File I/O

Files Chapter Seven

7.1 Chapter Overview

In this chapter you will learn about tfike persistent data type. In most assembly languade#Giis
a major headache. Not so in HLA with the HLA Standard Libré&ile 1/0 is no more difcult than writing
data to the standard outputvie or reading data from the standard inpwtick In this chapter you will
learn hev to create and manipulate sequential and random-aclesss fi

7.2 File Organization

A file is a collection of data that the system maintains in persistent storage. Persistent means that the
storage is nonelatile — that is, the system maintains the datneafter the program terminates; indeed,
even if you shut df system pwer. For this reason, plus thadt that diferent programs can access the data
in a fle, applications typically useldis to maintain data acrosseeutions of the application and to share
data with other applications.

The operating system typicallyv&s fle data on a disk dré or some other form of secondary storage
device. As you may recall from the chapter on the memory hieya(sbe“ The Memory Hierarcyi’ on
page303), secondary storage (disk\gs) is much shwer than main memoryTherefore, you generally do
not store data that a program commonly accessdssrdfiring programx@cution unless that data & ftoo
large to ft into main memory (e.g., a e database).

Under Linux andVindows, a standardlé is simply a stream of bytes that the operating system does not
interpret in ag way. It is the responsibility of the application to interpret this information, much the same as
it is your applicatiors responsibility to interpret data in memorihe stream of bytes in ddicould be a
sequence AASCII characters (e.g., axtefile) or they could be pirl values that form a 24-bit color pheto
graph.

Files generally tad& one of tw different formssequential fesor random accessldéis Sequential fes
are great for data you read or write all at once; random aclessadik best for data you read and write in
pieces (or rarite, as the case may be)orfexample, a typical td file (like an HLA source @) is usually a
sequential fe. Usually your tet editor will read or write the entireldiat once. Similarlythe HLA com
piler will read the data from thddiin a sequentiabkhion without skipping around in théefi A database
file, on the other hand, requires random access since the application can read datgrinene am the fe
in response to a query

7.2.1 Files as Lists of Records

A good viev of a fie is as a list of recordsThat is, the fe is brolen davn into a sequential string of
records that share a common structukdist is simply an open-ended single dimensional array of items, so
we can vigv a file as an array of recordés such, we can inddnto the fie and select record number zero,
record number one, record numbeofwtc. Using commonléi access operations, it is quite possible to skip
around to diferent records in alé. UnderwWindows and Linux, the principle dérence between a sequen
tial file and a random acceskefis the oganization of the records andvia@asy it is to locate a specifi
record within the fe. In this section wé'take a look at the issues thatfdientiate these twtypes of fies.

The easiest B omanization to understand is the random accéss A random accesslédiis a list of
records whose lengths are all identical (i.e., random actessdquire fied length records). If the record
length isn bytes, then thert record appears at bytdsat zero in the I, the second record appears at byte
offsetn in the fie, the third record appears at bytésefn*2 in the fie, etc. This oganization is virtually
identical to that of an array of records in main memory; you use the same computation to locate an “ele

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages17

Chapter Seven Volume Three

ment” of this list in the fe as you wuld use to locate an element of an array in memory; the ofdyatite
is that a fie doesrt have a “base address” in mempmgou simply compute the zero-basedsef of the
record in the fe. This calculation is quite simple, and using sorfeelfO functions you will learn about a
little later, you can quickly locate and manipulatey aacord in a random accese fi

Sequential fes also consist of a list of records. vitwer, these records do not allueato be the same
Iengthl. If a sequential 2 does not usexiéd length records then we say that the dses ariable-length
records. If a sequentialdiuses ariable-length records, then thke fimust contain some kind of markor
other mechanism to separate the records in lteTypical sequential liés use one of tamechanisms: a
length prefk or some special terminatingiue. These tvo schemes should sound quiganiliar to those
who hae read the chapter on strings. Character strings use a similar scheme to determine the bounds of a
string in memory

A text file is the best>@ample of a sequentialdithat usesariable-length recordsText files use a spe
cial marler at the end of each record to delineate the records. Xhfddea record corresponds to a single
line of text. UnderWindows, the carriage return/line feed character sequence marks the end of each record.
Other operating systems may use &dént sequence; e.g., Linux uses a single line feed character while the
Mac OS uses a single carriage return. Sinceewadrking with Windows or Linux here, wd’ adopt the
carriage return/line feed or single line feedwaartion.

