Iterators

Iterators Chapter Two

2.1  Chapter Overview

This chapter discusses thavlbevel implementation of iterators. Earlighis text briefly discussed iter
ators and the FOREZ2H loop in the chapter on intermediate procedures(terators and the FORE2H
Loop” on page343). This chapter will reiew that information, discuss some uses for iterators, and then
present the lo-level implementation of this interesting control structure.

2.2 Review of lterators

An iterator is a cross between a control structure and a funattbough common high iesl languages
do not support iterators, thare present in somemy high level language’s Iterators pruide a combination
state machine/function call mechanism that lets a function pick up where it lasf left @dich ne call.
Iterators are also part of a loop control structure, with the iteratordprg the \alue of the loop control
variable on each iteration.

To understand what an iterator is, consider thevatig for loop from Rscal:

for | :=1to 10 do <sone statenent >;

When learning &scal you were probably taught that this statement initialinéh one, compares
with 10, and recutes the statementiiis less than or equal to 1@fter executing the statement, tiFROR
statement incremenisand compares it with 10 am, repeating the processen and @er agin untili is
greater than 10.

While this description is semantically correct, and indeesl,tfitt vay that most &cal compilers
implement the FOR loop, this is not the only point ofwibat describes hothe for loop operates. Sup
pose, instead, that you were to treat Tl resered word as an operatoAn operator that pects tvo
parameters (one and ten in this case) and returns the ranglees on each successiexecution.That is,
on the fist call theTO operator wuld return one, on the second call @wd return tva, etc After the tenth
call, theTO operator wuld fail which would terminate the loof-his is eactly the description of an itera
tor.

In general, an iterator controls a loop. fBiént languages use fifent names for iterator controlled
loops, this tet will just use the name FOREA as follavs:

foreach iterator() do
st at enent s;
endfor;

An iterator returns tev values: a boolean success failure value and a function results long as the
iterator returns success, the FOREA statementx@cutes the statements comprising the loop blbdlie
iterator returnsdilure, the FOREEH loop terminates andecutes the neé sequential statement folling
the FOREACH loop's body

Iterators are considerably more comptaan normal functionsA typical function call inolves two
basic operations: a call and a return. Iterateogations inolve four basic operations:

1) Initial iterator call
2) Yielding a value
3) Resumption of an iterator

1. Ada and PL/I support very limited forms of iterators, though they do not support the type of iterators found in CLU, SETL,
Icon, and other languages.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel305



Chapter Two Volume Five

4) Termination of an iterator.

To understand how an iterator operates, consider the following short example:

iterator range( start:int32; stop:int32);
begi n range;

forever

nov( start, eax );
breaki f( eax > stop );
yield();

inc( start );

endf or;

end range;

In HLA, iterator calls may only appear in the FOREA statemeniith the exception of the "yield();
statement aba@, aryone familiar with HLA should be able todiire out the basic logic of this iterator

An iterator in HLA may return to its caller using one obteeparate mechanisms, it can return to the
caller by &iting through the "end Range;" statement or it may yieldlaevby &ecuting the "yield();" state
ment.An iterator succeeds if itxecutes the "yield();" statement, &ilf if it simply returns to the caller
Therefore, the FORE®@H statement will only »xecute its corresponding statement if yoit an iterator
with a "yield();". The FOREACH statement terminates if you simply return from the iteréidhe eample
above, the iterator returns thelesstart..stopvia a "yield();" statement and then the iterator terminates.
The loop

foreach Range(1, 10) do
stdout. put ( (type uns32 eax ), nl );
endf or;

is comparable to the code:

for( nov( 1, eax ); eax <= 10; inc( eax )) do
stdout. put ( (type uns32 eax ), nl );
endf or;

When an HLA program fst executes the FORE®ZH statement, it mas an initial call to the iterator
The iterator runs until ibeecutes a "yield();" or it returns. If ikecutes the "yield();" statement, it returns the
value in EAX as the iterator result and it succeeds. If it simply returns, the iterator retiunesaind no iter
ator result. In the currenkample, the initial call to the iterator returns success andadie wne.

Assuming a successful return (as in the curreatmple), the FOREBH statement returns the current
result in EAX and xecutes the FORE2H loop bodyAfter executing the loop bodyhe FOREAH state
ment calls the iterator agh. Havever, this time the FOREBH statement resumes the iterator rather than
making an initial callAn iterator resumption continues with thisfistatement follwing the last "yield();" it
executes. In theange example, a resumptionauld continue gecution at the "inc( start );"statement. On
the frst resumption, theange iterator would add one tgtart, producing the alue two. Two is less than ten
(stop’s value) so the FORE®@H loop would repeat and the iteratoowuld yield the alue two. This process
would repeat wer and oer agin until the iterator yields ten. Upon resuming after yielding ten, the iterator
would increment start to elen and then return, rather than yield, since thig vedue is not less than or
equal to tenWhen theRange iterator returns €ils), the FORERH loop terminates.

Pagel306 © 2001, By Randall Hyde Version:9/9/02



Iterators

2.2.1 Implementing lterators Using In-Line Expansion

The implementation of an iterator is rather compl® begin with, consider affst attempt at an assem
bly implementation of the FOREZH statement ahve:

push( 1); /1 Manual ly pass 1 and 10 as paraneters.
push( 10 );

call Range_ initial;

jc Failure;

ForLp: stdout.put( (type uns32 eax), nl );
call Range_Resune;
jnc ForLp;

Fai l ure:

Although this looks lik a straight-fonard implementation project, there areesal issues to consider
First, the call td(Rang_Resumabove looks simple enoughubthere is no fied address that corresponds to
the resume addres&/hile it is certainly true that thiRange example has only one resume address, ir gen
eral you can hae as may"yield();" statements as you ékin an iteratorFor example, the follaing iterator
returns the alues 1, 2, 3, and 4:

iterator OneToFour;
begi n heToFour ;

nov( 1, eax ); yield();
nmov( 2, eax ); yield();
mov( 3, eax ); yield();
nmov( 4, eax ); yield();

end OneToFour;

The initial call would execute the "mov( 1, eax );" and "yield();" statements. The first resumption would exe
cute the "mov( 2, eax );" and "yield();" statements, the second resumption would execute "mov( 3, eax );"
and "yield();", etc. Obviously there is no single resume address the calling code can count on.

