
HLA Standard Library Reference
5 The Blobs Module (blobs.hhf)

This unit contains routines that read data from and write data to memory-based streams (blobs, or Binary
Large OBjects). The blob functions can be broken down into five generic categories: general functions that
initialize and allocate blobs, functions that convert between blobs and generic memory buffers, functions that do
blob file I/O, accessor functions that provide access to the internal blob data structure, and blob I/O functions.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

A Note About the FPU: The Standard Library code makes occasional use of the FPU, particularly when
converting between real and string formats and when computing certain mathematical functions. You should
exercise caution when using MMX instructions in a program that makes use of the Standard Library. In
particular, you should ensure that you are always in FPU mode (by executing an EMMS instruction) after you are
finished using MMX instructions. Better yet, you should avoid the MMX instruction set altogether and use the
improved SSE instruction set that accomplishes the same tasks (and doesn’t disturb the FPU).

A note about thread safety: Each blob object maintains its own critical section variable. Therefore, blobs
are protected from multi-threaded access on a per-blob level. Because blobs create this critical section object
whenever a blob is initialized or allocated, you must ensure that you free or destroy the blob when you are done
using it (and before your program quits) in order to free up system resources.

5.1 Conversion Format Control
The blob output functions that convert numeric values to hexadecimal, unsigned decimal, and signed

decimal output provide the ability to inject underscores between groups of three (decimal) or four (hexadecimal)
digits to make it easier to read large numbers. You enable and disable underscore output using the
conv.setUnderscores and conv.getUnderscores functions. Please refer to their documentation in the conv.rtf file
for more details.

When reading numeric data from a blob, the blob functions use an internal delimiters character set to
determine which characters may legally end a sequence of numeric digits. You can change the complexion of
this character set using the conv.getDelimiters and conv.setDelimiters functions. Please refer to their
documentation in the conv.rtf file for more details.

When converting numeric values to string form for output, the blob routines call the conversion functions
found in the conv (conversions) module. For detailed information on the actual conversions, please consult the
conv.rtf document.

5.2 Blob Synopsis
The best way to describe a blob (Binary Large Object) is by calling it a "memory-based file." You generally

read and write data to a blob using a file I/O paradigm, that is, by using function calls similar to the HLA
standard library's fileio functions. The advantage of blobs over files is that blobs are much faster than files; the
disadvantage of blobs is that blob data is volatile (meaning that you lose all data written to a blob when the
program quits or if there is a power outage). Another pair of blob disadvantages is that blobs' sizes are limited by
the amount of available system RAM (files are limited by the amount of free disk space, which is usually much
larger) and that you have to predeclare a blob's size before using it. By contrast, files can grow to any size up to
the amount of free disk space you having to specify the maximum size prior to creating the file. Despite these
limitations, blobs are quite useful because blob manipulation is much faster than file manipulation (often three
orders of magnitude faster).

Blobs are very similar to strings. The main differences between strings and blobs are
• Strings generally hold character data (ASCII text), blobs hold arbitrary character and binary

data (hence the name "Binary Large OBject").
• Strings generally represent a single coherent value (e.g., a single line of text), blobs may

contain many records (e.g., multiple lines of text).
• Strings are generally created and manipulated in their entirety; blobs are generally built up and

accessed using a sequence of operations (similar to file I/O operations).
• Blobs' data can be aligned on any address that is a power of two (and greater than or equal to

4); strings are always aligned on dword addresses. This makes blobs especially useful for
manipulating data objects with certain SSE instructions.
Released to the Public Domain Page 35

HLA Standard Library
5.3 Blob Internal Representation
The following is the internal representation of a blob object (these declarations are inside the blob

namespace):
type

blobRec:
record := -20;

allocPtr :dword;
criticalSection :dword
rcursor :dword;
wcursor :dword;
maxlen :dword;
length :dword;
blobData :byte[16]; // Minimum is 16 bytes

endrecord;

t :pointer to blobRec; // blob.t outside blob namespace
blob_t :t; // blob.blob_t outside blob namespace
blob :t; // blob.blob outside blob namespace

Note that the fieldnames in blobRec are generally considered private to the blobRec record declaration and are
intended for internal use (by the blobs package) only. Applications should only reference or modify these fields
using the blob accessor functions (described a little later in this document).

The allocPtr field contains the address of the start of the memory block allocated for the blob. Blobs can be
allocated to any address (that is a power of two and greater than or equal to 4). Because the stdlib's mem.alloc
function only guarantees 8-byte alignment, certain calls that allocate storage for a blob might need to allocate
extra storage in order to align the blob's data (the blobData field) at an appropriate address in memory. This might
insert (an arbitrary amount of) padding bytes before the allocPtr field in the blob data structure. The blob data
structure needs to save this allocation address (in allocPtr) so that the application can free the storage consumed
by the blob object. Much of the time, the allocPtr field will contain it's own address; for unaligned (the most
common) blobs, or blobs aligned on 8-byte or less addresses, no extra padding is necessary. If the blob object is
allocated in static memory rather than on the heap (or in memory that was not allocated by the blob library
functions), the allocPtr field will contain NULL.

The criticalSection field contains the object that controls access to the blob’s critical section in multi-threaded
applications. Note that this field is still present (though unused) in single-threaded applications. This is a private
field and should never be accessed by code outside the blob library.

The rcursor (read cursor) field contains the offset into the blob's data where the next value will be read from
the blob using one of the blob.get* functions or any of the other blob input functions that read data from the read
cursor position.

The wcursor (write cursor) field contains the offset into the blob's data where the next value will be written to
in the blob using one of the blob.put* functions or any of the other blob output functions that write data to the
write cursor position in the blob.

The maxlen (maximum length) field contains the maximum size of the blob. If an application attempts to
read or write data beyond this point in the blob, the library routines will generate an exception.

The length field is the current (dynamic) length of the blob. This field's value is always less than or equal to
maxlen's value.

The blobData field is where the blob's data appears in memory. This is an array of bytes containing at least
maxlen bytes (it may contain more, depending on the alignment of the blob allocation). This field always
contains at least 16 bytes (hence the declared size of 16 in the blobRec record).

5.4 Declaring Blob Variables
HLA stdlib blob variables are pointers. When declaring blob objects, you should use the blob.blob,

blob.blob_t, or blob.t data types. These three names are all synonyms, you can use whatever form you choose.
Whenever this documentation refers to a "blob variable", it is actually talking about a pointer to a blob object,
that is, a variable of type blob.blob, blob.blob_t, or blob.t. For example:

var
blobVar : blob.t;
Page 36 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
blobVar2 : blob.blob_t;
blobVar3 : blob.blob;

Note that these declarations all reserve exactly four bytes for the blob variables (blobVar1, blobVar2, and
blobVar3). Blob variables always hold pointers to the actual blob data. Of course, like strings and other pointers,
these declarations do not actually allocate storage for the blob object itself. You will have to call a function such
as blob.alloc to allocate the actual storage for a blob object.

You can also use the blob.init function to initialize a block of memory you’ve allocated for use as a blob.
 See the description of this function for more details.

 5.4.1 Initializing and Allocating Blob Variables
The HLA Blobs module provides several functions that let you allocate storage for a blob on the heap or

associate other storage with the blob. Because you must allocate storage for a blob before using it, these
functions will generally be the first functions you call before using a blob.

 blob.init(var b:var; numBytes:dword); @returns("eax");

The blob.init routine initializes a block of memory so that it contains a blob object. This function returns a
pointer to the blob object in EAX, which you should store into a blob.t variable. The b argument is the address of
a block of bytes that you want to use as the blob object. The numBytes argument is the total size of the block of
memory pointed at by the b parameter. Note that at least 20 bytes of the object pointed at by b will be used to
hold the blob's metadata (internal data structure). That is, numBytes does not specify the maximum size of the
blob; the maximum size will actually be slightly smaller than this value. This function will raise an exception if
numBytes is too small (insufficient space to allocate the blob metadata and at least 16 bytes of blob data.).
Warning: that this function sets the allocPtr field of the blobRec data structure to NULL. If you have allocated
this storage on the heap, it is your responsibility to call mem.free with the original allocation address to return the
storage to the heap. You must never call blob.free to free the blob storage that you've initialized with a blob.init
call.

Important: this function creates a new critical section object and initializes the criticalSection field of the blob
data object.

