
HLA Reference Manual 5/24/10 Chapter 7
7 HLA v2.x Language Reference Manual

7.1 HLA Language Elements
Starting with this chapter we begin discussing the HLA source language. HLA source files

must contain only seven-bit ASCII characters. These are text files with each source line record
containing a carriage return/line feed (Windows) or a just a line feed (*NIX) termination sequence
(HLA is actually happy with either sequence, so text files are portable between OSes without
change). White space consists of spaces, tabs, and newline sequences. Generally, HLA does not
appreciate other control characters in the file and may generate an error if they appear in the source
file.

7.2 Comments
HLA uses "//" to lead off single line comments. It uses "/*" to begin an indefinite length

comment and it uses "*/" to end an indefinite length comment. C/C++, Java, and Delphi users will
be quite comfortable with this notation.

7.3 Special Symbols
The following characters are HLA lexical elements and have special meaning to HLA:

* / + - () [] { } < > : ; , . = ? & | ^ ! @ !

The following character pairs are HLA lexical elements and also have special meaning to
HLA:
&& || <= >= <> != == := .. << >> ## #()# #{ }#

7.4 Reserved Words
Here are the HLA reserved words. You may not use any of these reserved words as HLA

identifiers except as noted below (with respect to the #id and #rw operators). HLA reserved words
are case insensitive. That is, "MOV" and "mov" (as well as any permutation with respect to case)
both represent the HLA "mov" reserved word.

#append #asm #closeread #closewrite
#else #elseif #emit #endasm
#endfor #endif #endmacro #endmatch
#endregex #endstring #endtext #endwhile
#error #for #id #if
#include #includeonce #keyword #linker
#macro #match #openread #openwrite
#print #regex #return #rw
#string #system #terminator #text
#while #write @a @abs
@abstract @ae @align @alignstack
@arb @arity @at @b
@baseptype @basereg @basetype @be
@boolean @bound @byte @c
Public Domain Created by Randy Hyde Page 93

HLA Reference Manual 5/24/10 Chapter 7
@cdecl @ceil @char @class
@cos @cset @curdir @curlex
@curobject @curoffset @date @debughla
@defined @delete @dim @display
@dword @e @elements @elementsize
@enter @enumsize @env @eos
@eval @exactlynchar @exactlyncset @exactlynichar
@exactlyntomchar @exactlyntomcset @exactlyntomichar @exceptions
@exp @external @extract @fast
@filename @firstnchar @firstncset @firstnichar
@floor @forward @fpureg @frame
@g @ge @global @here
@index @insert @int128 @int16
@int32 @int64 @int8 @into
@isalpha @isalphanum @isclass @isconst
@isdigit @IsExternal @isfreg @islower
@ismem @isreg @isreg16 @isreg32
@isreg8 @isspace @istype @isupper

@isxdigit @l
@label
@lastobject @le

@leave @length @lex @linenumber
@localoffset @localsyms @log @log10
@lowercase @lword @match @match2
@matchchar @matchcset @matchichar @matchid
@matchintconst @matchistr @matchiword @matchnumericconst
@matchrealconst @matchstr @matchstrconst @matchtoistr
@matchtostr @matchword @max @min
@mmxreg @na @nae @name
@nb @nbe @nc @ne
@ng @nge @nl @nle
@no @noalignstack @nodisplay @noenter
@noframe @noleave @norlesschar @norlesscset
@norlessichar @normorechar @normorecset @normoreichar
@nostackalign @nostorage @np @ns
@ntomchar @ntomcset @ntomichar @nz
@o @odd @offset @onechar
@onecset @oneichar @oneormorechar @oneormorecset
@oneormoreichar @oneormorews @optstrings @p
@parmoffset @parms @pascal @pclass
@pe @peekchar @peekcset @peekichar
@peekistr @peekstr @peekws @po
@pointer @pos @ptype @qword
@random @randomize @read @real128
@real32 @real64 @real80 @reg
@reg16 @reg32 @reg8 @regex
@returns @rindex @s @section
@sin @size @sort @sqrt
@stackalign @staticname @stdcall @strbrk
@string @strset @strspan @substr
Public Domain Created by Randy Hyde Page 94