There are a couple of additional details left to consider. First, an iterator is free to call procedures and
functions. If such a procedure or function executes the "yield();" statement then resumption by the
FOREACH statement continues execution within the procedure or function that executed the %ield();"
Second, the semantics of an iterator require all lcg@ables and parameters to maintain thalues until
the iterator terminate§.hat is, yielding does not deallocate locatigbles and parameters. &ikise, ay
return addresses left on the stack (e.g., the call to a procedure or functiorethiesthe "yield();" state
ment) must not be lost when a piece of code yields and the corresponding EBREAement resumes the
iterator In general, this means you cannot use the standard call and return sequence to yield from or resume
to an iterator because yoweao presers the contents of the stack.

While there are seral ways to implement iterators in assembly language, perhaps the most practical
method is to hee the iterator call the loop controlled by the iterator ave ltae loop return back to the ier
ator function. Of course, this is countatuitive. Normally one thinks of the iterator as the function that the
loop calls on each iteration, not the othexywaround. Havever, given the structure of the stack during the
execution of an iteratothe counteintuitive approach turns out to be easier to implement.

Some high leel languages support iterators ixaetly this fishion. Br example, Metaares Profes
sional Rscal Compilerfor the PC supports iteratdrswWere you to create a Professionas®al code
sequence as folles:

iterator OneToFour:integer;
begi n
yield 1;

2. This requires the use of nested procedures, a subject we will discuss in a later chapter.
3. Obviously, this is a non-standard extension to the Pascal programming language provided in Professional Pascal.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel307



Chapter Two Volume Five

yield 2;
yield 3;
yield 4;
end;

and call it in the main program as falls:

for i in OneToFour do witeln(i);

Professional &cal would completely rearrange your code. Instead of turning the iterator into an assembly
language function and calling this function from within the FOR loop body, this code would turn the FOR
loop body into a function, expand the iterator in-line (much like a macro) and call the FOR loop bedy func
tion on each yield. That is, Professional Pascal would probably produce assembly language that leoks some
thing like the following:

/1 The follow ng procedure corresponds to the for |oop body
/1 with a single paraneter (I) corresponding to the |oop
/1 control variable:

procedur e For LoopCode( i:int32 ); nodisplay;
begi n For LoopCode;

nov( i, eax );
stdout.put( i, nl );

end For LoopCode;

/1 The follow code woul d be emtted in-1ine upon encountering the
// for loop in the main program it corresponds to an in-line

/'l expansion of the iterator as though it were a macro,

// substituting a call for the yield instructions:

For LoopCode( 1 )
For LoopCode( 2 );
For LoopCode( 3 );
For LoopCode( 4 )

This method for implementing iterators is genient and produces relaly eficient (fast) code. It
does, hwever, sufer from a couple drabacks. First, since you mustpgand the iterator in-line wherer
you call it, much lilke a macro, your program could grtarge if the iterator is not short and you use it often.
Second, this method of implementing the iterator completely hides the underlying logic of the code and
makes your assembly language programBailift to read and understand.

2.2.2 Implementing Iterators with Resume Frames

In-line expansion is not the onlyay to implement iterator§here is another method that pressrthe
structure of your program at thepense of a slightly more comglanplementation. Seral high leel lan
guages, including Icon and CLU, use this implementation.

To start with, you will need another stack frame: thsume fame A resume frame contains dw
entries: a yield return address (that is, the address of #ieénseruction after the yield statement) and a
dynamic linkthat is a pointer to the iteratsractvation recordTypically the dynamic link is just thealue
in the EBP rgister at the time youxecute the yield statemeftis version implements the four parts of an
iterator as follovs:

1) A CALL instruction for the initial iterator call,
2) A CALL instruction for the YIELD statement,
3) A RET instruction for the resume operation, and

Pagel308 © 2001, By Randall Hyde Version:9/9/02



Iterators

4) A RET instruction to terminate the iterator.

To begin with, an iterator will require two return addresses rather than the single return address you
would normally expect. The first return address appearing on the stack is the termination return address. The
second return address is where the subroutine transfers contrgiedd @eration.The calling code must
push these tarreturn addresses upon initiavatation of the iteratoiThe stack, upon initial entry into the
iterator should look something ldigure 2.1

Previous Stack Contents

"’
/4 Parameters for lterator /¢
/

/]

- —Termination Return Address- -

- —  Yield Return Address - -

- SP

Figure 2.1 Iterator Activation Record

As an @ample, consider thRang iterator presented earliérhis iterator requires twparameters, a
starting \alue and an endinglue:

foreach range(1, 10) do
stdout.put( i, nl );
endf or;

The code to makthe initial call to theange iterator producing a stack likthe one abe, could be the

following:
push( 1); // Push start paraneter val ue.
push( 10 ); /1 Push stop paraneter val ue.
push( &ForDone); // Push ternination address.
call range; // Call the iterator.

