HLA Standard Library Reference

10 Character Sets (cset.hhf)

The HLA Standard Library contains several routines that provide the power of the HLA compile-time
character set facilities at run-time (i.e., within your programs).

HLA uses a 128-bit bitmap (16 consecutive bytes) to implement sets of seven-bit ASCII characters. This
has a very important implication: you cannot pass byte values greater than $7F to a character set function.
Currently, the HLA Standard Library routines do not check for values out of range (for performance reasons). In
the future, this checking may be added as a compilable option. For the time being, however, it is your
responsibility to verify that all character values are in the range #$0..#$7F (and, in general, #$0 is an exceeding
bad value to specify in many cases since the null character terminates strings).

The bitmap consists of 128 consectutive bits numbered 0..127. If a bit in a character set is one, then the
corresponding character (whose ASCII code matches the bit number) is a member of the character set.
Conversely, if a bit is zero, the corresponding character is not a member of the set.

Note that many routines pass character sets by value. This means you can pass HLA character set constants
as parameters to these procedures/functions. HLA emits four MOV (doubleword) instructions to copy a
character set by value, so passing character sets by value is not horribly inefficient (though not quite as fast as a
32-bit integer!).

Warning: All of the character set routines are members of the cs namespace. This means you cannot use the
name cs within your programs. (cs is a common character set name that lazy programmers use; sorry, it’s
already been taken!)

The following sections describe each of the character set routines in the HLA Standard Library.

A Note About Thread Safety: The routines in this module are all thread safe.

Note about stack diagrams: this documentation includes stack diagrams for those functions that pass
parameters on the stack. To conserve space, this documentation does not include a stack diagram for any
function that does not pass data on the stack (that is, only a return address appears on the stack).

10.1 Predicates (tests)

Although the "returns" value for each of the following functions is "AL", these tests always set EAX to zero
or one. Therefore, you may refer to the AL or EAX register after these tests, whichever is more convenient for
you. If you use instruction composition and bury one of these function calls in another statement, that statement
will use the AL register as the operand.

Note that these functions generally pass their character set parameters by value. This involves pushing 16
bytes on the stack for each cset parameter (typically four push instructions). Keep this in mind if efficiency is
your utmost concern. Be sure to read the section on "Passing CSET Parameters on the Stack" in the chapter on
"Passing Parameters to Standard Library Routines".

procedure cs.IsEmpty(src: cset); @returns("AL");

This function returns true (1) in the AL register if the specified character set is empty (has no members). It
returns false (0) in AL/EAX otherwise.

HLA high-level calling sequence examples:

cs.IsEmpty(csetVar);
mov (al, booleanResult) ;

HLA low-level calling sequence examples:

// cs.IsEmpty is really intended to be used as a high-level

// type function. It’s actually just as easy to compute the

// function manually as it is to call it. Here’s the low-level
// calling sequence:

push((type dword csetVar([12]));

push((type dword csetVar([8]));
push((type dword csetVar([4])) ;

Released to the Public Domain Page 251

HLA Standard Library
push((type dword csetVar[0])) ;
call cs.IsEmpty;

mov (al, booleanResult;

// Here’s the same thing using bare machine instructions:

mov ((type dword csetVar[0]), eax);
or((type dword csetVar([4]), eax);
or((type dword csetVar([8]), eax);
or((type dword csetVar[1l2]), eax);
setz(al);

mov (al, booleanResult) ;

cs.isEmpty stack diagram

ESP+16 src (H.O. dword)

ESP+12

ESP+8 [
ESP+4 src (L.O. dword)

— —]| src :cset

ESP Return A ddress

procedure cs.member(c:char; theSet:cset); @returns("AL");

This function returns true (1) or false (0) in AL/EAX if the specified character is a member of the specified
character set.

HLA high-level calling sequence examples:

cs.member (charVar, csetVar);
mov (al, booleanResult) ;

HLA low-level calling sequence examples:

// cs.member is really intended to be used as a high-level

// type function. It’s actually just as easy to compute the

// function manually as it is to call it. Here’s the low-level
// calling sequence:

movzx (charVar, eax);

push(eax);

push((type dword csetVar[12]));
push((type dword csetVar([8]));

Page 252 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

push((type dword csetVar([4])) ;
push((type dword csetVar[0]));
call cs.member;

mov (al, booleanResult;

// Here’'s the same thing using bare machine instructions:

movzx (charVar, eax);
bt (eax, csetVar);

setc(al);

mov (al, booleanResult) ;

cs.Member stack diagram

ESP+20 ¢ :char

ESP+16 src2 (HO. dword)

Fop — —| theSet :cset
ESP+8

ESP Return A ddress

procedure cs.subset(srcl:cset; src2:cset); @returns("AL");

The cs.subset function returns true in AL/EAX if src1 <= src2 (that is, all of src1’s members are also members
of src2).