Accessing records in ddicontaining ariable-length records is problematic. Unless yoelzn array
of offsets to each record in anable-length fe, the only practical @y to locate record in a file is to read
the first n-1 records. This is wty variable-length fes are sequential-access — yowehthe read thelé
sequentially from the start in order to locate a specicord in the k. This will be much slwer than
accessing thelé in a random accesashion. Generallyou would not use aariable-length record gank
zation for fles you need to access in a randashfon.

At first blush it vould seem thatxXed-length random acceskefi ofer all the adantages heréAfter all,
you can access records in k fwith fixed-length records much more rapidly thdesfiusing the ari-
able-length record ganization. Huwvever, there is a cost to this: youkrdid-length records ke to be lage
enough to hold the lgest possible data object yoant to store in a recordlo store a sequence of lines in
a tet file, for e<cample, your record sizesowld have to be lage enough to hold the longest possible input
line. This could be quite lge (for xample, HLA allavs lines up to 256 characters). Each record in kibe fi
will consume this manbytes &en if the record uses substantially less datar eample, an empty line
only requires one awo bytes (for the line feed [Linux] or carriage return/line feeihplvs] sequence)
If your record size is 256 bytes, then yreunhasting 255 o254 bytes for that blank line in younldi If the
average line length is around 60 characters, then each disesvan\erage of about 200 character®his
problem, knan asinternal fragmentationcan vaste a tremendous amount of space on your disk, especially
as your fies get lager or you create lots ofds. File oganizations that useaviable-length records gerer
ally don't suffer from this problem.

1.2.2

Binary vs. Text Files

Another important thing to realize aboue§ is that the dont all contain human readablexte Object
and eecutable fes are good»amples of fies that contain binary information rather thaxt.té\ text file is
a \ery special kind of ariable-length sequentialldi that uses special end of line menk €arriage
returnsline feeds) at the end of each record (line) in tlee Binary fles are eerything else.

Binary files are often more compact thaxttéles and thg are usually more Btient to access. Cen
sider a tgt file that contains the folwing set of tvo-byte intger \alues:

1234
543
3645
32000

1. There is nothing preventing a sequential file from using fixed length records. However, they don't require fixed length
records.

Pages18 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O

As a tet file, this fle consumes at lea34 bytes (assuming a dabyte end of line magc on each line)
However, were we to store the data ineefi-record length binaryld, with two bytes per iniger \alue, this
file would only consume 14 bytes less thanhalf the space. Furthermore, since tHe fiov uses
fixed-length records (twbytes per record) we carfiefently access it in a randorashion. Finallythere is
one additional, though hidden fiefeng/ aspect to the binary format: when a program reads and writes
binary data it doeshhave to cowert between the binary and string formathis is an gpensve process
(with respect to computer time). If a human beingtigning to read thislé with a separate program @k
a text editor) then cowverting to and from te format on gery 1/O operation is a asted dbrt.

Consider the folling HLA record type:

type
per son:
record
name: string;
age: i nt 16;

ssn: char[11] ;
sal ary: r eal 64;
endr ecor d;

If we were to write this record asctdo a text file, a typical record would take the following form (<nl>-indi
cates the end of line marker, a line feed or carriage return/line feed pair):

Hyde, Randal | <nl >
45<n| >

555- 55- 5555<n| >
123456. 78<nl >

Presumablythe nexpersonrecord in the file would begin with the next line of text in the text file.

The binary version of this file (using a fixed length record, reserving 64 bytes farttestring) would
look, schematicallylike the follaving:

(Hyde, Ramagitf | | [[| [[| | = |:|64bytesfortheNamefieId

l:l:l Two bytes for the Age field
[T T TTTTTTTT1bytesforthe SSN field

| | | | | | | | |Eightbytesforthesalaryfield

Figure 7.1 Fixed-lengthFormat for Person Record

Don't get the impression that binarye must useted length record sizesMe could create aavi-
able-length ersion of this record by using a zero byte to terminate the string, aggollo

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages19

Chapter Seven Volume Three

F
o
(o))

, | T [[Rdndal]of T | [| 14 bytes for the Name field
Two bytes for the Age field

| | |11 bytes for the SSN field
Eight bytes for the salary field

Figure 7.2 Variable-length Format for Person Record

In this particular record format tregefield starts at offset 14 in the record (since the name field and the
“end of field” marker [the zero byte] consume 14 bytes). If a different name were chosen, tgefitid

would begin at a different offset in the record. In order to locate the age, ssn, and salary fields of this record,
the program would have to scan past the name and find the zero terminating byte. The remaining fields
would follow at fixed offsets from the zero terminating byte. As you can see, it's a bit more work to process
this variable-length record than the fixed-length record. Once again, this demonstrates the performance dif
ference between random access (fixed-length) and sequential access (variable length, in this case) files.