For Done:

fordoneis the first statement immediately following the FOREACH loop, that is, the instruction to execute
when the iterator returns failure. The FOREACH loop body must begin with the first instruction following
the call torange At the end of the FOREACH loop, rather than jumping back to the start of the loop; or call
ing the iterator again, this code should just execute a RET instruction. The reason will become clear in a
moment. So the implementation of the above FOREACH statement could be the following:

push( 1); // Push start parameter val ue.
push( 10 ); /1 Push stop paraneter val ue.
push( &For Done) ; // Push ternination address.

call range; /l Call the iterator.

push( ebp ); // Preserve iterator’s ebp val ue.

nov( [esp+8], ebp ); // Get original EBP val ue passed to us by range.
stdout.put( i, nl ); // Display i’s val ue.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel309



Chapter Two Volume Five

pop( ebp ); /!l Restore iterator’s EBP val ue.
ret(4); // Return and cl ean EBP val ue of f stack.
For Done:

Granted, this doesnfook anything at all like a loop. However, by playing some major tricks with the stack,
you'll see that this code really does iterate the loop bsidip(t.put as intended.

Now consider theange iterator itself, hera'the (mostly) la-level code to do the job:

iterator range( start:int32; stop:int32 ); @odisplay; @ofrang;
begi n range;

push( ebp ); /] Standard Entry Sequence
nmov( esp, ebp );

For Ever Lbl :

nov( start, eax );
cnp( eax, stop );
j ng For Done;

yield();
inc( start );
j np For Ever Lbl ;

For Done:
pop( ebp );
add( 4, esp);
ret( 8);

end range;

Although this routine is rather short, dot€t its size decee you; its quite comple. The best \ay to
describe hw this iterator operates is to @k a fav instructions at a timéhe frst two instructions are the
standard entry sequence for a procedure. Ugeoution of these tavinstructions, the stack looks dilkhat
in Figure 2.2

20 Previous Stack Contents

16 Value of Start Parameter (1)

12 | Value of Stop Parameter (10)

8 Termination Return Address
4 Yield Return Address
0 Original EBP Value
- ESP, EBP
Offset from
EBP

Pagel310 © 2001, By Randall Hyde Version:9/9/02



Iterators

Figure 2.2 Range Activation Record

The net three statements in tlmange iterator at labelForEverLbl implement the termination test of
the loop.When thestart parameter contains alie greater than treop parametercontrol transfers to the
ForDonelabel at which point the code pops tleue of EBP dfthe stack, pops the success return address
off the stack (since this code will noeturn back to the body of the iterator loop) and then returns via the
termination return address that is immediatelyvabiihe success return address on the stuk.return
instruction also pops the twparameters (eight bytes¥ tfie stack.

The real vork of the iterator occurs in the body of the lobpe main question here is "what is thisld
procedure and what is it doing?'To understand whafield is, we must consider what it is thaeld does.
Wheneer the iteratorxecutes thgield statement, it calls the body of the FOREA loop that inoked the
iterator Since the body of the FOREAM loop is the fist statement follwing the call to the iteratpit turns
out that the iteratos’ return address points at that body of codlberefore, theyield statement does the
unusual operation of calling a subroutine pointed at by the itesgsuccess) return address.

Simply calling the body of the FOREA loop is not all theyield call must do. The body of the
FOREACH loop is (probably) in a didrent procedure with itsam activation record. That FOREACH loop
body may ery well accessariables that are local to the procedure containing that loop body; therefore, the
yield statement must also pass the original procesll#BP alue as a parameter so that the loop body can
restore EBP to point at the FORERA loop bodys actvation record (while, of course, preserving EBP’
value within the iterator itself)The callers EBP alue (also knen as the dynamic link) &s the alue the
iterator pushes on the stack in the standard entry sequ&heeefore, [EBP+0] will point at this dynamic
link value. To properly implement the yield operation, the iterator must emit theviolipcode:

push( ebp ); /1 Save iterator’s activation record pointer.
call ((type dword [ebp+4])); // Call the return address.

The PUSH and CALL instructionsuldd the resume frame and then return control to the body of the
FOREACH loop.The CALL instruction is notcalling a subroutin@Vhat it is really doing here isniishing
off the resume frame (by storing thield resume address into the resume frame) and then it retontsol
back to the body of the FOREA loop by jumping indirect through the success return address pushed on
the stack by the initial call to the iteratéffter the execution of this call, the stack frame lookselithat in
Figure 2.3

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel311



Chapter Two Volume Five

Previous Stack Contents —|

Value of Start Parameter (1)

Value of Stop Parameter (10)

Iterator
L Activation
Termination Return Address Record
Yield Return Address
Original EBP Value
% EBP

Dynamic Link (old EBP)
Resume Frame

Resume Return Address

- ESP

Figure 2.3 Range Resume Record

By corvention, the EAX rgister contains the returrale for the iteratoAs with functions, EAX is a
good place to return the iterator return result.

Immediately after yielding back to the FOREHA loop, the code must reload EBP with the original
value prior to the iterator wocation.This allovs the calling code to correctly access parameters and local
variables in its wn actvation record rather than the aetion record of the iteratolThe FOREACH loop
body begins by preserving EBB'value (the pointer to iterater'actvation record) and then loading EBP
with the \alue pushed on the stack by tfield statement. Of course, in thiganple reloading EBP isi’
necessary because the body of the FOBRHAoop does not referenceyamemory locations 6tthe EBP
register but in general you will need towa EBPS value and load EBP with thele pushed on the stack
by the yield statement.

At the end of the FORE2H loop body the "pop( ebp );" and "ret( 4 );" instructions restore £&Rie,
cleans up the @ironment pointer passed as a parameted resumes the iteratdhe RET instruction pops
the return addressfdahe stack which returns control back to the iterator immediately after the call emitted
by theyield statement.

Of course, this is a lot of avk to create a piece of code that simply repeats a loop ten finseaple
FOR loop would hare been much easier and quite a bit mofieient that the FOREBH implementation
described in this sectioihis section used thenge iterator because itas easy to slwohow iterators verk
usingrange, not because actually implementirange as an iterator is a good idea.