HLA high-level calling sequence examples:

cs.subset (subsetVar, supersetVar);
mov (al, booleanResult) ;

HLA low-level calling sequence examples:

push((type dword subsetVar[12]));
push((type dword subsetVar([8]));
)
)

1

push((type dword subsetVar[4])
push((type dword subsetVar[0])

7

push((type dword supersetVar [12]));
push((type dword supersetVar [8]));
push((type dword supersetVar [4]));
push((type dword supersetVar [0]));

call cs.subset;
mov (al, booleanResult) ;

Released to the Public Domain Page 253

HLA Standard Library

cs.subset stack diagram

Byte
3 2 1 0
ESP+32 srcl (H.O. dword) i
ESP428 [B

ESP+24
ESP+20| sel (LO. dword) — |

- —| srcl :cset

ESP+16 src2 (H.O. dword)

ESP+12

ESP+8| |
ESP+4 src2 (L.O. dword) 1

- —| src2 :cset

ESP Return Address

procedure cs.superset(srcl:cset; src2:cset); @returns("AL");

The cs.superset function returns true in AL/EAX if src1 >= src2 (that is, all of src2’s members are members of
srcl).

HLA high-level calling sequence examples:

cs.superset (supersetVar, subsetVar);
mov (al, booleanResult);

HLA low-level calling sequence examples:

)i

7

push((type dword supersetVar[12]
push((type dword supersetVar[8])
push((type dword supersetVar[4])
push((type dword supersetVar[0])

7

’

)i

I

push((type dword subsetVar[12]
push((type dword subsetVar[8])
push((type dword subsetVar[4])
push((type dword subsetVar[0])
call cs.superset;

mov (al, booleanResult) ;

7

7

Page 254 Version: 4/28/10 Written by Randall Hyde

procedure cs.psubset(srcl:cset;

HLA Standard Library Reference

Byte
3 2 1 0
ESP+32 srcl (HO.dword) L
ESP28 |]
ESP-+24
ESp20| sl (L0 dword) T |
ESP+16 src2 (H.O. dword)
ESP+12
ESP+8| |
ESP+4 sre2 (L.O. dword)
ESP Return Address

cs.super set stack diagram

srcl :cset

src2 :cset

src2:cset);

@returns (

n AL n

)i

The cs.psubset (proper subset) function returns true in AL/EAX if srcl < src2 (that is, all of src1’s members
are members of src2 but srcl <> src2).

HLA high-level calling sequence examples:

cs.psubset (subsetVar,
al,

mov (

supersetVar) ;
booleanResult) ;

HLA low-level calling sequence examples:

push (
push (
push (
push (

push (
push (
push (
push (

(type
(type
(type
(type

(type
(type
(type
(type

dword
dword
dword
dword

dword
dword
dword
dword

call cs.psubset;

mov (

al,

subsetVar [12]

subsetVar [8]
subsetVar [4]
subsetVar [0]

supersetVar
supersetVar
supersetVar
supersetVar

booleanResult) ;

Released to the Public Domain

)
)
)

)i

)
)i
) .
)

7

1

1))
)) i
)) i
))

I

7

[1
(8
[4
[o

[N

Page 255

HLA Standard Library

cs.psubset stack diagram

Byte
3 2 1 0
ESP+32 srcl (HO. dword)
ESP+28 | _

ESP+24
ESp+20| scl (LO. dword) — |

- —| srcl :cset

ESP+16 src2 (H.O. dword)

— —

ESP+12

ESP+8| |
ESP+4 src2 (L.O. dword)

- —| src2 :cset

ESP Return A ddress

procedure cs.psuperset(srcl:cset; src2:cset); @returns("AL");

The cs.spsuperset (proper superset) function returns true in AL/EAX if srcl > src2 (that is, all of src2’s
members are members of srcl but src2 <> srcl).