Although binary files are often more compact and more efficient to access, they do have their draw-
backs. In particular, only applications that are aware of the binary file’s record format can easily access the
file. If you're handed an arbitrary binary file and asked to decipher its contents, this could be very difficult.
Text files, on the other hand, can be read by just about any text editor or filter program out there. Hence,
your data files will be more interchangeable with other programs if you use text files. Furthermore, it is eas-
ier to debug the output of your programs if they produce text files since you can load a text file into the same
editor you use to edit your source files.

7.3

Sequential Files

Sequential fes are perfect for three types of persistent de&ClI text files, “memory dumps”, and
stream data. Since yoea’'probably &miliar withASCII text files, well skip their discussionThe other tw
methods of writing sequentialds deser® more &planation.

A “memory dump” is a fe that consists of data you transfer from data structures in memory directly to
a file. Although the term “memory dump” suggests that you sequentially transfer data from cemsecuti
memory locations to theld, this isnt necessarily the case. Memory access can, an often does, occur in a
random accesss$hion. Hwever, once the application constructs a record to write to kaeitfiwrites that
record in a sequentiah$hion (i.e., each record is written in order to the.fiA “memory dump” is what
most applications do when you request thay gee the prograns current data to ddior read data from a
file into application memoryWhen writing, thg gather all the important data from memory and write it to
the fie in a sequentiabkhion; when reading (loading) data fromle, fihey read the data from thediin a
sequentialdshion and store the data into appropriate memory-based data structures. Gemerallyad
ing or sa&ing file data in this manngethe program opens aefj reads/writes data from/to théefiand then it
closes the fe. Very little processing tads place during the data transfer and the application does v®t lea
the fie open for ay length of time bgond what is necessary to read or write thesfidata.

Stream data on input is Bkdata coming from agidboard. The program reads the data atigus points
in the application where it needsmimput to continue. Similar)ystream data on output isdila write to the
console deice. The application writes data to th&efat \arious points in the program after important eom
putations hee talen place and the program wishes to report the results of the calculation. Note that when
reading data from a sequentiadéfionce the program reads a particular piece of data, that data is no longer
available in future reads (unless, of course, the program closes and reopda} théhin writing data to a

Pages20 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O

sequential fe, once data is written, it becomes a permanent part of the olgpuiMinen processing this
kind of data the program typically opensla find then continuesecution. As program gecution contin
ues, the application can read or write data in taeAit some point, typically twards the end of the applica
tion’s execution, the program closes thie fand commits the data to disk.

Although disk dnves are generally thought of as random accedgsete the truth is that thieare only
pseudo-random access; atf, thg perform much better when writing data sequentially on the dis&cgurf
Therefore, sequential accedgeditend to praide the highest performance (for sequential data) singe the
match the highest performance access mode of the digk dri

Working with sequentialliés in HLA is \ery easy In fact, you already ke most of the functions you
need in order to read or write sequentiaisfi All that’s left to learn is he to open and closeldéis and per
form some simple tests (BK'have we reached the end of e fivhen reading data from thé&f”).