HLA Reference Manual 5/24/10 Chapter 7
@system @tab @tan @tbyte
@text @thread @time @tokenize
@tostring @trace @trim @type
@typename @uns128 @uns16 @uns32
@uns64 @uns8 @uppercase @uptochar
@uptocset @uptoichar @uptoistr @uptostr
@use @volatile @wchar @word
@ws @wsoreos @wstheneos @wstring
@xmmreg @z @zeroormorechar @zeroormorecset
@zeroormoreichar @zeroormorews @zerooronechar @zerooronecset
@zerooroneichar @zstring aaa aad
aam aas abstract adc
add addpd addps addsd
addss addsubpd addsubps ah
al align and andnpd
andnps andpd andps anyexception
arpl ax begin bh
bl boolean bound bp
break breakif bsf bsr
bswap bt btc btr
bts bx byte call
case cbw cdq ch
char cl class clc
cld clflush cli clts
cmc cmova cmovae cmovb
cmovbe cmovc cmove cmovg
cmovge cmovl cmovle cmovna
cmovnae cmovnb cmovnbe cmovnc
cmovne cmovng cmovnge cmovnl
cmovnle cmovno cmovnp cmovns
cmovnz cmovo cmovp cmovpe
cmovpo cmovs cmovz cmp
cmpeqpd cmpeqps cmpeqsd cmpeqss
cmplepd cmpleps cmplesd cmpless
cmpltpd cmpltps cmpltsd cmpltss
cmpneqpd cmpneqps cmpneqsd cmpneqss
cmpnlepd cmpnleps cmpnlesd cmpnless
cmpnltpd cmpnltps cmpnltsd cmpnltss
cmpordpd cmpordps cmpordsd cmpordss
cmppd cmpps cmpsb cmpsd
cmpss cmpsw cmpunordpd cmpunordps
cmpunordsd cmpunordss cmpxchg cmpxchg8b
comisd comiss const continue
continueif cpuid cr0 cr1
cr2 cr3 cr4 cr5
cr6 cr7 cseg cset
cvtdq2pd cvtdq2ps cvtpd2dq cvtpd2pi
cvtpd2ps cvtpi2pd cvtpi2ps cvtps2dq
cvtps2pd cvtps2pi cvtsd2si cvtsd2ss
Public Domain Created by Randy Hyde Page 95

HLA Reference Manual 5/24/10 Chapter 7
cvtsi2sd cvtsi2ss cvtss2sd cvtss2si
cvttpd2dq cvttpd2pi cvttps2dq cvttps2pi
cvttsd2si cvttss2si cwd cwde
cx daa das dec
default dh di div
divpd divps divsd divss
dl do downto dr0
dr1 dr2 dr3 dr4
dr5 dr6 dr7 dseg
dup dword dx dx:ax
eax ebp ebx ecx
edi edx edx:eax else
elseif emms end endclass