HLA high-level calling sequence examples:

cs.psuperset (supersetVar, subsetVar);
mov (al, booleanResult) ;

HLA low-level calling sequence examples:

push((type dword supersetVar[12]));
push((type dword supersetVar[8])) ;
))
))

1

push((type dword supersetVar [4]
push((type dword supersetVar [0]

1

push((type dword subsetVar[12]
push((type dword subsetVar([8])
push((type dword subsetVar[4])
push((type dword subsetVar[0])
call cs.psuperset;

mov (al, booleanResult);

)) i
)i
).
)

7

I

Page 256 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

ESP+32
ESP+28
ESP+24
ESP+20
ESP+16
ESP+12
ESP+8
ESP+4
ESP

cs.psuperset stack diagram

Byte
3 2 1 0
srcl (H.O. dword)
_— —]| srcl :cset
[srel (L.O. dword) ||
src2 (H.O. dword)
- —| src2 :cset
[52 (LO. dword) |

Return A ddress

procedure cs.eq(srcl:cset;

src2:cset);

@returns("AL"

)i

The cs.eq function compares the two sets and returns true/false in AL/EAX; true if the two sets are equal,
false if they are not.

HLA high-level calling sequence examples:

cs.eq(srcl, src2);
booleanResult) ;

mov (

al,

HLA low-level calling sequence examples:

push((type dword srcl([1l2]
push((type dword srcl([8])
push((type dword srcl[4])
push((type dword srcl[O0])
push((type dword src2[12]
push((type dword src2([8])
push((type dword src2[4])
push((type dword src2[0])
call cs.eq;

mov(al, booleanResult);

Released to the Public Domain

)
)
)
)

)
)
)
)

)i

7

7

7

)i

7

7

7

Page 257

HLA Standard Library

cs.eq stack diagram

Byte
3 2 1 0

ESP+32 srcl (HO. dword)
ESP28 | —
ESP+24
ESP+20 [srel (L.O. dword) 1
ESP+16 src2 (H.O. dword)
ESP+12

ESP+8| |

ESP+4 sre2 (L.O. dword)

ESP Return A ddress

srcl :cset

src2 :cset

procedure cs.ne(srcl:cset; src2:cset);

@returns("AL"

)i

The cs.eq function compares the two sets and returns true/false in AL/EAX; true if the two sets are not equal,

false if they are equal.

HLA high-level calling sequence examples:

cs.ne(srcl, src2);
mov (al, booleanResult) ;

HLA low-level calling sequence examples:

push((type dword srcl[12]));
push((type dword srcl[8]));
push((type dword srcl[4]));
push((type dword srcl[0]));
push((type dword src2[12]));
push((type dword src2(8]));
push((type dword src2[4]));
push((type dword src2[0]));
call cs.ne;
mov (al, booleanResult) ;
Page 258 Version: 4/28/10

Written by Randall Hyde

HLA Standard Library Reference

cs.ne stack diagram

Byte
3 2 1 0
ESP+32 srcl (HO.dword) L
ESP28 [—

ESP+24
ESP+20 srcl (L.O. dWOI‘d) 1

- —| srcl :cset

ESP+16 src2 (H.O. dword)

ESP+12

ESP+8| |
ESP+4 src2 (L.O. dword) 1

- —| src2 :cset

ESP Return Address

10.2 Character Set Construction and Manipulation

The functions in this group create character set objects, extract data from character set objects, or transfer
data between character set objects.

procedure cs.empty(var dest:cset);

This function clears all the bits in a character set to create the empty set. Note that the single character set
parameter is passed by reference.

HLA high-level calling sequence examples:

cs.empty (csetVar) ;

HLA low-level calling sequence examples:

// cset_s is a variable declared in the static/storage section:

pushd(&cset s);
call cs.empty;

// cset_v is a variable declared in the var section or
// is a parameter:

lea(eax, cset v);
push(eax);
call cs.empty;

// Alternative call passing cset v if no 32-bit registers
// are available (this code assumes that EBP points at the current
// activation record/stack frame that contains cset v):

push(ebp);

add(@offset(cset v), (type dword [esp]l));
call cs.empty;

Released to the Public Domain Page 259

HLA Standard Library

// Low-level call assuming a 32-bit register (esi in this case)

// contains the address of the cset:

push(esi);
call cs.empty;

// Low-level call assuming a dword or pointer variable contains the
// address of the cset that will receive the delimiter character set:

push (ptrToDelims) ;
call cs.empty;

cs.empty stack diagram

ESP+4
ESP Return A ddress

var dest :cset

procedure cs.cpy(src:cset; var dest:cset):

This routine copies the data from the source character set (src) to the destination character set (dest). Note
that the dest set is passed by reference. Although this routine is convenient, you should consider writing a macro
to do this same function (copy 16 bytes from src to dest) if you call this function in time critical sections of your

code.