 You must call blob.destroy when you are done with the blob to delete the critical section object and return its
resources to the operating system.

 blob.init16(var b:var; numBytes:dword); @returns("eax");

Just like blob.init except that this function always returns an address that is aligned to a 16-byte boundary.
Note that if the memory block pointed at by b isn't at an appropriate address, blob.init16 will use up to 15 bytes at
the beginning of this block as padding bytes to guarantee that the address this function returns in eax is aligned to
a 16-byte boundary. Therefore, you should ensure that the block of memory whose address you pass is at least
16 bytes larger than you need to ensure you have enough space after padding is removed from the total. The
warnings above apply to blob.init16 as well as blob.init.

 blob.alloc(size:dword); @returns("eax");

The blob.alloc routine allocates storage for a blob object that contains at least size bytes of blob data. It
initializes the blob header (blobRec) data structure and returns a pointer to the blob in EAX (that you should store
into a blob variable). This function will raise an exception if it cannot allocate the specified amount of storage on
the heap for the blob object. Note that this function also allocates storage for the blob header and pads the size of
the blob (typically to a multiple of 16 bytes) so this call allocates a little bit more storage than size bytes on the
heap. Note that blobs created with the blob.alloc function are always aligned on a 16-byte boundary and they
always initialize the blobRec allocPtr field with the address of the storage allocated by an (internal) mem.alloc call.

Important: this function creates a new critical section object and initializes the criticalSection field of the blob
data object.

 You must call blob.free when you are done with the blob to delete the critical section object and return its
resources to the operating system.
Released to the Public Domain Page 37

HLA Standard Library
 blob.allocAligned(size:dword; alignment:dword); @returns("eax");

The blob.allocAligned routine also allocates storage for a blob object on the heap. The alignment argument is
an integer in the range 0..16 specifying the alignment on a 2**alignment byte boundary. That is, the alignment
value is interpreted as follows:

Note that the minimum alignment is always 16 bytes because this is the alignment that blob.alloc guarantees.
Note that the blob.allocAligned function might have to add as many as 2*alignment+32 bytes to the size of the
storage allocated on the heap in order to guarantee alignment on the desired address boundary. As for the
blob.alloc call, this function initializes the internal allocPtr field with the address of the block of storage allocated
on the heap.

Important: this function creates a new critical section object and initializes the criticalSection field of the blob
data object.

 You must call blob.free when you are done with the blob to delete the critical section object and return its
resources to the operating system.

 blob.realloc(theBlob:blob.t; size:dword); @returns("eax");

The blob.realloc routine resizes an existing blob. The first argument, theBlob, is the address of the blob object
to resize and the second argument is the new maximum size of the resultant blob. This function works by
allocating a new blob of the specified size, copying the blob data from the original blob to the new blob, and then
freeing the storage associated with the original blob if the allocPtr field contains a non-NULL value.

 It will also destroy the critical section object held by the original blob.

Important: this function creates a new critical section object and initializes the criticalSection field of the blob
data object.

 You must call blob.free when you are done with the blob to delete the critical section object and return its
resources to the operating system.

Note that there is no blob.reallocAligned function call, but you can easily write your own using the following
code:

blob.allocAligned(newsize, desiredAlignment);
push(eax);
blob.cpy(originalBlob, eax);
blob.free(originalBlob);

ali
gnment

Blob data
aligned to

0 16 bytes
1 16 bytes
2 16 bytes
3 16 bytes
4 16 bytes
5 32 bytes
6 64 bytes
7 128 bytes
8 256 bytes
9 512 bytes
10 1024 bytes
11 2048 bytes
12 4096 bytes
13 8192 bytes
14 16384 bytes
15 32768 bytes
16 65536 bytes
Page 38 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pop(eax);
mov(eax, originalBlob);

 blob.free(theBlob:blob.t);

The blob.free routine frees the storage associated with a blob object if that blob object was allocated on the
heap with a call to blob.alloc or blob.allocAligned (specifically, if the allocPtr field in the blobRec data structure
contains a non-NULL value). If the allocPtr field contains NULL, then this function returns without raising an
exception. If theBlob is NULL, contains a bad address, or if allocPtr isn't pointing at an object on the heap, then
this routine will raise an appropriate exception.

 This function will also delete the critical section object held b the blob.

 blob.destroy(theBlob:blob.t);

The blob.destroy routine deletes the critical section held by the blob. If the allocPtr

field is non-NULL, this will also deallocate the storage held by the blob. Functionally, blob.free and
blob.destroy are equivalent; though blob.free is intended for blobs allocated via some blob.allooc* or blob.a_*
function and blob.destroy is intended for blobs initialized via the blob.init* functions.

5.5 Blob Accessor Functions
The following functions in the HLA blobs unit provide access to the blobRec data structure. Programs should

use these accessor functions rather than directly accessing the blobRect fields.

 blob.length(b:blob.t); @returns("eax");

The blobl.length routine returns the value of the blobRec.length field, that is, the current size (actual data) of
the blob.

HLA high-level calling sequence example:

blob.length(b);
mov(eax, blobLength);

HLA low-level calling sequence example:

push(b);
call blob.length;
mov(eax, blobLength);

 blob.setLength(b:blob.t; newLen:dword);

The blobl.setLength routine sets the value of the blobRec.length field to the value specified by the newLen
parameter. You should exercise extreme caution when using this function. The blob.setLength function does not
check the value of the newLen argument to determine if it is valid. You could supply a value larger than the actual
amount of data currently in the blob (meaning you've just added garbage to the end of the blob) or you could
even supply a value that is beyond the allocated size of the blob (creating memory access problems down the
road).

HLA high-level calling sequence example:

blob.setLength(b, 32768);

HLA low-level calling sequence example:

push(b);
pushd(32768);
Released to the Public Domain Page 39

HLA Standard Library
call blob.setLength;

 blob.maxlen(b:blob.t); @returns("eax");

The blob.maxlen routine returns the value of the blobRec.maxlen field, that is, the current maximum size of the
blob.

HLA high-level calling sequence example:

blob.maxlen(b);
mov(eax, blobMaxLen);

HLA low-level calling sequence example:

push(b);
call blob.maxlen;
mov(eax, blobMaxLen);

 blob.setMaxlen(b:blob.t; newLen:dword);

The blobl.setMaxlen routine sets the value of the blobRec.maxlen field to the value specified by the newLen
parameter. You should exercise extreme caution when using this function. The blob.setMaxlen function does not
check the value of the newLen argument to determine if it is valid. You should only set the value of this field
when allocating storage for a new blob or if you are shrinking the size of a blob in-place. Expanding the maxlen
value does not allocate any more storage for the blob and such action will probably lead to a memory fault later
on in your program. Note that this function does not change the value of the blobRec.length field, even if the
new value for maxlen is less than the existing length.

HLA high-level calling sequence example:

blob.setMaxlen(b, 32768);

HLA low-level calling sequence example:

push(b);
pushd(32768);
call blob.setMaxlen;

 blob.rcursor(b:blob.t); @returns("eax");

The blobl.rcursor routine returns the value of the blobRec.rcursor field in the EAX register.

HLA high-level calling sequence example:

blob.rcursor(b);
mov(eax, blobReadPosition);

HLA low-level calling sequence example:

push(b);
call blob.rcursor;
mov(eax, blobReadPosition);
Page 40 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 blob.setrCursor(b:blob.t; newCursor:dword);

The blobl.setrCursor routine sets the value of the blobRec.rcursor field to the value specified by the newCursor
parameter. You should exercise extreme caution when using this function. The blob.setrCursor function does not
check the value of the newCursor argument to determine if it is valid. If you point the rcursor field beyond the end
of the blob's length you could get a memory fault error or read garbage data.

HLA high-level calling sequence example:

blob.setrCursor(b, 0);

HLA low-level calling sequence example:

push(b);
pushd(0);
call blob.setrCursor;

 blob.wcursor(b:blob.t); @returns("eax");

The blobl.wcursor routine returns the value of the blobRec.wcursor field in the EAX register.

HLA high-level calling sequence example:

blob.wcursor(b);
mov(eax, blobWritePosition);

HLA low-level calling sequence example:

push(b);
call blob.wcursor;
mov(eax, blobWritePosition);

 blob.setwCursor(b:blob.t; newCursor:dword);

The blobl.setwCursor routine sets the value of the blobRec.rcursor field to the value specified by the newCursor
parameter. You should exercise extreme caution when using this function. The blob.setwCursor function does
not check the value of the newCursor argument to determine if it is valid. If you point the wcursor field beyond the
end of the blob's length you could get a memory fault error or leave garbage data in the middle of the blob.

HLA high-level calling sequence example:

blob.setwCursor(b, 0);

HLA low-level calling sequence example:

push(b);
pushd(0);
call blob.setwCursor;
Released to the Public Domain Page 41

HLA Standard Library
 blob.reset;

The blobl.reset routine sets the blob's rcursor, wcursor, and length fields to zero. This effectively restores the
blob to its original state when it was created. Note that this does not change any actual data appearing the the
blob's memory storage, but since blob.reset sets the length field to zero, this effectively erases any data present in
the blob.