endconst endfor endif
endlabel
endproc

endreadonly endrecord endstatic endstorage
endswitch endtry endtype endunion
endval endvar endwhile enter
enum eseg esi esp
exception exit exitif external
f2xm1 fabs fadd faddp
fbld fbstp fchs fclex
fcmova fcmovae fcmovb fcmovbe
fcmove fcmovna fcmovnae fcmovnb
fcmovnbe fcmovne fcmovnu fcmovu
fcom fcomi fcomip fcomp
fcompp fcos fdecstp fdiv
fdivp fdivr fdivrp felse
ffree fiadd ficom ficomp
fidiv fidivr fild fimul
fincstp finit fist fistp
fisttp fisub fisubr fld
fld1 fldcw fldenv fldl2e
fldl2t fldlg2 fldln2 fldpi
fldz fmul fmulp fnclex
fninit fnop fnsave fnstcw
fnstenv fnstsw for foreach
forever forward fpatan fprem
fprem1 fptan frndint frstor
fsave fscale fseg fsin
fsincos fsqrt fst fstcw
fstenv fstp fstsw fsub
fsubp fsubr fsubrp ftst
fucom fucomi fucomip fucomp
fucompp fwait fxam fxch
fxrstor fxsave fxtract fyl2x
fyl2xp1 gseg haddpd haddps
hlt hsubpd hsubps idiv
if imod imul in
Public Domain Created by Randy Hyde Page 96

HLA Reference Manual 5/24/10 Chapter 7
inc inherits insb insd
insw int int128 int16
int32 int64 int8 intmul
into invd invlpg iret
iretd iterator ja jae
jb jbe jc jcxz
je jecxz jf jg
jge jl jle jmp
jna jnae jnb jnbe
jnc jne jng jnge
jnl jnle jno jnp
jns jnz jo jp
jpe jpo js jt
jz label lahf lar
lazy lddqu ldmxcsr lds
lea leave les lfence
lfs lgdt lgs lidt
lldt lmsw lock.adc lock.add
lock.and lock.btc lock.btr lock.bts
lock.cmpxchg lock.dec lock.inc lock.neg
lock.not lock.or lock.sbb lock.sub
lock.xadd lock.xchg lock.xor lodsb
lodsd lodsw loop loope
loopne loopnz loopz lsl
lss ltreg lword maskmovdqu
maskmovq maxpd maxps maxsd
maxss method mfence minpd
minps minsd minss mm0
mm1 mm2 mm3 mm4
mm5 mm6 mm7 mod
monitor mov movapd movaps
movd movddup movdq2q movdqa
movdqu movhlps movhpd movhps
movlhps movlpd movlps movmskpd
movmskps movntdq movnti movntpd
movntps movntq movq movq2dq
movsb movsd movshdup movsldup
movss movsw movsx movupd
movups movzx mul mulpd
mulps mulsd mulss mwait
name namespace neg nop
not null or orpd
orps out outsb outsd

outsw
overloads
override overrides packssdw

packsswb packuswb paddb paddd
paddq paddsb paddsw paddusb
paddusw paddw pand pandn
pause pavgb pavgw pcmpeqb
Public Domain Created by Randy Hyde Page 97

HLA Reference Manual 5/24/10 Chapter 7
pcmpeqd pcmpeqw pcmpgtb pcmpgtd
pcmpgtw pextrw pinsrw pmaddwd
pmaxsw pmaxub pminsw pminub
pmovmskb pmulhuw pmulhw pmullw
pmuludq pointer pop popa
popad popf popfd por
prefetchnta prefetcht0 prefetcht1 prefetcht2
proc procedure program psadbw
pshufd pshufhw pshuflw pshufw
pslld pslldq psllq psllw
psrad psraw psrld psrldq
psrlq psrlw psubb psubd
psubq psubsb psubsw psubusb
psubusw psubw punpckhbw punpckhdq
punpckhqdq punpckhwd punpcklbw punpckldq
punpcklqdq punpcklwd push pusha
pushad pushd pushf pushfd
pushw pxor qword raise
rcl rcpps rcpss rcr
rdmsr rdpmc rdtsc readonly
real128 real32 real64 real80
record regex rep.insb rep.insd
rep.insw rep.movsb rep.movsd rep.movsw
rep.outsb rep.outsd rep.outsw rep.stosb
rep.stosd rep.stosw repe.cmpsb repe.cmpsd
repe.cmpsw repe.scasb repe.scasd repe.scasw
repeat repne.cmpsb repne.cmpsd repne.cmpsw
repne.scasb repne.scasd repne.scasw repnz.cmpsb
repnz.cmpsd repnz.cmpsw repnz.scasb repnz.scasd
repnz.scasw repz.cmpsb repz.cmpsd repz.cmpsw
repz.scasb repz.scasd repz.scasw result
ret returns rol ror
rsm rsqrtps rsqrtss sahf
sal sar sbb scasb
scasd scasw segment seta
setae setb setbe setc
sete setg setge setl
setle setna setnae setnb
setnbe setnc setne setng
setnge setnl setnle setno
setnp setns setnz seto
setp setpe setpo sets
setz sfence sgdt shl
shld shr shrd shufpd
shufps si sidt sldt
smsw sp sqrtpd sqrtps
sqrtsd sqrtss sseg st0
st1 st2 st3 st4
st5 st6 st7 static
Public Domain Created by Randy Hyde Page 98