Note that HLA does not pvide an actuayield statement. If you look carefully at this code, and you
think back to the last chaptemou will notice that thgield "statement" generategactly the same code as a
thunk invocation. Indeed, were you to dump the HLA symbol table when compiling a program containing
therange iterator you'd discaver thatyieldis actually a local ariable of type thunk within theange iterator
code. The ofset of this thunk is zero (from EBP) in the iteragattvation record (seEigure 2.4:

Pagel312 © 2001, By Randall Hyde Version:9/9/02



Iterators

Previous Stack Contents

Value of Start Parameter (1)

Value of Stop Parameter (10)

range
Activati L
RZ(':‘C’,?JO” Termination Return Address
Yield Return Address Yield
Thunk
Original EBP Value
- EBP

Figure 2.4 Yield Thunk in the range lterator’s Activation Record

This thunk walue is som&hat unusual. If you look closelyou’ll realize that this thunk’value is actu
ally the return address the original calfrémge pushes along with the old EBRlue that theange iterator
code pushes as part of the standard entry sequence. In otler the call tsange and the standard entry
sequence automatically initializes tyieldthunk! How’'s that for elgance?All the HLA compiler has to do
to create thgield thunk is to automatically create this "yield" symbol and assogiel@with the address of
the old EBP wlue that theange standard entry sequence pushes on the stack.

As you may recall from the chapter ©hunks, the calling sequence for a thunk is the faiig:

push( << Thunk’s Environment Pointer>>);
call ( << Thunk’s Code Pointer >>);

In the case of thgield thunk in an iteratgithe calling sequence lookséikhis:

pushd( [ebp] ); /|l Pass iterator caller’s EBP as paraneter.
call ( (type dword [ebp+4] )); // Call the FOREACH | oop’ s body.

The body of the FOREBH loop, like ary thunk, must preseevEBPS value and load EBP with the
value pushed on the stack in the code sequenae alBior to returning (resuming) back to the iteratos
FOREACH loop body must restore the iteratoEBP alue and it must renve the edironment pointer
parameter from the stack upon retufifhe code gien earlier for the FORE2ZH loop does this:

// "FOREACH range( 1, 10) do" statenent:
push( 1); I
push( 10 ); /1
push( &For Done) ; /1
call range; I

Push start paraneter val ue.
Push stop paraneter val ue.
Push ternination address.
Call the iterator.

/| FOREACH | oop body (a thunk):

push( ebp ); /1
mov( [esp+8], ebp ); //
stdout.put( i, nl ); /1
pop( ebp ); 11
ret(4); I

Beta Draft - Do not distribute

© 2001, By Randall Hyde

Preserve iterator’s ebp val ue.

Get original EBP val ue passed to us by range.
D splay i’'s val ue.

Restore iterator’s EBP val ue.

Return and cl ean EBP val ue of f stack.

Pagel313



Chapter Two Volume Five

// endfor;
For Done:

Of course, HLA does not makyou write this la-level code.You can actually use a FOREA state
ment in your program.The abwee code is the lg-level implementation of the folleing high-level HLA
code:

foreach range( 1, 10 ) do
stdout.put( i, nl );
endfor;

The HLA compiler automatically emits the code to preseamd set up EBP at thediening of the
FOREACH loop’s body; HLA also automatically emits the code to restore EBP and return to the iterator
(remaving the emironment pointer parameter from the stack).

2.3

Other Possible Iterator Implementations

Thus fr, this tet has gven two different implementations for iterators and the FOREAloop.
Although the resume frame/thunk implementation of the@ipus section is probably the most common
implementation in HLA programs (since the HLA compiler automatically generates this type of code for
FOREACH loops and iterators), ddrget the impression that this is the qmlybest, sy to implement iter
ators and the FOREZH loop. Other possible implementations certaimigteand in some specialized situ
ations some other implementation mafeosome adantages. In this section vildbok at a couple of ays
to implement iterators and the FOREHA loop.

The standard HLA implementation of iterators uses $@parate return addresses for an iterator call: a
successlyield address andadure addressThis oiganization is elgant given the thunk implementation of
HLA’s FOREACH statement, Ut there are otherays to return succesailure from an iterator For exam
ple, you could use thealue of the carry 8ig upon return from the iterator call to denote succesalord.
Then a call to the iterator might @khe follaving form:

For EachLoopLbl :
<< Push any Necessary Paraneters >>
call iter;
jc iterFails;

<< Code for the body of the iterator >>
j np For EachLoopLbl ;
iterFails:

One problem with this approach is that the code reenters the iterator on each iteration of thkitoop.
means it akays passes the same parameters and reconstructs vhgaactiecord on each call of the itera
tor. Clearly you cannot use this scheme if the iterator needs to maintain state information inatgacti
record between calls to the iteratéiurthermore, if the iterator yields fromfeifent points, then transferring
control to the fist statement after each yield statement will be a problrare is a trick you can pull to tell
the iterator whether this is thedfi invocation or some otheniacation - pass a special parameter to indicate
the first call of an iteratorYou can do this as foles:

pushd( 0 ); /1 Zero indicates the first call to iter.

For EachLoopLbl :
<< Push Any G her Necessary Paraneters >>
call iter; // iter is a standard HLA procedure, not an iterator.

jc iterFails;

Pagel314 © 2001, By Randall Hyde Version:9/9/02



Iterators

<< Code for the body of the iterator >>

pushd( 1 ); // Cne indicates a re-entry into the iterator.
j np For EachLoopLbl ;

iterFails:

Notice hav this code pushes a zero as the first parameter on the firstitalland it pushes a one on each
invocation thereafter.

What if the iterator needs to maintain state information (i.e., local variable values) between calls? Well,
the easiest way to handle this using the current scheme is to pass extra parameters by value and use those
parameters as the local variables. When the iterator returns success, it should not clean up the parameters on
the stack, instead, it will leave them there for the next iteration of the "FOREACH" loop. E.g., consider the
following implementation and invocation of tAeithRange iterator (this iterator returns the sum of all the
values between thetart andstopparameters):

/1 Note: we have to use a procedure, not an iterator, here because we don't
/1 want HLA generating funny code for us.