HLA high-level calling sequence example:

blob.reset();

HLA low-level calling sequence example:

call blob.reset;

 blob.eof(b:blob.t); @returns("@c");

This function returns true (1) in EAX and the carry flag if the read cursor is at the end of the blob's data. It
returns false (0) otherwise. Note that this function actually returns true/false in EAX even though the "returns"
value is "@c". It also returns the EOF state in the carry flag (c=1 if EOF, c=0 if not at EOF).

HLA high-level calling sequence example:

while(!(blob.eof(blobPointer)) do

<< something while not at EOF>>

endwhile;

HLA low-level calling sequence example:

whileNotEOF:
push(blobPointer);
call blob.eof;
cmp(al, true);
jne atEOF;

<< something while not at EOF>>

jmp whileNotEOF;
atEOF:

5.6 Blob Assignment Functions
These functions copy blobs and fill a blob with a single byte, word, or double-word value.

 blob.a_cpy(b:blob.t); @returns("eax");

This function creates a new blob on the heap that is a copy of the blob pointed at by the b parameter. It
returns a pointer to the new blob in the EAX register. When you are done using this new blob, you should free
the storage associated with it (and delete the criticalsection it creates) by calling the blob.free function.

HLA high-level calling sequence example:

blob.a_cpy(someBlob);
mov(eax, newBlob);
Page 42 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence example:

push(someBlob);
call blob.a_cpy;
mov(eax, newBlob);

 blob.cpy(src:blob.t; dest:blob.t); @returns("eax");

This function copies the data from the source blob (pointed at by src) to the destination blob (pointed at by
dest) and returns a pointer to the destination blob in EAX. This function raises an ex.BlobOverflow exception if
the destination blob isn’t large enough to hold the data copied from the source blob.

HLA high-level calling sequence example:

blob.cpy(someBlob, destBlob);

HLA low-level calling sequence example:

push(someBlob);
push(destBlob);
call blob.cpy;

 blob.fillb(theValue:byte; numBytes:dword; dest:blob);

This function fills an existing blob with numBytes copies of the byte value theValue. This function resets the
rcursor field to zero and the wcursor and length fields to numBytes. This function raises an ex.BlobOverflow
exception if the destination blob (pointed at by dest) is not large enough to hold numBytes bytes.

HLA high-level calling sequence example:

blob.fillb(0, 1024, destBlob);

HLA low-level calling sequence example:

pushd(0);
pushd(1024);
push(destBlob);
call blob.fillb;

 blob.fillw(theValue:word; numWords:dword; dest:blob);

This function fills an existing blob with numWords copies of the word value theValue. This function resets the
rcursor field to zero and the wcursor and length fields to numWords*2. This function raises an ex.BlobOverflow
exception if the destination blob (pointed at by dest) is not large enough to hold numWords*2 bytes.

HLA high-level calling sequence example:

blob.fillw(1000, 1024, destBlob);

HLA low-level calling sequence example:

pushd(1000);
pushd(1024);
push(destBlob);
call blob.fillw;
Released to the Public Domain Page 43

HLA Standard Library
 blob.filld(theValue:word; numDwords:dword; dest:blob);

This function fills an existing blob with numDwords copies of the dword value theValue. This function resets
the rcursor field to zero and the wcursor and length fields to numDwords*4. This function raises an ex.BlobOverflow
exception if the destination blob (pointed at by dest) is not large enough to hold numDwords*4 bytes.

HLA high-level calling sequence example:

blob.filld(1_000_000, 1024, destBlob);

HLA low-level calling sequence example:

pushd(1_000_000);
pushd(1024);
push(destBlob);
call blob.filld;

5.7 Blob Extraction Functions
These funcions extract subranges (slices) of a blob.

blob.a_subBlob(src:blob; start:dword; len:dword); @returns("eax");

This function creates a new blob on the heap and initializes it with data from an existing blob (pointed at by
src). The new blob is initialized with len bytes starting at offset start in blob src. This function returns a pointer to
the new blob on the heap in the EAX register. It is the callers responsibility to call blob.free to free the storage
associated with this new blob (and delete the critical section that this function creates).

HLA high-level calling sequence example:

blob.a_subBlob(someBlob, 1024, 256);
mov(eax, newBlob);

HLA low-level calling sequence example:

push(someBlob);
pushd(1024);
pushd(256);
call blob.a_subBlob;
mov(eax, newBlob);

blob.subBlob(src:blob; start:dword; len:dword; dest:blob.t);

This function copies a sequence from a source blob (src) to a destination blob (dest). It copies len bytes
starting at offset start in src to dest. This function raises an ex.BlobOverflow exception if d is too small to receive
the blob data.

HLA high-level calling sequence example:

blob.subBlob(someBlob, 1024, 256, destBlob);

HLA low-level calling sequence example:

push(someBlob);
pushd(1024);
pushd(256);
push(destBlob
call blob.subBlob;
Page 44 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
5.8 Blob Comparison Functions
These funcions compare two blobs for equality or inequality.

blob.eq(left:blob; right:blob.t); @returns("@c");

This function compares two blobs and returns true in the carry flag and the AL register if the two blobs are
equal to one another.

HLA high-level calling sequence example:

if(blob.eq(someBlob, anotherBlob)) then

// Do something if blobs are equal

endif;

HLA low-level calling sequence example:

push(someBlob);
push(anotherBlob);
call blob.eq;
jnc blobsNotEqual;

// Do something if blobs are equal

blobsNotEqual:

blob.ne(left:blob; right:blob.t); @returns("@c");

This function compares two blobs and returns true in the carry flag and the AL register if the two blobs are
not equal to one another.

HLA high-level calling sequence example:

if(blob.ne(someBlob, anotherBlob)) then

// Do something if blobs are not equal

endif;

HLA low-level calling sequence example:

push(someBlob);
push(anotherBlob);
call blob.eq;
jnc blobsEqual;

// Do something if blobs are not equal

blobsEqual:

5.9 Blob Scanning Functions
These funcions convert memory buffers (ranges of bytes) to blob objects
Released to the Public Domain Page 45

HLA Standard Library
blob.index(src1:blob; src2:blob.t); @returns("@c");

blob.index(src1:blob; offs:dword src2:blob.t); @returns("@c");

blob.index2(src1:blob; src2:blob.t); @returns("@c");

blob.index3(src1:blob; offs:dword src2:blob.t); @returns("@c");

blob.indexStr(src1:blob; src2:string); @returns("@c");

blob.indexStr(src1:blob; offs:dword src2:string); @returns("@c");

blob.indexStr2(src1:blob; src2:string); @returns("@c");

blob.indexStr3(src1:blob; offs:dword src2:string); @returns("@c");

These functions search for the presence of a string or blob within some blob. They return the carry flag set
if they find the src2 blob or string within the src1 blob and clear if the src2 string or blob is not found within the
src1 blob. The variants with the offs parameter begin searching for the blob or string at offset offs within the blob
src1. If the carry comes back set (meaning src2 was found), then the EAX register will contain the offset into src1
where src1 is first found. These functions raise an ex.ValueOutOfRange exception if the offs value is greater than
the current length of src1.

HLA high-level calling sequence example:

if(blob.index(someBlob, subBlob)) then

// Do something if subBlob is a subblob of someBlob

endif;

HLA low-level calling sequence example:

push(someBlob);
push(subBlob);
call blob.index;
jnc notPresent;

// Do something if subBlob is a subblob of someBlob

notPresent:

blob.rindex(src1:blob; src2:blob.t); @returns("@c");

blob.rindex(src1:blob; offs:dword src2:blob.t); @returns("@c");

blob.rindex2(src1:blob; src2:blob.t); @returns("@c");

blob.rindex3(src1:blob; offs:dword src2:blob.t); @returns("@c");

blob.rindexStr(src1:blob; src2:string); @returns("@c");

blob.rindexStr(src1:blob; offs:dword src2:string); @returns("@c");

blob.rindexStr2(src1:blob; src2:string); @returns("@c");

blob.rindexStr3(src1:blob; offs:dword src2:string); @returns("@c");

These functions search backwards for the presence of a string or blob within some blob starting at the end of
that blob. They return the carry flag set if they find the src2 blob or string within the src1 blob and clear if the src2
string or blob is not found within the src1 blob. The variants with the offs parameter begin searching for the blob
or string at offset length-offs within the blob src1. If the carry comes back set (meaning src2 was found), then the
Page 46 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
EAX register will contain the offset into src1 where src1 is last found. These functions raise an
ex.ValueOutOfRange exception if the offs value is greater than the current length of src1.

