu64Size(q:qword; width:int32; fill:char);
	<object>.putu128(l:lword)
	<object>.putu128Size(l:lword; width:int32; fill:char);

	14.11 Floating-Point Numeric Output Using Scientific Notation
	<object>.pute32(r:real32; width:uns32)
	<object>.pute64(r:real64; width:uns32)
	<object>.pute80(r:real80; width:uns32)

	14.12 Floating-Point Numeric Output Using Decimal Notation
	<object>.putr32(r:real32; width:uns32; decpts:uns32; fill:char)
	<object>.putr64(r:real64; width:uns32; decpts:uns32; fill:char)
	<object>.putr80(r:real80; width:uns32; decpts:uns32; fill:char)

	14.13 Generic File Output
	<object>.put(parameter_list)

	14.14 Generic File Input
	<object>.read(var buffer:var; count:dword)

	14.15 Character and String Input
	<object>.getc; @returns("al");
	<object>.gets(s:string);
	<object>.a_gets; @returns("eax");

	14.16 Signed Integer Input
	<object>.geti8; @returns("al");
	<object>.geti16; @returns("ax");
	<object>.geti32; @returns("eax");
	<object>.geti64; @returns("edx:eax");
	<object>.geti128(var l:lword);

	14.17 Unsigned Integer Input
	<object>.getu8; @returns("al");
	<object>.getu16; @returns("ax");
	<object>.getu32; @returns("eax");
	<object>.getu64; @returns("edx:eax");
	<object>.getu128(var l:lword);

	14.18 Hexadecimal Input
	<object>.geth8; @returns("al");
	<object>.geth16; @returns("ax");
	<object>.geth32; @returns("eax");
	<object>.geth64; @returns("edx:eax");
	<object>.geth128(var l:lword);

	14.19 Floating-Point Input
	<object>.getf; @returns("st0");

	14.20 Generic File Input
	<object>.get(List_of_items_to_read);