/1

// "sum' is actually a local variable in which we maintain state infornation.
/1 1t nust contain zero on the first entry to denote the intial entry into
/1 this code.

procedure ArithRange( start:uns32; stop:uns32; sumuns32 );
@odi spl ay; @of r ang;
begi n ArithRange;

push( ebp ); /1 Standard entry sequence.
nov( esp, ebp );
nov( start, eax );

if( eax <= stop ) then

add( sum eax ); // Conpute arithnetic sumof val ues.
mov( eax, sum); // Save for the next time through and return in EAX

pop( ebp ); /1l Restore pointer to caller’s environnent.
clc; /1 Indicate success on return.
ret(); /1 Note that we don't pop paraneters!
endi f;
pop( ebp ); /] Restore pointer to caller’s environment.
stc; /] Indicate return on failure.
ret( 12 ); /1 On failure, renove the paraneters fromthe stack.

end ArithRange;

pushd( 1); /1l Pass the start paraneter val ue.
pushd( 10 ); /1 Pass the stop paraneter val ue.
pushd( 0 ); /1 Mist pass zero in for sumval ue.
For EachLoop:
call ArithRange; /]l Call our "iterator".
j ¢ For EachDone; // Qit on failure, fall through on success.

<< Foreach | oop body code >>

j np For EachLoop;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel315



Chapter Two Volume Five
For EachDone:

Notice hav this code pushes the parameters on the stack for the first invocation of the ArithRange iterator,
but it does not push the parameters on the stack on successive iterations of the loop. That's because the code
does not remove these parameter values until it fails. Therefore, on each iteration of the loop, the parameter
values left on the stack by the previous invocatioAradhRangeare still on the stack for the next invocation.

When the iterator fails, it pops the parameters off the stack so the stack is clean on exit from the
"FOREACH" loop above.

If you can spare a register, there is a slightly more efficient way to implement iterators and the
FOREACH loop (HLA doesn’t use this scheme by default because it promise not to monkey with your reg-
ister set in the code generation for the high level control structures). Consider the following code that HLA
emits for ayield call:

push( [ebp] ); /] Pass FOREACH | oop’ s EBP val ue as a paraneter.
call ( [ebp+4] ); /1 Call the success address.

The FOREACH loop body code looks like the following:

push( ebp ); /1 Save iterator’s EBP val ue.

nov( [esp+8], ebp ); // Fetch our EBP val ue pushed by the iterator.
<< | oop body >>

pop( ebp ); /l Restore iterator’s EBP val ue.

ret( 4); /! Resune the iterator and renove EBP val ue.

This code can be impved slightly by preserving and setting the EBP value within the iterator. Consider the
following yield and FOREACH loop body code:

push( ebp ); // Save iterator’s EBP val ue.

mov( [ebp+4], edx ); // Put success address into an avail abl e register.
mov( [ebp], ebp ); /1 Set up FOREACH | oop’s EBP val ue.

cal | edx; /1 Call the success address.

pop( ebp ); /] Restore our EBP val ue.

Here’s the corresponding FOREACH loop body:
<< Loop Body >>
ret();

These scheme idramazingly better than the standard resume frame approach (indeed, it is about the same).
But in some situations the fact that the loop body code doesn’t have to mess with the stack may be important.

2.4  Breaking Out of a FOREACH Loop

The BREAK, BREAKIF CONTINUE, and CONTINUEIF statements are atithin a FORELH
loop, lut there are some problems you must consider if you attempt to break out of a EBRIBA with a
BREAK or BREAKIF statement. In this section Wdbok at the problems of prematurely \@ag a
FOREACH loop.

Keep in mind that an iterator les some information on the stack during thlxecetion of the
FOREACH loop body Rememberthe iterator doeshreturn back to the FOREZH loop in order toe-
cute the loop body; it actually calls the FOREA loop body That call leaes a resume frame plus all
parameters, localaviables, and other information in the iterat@ttvation record on the stack when it calls
the FOREACH loop body If you attempt to bail out of the FOREM loop using BREAK, BREAKIFor
(worse still) a conditional or unconditional jump, ESP does not automaticedst keack to the alue prior
to the execution of the FOREBH statementThe HLA generated code can only clean up the stack properly
if the iterator returns via theifure address.

Although HLA cannot clean up the stack for you, it is quite possible for you to clean up the stack your
self. The easiest ay to do this is to store thalue in ESP to a locakviable immediately prior to thexe

Pagel316 © 2001, By Randall Hyde Version:9/9/02



Iterators

cution of the FOREE&H statement.Then simply reload ESP from thislue prior to prematurely lgag
the FOREACH loop. Heres some code that demonstratew o do this:

nov( esp, espSave );
foreach range( 1, 10 ) do

<< foreach | oop body >>
if( sonme_condition ) then

nov( espSave, esp );
br eak;

endif;
<< nore | oop body code >>
endfor;

By restoring ESP from thespSaveariable, this code removes all the activation record information from
the stack prior to leaving the FOREACH loop body. Notice the MOV instruction immediately before the
FOREACH statement that saves the stack position prior to callinguigeiterator.