The fie I/O functions are nearly identical to thtelin andstdoutfunctions. Indeedstdinandstdoutare
really nothing more than specidefil/O functions that read data from the standard inputcdeda fle) or
write data to the standard outputide (which is also al@). You use the I I/O functions in a manner arnal
ogous teostdinandstdoutexcept you use thileio prefix rather than stdin or stdout.olFexample, to write a
string to an output @, you could use thileio.putsfunction almost the sameay you use thstdout.puts
routine. Similarlyif you wanted to read a string from &fiyou would usefileio.gets The only real difer-
ence between these function calls and thtlin and stdoutcounterparts is that you must supply atra
parameter to tell the function whaekfio use for the transtefhis is a double ard value knevn as thdile
handle You'll see haev to initialize this fie handle in a momentubassuming you lve a dvord \variable
that holds a fe handle alue, you can use calls ékhe follaving to read and write data to sequentiaisti

fileio.get(inputHandle, i, j, k); // Reads i, j, k, fromfile inputHandle.
fileio.put(outputHandle, “I =*, i, “J =", j, “ K="k, nl);

Although this @ample only demonstrates the usgetfandput, be aware that almost all of teelinandstd
outfunctions are available dideio functions, as well (in fact, most of tis&dinandstdoutfunctions simply
call the appropriatéleio function to do the real work).

There is, of course, the issue of this file handle variable. You're probably wondering what a file handle
is and how you tell th&leio routines to wrk with data in a specififile on your disk.Well, the defiition of
the fie handle object is the easiest xplain — it's just a dwrd \ariable that the operating system initializes
and uses todep track of your lé. To declare a ¢ handle, you just create a devd \ariable, e.g.,

static
nyFi | eHand! e: dwor d;

You should never explicitly manipulate the value of a file handle variable. The operating system wll initial
ize this variable for you (via some calls you'll see in a moment) and the OS expects you to leave this value
alone as long as you're working with the file the OS associates with that handle. If you're curious, both
Linux and Windows store small integer values into the handle variable. Internally, the OS uses this value as
an index into an array that contains pertinent information about open files. If you mess with the file handle’s
value, you will confuse the OS greatly the next time you attempt to access the file. Moral of the story — leave
this value alone while the file is open.

Before you can read or write a file you must open that file and associate a filename with it. The HLA
Standard Library provides a couple of functions that provide this sefile&ie:openand fileio.openNe.
Thefileio.openfunction opens anxésting file for reading, writing, or both. Generaliyou open sequential
files for reading or writing,ut not both (though there are some special cases where you can open a sequen
tial file for reading and writing)The syntax for the call to this function is

fileio.open(“fil ename”, access);
The first parameter is a string value that specifies the filename of the file to open. This can be a string con
stant, a register that contains the address of a string value, or a string variable. The second parameter is a

constant that specifies how you want to open the file. You may use any of the three predefined constants for
the second parameter:

fileio.r

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages21

Chapter Seven Volume Three

fileio w
fileio.rw

fileio.r obviously specifes that you ant to open anxésting file in order to read the data from thée;fi
likewise,fileio.wsays that you ant to open anxésting file and @erwrite the data in thatldéi. Thefileio.rw
option lets you open ddifor both reading and writing.

Thefileio.openroutine, if successful, returnsfae handlein the EAX rajister Generallyyou will want
to save the return alue into a double ard variable for use by the other HLfleio routines (i.e., thiMyFile-
Handlevariable in the earlien@mple).

If the OS cannot open thddi fileio.openwill raise anex.FleOpenRilure exception. This usually
means that it could notniil the speciéd fie on the disk.

Thefileio.openroutine requires that thddiexist on the disk or it will raise arxeeption. If you vant to
create a ng file, that might not alreadyist, thefileio.openNe function will do the job for youThis fune
tion uses the follwing syntax:

fileio.openNew “filenane”);

Note that this call has only a single paramedestring specifying the filename. When you open a file with
fileio.openNewthe file is always opened for writing. If a file by the specified filename already exists, then
this function will delete the existing file and the new data will be written over the top of the okbfite (
careful).

Like fileio.openfileio.openNer returns a fe handle in the EAX igaster if it successfully opens théefi
You should see this \alue in a fie handle ariable.This function raises thex.HleOpenRilure exception if
it cannot open thelé.

Once you open a sequentideé fivith fileio.openor fileio.openNw and you see the fie handle alue
away, you can bgin reading data from an inpulefi(fileio.r) or writing data to an outputdi (fileio.w). To do
this, you would use functions lifileio.putas noted abee.

When the 1e 1/0 is complete, you must close thke fio commit the fe data to the diskYou should
always close all fes you open as soon as you are through with them so that the progrant cloesune
excess system resourceBhe syntax fofileio.closeis very simple, it taks a single parametehe fle han
dle wvalue returned bfjleio.openor fileio.openNev:

fileio.close(file _handle);

If there is an error closing thddjfileio.closewill raise theex.FileCloseErrorexception. Note that Linux

and Windows automatically close all open files when an application terminates; however, it is very bad pro
gramming style to depend on this feature. If the system crashes (or the user turns off the power) before the
application terminates, file data may be lost. So you should always close your files as soon as you are done
accessing the data in that file.