HLA high-level calling sequence examples:

cs.cpy(csetSrc, csetDest);
cs.cpy({‘a’..’z'}, lowerCaseCset);

HLA low-level calling sequence examples:

// csetDest s is a variable declared
// in the static/storage section:

push((type dword csetSrc_s[12]));
push((type dword csetSrc_s([8]));
)
)

1

push((type dword csetSrc_s[4])
push((type dword csetSrc_s[0])

7

Page 260 Version: 4/28/10

Written by Randall Hyde

HLA Standard Library Reference

pushd(&csetDest s);
call cs.cpy;

// csetDest v is a variable declared in the var section or
// 1is a parameter:

push((type dword csetSrc vI[12]));
push((type dword csetSrc_v([8]));
push((type dword csetSrc v[4]));
push((type dword csetSrc v[0]));

lea(eax, csetDest v);
push(eax);
call cs.cpy;

// Alternative call passing csetDest v if no 32-bit registers
// are available (this code assumes that EBP points at the current
// activation record/stack frame that contains csetDest v):

push((type dword csetSrc vI[12]));
push((type dword csetSrc_v([8]));
push((type dword csetSrc_v[4]));
push((type dword csetSrc v[0]));
push(ebp);

add(@offset(csetDest v),
call cs.cpy;

(type dword [esp]));

// Low-level call assuming a 32-bit register (edi in this case)

// contains

the address of the destination cset:

push((type dword csetSrc vI[12]));
push((type dword csetSrc vI[8]));
push((type dword csetSrc_v[4]));
push((type dword csetSrc v([0]));
push(edi);

call cs.cpy;

// Low-level call
// address of the

assuming a dword or pointer variable contains the
destination cset:

push((type dword csetSrc[12])
push((type dword csetSrc(8])) ;
push((type dword csetSrc[4]))
push((type dword csetSrc[0]))

push(ptrTodest) ;
call cs.cpy;

Released to the Public Domain

)i

’

1

Page 261

HLA Standard Library

cs.cpy stack diagram

ESP+20 src (H.O. dword)

ESP+16
— —]| src :cset
ESP+12
ESpig | stc (LO. dword)
ESP+H4 var dest:cset

ESP Return Address

procedure cs.charToCset(c:char; var dest:cset);

The cs.charToCset procedure takes the character passed as a parameter and creates a singleton set containing
that character (a singleton is a set with exactly one member). The resulting set is stored into the destination
parameter (which is passed by reference).

HLA high-level calling sequence examples:

cs.charToCset (‘c’, csetDest);
cs.charToCset (charVar, lowerCaseCset) ;
cs.charToCset ((type char [esi]), (type cset [edi]));

HLA low-level calling sequence examples:

// The following low-level examples all assume that csetDest_s is
// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.

// Passing a single character constant:

pushd(‘c’);
pushd(&csetDest s);
call cs.charToCset;

// Passing a character variable, assuming a 32-bit register is
// available or one of the 8-bit register: AL, BL, CL, or DL

mov (charVar, al);
push(eax);

pushd (&csetDest s) ;
call cs.charToCset;

Page 262 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

// If the character variable is guaranteed not to be in the last
// three bytes of allocated storage, you could also do this:

push(type dword charVar) ;
pushd(&csetDest s);
call cs.charToCset;

// If the character is in one of the 8-bit registers: AH, BH, CH, DH

sub(4, esp);

mov (ah, [espl);
pushd (&csetDest s);
call cs.charToCset;

cs.charToCset stack diagram

ESP+8 ¢ :char
ESP+H4 var dest :cset
ESP Return A ddress

procedure cs.rangeChar(first:char; last:char; var dest:cset):;

This function creates a set whose member range between the first character specified and the last character
specified. For example, cs.rangeChar(*A’, ’Z’, UpperCaseSet) will create a character set whose members are the
upper case alphabetic characters. Any previous members in the destination set are lost.