HLA Reference Manual 5/24/10 Chapter 7
Note that @debughla is also a reserved compiler symbol. However, this is intended for
internal (HLA) debugging purposes only. When the compiler encounters this symbol, it
immediately stops the compiler with an assertion failure. Obviously, you should never put this
statement in your source code unless you’re debugging HLA and you want to stop the compiler
immediately after the compilation of some statement.

Because the set of HLA reserved words is changing frequently, a special feature was added to
HLA to allow a programmer to "disable" HLA reserved words. This may allow an older program
that uses new HLA reserved words as identifiers to continue working with only minor
modifications to the HLA source code. The ability to disable certain HLA reserved words also
allows you to create macros that override certain machine instructions.

All HLA reserved words take two forms: the standard, mutable, form (appearing in the table
above) and a special immutable form that consists of a tilde character (’~’) followed by the
reserved word. For example, ’mov’ is the mutable form of the move instruction while ’~mov’ is the
immutable form. By default, the immutable and mutable forms are equivalent when you begin an
assembly. However, you can use the #id compile-time statement to convert the mutable form to an
identifier and you can use the #rw compile-time statement to turn it back into a reserved word.
Regardless of the state of the mutable form, the immutable form always behaves like the reserved
word as far as HLA is concerned. Here’s an example of the #id and #rw statements:

#id(mov) //From this point forward, mov is an identifier, not a
reserved word
mov:

~mov(i, eax); // Must use ~mov while mov is a reserved word!
cmp(eax, 0);
jne mov;

#rw(mov) // Okay, now mov is a reserved word again.
mov(0, eax);

Note that use can use the #id facility to disable certain instructions. For example, by default
HLA handles almost all (32-bit flat model) instructions up through the latest Intel processors. If you
want to write code for an earlier processor, you may want to disable instructions available only on
later processors to help avoid their use. You can do this by placing the offending instructions in #id
statements.

stc std sti stmxcsr
storage stosb stosd stosw
streg string sub subpd
subps subsd subss switch
sysenter sysexit tbyte test
text then this thunk
to try type ucomisd
ucomiss ud2 union unit
unpckhpd unpckhps unpcklpd unpcklps
unprotected uns128 uns16 uns32
uns64 uns8 until val
valres var verr verw
vmt wait wbinvd wchar
welse while word wrmsr
wstring xadd xchg xlat
xmm0 xmm1 xmm2 xmm3
xmm4 xmm5 xmm6 xmm7
xor xorpd xorps zstring
Public Domain Created by Randy Hyde Page 99

HLA Reference Manual 5/24/10 Chapter 7
The #rw statement will not turn an arbitrary identifier into a reserved word. It will only revert
a reserved word that was previously converted to an identifier back into a reserved word.

One use of the #id statement is to change the syntax of existing HLA instructions. For
example, some x86 programmers are completely incapable of handling HLA's (and Gas') "source,
dest" syntax and insist on using the original Intel "dest, source" syntax. This isn't a good reason for
giving up on HLA because you can easily override HLA's syntax by using the #id statement and a
set of macros. Consider the following example for the mov instruction:

#id(mov)
#macro mov(dest, source);

~mov(source, dest)
#endmacro

By creating an include file (let's calling "intel.hhf") with all the appropriate macros and #id
statements, you can easily change HLA's syntax to take on a more "Intel" feel.