The last function of interest to us right now is fihgio.eoffunction. This function returns true (1) or
false (0) in thé\L register depending on whether the currelet iointer is at the end of théefi Generally
you would use this function when reading data from an inpaitdi determine if there is more data to read
from the fle. You would not normally call this function for outpulef; it alvays returnsdise®. Since the
fileio routines will raise anxeeption if the disk is full, there is no need taste time checking for end olefi
(EOF) when writing data to ddi The syntax fofileio.eofis

fileio.eof (file handle);

The folloving program gample demonstrates a complete program that opens and writes a skihple te
file:

program Si npl eFi | eCut put ;

2. Actually, it will return true under Windows if the disk is full.

Pages22 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O
#i ncl ude(“stdlib. hhf”)

static
out put Handl e: dwor d;

begi n Si npl eFi | eQut put ;

fileio.openNew(“nyfile.txt”);
nov(eax, outputHandle);

for(nmov(O, ebx); ebx < 10; inc(ebx)) do
fileio.put(outputHandl e, (type uns32 ebx), nl);

endf or ;
fileio.close(outputHandl e);

end Sinpl eFi | eQut put ;

Program 7.1 A Simple File Output Program

The folloving sample program reads the data Braigram 7.Jroduces and writes the data to the stan
dard output déce:

program Si npl eFi | el nput ;
#include(“stdlib.hhf”)

static
i nput Handl e: dwor d;
u: uns32;

begi n Si npl eFi | el nput ;

fileio.open(“nyfile.txt”, fileio.r);
nov(eax, inputHandle);

for(nov(0, ebx); ebx < 10; inc(ebx)) do

fileio.get(inputHandl e, u);
stdout. put (“ebx=", ebx, “ u=", u, nl);

endf or;
fileio.close(inputHandl e);

end Sinpl eFil el nput;

Program 7.2 A Sample File Input Program

There are a couple of interesting functions that you can use wdrimg/with sequential lies. They
are the follaving:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages23

Chapter Seven Volume Three

fileio.rewind(fileHandl e);
fileio.append(fileHandl e);

Thefileio.rewind function resets the ‘& pointer” (the cursor into theldiwhere the nd read or write
will take place) back to the gimning of the fie. This name is a carryver from the days oflés on tape
drives when the systemowld revind the tape on the tape wkito mae the read/write head back to the
beginning of the fie.

If you’ve opened alé for reading, theffileio.rewind lets you bgin reading the lé from the start (i.e.,
malke a second passer the data). If youe opened thelé for writing, thenfileio.rewind will cause future
writes to werwrite the data youé previously written; you wn’t normally use this function withléis
you've opened only for writing. If youé opened thelé for reading and writing (using thiéeio.rw option)
then you can write the data after yarifirst opened thel& and then wind the fle and read the data yee’
written. The followving is a modiftation toProgram 7.2hat reads the datddfitwice. This program also
demonstrates the usefiéio.eofto test for the end of thddi(rather than just counting the records).

program Si npl eFi | el nput 2;
#include(“stdlib. hhf”)

static
i nput Handl e: dwor d;
u: uns32;

begi n Si npl eFi | el nput 2;

fileio.open(“nyfile.txt”, fileio.r);
nov(eax, inputHandle);

for(nov(O, ebx); ebx < 10; inc(ebx)) do

fileio.get(inputHandl e, u);
stdout. put (“ebx=", ebx, “ u=", u, nl);

endf or;
stdout. new n();

/1 Rewind the file and reread the data fromthe begi nni ng.
/1 This tine, use fileio.eof() to determne when we' ve
/'l reached the end of the file.

fileio.rewind(inputHandl e);
while(fileio.eof (inputHandle) = false) do

/1 Read and display the next itemfromthe file:

fileio.get(inputHandl e, u);
stdout.put(“u=", u, nl);