2.5 An Iterator Implementation of the Fibonacci Number Generator

Consider for a moment the Fibonacci number generator from the chaptbuoks (this is the sig
non-thunk, implementation):

// Standard fibonacci function using the slow recursive inplenentation.

procedure slowfib( n:uns32 ); nodisplay; returns( "eax" );
begi n sl owfi b;

/Il For n=1,2 just return 1.
if( n<=2) then

mov( 1, eax );
el se

/1l Return slowfib(n-1) + slowfib(n-2) as the function result:

dec( n);
slowfib( n); /1 conpute fib(n-1)
push( eax ); /1l Save fib(n-1);
dec( n); /1l conpute fib(n-2);
slowfib( n);
add( [esp], eax ); [/ Conpute fib(n-1) [on stack] + fib(n-2) [in eax].
add( 4, esp); /1 Renove ol d val ue from stack.
endi f;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel317



Chapter Two Volume Five

end sl owfib;

Program 2.1  Recursive Implementation of the Fibonacci Number Generator

This particular function generates tH8 Ribonacci number by computing thesfithrough the i the
Fibonacci number If you wanted to generate a sequence of Fibonacci numbers, you could use a FOR loop
as follows:

for( nov( 1, ebx ); ebx < n; inc( ebx )) do

slowfib( ebx );
stdout.put( "Fib(", (type uns32 ebx), ") =", (type uns32 eax), nl );

endfor;

True to its name, this implementationstdwfb runs quite shaly asn gets lager The reason this furc
tion takes so much time (as pointed out in the chaptérlamks) is that each recursicall recomputes all
the preious Fibonacci numbers. &in the (n-13' and (n—25“]| Fibonacci numbers, computing thé n
Fibonacci number is trial and \ery eficient — you simply add the phieus two values togetherThe efi-
cieng/ loss occurs when the recwsiimplementation computes the sanadue oer and @er agin. The
chapter orirhunks described moto eliminate this recomputation by passing the compuatees to other
invocations of the functionsThis allovs the Fibonacci function to compute tHB Fibonacci number im
units of time rather tharl"2inits of time, a dramatic impvement. Havever, since each call to the {igient)
Fibonacci generator requir@sunits of time to compute its result, the loop @d@which repeats n times)
requires approximatelyzrunits of time to run.This does not seem reasonable since it clearbstakly a
few instructions to compute awe~ibonacci number géen the preious two values; that is, we should be
able to compute the'hFibonacci number im units of time. Iterators puide a trivial way to implement a
Fibonacci number generator that generates a sequendéitmdnacci numbers in units of time. The fol
lowing program demonstratesviado do this.

programfiblter;
#include( "stdlib.hhf" )

/1 Fibonocci function using a thunk to cal culate fib(n-2)
/1 without nmaking a recursive call.

procedure fib( n:uns32; nnR:thunk ); nodisplay; returns( "eax" );

var
n2: uns32; Il Arecursive call to fib stores fib(n-2) here.
t: thunk; /1 This thunk actually stores fib(n-2) in n2.
begin fib;

[l Special case for n =1, 2. Just return 1 as the
/1 function result and store 1 into the fib(n-2) result.

if( n<=2) then

nmov( 1, eax ); // Return as n-1 val ue.
nn2(); /1 Store into caller as n-2 val ue.

el se

/1 Oeate a thunk that will store the fib(n-2) val ue
/1 into our local n2 variable.

Pagel318 © 2001, By Randall Hyde Version:9/9/02



Iterators

thunk t :=

#

nmov( eax, n2);

HE;
nmov( n, eax );
dec( eax );
fib( eax, t ); // Conpute fib(n-1).
/1 Pass back fib(n-1) as the fib(n-2) value to a previous caller.

nn2() ;

/1 Conpute fib(n) = fib(n-1) [in eax] + fib(n-2) [in n2]:
add( n2, eax );
endi f;

end fib;

// Standard fibonocci function using the slow recursive inplenentation.

procedure slowfib( n:uns32 ); nodisplay; returns( "eax" );
begi n sl owfi b;

/Il For n=1,2 just return 1.
if( n<=2) then

mov( 1, eax );
el se

/1l Return slowfib(n-1) + slowfib(n-2) as the function result:

dec( n);
slowfib( n); /1 conpute fib(n-1)
push( eax ); /1l Save fib(n-1);
dec( n); /1 conpute fib(n-2);
slowfib( n);
add( [esp], eax ); [/ Conpute fib(n-1) [on stack] + fib(n-2) [in eax].
add( 4, esp); /1 Renove ol d val ue from stack.
endi f;
end sl owfi b;
/1 Fi bNum

/1
I/l lterator that generates all the fibonacci nunbers between 1 and n.

iterator Fi bNum( n:uns32 ); nodispl ay;

var
Fibn_1. uns32; // Holds Fib(n-1) for a given n.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel319



Chapter Two Volume Five

Fi bn_2: uns32; // Holds Fib(n-2) for a given n.
QurFi b: uns32; /1 Qurrent index into fib sequence.
begi n Fi bNum

nov( 1, Fibn 1); /1 Initialize these guys upon initial entry.

nov( 1, Fibn 2);

nov( 1, eax ); Il Fib(0) =1

yield();

mov( 1, eax ); /1 Fib(l) = 1,

yield();

nov( 2, QurFib);

forever
mov( QurFib, eax ); /1 Conpute sequence up to the nth #.
breakif( eax > n );
mov( Fibn_2, eax ); /1 Conpute this result.

add( Fibn_1, eax );
/!l Reconpute the Fibn_1 and Fibn_2 val ues:

mov( Fibn_ 1, Fibn_2);
nmov( eax, Fibn_1);

// Return current val ue:
yield();

/1 Next val ue in sequence:

inc( QurFib);
endf or;
end Fi bNum
var
prevTi ne: dwor d[ 2] ; // Used to hold 64-bit result fromRDISC instr.
gw. qgword; // Used to conpute difference in timng.
dummy: t hunk; // Used in original calls to fib.
begin fiblter;

/1 "Do nothing" thunk used by the initial call to fib.
// This thunk sinply returns to its caller w thout doing
I/ anything.

thunk dummy : = # }#

// Call the fibonocci routines to "prine" the cache:

fib( 1, dumy );

slowfib( 1);
foreach FibNun{ 1) do
endf or;