7.5 External Symbols and Assembler Reserved Words
HLA v2.x, in addition to directly producing object code, offers the option of producing an

assembly language file during compilation and invoking an assembler such as MASM, FASM,
NASM, or Gas to complete the compilation process. HLA automatically translates normal
identifiers you declare in your program to benign identifiers in the assembly language program (in
HLA v2.2 these identifiers typically took the form original_name__hla_xxxx where original_name
is the original symbol and xxxx is a unique four-digit hexadecimal value). However, HLA does not
translate external symbols, but preserves these names in the assembly language file it produces.
Therefore, you must take care not to use external names that conflict with the underlying
assembler’s set of reserved words or that assembler will generate an error when it attempts to
process HLA’s output. Obviously, this is not an issue when directly producing object code with
HLA (rather than producing an assembly language source file to be assembled by some other
assembler).

For a list of assembler reserved words, please see the documentation for the back-end
assembler you are using.

7.6 HLA Identifiers
HLA identifiers must begin with an alphabetic character or an underscore. After the first

character, the identifier may contain alphanumeric and underscore symbols. There is no technical
limit on identifier length in HLA, but you should avoid external symbols greater than about 32
characters in length since the assembler and linkers that process HLA identifiers may not be able to
handle such symbols. Also note that if you are generating assembly language source output files,
HLA may add some additional characters to the identifiers you use (typically something like
"__HLA_xxxx" where "xxxx" is a 4-digit hexadecimal number) in order to prevent conflicts with
the assembler's own reserved word set. As such, you may want to limit yourself to about 20-22
characters if you're using a back-end assembler that has limited identifier lengths.

HLA identifiers are always case neutral. This means that identifiers are case sensitive insofar
as you must always spell an identifier exactly the same way (with respect to alphabetic case).
However, you are not allowed to declare two identifiers whose only difference is alphabetic case.

Although technically legal in your program, do not use identifiers that begin and end with a
single underscore. HLA reserves such identifiers for use by the compiler and the HLA standard
library. If you declare such identifiers in your program, the possibility exists that you may interfere
with HLA’s or the HLA Standard Library’s use of such a symbol.

By convention, HLA programmers use symbols beginning with two underscores to represent
private fields in a class. Therefore, you should avoid such identifiers except when defining such
private fields in your own classes.

7.7 External Identifiers
HLA lets you explicitly provide a string for external identifiers. External identifiers are not

limited to the format for HLA identifiers. HLA allows any string constant to be used for an external
Public Domain Created by Randy Hyde Page 100

HLA Reference Manual 5/24/10 Chapter 7
identifier. If you're using a back-end assembler, it is your responsibility to use only those characters
that are legal in that assembler. Note that this feature lets you use symbols that are not legal in HLA
but are legal in external code (e.g., Win32 APIs use the ’@’ character in identifiers and some non-
HLA code may use HLA reserved words as identifiers). See the discussion of the external option
in the chapters on HLA Program Structure and HLA Procedures for more details.

7.8 HLA Literal Constants
HLA supports literal numeric, string, character, character set, Boolean, array, record, and

union constants. For more details on these HLA language elements, please see the chapters on HLA
Constants and Constant Expressions and HLA Data Types.
Public Domain Created by Randy Hyde Page 101

	7 HLA v2.x Language Reference Manual
	7.1 HLA Language Elements
	7.2 Comments
	7.3 Special Symbols
	7.4 Reserved Words
	7.5 External Symbols and Assembler Reserved Words
	7.6 HLA Identifiers
	7.7 External Identifiers
	7.8 HLA Literal Constants