HLA high-level calling sequence examples:

cs.rangeChar(‘a’, ‘z’, csetDest);
cs.rangeChar (charVar, endCharVal, lowerCaseCset);
cs.rangeChar ((type char [esi]), ‘'0’, (type cset [edi]));

HLA low-level calling sequence examples:

// The following low-level examples all assume that csetDest s is
// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by

// reference, please see the examples for cs.cpy given earlier.
// Also note that both the "first" and "last" parameters are

// character objects that you pass the same way. For brevity,

// the following examples only demonstrate variations on the

Released to the Public Domain Page 263

HLA Standard Library

// "first" parameter; the same principles apply to the "last"
// parameter.

//

// Passing two character constants:

pushd(‘a’);

pushd(‘z’);

pushd(&csetDest_s) ;
call cs.rangeChar;

// Passing a character variable, assuming a 32-bit register is
// available or one of the 8-bit register: AL, BL, CL, or DL

mov (charVar, al);
push(eax);

pushd(‘z’);

pushd (&csetDest s) ;
call cs.rangeChar;

// If the "first" character variable is guaranteed not to be in the
// last three bytes of allocated storage, you could also do this:

push(type dword charVar) ;
pushd(‘z’);

pushd(&csetDest s);

call cs.rangeChar;

// If the "first" character is in one of the 8-bit
// registers: AH, BH, CH, DH

sub(4, esp);

mov (ah, [espl);
pushd(‘z’);

pushd(&csetDest s);
call cs.rangeChar;

cs.rangeChar stack diagram

ESP+12 first :char
ESP+8 last :char
ESP+4 var dest :cset

ESP Return A ddress

Page 264 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

procedure cs.strToCset(s:string; var dest:cset);

This function first sets the destination character set to the empty set. Then it "unions in" all the characters
found in the string parameter to the destination set.

HLA high-level calling sequence examples:

cs.strToCset (strSrc, csetDest);
cs.strToCset ("ABCDEFabcdef", hexCset);

HLA low-level calling sequence examples:

// csetDest s is a variable declared
// in the static/storage section:

push(strSrc);
pushd (&csetDest s) ;
call cs.strtoCset;

// You could pass a string literal thusly (though there is
// no benefit to doing this over creating a statically
// initialized string variable and passing that string variable).

lea(eax, "abcdefABCDEF") ;
push(eax);

pushd(&csetDest_s) ;

call cs.strtoCset;

cs.strToCset stack diagram

ESP+8 s string
ESP+4 var dest :cset
ESP Return A ddress

procedure cs.strToCset2(s:string; offs:uns32; var dest:cset):;

This function first sets the destination character set to the empty set. Then it "unions in" all the characters
starting at offset offs in the string parameter to the destination character set.

Released to the Public Domain Page 265

HLA Standard Library

HLA high-level calling sequence examples:

cs.strToCset2(strSrc, 2, csetDest);
cs.strToCset2 ("ABCDEF", offsetIntoStr, partialHexCset);

HLA low-level calling sequence examples:

// csetDest s is a variable declared
// in the static/storage section:

push(strSrc);
pushd(2)

pushd(&csetDest_s) ;
call cs.strToCset2;

// Assume the offset is in the variable "offsetIntoStr":

push(strSrc);

push(offsetIntoStr);
pushd(&csetDest_s) ;
call cs.strToCset2;

cs.strtoCset2 stack diagram

ESP+12 e
ESP+8 offs :uns32
ESP+4 var dest :cset

ESP Return A ddress

procedure cs.extract(var dest:cset); @returns("EAX");

This function removes a single character from the character set and returns that character in the AL register.
Currently, this function removes characters by order of their ASCII character codes (that is, each call returns the
character in the set with the lowest ASCII code). However, you should not make this assumption. You should
assume that this function could return the characters in an arbitrary order. If the specified character set is empty,
this routine returns -1 ($FFFF_FFFF) in the EAX register; in all other cases the H.O. three bytes of EAX contain
Zero upon return.

Note: unlike the HLA compile-time function "@extract", this function actually removes the character from
the character set ("@extract" leaves the character in the set). Keep this in mind. (In the future, the name of the
HLA @extract function will probably be changed to something else to clean up this conflict.)

Page 266 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

HLA high-level calling sequence examples:

cs.extract (csetVar);
if(eax <> -1) then

mov (al, charExtracted) ;

endif;

HLA low-level calling sequence example:

// The following low-level example assumes that cset s is

// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.

pushd(&cset s);

call cs.extract;

cmp (eax, -1);

je noCharExtracted;
mov (al, charExtracted;
noCharExtracted:

cs.extract stack diagram

ESP-+4 var dest :cset
ESP Return A ddress

10.3 Set Operations

The following set functions perform what is generally considered to be set arithmetic: operations like set
union, intersection, difference, and so on.