HLA high-level calling sequence example:

if(blob.rindex(someBlob, subBlob)) then

// Do something if subBlob is a subblob of someBlob

endif;

HLA low-level calling sequence example:

push(someBlob);
push(subBlob);
call blob.rindex;
jnc notPresent;

// Do something if subBlob is a subblob of someBlob

notPresent:

blob.chpos(src1:blob; src2:char); @returns("@c");

blob.chpos(src1:blob; offs:dword src2:char); @returns("@c");

blob.chpos2(src1:blob; src2:char); @returns("@c");

blob.chpos3(src1:blob; offs:dword src2:char); @returns("@c");

These functions search for the presence of a character within some blob. They return the carry flag set if
they find the src2 character within the src1 blob and clear if the src2 character is not found within the src1 blob.
The variants with the offs parameter begin searching for the character at offset offs within the blob src1. If the
carry comes back set (meaning src2 was found), then the EAX register will contain the offset into src1 where src2
is first found. These functions raise an ex.ValueOutOfRange exception if the offs value is greater than the current
length of src1.

HLA high-level calling sequence example:

if(blob.chpos(someBlob, someChar)) then

// Do something if someChar is within someBlob

endif;

HLA low-level calling sequence example:

push(someBlob);
mov(someChar, al);
push(eax);
call blob.chpos;
jnc notPresent;

// Do something if someChar is within someBlob

notPresent:
Released to the Public Domain Page 47

HLA Standard Library
blob.rchpos(src1:blob; src2:char); @returns("@c");

blob.rchpos(src1:blob; offs:dword src2:char); @returns("@c");

blob.rchpos2(src1:blob; src2:char); @returns("@c");

blob.rchpos3(src1:blob; offs:dword src2:char); @returns("@c");

These functions search for the presence of a character within some blob, searching from the end of the blob.
They return the carry flag set if they find the src2 character within the src1 blob and clear if the src2 character is
not found within the src1 blob. The variants with the offs parameter begin searching for the character at offset
offs within the blob src1. If the carry comes back set (meaning src2 was found), then the EAX register will contain
the offset into src1 where src2 is first found. These functions raise an ex.ValueOutOfRange exception if the offs
value is greater than the current length of src1.

HLA high-level calling sequence example:

if(blob.rchpos(someBlob, someChar)) then

// Do something if someChar is within someBlob

endif;

HLA low-level calling sequence example:

push(someBlob);
mov(someChar, al);
push(eax);
call blob.rchpos;
jnc notPresent;

// Do something if someChar is within someBlob

notPresent:

5.10 Blob Concatenation Functions
There are two major types of blob concatentation functions. The first group (consisting of the blob.cat macro

and the blob.cat2, blob.cat3, and blob.a_cat functions) take all the data from one blob and concatenates that data to
the end (that is, at the length offset) of a second blob. These functions set the length and wcursor fields to point at
the end of the new blob and reset the rcursor position of the result to zero.

The second group of concatenation functions take data from a string, a buffer, or a blob and append this to
the end of some destination blob starting at the wcursor position in the destination blob.

blob.a_cat(src1:blob; src2:char); @returns("@eax");

This function creates a new blob on the heap whose size is equivalent to the current lengths of the src1 and
src2 blobs whose pointers are passed as parameters. This function then copies the data from src1 to the new blob
and then appends the data from src2 to the end of this. This function returns a pointer to the new blob in EAX
and the length and wcursor fields are set to the new blob’s length and the rcursor field is set to zero. Note that it is
the caller’s responsibility to call blob.free in order to return the allocated storage to the heap and delete the newly
created critical section object for the blob.

HLA high-level calling sequence example:

blob.a_cat(blob1, blob2);
mov(eax, newBlob);

HLA low-level calling sequence example:
Page 48 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(blob1);
push(blob2);
call blob.a_cat;
mov(eax, newBlob);

blob.cat(src:blob; dest:blob);

blob.cat2(src:blob; dest:blob);

These functions concatenate the data from the src blob to the end of the data in the dest blob. They raise an
ex.BlobOverflow exception if the result will not fit in the destination blob.

HLA high-level calling sequence example:

blob.cat2(srcblob, destblob);

HLA low-level calling sequence example:

push(srcblob);
push(destblob);
call blob.cat2;
mov(eax, newBlob);

blob.cat(src1:blob; src2:blob; dest:blob);

blob.cat3(src1:blob; src2:blob; dest:blob);

These functions concatenate the data from two blobs (src1 and src2) and store the concatenated result into
the dest operand. They raise an ex.BlobOverflow exception if the result will not fit in the destination blob.

HLA high-level calling sequence example:

blob.cat3(blob1, blob2, dest);

HLA low-level calling sequence example:

push(blob1);
push(blob2);
push(dest);
call blob.cat3;

blob.catsub(src:blob; start:dword; len:dword; dest:blob);

blob.catsub4(src:string; start:dword; len:dword; dest:blob);

blob.catsub(src2:blob; start:dword; len:dword; src1:string; dest:blob);

blob.catsub5(src2:string; start:dword; len:dword; src1:string; dest:blob);

The blob.catsub functions are actually overloaded procedures that map to the blob.catsub4 and blob.catsub5
functions, depending on the call signature.

These functions concatenate the data froma string (src) or pair of strings (src1 and src2) and store the
concatenated result into the dest blob operand. They raise an ex.BlobOverflow exception if the result will not fit in
the destination blob. These functions raise an ex.StringIndexError exception if the start index value is greater than
the current length of the string.

The first two functions extract a substring of length len, starting at character position start, from src and
concatenate this string to the end of the dest blob.

The second two functions copy the src1 string to the blob and then copy the substring of src2 (specified by
start and len) to the end of this blob.
Released to the Public Domain Page 49

HLA Standard Library
All of these functions concatenate their strings to the blob starting at the wcursor position in the blob. They
will leave wcursor pointing beyond the data just concatenated and will update the length field of the blob if the
concatenated data extends the length. These functions do not affect the rcursor field of the blob.

HLA high-level calling sequence example:

blob.catsub4(strVar, 0, 24, dest);
blob.catsub5(strVar2, 0, 24, strVar1, dest);

HLA low-level calling sequence example:

push(strVar);
pushd(0);
pushd(24);
push(dest);
call blob.catsub4;

push(strVar2);
pushd(0);
pushd(24);
push(strVar1);
push(dest);
call blob.catsub5;

blob.a_catsub(src:blob; start:dword; len:dword; dest:blob);

This function extracts a substring (src, from start of length len) and creates a new blob on the heap from the
substring data. This function returns a pointer to the new blob in EAX This function sets the rcursor field of the
blob to zero and the wcursor and length fields of the blob to len. It is the caller’s responsibility to free the storage
allocated by the function (and the critical section it creates) by calling blob.free when the caller is done with this
blob.

HLA high-level calling sequence example:

blob.a_catsub(strVar, 0, 24);
mov(eax, newBlob);

HLA low-level calling sequence example:

push(strVar);
pushd(0);
pushd(24);
call blob.a_catsub;
mov(eax, newBlob);

blob.catbuf2(src:buf_t; dest:blob);

blob.catbuf3a(startBuf:dword; endBuf:dword; dest:blob);

blob.catbuf2 is a synonym for blob.catbuf3a. As it turns out, a buf_t object passed on the stack is the same as
passing the startBuf and endBuf dwords on the stack.

This function concatenates the bytes from a buffer (specified by the src or startBuf/endBuf variables) to the
end of an existing blob (dest). This function stores the buffer data starting at the offset specified by the wcursor
field of the blob. The bytes from memory locations startBuf to endBuf-1 are concatenated to the blob. If the new
wcursor field value is greater than length, this function also extends the value of the length field. This function
raises an ex.BlobOverflow exception if the new blob size would be greater than the maxlen field value.

HLA high-level calling sequence example:

blob.catbuf3a(startAddress, endAddressPlus1, destBlob);
Page 50 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence example:

push(startAddress);
push(endAddressPlus1);
pushd(destBlob);
call blob.catbuf3a;

blob.catbuf3b(src2:buf_t; src1:string; dest:blob);

blob.catbuf4(startBuf:dword; endBuf:dword; strSrc:string; dest:blob);

blob.catbufe3b is a synonym for blob.catbuf4. As it turns out, a buf_t object passed on the stack is the same as
passing the startBuf and endBuf dwords on the stack.

This function concatenates the bytes from a buffer (specified by the src2 or startBuf/endBuf variables) to the
end of a string (strSrc) and concatenate this data to the end of an existing blob (dest). This function stores the
buffer data starting at the offset specified by the wcursor field of the blob. The bytes from the string (strSrc) and
then memory locations startBuf to endBuf-1 are concatenated to the blob. If the new wcursor field value is greater
than length, this function also extends the value of the length field. This function raises an ex.BlobOverflow
exception if the new blob size would be greater than the maxlen field value.