Pagel320 © 2001, By Randall Hyde Version:9/9/02



/'l Ckay, conpute the running tinmes for the three fibonocci routines to
/'l generate a sequence of n fibonacci nunbers where n ranges from
/1 1to 32:
for( nmov( 1, ebx ); ebx < 32; inc( ebx )) do
/1 Emt the index:
stdout. put ( (type uns32 ebx):2, stdio.tab );
/1 Conpute the # of cycles needed to conpute the Fib via iterator:
rdtsc();
nov( eax, prevTine );
nmov( edx, prevTime[4] );
foreach Fi bNun{ ebx ) do
endf or;
rdtsc();
sub( prevTime, eax );
sbb( prevTine[4], edx );
nov( eax, (type dword qw));
nmov( edx, (type dword qw[4]));

stdout. put u4sSi ze( qw, 4, ' ' );
stdout. putc( stdio.tab );

/1 Read the time stanp counter before calling fib:

rdtsc();

nov( eax, prevTine );

nov( edx, prevTine[4] );

for( nov( 1, ecx ); ecx <= ebx; inc( ecx )) do
fib( ecx, dumy );

endf or;

/1 Read the timestanp counter and conpute the approxinate running
/1l tinme of the current call to fib:

rdtsc();

sub( prevTine, eax );

sbb( prevTine[4], edx );

nmov( eax, (type dword qw));

mov( edx, (type dword qw4]));

/1 Dsplay the results and timng fromthe call to fib:

stdout. put ué4si ze( qw, 10, ' ' );
stdout. putc( stdio.tab );

/1 Ckay, repeat the above for the slowfib inplermentation:

Beta Draft - Do not distribute © 2001, By Randall Hyde

Iterators

Pagel321



Chapter Two Volume Five
rdtsc();
nmov( eax, prevTine );
mov( edx, prevTine[4] );
for( nov( 1, ecx ); ecx <= ebx; inc( ecx )) do
sl owfib( ebx );
endf or;
rdtsc();
sub( prevTine, eax );
sbb( prevTine[4], edx );
nov( eax, (type dword qw));
mov( edx, (type dword gqw4]));

stdout . put u64Si ze( qw, 10, ' ' );
stdout. new n();

endf or;

end fiblter;

Program 2.2  Fibonacci Iterator Example Program

The important concept here is that ieNumiterator maintains its state across calls. In particitlar
keeps track of the current iteration and theviores two Fibonacci wlues. Therefore, the iterator tak \ery
little time to compute the result of each number in the sequehb& is far more dicient than either
Fibonacci number generator from the chapteflounks, as the folleing table attests.

Table 1: CPU Cycle Timesfor Various Fibonacci | mplementations

N Iterator . Thunk . Recursve .
Implementation Implementation Implementation
1 156 233 98
2 148 98 77
3 178 221 271
4 193 376 399
5 213 509 879
6 213 712 1758
7 233 919 3493
8 252 1166 6531
9 271 1460 12568

Pagel322 © 2001, By Randall Hyde Version:9/9/02



Table 1: CPU Cycle Timesfor Various Fibonacci | mplementations

Iterators

Iterator Thunk Recursve
Implementation Implementation Implementation

10 290 1759 22871
11 308 2139 40727
12 331 2503 71986
13 349 2938 126443
14 372 3341 220673
15 380 3877 382364
16 402 4326 660506
17 417 4977 1160660
18 452 5528 1954253
19 487 6222 3322819
20 479 6840 5685066
21 524 7691 9621772
22 545 8313 16339720
23 576 9292 27709571
24 599 10029 47036825
25 616 11274 80102556
26 650 12348 132583731
27 653 13172 222580780
28 683 14339 374788752
29 694 15394 627559062
30 722 16363 1054201515
31 732 17727 1756744511

2.6 lterators and Recursion

It is completely possible, and sometimesyuseful, to recurgely call an iterator In this section wéd’
explore the syntax for this and present a couple of useful rgedutsrators.

Beta Draft - Do not distribute

© 2001, By Randall Hyde

Pagel323



Chapter Two Volume Five

Although there is nothing stopping you from manually calling an iterator with the CALL instruction, the
only valid (high level syntax) irocation of an iterator is via the FOREA statement.Therefore, to recur
sively call an iteratqrthat iterator must contain a FOREH loop to recursiely call itself.

Iterators are especially useful forveasing tree and graph data structures. Some of the best (and most
efficient) ekamples of recurse iterators are those thatwease such structures. Unfortunateéhys text does
not assume the prerequisite lwtedge of such data structures, so it cannot use shpes to demen
strate recurske iterators. Neertheless, is worth mentioning thisdct here because if you aserfiliar with
graph traersal algorithms (or will be learning them in the future) you should consider using iterators for this
purpose.

One useful iterator that doesnéquire a tremendous amount of prerequisitevkadge is the tneersal
of a binary search tree implemented within an ark&f won'’t go into the details of what a binary search
tree is or wly you would use it here other than to describe some properties of thaftbéeary search tree,
implemented as an arrdyg a data structure that adle one to quickly search for soma&lwe within the struc
ture. The \alues are arranged in the tree such that after each comparison you can eliminate half of the possi
ble values with a single comparisos a result, if the array containstems, you can locate a particular
item of interest in logn units of time. To achiee this eficient search time, you Yato arrange the data in
the array in a particulanghion and then use a spexcdigorithm when searching through the treer the
sale of our @ample, well assume that the data in the array is sorted (that is, a[0] < a[1] < a[2] < ... < a[n-1]
for some defiition of "less than").The binary search algorithm then e¢akthe folleving form:

1. Seti=n

Setj=i/2 (integer/truncating division)

Quit if i=j (failed to find value in the search tree).

Compare th&eyvalue (the one you're searching for) against al[i].
If key > afi] thensetj=(i-j+1)/2 +]j

AR I

else seti=jandthen j=i/2
6. Go to step 3.