Released to the Public Domain Page 267

HLA Standard Library

procedure cs.setunion(src:cset; var dest:cset);

This function computes the union of two sets, storing the result back into the destination set. Note that the
destination set parameter is passed by reference.

Note: The name "setunion" was used rather than the more obvious choice of "union" because "union" is an
HLA reserved word.

HLA high-level calling sequence examples:

cs.setunion(csetSrc, csetDest);
cs.setunion({‘a’..’z’}, lowerCaseUnion);

HLA low-level calling sequence example:

// The following low-level example assumes that csetDest_s is

// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.

push((type dword csetSrc_s[12]));
push((type dword csetSrc_s[8]));
)
)

7

push((type dword csetSrc_s[4])
push((type dword csetSrc_s[0])
pushd(&csetDest s) ;

call cs.setunion;

’

cs.setUnion stack diagram

ESP+20 src (H.O. dword)

ESP+16
— —]| src :cset
ESP+12
ESP+48 [s (L.O. dword)
ESP+4 var dest:cset

ESP Return A ddress

procedure cs.intersection(src:cset; var dest:cset);

This function computes the set intersection of the two sets passed as parameters and stores the result back
into the destination set. Note that the dest parameter is passed by reference.

HLA high-level calling sequence examples:

cs.intersection(csetSrc, csetDest);

Page 268 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

cs.intersection({‘a’..’z’}, lowerCaseUnion) ;

HLA low-level calling sequence example:

// The following low-level example assumes that csetDest s is

// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.

push((type dword csetSrc_s[12]));
push((type dword csetSrc_s([8]));
)
)

1

push((type dword csetSrc_s[4])
push((type dword csetSrc_s[0])
pushd(&csetDest_s) ;
call cs.intersection;

7

cs.Intersection stack diagram

ESP+20 src (H.O. dword)

ESP+16
— —| src :cset
ESP+12
ESP+8 [s (L.O. dword)
ESP+4 var dest:cset

ESP Return Address

procedure cs.difference(src:cset; var dest:cset);

This function computes the set difference of two sets (i.e., the members in the destination set that are not
also members of the source set). It stores the result back into the dest set (which is passed by reference).

HLA high-level calling sequence examples:

cs.difference(csetSrc, csetDest);

cs.difference({‘a’..’z’'}, csetWithoutLowerCase) ;

HLA low-level calling sequence example:

// The following low-level example assumes that csetDest_ s is

// a statically-declared object (static or storage section). For

// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.

Released to the Public Domain Page 269

HLA Standard Library

)i

push((type dword csetSrc_s[12])
push((type dword csetSrc_s[8]));
push((type dword csetSrc_s[4]))
push((type dword csetSrc_s[0]))
pushd(&csetDest s);

call cs.difference;

’

’

cs.differ ence stack diagram

ESP-+20 src (H.O. dword)

ESP+16
— —]| src :cset
ESP+12
ESP+48 [s (L.O. dword)
ESP+H4 var dest:cset

ESP Return A ddress

procedure cs.complement(src:cset; var dest:cset):

This function computes the set complement of a set (i.e., the members in the destination set are those
elements that are not in the source set.). It stores the complemented version of the set in the destination operand
(which is passed by reference).

HLA high-level calling sequence examples:

cs.complement (csetSrc, negatedCsetDest);
cs.complement ({‘a’..’z’}, allButLowercase);

HLA low-level calling sequence example:

// The following low-level example assumes that csetDest_s is

// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.

push((type dword csetSrc_s[12]));
push((type dword csetSrc_s([8]));
)
)

1

push((type dword csetSrc_s([4])
push((type dword csetSrc_s[0])
pushd(&csetDest_s) ;

call cs.complement;

7

Page 270 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

cs.complement stack diagram

ESP+20 src (H.O. dword)

ESP+16
— —]| src :cset
ESP+12
ESP+48 [s (L.O. dword)
ESP+H4 var dest:cset

ESP Return A ddress

procedure cs.unionChar(c:char; var dest:cset):;

The cs.unionChar function adds the character (supplied as a parameter) to the specified destination character
set (passed by reference). If the character was already a member of the set, this function does not affect the

character set.