HLA high-level calling sequence example:

blob.catbuf4(startAddress, endAddressPlus1, someStr, destBlob);

HLA low-level calling sequence example:

push(startAddress);
push(endAddressPlus1);
push(someStr);
pushd(destBlob);
call blob.catbuf4;

5.11 Blob Conversion Functions
These funcions convert memory buffers (ranges of bytes) to blob objects
and strings to blob objects.

blob.bufToBlob2(buf:@global:buf_t; b:blob.t);

blob.bufToBlob3(startBuf:dword; endBuf:dword; b:blob.t);

These functions convert a
range of bytes (specified by a starting and ending address) into a blob object. The blob data is stored into the

(previously allocated) blob object pointed at by the b parameter.
Note that these function names are actually synonyms for the same function. As it turns out, passing a buf_t

object on the stack produces the exact same stack frame as passing a starting and ending buffer address.
The startBuf parameter is the address of the first byte of the memory block to convert; the endBuf parameter

supplies the last address of the buffer plus one.
The b parameter must point at a previously allocated and initialized blob object. This blob must be large

enough (maxlen) to hold the range of bytes specified by the buffer parameter(s).

HLA low-level calling sequence examples:

blob.bufToBlob3(startingAddress, endingAddress, blobPtr1);
blob.bufToBlob3(ebx, ecx, blobPtr2);
blob.bufToBlob2(buf_t_Variable, blobPtr3);

HLA low-level calling sequence examples:
Released to the Public Domain Page 51

HLA Standard Library
push(startingAddress);
push(endingAddress);
push(blobPtr1);
call blob.bufToBlob3;

push(ebx);
push(ecx);
push(blobPtr2);
call blob.a_bufToBlob2;

push((type dword buf_t_Variable[0]));
push((type dword buf_t_Variable[4]));
push(blobPtr3);
call blob.a_bufToBlob1;

blob.a_bufToBlob1(buf:@global:buf_t); @returns("@eax");

blob.a_bufToBlob2(startBuf:dword; endBuf:dword); @returns("@eax");

These functions convert a range of bytes (specified by a starting and ending address) into a blob object. The
blob’s data is allocated on the heap and these functions return a pointer to the blob data in the EAX register.

Note that these function names are actually synonyms for the same function. As it turns out, passing a buf_t
object on the stack produces the exact same stack frame as passing a starting and ending buffer address.

The startBuf parameter is the address of the first byte of the memory block to convert; the endBuf parameter
supplies the last address of the buffer plus one.

It is the caller’s responsibility to call blob.free to free up the allocated storage and release the critical section
object when the caller is done using the blob these function create.

HLA low-level calling sequence examples:

blob.a_bufToBlob2(startingAddress, endingAddress);
mov(eax, blobPtr1);
blob.a_bufToBlob2(ebx, ecx);
mov(eax, blobPtr2);
blob.a_bufToBlob1(buf_t_Variable);
mov(eax, blobPtr3);

HLA low-level calling sequence examples:

push(startingAddress);
push(endingAddress);
call blob.a_bufToBlob2;
mov(eax, blobPtr1);

push(ebx);
push(ecx);
call blob.a_bufToBlob2;
mov(eax, blobPtr2);

push((type dword buf_t_Variable[0]));
push((type dword buf_t_Variable[4]));
call blob.a_bufToBlob1;
mov(eax, blobPtr3);
Page 52 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
blob.strToBlob(src:string; dest:blob);

blob.zstrToBlob(src:string; dest:blob);

5.12 General Blob I/O Functions
Here are the blob file I/O routines provided by the HLA blobs unit:

 blob.a_load(FileName: string); @returns("eax");

The blobl.a_load routine opens the file by the specified name, allocates sufficient storage to hold all the data
in the file, reads the file's data into the blob, and then closes the file. This function returns a pointer to the
initialized blob in the EAX register. You should call blob.free to return this storage to the heap when you are
done using the blob.

This function initializes the read cursor so that it points at the beginning of the blob data read from the file. It
initializes the write cursor to point at the end of the blob's data; note, however, that there is no additional space
allocated at the end of the blob, so any attempt to write data to the blob (without resetting the write cursor to
some other point in the blob) will produce a blob overflow exception.

 blob.a_loadExtended(FileName: string; extend:dword); @returns("eax");

The blobl.a_loadExtended routine opens the file by the specified name, allocates sufficient storage to hold all
the data in the file plus the number of bytes specified by the extend argument, reads the file's data into the blob,
and then closes the file. This function returns a pointer to the initialized blob in the EAX register. You should
call blob.free to return this storage to the heap when you are done using the blob.

This function initializes the read cursor so that it points at the beginning of the blob data read from the file. It
initializes the write cursor to point at the end of the blob's data. Because the blob's size has been extended by the
value of the second parameter in the call, you can write that many additional bytes to the file.

 blob.load(filename:string; b:blob.t);

The blob.load routine opens the file by the specified name and reads the file's data into the blob specified by
the b parameter. This routine raise an exception if there is a problem opening the file (e.g., the file does not
exist). If the file is successfully opened, this function will read the file's data into the blob (raising an exception
if the file's data is too large to fit in the blob or if there is an error reading the file).

HLA high-level calling sequence examples:

blob.load(filenameStr, b);
blob.a_load("myfile2.txt");
mov(eax, b2);
blob.a_loadExtended("myfile3.txt", 8192);
mov(eax, b3);

HLA low-level calling sequence examples:

push(filenameStr);
push(b);
call blob.open;

// Note: If you want to use a string literal for the filename, the best
// solution is to create a string object in the readonly section, e.g.,
//
// readonly
// filenameStr2 :string := "myfile2.txt";
//
// and just use the "filenameStr2" object you’ve created.

push(filenameStr2);
Released to the Public Domain Page 53

HLA Standard Library
call blob.a_open;
mov(eax, b2);

// You may also do the following if you have a register available:

lea(eax, "myfile3.txt");
push(eax);
pushd(8192);
call blob.a_loadExtended;
mov(eax, b3);

 blob.appendFile(filename:string; b:blob.t.blob);

This function opens a file, reads its data, and appends that data to the end of an existing blob. It raises the
ex.BlobOverflow exception if the file is to large to append to the end of the blob specified by the b parameter. This
call sets the write cursor to the end of the file appended to the blob in memory; it does not affect the value of the
read cursor.

HLA high-level calling sequence example:

blob.appendFile(fileNameStr, b);

HLA low-level calling sequence example:

push(filenameStr);
push(b);
call blob.appendFile;

 blob.a_appendFile(filename:string; b:blob.t.blob); @returns("eax");

This function creates a new blob on the heap that is the size of the data in the b blob plus the size of the file
specified by filename. It copies the data from the b blob to the new blob and then reads the file's data and appends
that data to the end of the new blob. It returns a pointer to the new blob in the EAX register (the caller should
ultimately call blob.free to return this storage to the heap). This call sets the write cursor to the end of the file
appended to the blob in memory; the value of the read cursor will be the same value found in the b blob.

HLA high-level calling sequence example:

blob.a_appendFile(fileNameStr, b);
mov(eax, b2);

HLA low-level calling sequence example:

push(filenameStr);
push(b);
call blob.a_appendFile;
mov(eax, b2);
Page 54 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
 blob.a_appendFileExtended(filename:string; b:blob.t.blob; extend:dword)
 {@returns("eax")};

This function allocates storage for a new blob that is the size of the existing blob plus the size of the file and
the extend value. It then copies the blob specified by the b parameter to the newly allocated blob and appends the
file's data to the end of this blob. Finally, it returns a pointer to the new blob in the EAX register. Note that the
original blob (specified by the b parameter) is unaffected by this operation. This call sets the write cursor to the
end of the file appended to the blob in memory; it sets the value of the read cursor to the same value of the
original blob (passed in b).

HLA high-level calling sequence example:

blob.a_appendFileExtend(fileNameStr, b, 16384);

HLA low-level calling sequence example:

push(filenameStr);
push(b);
pushd(16384)
call blob.a_appendFileExtend;

 blob.save(filename:string; b:blob.t);

This function writes the blob's data (specified by the b parameter) to the file specified by the filename
parameter. This function will overwrite any existing file.