How this works and what it does is irrelevant here. What is important to this section is the arrangement
of the data in the array that forms the binary search tree (specifically, the sorted nature of the data). Of
course, if we wanted to generate a list of numbers in the sorted order, that would be especially trivial, all we
would have to do is step through the array one element at a time. Suppose, however, that we wanted to gen-
erate a list of median values in this array. That is, the first value to generate would be the median of all the
values, the second and third values would be the two median values of the array "slice" on either side of the
original median. The next four values would be the medians of the array slices around the previous two
medians and so on. If you're wondering what good such a sequence could be, well, were we to store this
sequence into successive elements of an array, we could develop a binary search algorithm that is a little bit
faster than the algorithm above (faster by some multiplicative constant). Hence, by running this iterator over
the sorted data, we can come up with a slightly faster searching algorithm.

The following is the iterator that generates this particular sequence:

program Reclter;
#include( "stdlib.hhf" )

const
MaxData : = 17; /1 # of data itenms to process.
type
AryType: uns32[ MaxData ];
static
/|l Here is the sorted data we'll process. For sinplicity, we'll just

Pagel324 © 2001, By Randall Hyde Version:9/9/02



[/l fill the array with 1.. MaxData at indices 0..MaxData- 1.

SortedData: AryType : =
[

/1 Fill this table with the values 1..NMaxDat a:

20 =1,

#while( i < MaxData )

#endwhi | e
i

I

/*******************************************************************/

/*
/* MedianVal iterator-
/*

/* Gven a sorted array, this iterator yields the median val ue,

/* then it recursively yields a |ist of median values for the

/* array slice consisting of the array el enents whose index is

/* less than the nedian value. Finally, it yields the list of

/* nedian values for the array slice built fromthe array el enents

/* whose indices are greater than the nedi an el enent.

/*

/* I nputs:

/* Ary-

/* The array whose el enents we are to process.
/*

/* start-

/* Starting index for the array slice.

/*

/* last-

/* Ending i ndex (plus one) for the array slice.
/*

/* Yields:

/* Alist of median values in EAX (one medi an val ue on
/* each iteration of the correspondi ng FCREACH | oop) .

/*
/* Notes:

/* This iterator w pes out EBX

/*

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/*******************************************************************/

iterator MedianVal ( var Ary: AryType; start:uns32;

var
nmedi an: uns32;
begi n Medi anVal ;

nov( |last, eax );
sub( start, eax );
if( @) then

shr( 1, eax );

add( start, eax );
nov( eax, nedian );

Beta Draft - Do not distribute

/1 Conpute half the size.
/1 Conpute nedi an i ndex.
/1l Save for later.

© 2001, By Randall Hyde

| ast:uns32 );

nodi spl ay;

Iterators

Pagel325



Chapter Two Volume Five

nmov( Ary, ebx ); // Conpute address of nedian el enent.
nmov( [ebx][eax*4], eax ); /1 Get median el ermrent.
yield();

/1 Recursively yield the nedians for the el ements at indices bel ow
/1 the elenent we just yielded. Do this by recursively calling
/1l the iterator to generate the list and then yield whatever val ue
/1l the iterator returns.
foreach Medi anval ( Ary, start, nedian ) do

yield();
endf or;
/'l Recursively yield the nedians for the array slice whose indices
I/l are greater than the current array elenent. Note that we don't
/1 include the nedian value itself inthis list as we al ready
/'l returned that val ue above.
nmov( medi an, eax );

inc( eax );
foreach Medi anval ( Ary, eax, last ) do

yield();
endf or;
endi f;

end Medi anVal ;

/1 NMain programthat tests the functionality of this iterator.
begin Reclter;
foreach Medi anVal ( SortedData, O, MaxData ) do
stdout.put( "Value =", (type uns32 eax), nl );
endf or ;

end Reclter;

Program 2.3 Recursive Iterator to Rearrange Data for a Binary Search

The program ab@ produces the folleing output:

©

Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue
Val ue

1 1 | A VA VR |
COCOoO~NDPREPLPNWOOG

Pagel326 © 2001, By Randall Hyde Version:9/9/02



Iterators

Val ue = 14
Val ue = 12
Val ue = 11
Val ue = 10
Val ue = 13
Val ue = 16
Val ue = 15
Val ue = 17

2.7

Calling Other Procedures Within an Iterator

It is perfectly Igal to call other procedures from an iteratétonvever, unless that procedure is nested
within the iterator (seélLexical Nesting” on pag&375, you cannot yield from that procedure using the
iterators yield thunk unless you pass the thunk as a parameter to the other procedure. Other #win the f
that you must remember that there is additional information on the stack, calling a procedure from an iterator
is really no diferent than calling an iterator fromyaather procedure.

2.8

lterators Within Classes

You can declare an iterator within a class. Iterators are called via theviotasd' method table, just
like methods.This means that you canearride an iterator at run-time. See the chapter on classes for more
details.

2.9

Putting It Altogether

This chapter pnades a brief introduction to theuslevel implementation of iterators and then-dis
cusses seeral diferent ways that you may use iterators in your programkhough iterators are not as
familiar as other program units, thare quite useful in mgnmportant situationsYou should try to use
iterators in your programs whees appropriate,\en if youre not imiliar with iterators from your high
level languagegeriences.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel327



Chapter Two Volume Five

Pagel328 © 2001, By Randall Hyde Version:9/9/02



	Iterators Chapter Two
	2.1 Chapter Overview
	2.2 Review of Iterators
	2.2.1 Implementing Iterators Using In-Line Expansion
	2.2.2 Implementing Iterators with Resume Frames

	2.3 Other Possible Iterator Implementations
	2.4 Breaking Out of a FOREACH Loop
	2.5 An Iterator Implementation of the Fibonacci Number Generator
	2.6 Iterators and Recursion
	2.7 Calling Other Procedures Within an Iterator
	2.8 Iterators Within Classes
	2.9 Putting It Altogether