HLA high-level calling sequence examples:

cs.unionChar(‘c’, csetDest);
cs.unionChar (charvVar, lowerCaseCset);
cs.unionChar ((type char [esi]), (type cset [edi]));

HLA low-level calling sequence examples:

// The following low-level examples all assume that csetDest s is
// a statically-declared object (static or storage section). For

// examples of additional ways to pass the destination cset by

// reference, please see the examples for cs.cpy given earlier.

// Passing a single character constant:

pushd(‘c’);
pushd(&csetDest_s) ;
call cs.unionChar;

// Passing a character variable, assuming a 32-bit register is
// available or one of the 8-bit register: AL, BL, CL, or DL

mov (charVar, al);
push(eax);

pushd(&csetDest s);
call cs.unionChar;

Released to the Public Domain

Page 271

HLA Standard Library

// If the character variable is guaranteed not to be in the last
// three bytes of allocated storage, you could also do this:

push(type dword charVar);
pushd(&csetDest s);
call cs.unionChar;

// If the character is in one of the 8-bit registers: AH, BH, CH, DH

sub(4, esp);

mov (ah, [espl);
pushd(&csetDest s);
call cs.unionChar;

cs.unionChar stack diagram

ESP+8 c char
ESP+4 var dest :cset
ESP Return A ddress

procedure cs.removeChar(c:char; var dest:cset):;

This function removes a single character from the specified destination set (passed by reference). If the
character was not previously a member of the destination set, this function does not affect that set.

HLA high-level calling sequence examples:

cs.removeChar(‘c’, csetDest);
cs.removeChar (charVar, lowerCaseCset);
cs.removeChar ((type char [esi]), (type cset [edi]));

HLA low-level calling sequence examples:

// The following low-level examples all assume that csetDest_s is
// a statically-declared object (static or storage section). For
// examples of additional ways to pass the destination cset by
// reference, please see the examples for cs.cpy given earlier.

//

Page 272 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
// Passing a single character constant:

pushd(‘c’);
pushd(&csetDest s);
call cs.removeChar;

// Passing a character variable, assuming a 32-bit register is
// available or one of the 8-bit register: AL, BL, CL, or DL

mov (charVar, al);
push(eax);

pushd (&csetDest s);
call cs.removeChar;

// If the character variable is guaranteed not to be in the last
// three bytes of allocated storage, you could also do this:

push(type dword charVar) ;
pushd(&csetDest s);
call cs.removeChar;

// If the character is in one of the 8-bit registers: AH, BH, CH, DH

sub(4, esp);

mov (ah, [espl);
pushd(&csetDest_s) ;
call cs.removeChar;

cs.removeChar stack diagram

ESP+8 c char

ESP+4 var dest :cset
ESP Return A ddress

procedure cs.unionStr(s:string; var dest:cset);

This function will union in all the characters in a string to the destination set. Unlike the cs.strToCset
function, this function does not clear the destination character set before processing the characters in the string.

Released to the Public Domain Page 273

HLA Standard Library
HLA high-level calling sequence examples:

cs.unionStr(strSrc, csetDest);
cs.unionStr("ABCDEFabcdef", csetPlusHexChars) ;

HLA low-level calling sequence examples:

// csetDest s is a variable declared
// in the static/storage section:

push(strSrc);
pushd(&csetDest s);
call cs.unionStr;

// You could pass a string literal thusly (though there is
// no benefit to doing this over creating a statically
// initialized string variable and passing that string variable) .

lea(eax, "abcdefABCDEF") ;
push(eax);

pushd(&csetDest s);

call cs.unionStr;

cs.unionStr stack diagram

ESP+8 s sstring
ESP-+4 var dest :cset
ESP Return A ddress

procedure cs.unionStr2(s:string; offs:uns32; offs:uns32; var dest:cset);

This function will union in all the characters in a string to the destination set. Unlike the cs.unionStr function,
this function starts at character position offs in s rather than at character position zero.