HLA high-level calling sequence examples:

blob.save(fileNameStr, blobVar);

HLA low-level calling sequence examples:

push(fileNameStr);
push(blobVar);
call blob.save;

5.13 Blob Binary I/O Routines

 blob.write(b:blob.t; var src:var; len:dword); @returns("eax");

This procedure writes the number of bytes specified by the len variable to the blob specified by the b
parameter (at offset wcursor in the blob). The bytes starting at the address of the src object are written to the blob.
No range checking is done on the src address value. It is your responsibility to ensure that the buffer contains at
least len valid data bytes. Note that src is an untyped reference parameter. This means that blob.write will take the
address of whatever object you provide as this parameter (including pointer variables, which may not be what
you want). If you want to pass the value of a pointer variable as the buffer address (rather than the address of the
pointer variable) when using the high-level style calling syntax, use the VAL keyword as a prefix to the
parameter (see the following examples). This function returns the number of bytes written to the blob in the
EAX register. If this operation writes bytes beyond the previous length of the blob, it will increment the
blobRec.length field of the blob appropriately.

HLA high-level calling sequence examples:
Released to the Public Domain Page 55

HLA Standard Library
blob.write(blobPointer, buffer, count);

// If bufPtr is a dword object containing the
// address of the buffer whose data you wish to
// write to the blob:

blob.write(blobPointer, val bufPtr, count);

// The following writes the four-byte value of
// the bufPtr variable to the blob (an unusual
// operation):

blob.write(blobPointer, bufPtr, 4);

HLA low-level calling sequence examples:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
pushd(&buffer);
push(count);
call blob.write;

// If a 32-bit register is available and buffer
// isn’t at a fixed, static, address:

push(blobPointer);
lea(eax, buffer);
push(eax);
push(count);
call blob.write;

// If a 32-bit register is not available and buffer
// isn’t at a fixed, static, address:

push(blobPointer);
sub(4, esp);
push(eax);
lea(eax, buffer);
mov(eax, [esp+4]);
pop(eax);
push(count);
call blob.write;

// If bufPtr points at the buffer to write,
// then use code like this:

push(blobPointer);
push(bufPtr);
push(count);
call blob.write;

// To write the 4 bytes at bufPtr to
// the file (unusual), you could use
// code like this:

push(blobPointer);
lea(eax, bufPtr);
push(eax);
Page 56 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
pushd(4);
call blob.write;

 blob.writeAt(b:blob.t; var src:var; index:dword; len:dword);
@returns("eax");

This procedure writes the number of bytes specified by the len variable to the blob specified by the b
parameter at the offset specified by the index parameter. This procedure does not use nor does it modify the
blobRec.wcursor value. The bytes starting at the address of the src object are written to the blob. No range
checking is done on the src address value. It is your responsibility to ensure that the buffer contains at least len
valid data bytes. Note that src is an untyped reference parameter. This means that blob.writeAt will take the
address of whatever object you provide as this parameter (including pointer variables, which may not be what
you want). If you want to pass the value of a pointer variable as the buffer address (rather than the address of the
pointer variable) when using the high-level style calling syntax, use the VAL keyword as a prefix to the
parameter (see the following examples). This function returns the number of bytes written to the blob in the
EAX register. If the sum of index+len is greater than the previous length of the blob, then this function will extend
the length of the blob. If the value of index is greater than the original length of the blob, then this function will
return zero in EAX and will not transfer any data to the blob.

HLA high-level calling sequence example:

blob.writeAt(blobPointer, buffer, writeOffset, count);

HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
pushd(&buffer);
push(writeOffset);
push(count);
call blob.writeAt;

 blob.putByte(b:blob.t; byteVal:byte);

This procedure writes a single byte value (byteVal, which is a single-byte binary value) to the blob specified
by the b parameter (at offset wcursor in the blob). This function call advances the value of wcursor by 1. This call
is effectively equivalent to blob.write(b, byteVal, 1); except that it does not return the number of bytes written in
EAX (which is always 1, assuming there are no exceptions).

HLA high-level calling sequence example:

blob.putByte(blobPointer, ByteValue);

HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory and EAX is available for use:

push(blobPointer);
movzx(ByteValue, eax);
Released to the Public Domain Page 57

HLA Standard Library
push(eax);
call blob.putByte;

 blob.putWord(b:blob.t; wordVal:word);

This procedure writes a single word value (wordVal, which is a two-byte binary value) to the blob specified
by the b parameter (at offset wcursor in the blob). This function call advances the value of wcursor by 2. This call
is effectively equivalent to blob.write(b, wordVal, 2); except that it does not return the number of bytes written in
EAX (which is always 2, assuming there are no exceptions).

HLA high-level calling sequence example:

blob.putWord(blobPointer, WordValue);

HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
pushw(0);
push(WordValue);
call blob.putWord;

 blob.putDword(b:blob.t; dwordVal:dword);

This procedure writes a single dword value (dwordVal, which is a four-byte binary value) to the blob
specified by the b parameter (at offset wcursor in the blob). This function call advances the value of wcursor by 4.
This call is effectively equivalent to blob.write(b, dwordVal, 4); except that it does not return the number of bytes
written in EAX (which is always 4, assuming there are no exceptions).

HLA high-level calling sequence example:

blob.putDword(blobPointer, DwordValue);

HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
push(DwordValue);
call blob.putDword;

 blob.putQword(b:blob.t; QwordVal:qword);

This procedure writes a single qword value (qwordVal, which is an eight-byte binary value) to the blob
specified by the b parameter (at offset wcursor in the blob). This function call advances the value of wcursor by 8.
This call is effectively equivalent to blob.write(b, qwordVal, 8); except that it does not return the number of bytes
written in EAX (which is always 8, assuming there are no exceptions).

HLA high-level calling sequence example:

blob.putQword(blobPointer, QwordValue);
Page 58 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
push((type dword QwordValue[4]));
push((type dword QwordValue[0]));
call blob.putQword;

 blob.putTbyte(b:blob.t; tbyteVal:tbyte);

This procedure writes a single tbyte value (tbyteVal, which is a 10-byte binary value) to the blob specified by
the b parameter (at offset wcursor in the blob). This function call advances the value of wcursor by 10. This call is
effectively equivalent to blob.write(b, tbyteVal, 10); except that it does not return the number of bytes written in
EAX (which is always 10, assuming there are no exceptions).

HLA high-level calling sequence example:

blob.putTbyte(blobPointer, TByteValue);

HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
pushw(0);
push((type word TByteValue [8]));
push((type dword TByteValue [4]));
push((type dword TByteValue [0]));
call blob.putTbyte;

 blob.putLword(b:blob.t; LwordVal:lword);

This procedure writes a single lword value (lwordVal, which is a 16-byte binary value) to the blob specified
by the b parameter (at offset wcursor in the blob). This function call advances the value of wcursor by 16. This call
is effectively equivalent to blob.write(b, lwordVal, 16); except that it does not return the number of bytes written in
EAX (which is always 16, assuming there are no exceptions).

HLA high-level calling sequence example:

blob.putLword(blobPointer, LwordValue);

HLA low-level calling sequence example:

// Assumes buffer is a static object at a fixed
// address in memory:

push(blobPointer);
push((type dword LwordValue[12]));
push((type dword LwordValue[8]));
push((type dword LwordValue[4]));
push((type dword LwordValue[0]));
Released to the Public Domain Page 59

HLA Standard Library
call blob.putLword;

 blob.read(b:blob.t; var buffer:byte; count:uns32); @returns("eax");

This routine reads a sequence of count bytes from the specified blob starting at the rcursor position in the
blob. It stores the bytes into memory at the address specified by buffer.

 It returns the number of bytes actually read from the blob in the EAX register (this is usually equal to the
count value, unless the read operation attempts to read beyond the current length of the blob, in which case the
actual number of bytes is returned in EAX).

HLA high-level calling sequence examples:

blob.read(blobPointer, buffer, count);
blob.read(blobPointer, [eax], 1024);

HLA low-level calling sequence examples:

// If buffer is a static variable:

push(blobPointer);
pushd(&buffer);
push(count);
call blob.read;

 blob.readAt(b:blob.t; var buffer:byte; index:dword; len:uns32)

This routine reads a sequence of len bytes from the specified blob starting at offset index into the blob. It
stores the bytes into memory at the address specified by buffer.

 This function call ignores the initial value in the rcursor variable and it does not change this value. This
function returns the actual number of bytes read in the EAX register (which is usually equal to len). If len plus
index is greater than the current blob length, this this function returns the actual number of bytes read (which will
be less than len) in the EAX register.

HLA high-level calling sequence examples:

blob.readAt(blobPointer, buffer, index, count);
blob.readAt(blobPointer, [eax], 500, 1024);

HLA low-level calling sequence examples:

push(blobPointer);
pushd(&buffer);
push(index);
push(count);
call blob.readAt;

 blob.getByte(b:blob.t); @returns("al");

This procedure reads a single byte value from the blob specified by the b parameter (at offset rcursor in the
blob) and returns this byte in the AL register. This function call advances the value of rcursor by 1. This call is
effectively equivalent to blob.read(b, byteVal, 1); except that it does not return the number of bytes read in EAX
(which is always 1, assuming there are no exceptions).

It will raise an ex.BlobOverflow exception if the value of rcursor is greater than or equal to the current blob
length.
Page 60 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence example:

blob.getByte(blobPointer);
mov(al, ByteValue);

HLA low-level calling sequence example:

push(blobPointer);
call blob.getByte;
mov(al, ByteValue);

 blob.getWord(b:blob.t); @returns("ax");

This procedure reads a single word value from the blob specified by the b parameter (at offset rcursor in the
blob) and returns this word in the AX register. This function call advances the value of rcursor by 2. This call is
effectively equivalent to blob.read(b, wordVal, 2); except that it does not return the number of bytes read in EAX
(which is always 2, assuming there are no exceptions).

It will raise an ex.BlobOverflow exception if the value of rcursor is greater than or equal to the current blob
length.

HLA high-level calling sequence example:

blob.getWord(blobPointer);
mov(ax, WordValue);

HLA low-level calling sequence example:

push(blobPointer);
call blob.getWord;
mov(ax, WordValue);

 blob.getDword(b:blob.t); @returns("eax");

This procedure reads a single dword value from the blob specified by the b parameter (at offset rcursor in the
blob) and returns this dword in the EAX register. This function call advances the value of rcursor by 4. This call
is effectively equivalent to blob.read(b, dwordVal, 4); except that it does not return the number of bytes read in
EAX (which is always 4, assuming there are no exceptions).

It will raise an ex.BlobOverflow exception if the value of rcursor is greater than or equal to the current blob
length.

HLA high-level calling sequence example:

blob.getDword(blobPointer);
mov(eax, DwordValue);

HLA low-level calling sequence example:

push(blobPointer);
call blob.getDword;
mov(ax, DwordValue);
Released to the Public Domain Page 61

HLA Standard Library
 blob.getQword(b:blob.t); @returns("edx:eax");

This procedure reads a single qword value from the blob specified by the b parameter (at offset rcursor in the
blob) and returns this qword in the EDX:EAX register pair. This function call advances the value of rcursor by 8.
This call is effectively equivalent to blob.read(b, qwordVal, 8); except that it does not return the number of bytes
read in EAX (which is always 8, assuming there are no exceptions).

It will raise an ex.BlobOverflow exception if the value of rcursor is greater than or equal to the current blob
length.

HLA high-level calling sequence example:

blob.getQword(blobPointer);
mov(eax, (type dword QwordValue[0]));
mov(edx, (type dword QwordValue[4]));

HLA low-level calling sequence example:

push(blobPointer);
call blob.getQword;
mov(eax, (type dword QwordValue[0]));
mov(edx, (type dword QwordValue[4]));

 blob.getTbyte(b:blob.t; tbyteVal:tbyte);

This procedure reads a single tbyte value from the blob specified by the b parameter (at offset rcursor in the
blob) and stores this tbyte via the tbyteVal reference parameter. This function call advances the value of rcursor
by 10. This call is effectively equivalent to blob.read(b, tbyteVal, 10); except that it does not return the number of
bytes read in EAX (which is always 10, assuming there are no exceptions).

It will raise an ex.BlobOverflow exception if the value of rcursor is greater than or equal to the current blob
length.

HLA high-level calling sequence example:

blob.getTbyte(blobPointer, tByteVar);

HLA low-level calling sequence example:

push(blobPointer);
pushd(&tbyteVar);
call blob.getTbyte;

 blob.getLword(b:blob.t; lwordVal:lword);

This procedure reads a single lword value from the blob specified by the b parameter (at offset rcursor in the
blob) and stores this lword via the lwordVal reference parameter. This function call advances the value of rcursor
by 16. This call is effectively equivalent to blob.read(b, lwordVal, 16); except that it does not return the number of
bytes read in EAX (which is always 16, assuming there are no exceptions).

It will raise an ex.BlobOverflow exception if the value of rcursor is greater than or equal to the current blob
length.

HLA high-level calling sequence example:

blob.getLword(blobPointer, lwordVar);

HLA low-level calling sequence example:
Page 62 Version: 4/28/10 Written by Randall Hyde

HLA Standard Library Reference
push(blobPointer);
pushd(&lwordVar);
call blob.getLword;

5.14 Blob Output Routines
The output routines in the blobs module are very similar to the file output routines in the fileio module as

well as the output routines in the stdout library module. In general, these routines require (at least) two
parameters; the first is the (pointer to the) blob object, the second parameter is usually the value to write to the
blob. Some functions contain additional parameters that provide formatting information.

All output is written to the blob at the wcursor offset into the blob's data. For each byte written, wcursor is
incremented by 1. If wcursor’s value becomes greater than or equal to the blob’s length value, then length is
adjusted as well (that is, length and wcursor will have the same value). If wcursor exceeds the value in the maxlen
field, then these functions raise an ex.BlobOverflow exception.

See the descriptions of the corresponding functions in the fileio module for more details.
Note that function names of the form blob.cat* are synonyms for the blob.put* functions.

blob.newln(b:blob.t)
blob.putbool(b:blob.t; b:boolean)
blob.putc(b:blob.t; c:char)
blob.putcSize(b:blob.t; c:char; width:int32; fill:char)
blob.putcset(b:blob.t; cst:cset)
blob.puts(b:blob.t; s:string)
blob.putsSize(b:blob.t; s:string; width:int32; fill:char)
blob.putb(b:blob.t; b:byte)
blob.puth8(b:blob.t; b:byte)
blob.puth8Size(b:blob.t; b:byte; size:dword; fill:char)
blob.putw(b:blob.t; w:word)
blob.puth16(b:blob.t; w:word)
blob.puth16Size(b:blob.t; w:word; size:dword; fill:char)
blob.putd(b:blob.t; d:dword)
blob.puth32(b:blob.t; d:dword)
blob.puth32Size(b:blob.t; d:dword; size:dword; fill:char)
blob.putq(b:blob.t; q:qword)
blob.puth64(b:blob.t; q:qword)
blob.puth64Size(b:blob.t; q:qword; size:dword; fill:char)
blob.puttb(b:blob.t; tb:tbyte)
blob.puth80(b:blob.t; tb:tbyte)
blob.puth80Size(b:blob.t; tb:tbyte; size:dword; fill:char)
blob.putl(b:blob.t; l:lword)
blob.puth128(b:blob.t; l:lword)
blob.puti8 (b:blob.t; b:byte)
blob.puti8Size (b:blob.t; b:byte; width:int32; fill:char)
blob.puti16(b:blob.t; w:word)
blob.puti16Size(b:blob.t; w:word; width:int32; fill:char)
blob.puti32(b:blob.t; d:dword)
blob.puti32Size(b:blob.t; d:dword; width:int32; fill:char)
blob.puti64(b:blob.t; q:qword)
blob.puti64Size(b:blob.t; q:qword; width:int32; fill:char)
blob.puti128(b:blob.t; l:lword)
blob.puti128Size(b:blob.t; l:lword; width:int32; fill:char)
blob.putu8 (b:blob.t; b:byte)
blob.putu8Size(b:blob.t; b:byte; width:int32; fill:char)
blob.putu16(b:blob.t; w:word)
blob.putu16Size(b:blob.t; w:word; width:int32; fill:char)
blob.putu32(b:blob.t; d:dword)
blob.putu32Size(b:blob.t; d:dword; width:int32; fill:char)
blob.putu64(b:blob.t; q:qword)
Released to the Public Domain Page 63

HLA Standard Library
blob.putu64Size(b:blob.t; q:qword; width:int32; fill:char)
blob.putu128(b:blob.t; l:lword)
blob.putu128Size(b:blob.t; l:lword; width:int32; fill:char)
blob.pute32(b:blob.t; r:real32; width:uns32)
blob.pute64(b:blob.t; r:real64; width:uns32)
blob.pute80(b:blob.t; r:real80; width:uns32)
blob.putr32(b:blob.t; r:real32; width:uns32; decpts:uns32; pad:char)
blob.putr64(b:blob.t; r:real64; width:uns32; decpts:uns32; pad:char)
blob.putr80(b:blob.t; r:real80; width:uns32; decpts:uns32; pad:char)
blob.put(list_of_items)

5.15 Blob Input Routines
The input routines in the blobs module are very similar to the file input routines in the fileio module as well

as the input routines in the stdin library module. In general, these routines require one parameter: the pointer to
the blob object.

All input is read from the blob starting at the rcursor offset into the blob's data. For each byte read, rcursor is
incremented by 1. If rcursor’s value becomes greater than or equal to the blob’s length value, then these functions
raise an ex.EndOfFile exception.