HLA high-level calling sequence examples:

cs.unionStr2(strSrc, 2, csetDest);
cs.unionStr2 ("ABCDEF", offsetIntoStr, partialHexUnion) ;

Page 274 Version: 4/28/10 Written by Randall Hyde

HLA low-level calling sequence examples:

// csetDest s is a variable declared
// in the static/storage section:

push(strSrc);
pushd(2)

pushd(&csetDest s);
call cs.unionStr2;

HLA Standard Library Reference

// Assume the offset is in the variable "offsetIntoStr":

push(strSrc);

push(offsetIntoStr);
pushd(&csetDest s);
call cs.unionStr2;

cs.unionStr2 stack diagram

ESP+12 S string
ESP +8 offs :uns32
ESP+H4 var dest :cset

ESP Return A ddress

procedure cs.removeStr(s:string; var dest:cset):

This function removes characters found in the string from the specified character set. If a character in the
string was not previously a member of the character set, the specified character has no effect on the destination

set.

HLA high-level calling sequence examples:
cs.removeStr (strSrc, csetDest);

cs.removeStr ("ABCDEFabcdef", csetMinusHexChars) ;
HLA low-level calling sequence examples:

// csetDest s is a variable declared
// in the static/storage section:

Released to the Public Domain

Page 275

HLA Standard Library

push(strSrc);
pushd(&csetDest_s) ;
call cs.removeStr;

// You could pass a string literal thusly (though there is
// no benefit to doing this over creating a statically
// initialized string variable and passing that string variable) .

lea(eax, "abcdefABCDEF") ;
push(eax);

pushd (&csetDest s) ;

call cs.removeStr;

cs.removeStr stack diagram

ESP+8 s string
ESP+4 var dest :cset
ESP Return A ddress

procedure cs.removeStr2(s:string; offs:uns32; var dest:cset);

This function removes characters found in the string at character position offs and beyond from the specified
character set. If a character in the string was not previously a member of the character set, the specified character
has no effect on the destination set.

HLA high-level calling sequence examples:

cs.removeStr2 (strSrc, 2, csetDest);

cs.removeStr2 ("ABCDEF", offsetIntoStr, csetMinusSomeHexChars) ;
HLA low-level calling sequence examples:

// csetDest_s is a variable declared
// in the static/storage section:

push(strSrc);
pushd(2)

pushd(&csetDest s);
call cs.removeStr2;

Page 276 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference

// Assume the offset is in the variable "offsetIntoStr":

push(strSrc);

push(offsetIntoStr);
pushd(&csetDest s);
call cs.removeStr2;

ESP+12
ESP+8
ESP+4

ESP

Return A ddress

cs.removeStr2 stack diagram

S string
offs :uns32

var dest :cset

Released to the Public Domain

Page 277

HLA Standard Library

Page 278 Version: 4/28/10 Written by Randall Hyde

	10 Character Sets (cset.hhf)
	10.1 Predicates (tests)
	procedure cs.IsEmpty(src: cset); @returns("AL");
	procedure cs.member(c:char; theSet:cset); @returns("AL");
	procedure cs.subset(src1:cset; src2:cset); @returns("AL");
	procedure cs.superset(src1:cset; src2:cset); @returns("AL");
	procedure cs.psubset(src1:cset; src2:cset); @returns("AL");
	procedure cs.psuperset(src1:cset; src2:cset); @returns("AL");
	procedure cs.eq(src1:cset; src2:cset); @returns("AL");
	procedure cs.ne(src1:cset; src2:cset); @returns("AL");

	10.2 Character Set Construction and Manipulation
	procedure cs.empty(var dest:cset);
	procedure cs.cpy(src:cset; var dest:cset);
	procedure cs.charToCset(c:char; var dest:cset);
	procedure cs.rangeChar(first:char; last:char; var dest:cset);
	procedure cs.strToCset(s:string; var dest:cset);
	procedure cs.strToCset2(s:string; offs:uns32; var dest:cset);
	procedure cs.extract(var dest:cset); @returns("EAX");

	10.3 Set Operations
	procedure cs.setunion(src:cset; var dest:cset);
	procedure cs.intersection(src:cset; var dest:cset);
	procedure cs.difference(src:cset; var dest:cset);
	procedure cs.complement(src:cset; var dest:cset);
	procedure cs.unionChar(c:char; var dest:cset);
	procedure cs.removeChar(c:char; var dest:cset);
	procedure cs.unionStr(s:string; var dest:cset);
	procedure cs.unionStr2(s:string; offs:uns32; offs:uns32; var dest:cset);
	procedure cs.removeStr(s:string; var dest:cset);
	procedure cs.removeStr2(s:string; offs:uns32; var dest:cset);
	procedure cs.removeStr2(s:string; offs:uns32; var dest:cset);