See the descriptions of the corresponding functions in the fileio module for more details.

 blob.readLn(b:blob.t);
 blob.eoln(b:blob.t); @returns("al");
 blob.getc(b:blob.t); @returns("al");
 blob.gets(b:blob.t; s:string);
 blob.a_gets(b:blob.t); @returns("eax");
 blob.geth8(b:blob.t); @returns("al");
 blob.geth16(b:blob.t); @returns("ax");
 blob.geth32(b:blob.t); @returns("eax");
 blob.geth64(b:blob.t);@returns("edx:eax");
 blob.geth80(b:blob.t; var dest:tbyte);
 blob.geth128(b:blob.t; var dest:lword);
 blob.geti8(b:blob.t); @returns("al");
 blob.geti16(b:blob.t); @returns("ax");
 blob.geti32(b:blob.t); @returns("eax");
 blob.geti64(b:blob.t);@returns("edx:eax");
 blob.geti128(b:blob.t; var dest:lword);
 blob.getu8(b:blob.t); @returns("al");
 blob.getu16(b:blob.t); @returns("ax");
 blob.getu32(b:blob.t); @returns("eax");
 blob.getu64(b:blob.t);@returns("edx:eax");
 blob.getu128(b:blob.t; var dest:lword);
 blob.getf(b:blob.t); @returns("st0");
 blob.get(List_of_items_to_read);
Page 64 Version: 4/28/10 Written by Randall Hyde

	5 The Blobs Module (blobs.hhf)
	5.1 Conversion Format Control
	5.2 Blob Synopsis
	5.3 Blob Internal Representation
	5.4 Declaring Blob Variables
	5.4.1 Initializing and Allocating Blob Variables
	blob.init(var b:var; numBytes:dword); @returns("eax");
	blob.init16(var b:var; numBytes:dword); @returns("eax");
	blob.alloc(size:dword); @returns("eax");
	blob.allocAligned(size:dword; alignment:dword); @returns("eax");
	blob.realloc(theBlob:blob.t; size:dword); @returns("eax");
	blob.free(theBlob:blob.t);
	blob.destroy(theBlob:blob.t);

	5.5 Blob Accessor Functions
	blob.length(b:blob.t); @returns("eax");
	blob.setLength(b:blob.t; newLen:dword);
	blob.maxlen(b:blob.t); @returns("eax");
	blob.setMaxlen(b:blob.t; newLen:dword);
	blob.rcursor(b:blob.t); @returns("eax");
	blob.setrCursor(b:blob.t; newCursor:dword);
	blob.wcursor(b:blob.t); @returns("eax");
	blob.setwCursor(b:blob.t; newCursor:dword);
	blob.reset;
	blob.eof(b:blob.t); @returns("@c");

	5.6 Blob Assignment Functions
	blob.a_cpy(b:blob.t); @returns("eax");
	blob.cpy(src:blob.t; dest:blob.t); @returns("eax");
	blob.fillb(theValue:byte; numBytes:dword; dest:blob);
	blob.fillw(theValue:word; numWords:dword; dest:blob);
	blob.filld(theValue:word; numDwords:dword; dest:blob);

	5.7 Blob Extraction Functions
	blob.a_subBlob(src:blob; start:dword; len:dword); @returns("eax");
	blob.subBlob(src:blob; start:dword; len:dword; dest:blob.t);

	5.8 Blob Comparison Functions
	blob.eq(left:blob; right:blob.t); @returns("@c");
	blob.ne(left:blob; right:blob.t); @returns("@c");

	5.9 Blob Scanning Functions
	blob.index(src1:blob; src2:blob.t); @returns("@c");
	blob.index(src1:blob; offs:dword src2:blob.t); @returns("@c");
	blob.index2(src1:blob; src2:blob.t); @returns("@c");
	blob.index3(src1:blob; offs:dword src2:blob.t); @returns("@c");
	blob.indexStr(src1:blob; src2:string); @returns("@c");
	blob.indexStr(src1:blob; offs:dword src2:string); @returns("@c");
	blob.indexStr2(src1:blob; src2:string); @returns("@c");
	blob.indexStr3(src1:blob; offs:dword src2:string); @returns("@c");
	blob.rindex(src1:blob; src2:blob.t); @returns("@c");
	blob.rindex(src1:blob; offs:dword src2:blob.t); @returns("@c");
	blob.rindex2(src1:blob; src2:blob.t); @returns("@c");
	blob.rindex3(src1:blob; offs:dword src2:blob.t); @returns("@c");
	blob.rindexStr(src1:blob; src2:string); @returns("@c");
	blob.rindexStr(src1:blob; offs:dword src2:string); @returns("@c");
	blob.rindexStr2(src1:blob; src2:string); @returns("@c");
	blob.rindexStr3(src1:blob; offs:dword src2:string); @returns("@c");
	blob.chpos(src1:blob; src2:char); @returns("@c");
	blob.chpos(src1:blob; offs:dword src2:char); @returns("@c");
	blob.chpos2(src1:blob; src2:char); @returns("@c");
	blob.chpos3(src1:blob; offs:dword src2:char); @returns("@c");
	blob.rchpos(src1:blob; src2:char); @returns("@c");
	blob.rchpos(src1:blob; offs:dword src2:char); @returns("@c");
	blob.rchpos2(src1:blob; src2:char); @returns("@c");
	blob.rchpos3(src1:blob; offs:dword src2:char); @returns("@c");

	5.10 Blob Concatenation Functions
	blob.a_cat(src1:blob; src2:char); @returns("@eax");
	blob.cat(src:blob; dest:blob);
	blob.cat2(src:blob; dest:blob);
	blob.cat(src1:blob; src2:blob; dest:blob);
	blob.cat3(src1:blob; src2:blob; dest:blob);
	blob.catsub(src:blob; start:dword; len:dword; dest:blob);
	blob.catsub4(src:string; start:dword; len:dword; dest:blob);
	blob.catsub(src2:blob; start:dword; len:dword; src1:string; dest:blob);
	blob.catsub5(src2:string; start:dword; len:dword; src1:string; dest:blob);
	blob.a_catsub(src:blob; start:dword; len:dword; dest:blob);
	blob.catbuf2(src:buf_t; dest:blob);
	blob.catbuf3a(startBuf:dword; endBuf:dword; dest:blob);
	blob.catbuf3b(src2:buf_t; src1:string; dest:blob);
	blob.catbuf4(startBuf:dword; endBuf:dword; strSrc:string; dest:blob);

	5.11 Blob Conversion Functions
	blob.bufToBlob2(buf:@global:buf_t; b:blob.t);
	blob.bufToBlob3(startBuf:dword; endBuf:dword; b:blob.t);
	blob.a_bufToBlob1(buf:@global:buf_t); @returns("@eax");
	blob.a_bufToBlob2(startBuf:dword; endBuf:dword); @returns("@eax");
	blob.strToBlob(src:string; dest:blob);
	blob.zstrToBlob(src:string; dest:blob);

	5.12 General Blob I/O Functions
	blob.a_load(FileName: string); @returns("eax");
	blob.a_loadExtended(FileName: string; extend:dword); @returns("eax");
	blob.load(filename:string; b:blob.t);
	blob.appendFile(filename:string; b:blob.t.blob);
	blob.a_appendFile(filename:string; b:blob.t.blob); @returns("eax");
	blob.a_appendFileExtended(filename:string; b:blob.t.blob; extend:dword) {@returns("eax")};
	blob.save(filename:string; b:blob.t);

	5.13 Blob Binary I/O Routines
	5.13 Blob Binary I/O Routines
	blob.write(b:blob.t; var src:var; len:dword); @returns("eax");
	blob.writeAt(b:blob.t; var src:var; index:dword; len:dword); @returns("eax");
	blob.putByte(b:blob.t; byteVal:byte);
	blob.putWord(b:blob.t; wordVal:word);
	blob.putDword(b:blob.t; dwordVal:dword);
	blob.putQword(b:blob.t; QwordVal:qword);
	blob.putTbyte(b:blob.t; tbyteVal:tbyte);
	blob.putLword(b:blob.t; LwordVal:lword);
	blob.read(b:blob.t; var buffer:byte; count:uns32); @returns("eax");
	blob.readAt(b:blob.t; var buffer:byte; index:dword; len:uns32)
	blob.getByte(b:blob.t); @returns("al");
	blob.getWord(b:blob.t); @returns("ax");
	blob.getDword(b:blob.t); @returns("eax");
	blob.getQword(b:blob.t); @returns("edx:eax");
	blob.getTbyte(b:blob.t; tbyteVal:tbyte);
	blob.getLword(b:blob.t; lwordVal:lword);

	5.14 Blob Output Routines
	5.15 Blob Input Routines