/1 Note: after we read the last nuneric value, there is still

/1 a new ine sequence left inthe file, if we don't read the

/1 new ine sequence after each nunber then ECF will be fal se

/1 at the start of the loop and we'll get an ECF exception

/1 when we try to read the next value. Calling fileio.ReadlLn
/1l “eats” the new ine after each nunber and sol ves this probl em

fileio.readLn(inputHandl e);

endwhi | e;

Pageb24 © 2001, By Randall Hyde Beta Draft - Do not distribute

File 10
fileio.close(inputHandl e);

end Sinpl eFi | el nput 2;

Program 7.3 Another Sample File Input Program

Thefileio.appendunction maes the fie pointer to the end of thadi This function is really only use
ful for files youvve opened for writing (or reading and writing)fter executingfileio.appendall data you
write to the fie will be written after the data that alreadyisés in the fie (i.e., you use this call to append
data to the end of aldiyouve opened).The followving program demonstrateswdo use this program to
append data to thddicreated byrogram 7.1

pr ogr am AppendDenv;
#incl ude(“stdlib.hhf”)

static
fil eHandl e: dwor d;
u: uns32;
begi n AppendDenv;
fileio.open(“nyfile.txt”, fileio.rw);
nov(eax, fileHandl e);
fileio.append(eax);
for(nmov(10, ecx); ecx < 20; inc(ecx)) do
fileio.put(fileHandl e, (type uns32 ecx), nl);
endf or;
// Ckay, let’s rewind to the beginning of the file and
/1l display all the data fromthe file, including the

// new data we just wote to it:

fileio.rewind(fileHandl e);
while(!fileio.eof (fileHandl e)) do

/1 Read and display the next itemfromthe file:
fileio.get(fileHandl e, u);
stdout.put(“u=", u, nl);

fileio.readLn(fileHandl e);

endwhi | e;
fileio.close(fileHandl e);

end AppendDenv;

Program 7.4 Demonstration of the fileio.Append Routine

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages25

Chapter Seven Volume Three

Another function, similar tdileio.eof that will prore useful when reading data from & fis the
fileio.eolnfunction. This function returns true if the xiecharacter(s) to be read from thle fare the end of
line sequence (carriage return, linefeed, or the sequence of tleeskaracters und&vindows, just a line
feed under Linux). This function returns true owrlse in the EAX rgister if it detects an end of line
sequenceThe calling sequence for this function is

fileio.eoln(fileHandl e);

If fileio.eolndetects an end of line sequence, it will read those characters frote tfse fhe net read
from the fle will not read the end of line characters)fildio.eolndoes not detect the end of line sequence,
it does not modify the I& pointer position. The folloving sample program demonstrates the use of
fileio.eolnin theAppendDemo program, replacing the calfiteio.readLn(sincefileio.eolnreads the end of
line sequence, there is no need for the cdlldm.readLn:

pr ogr am Eol nDenv;
#include(“stdlib.hhf”)

static
fil eHandl e: dwor d;
u: uns32;
begi n Eol nDenv;
fileio.open(“nyfile.txt”, fileio.rw);
nov(eax, fileHandl e);
fileio.append(eax);
for(nov(10, ecx); ecx < 20; inc(ecx)) do
fileio.put(fileHandl e, (type uns32 ecx), nl);
endf or;
Il Ckay, let's rewind to the beginning of the file and
/1l display all the data fromthe file, including the

[/l new data we just wote to it:

fileio.rewind(fileHandl e);
while(!fileio.eof (fileHandl e)) do

/1 Read and display the next itemfromthe file:
fileio.get(fileHandle, u);
stdout.put(“u=", u, nl);
if(!'fileio.eoln(fileHandl e)) then
stdout. put (“Hmm expected the end of the line”, nl);

endi f;

endwhi | e;
fileio.close(fileHandl e);

end Eol nDeno;

Pageb26 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O

Program 7.5 fileio.eoln Demonstration Program.

7.4

Random Access Files

The problem with sequentialds is that thg are, well, sequentialThey are great for dumping and
retrieving large blocks of data all at onceytithey are not suitable for applications that need to read, write,
and revrite the same data in defimultiple times. In those situations random accéss firavide the only
reasonable alternaé.

Windows and Linux dort'differentiate sequential and random accéss érymore than the CPU dér-
entiates byte and charactalwes in memory; & up to your application to treat thée§ as sequential or
random accessAs such, you use mgrof the same functions to manipulate random acclessa$ you use
to manipulate sequential acces$ssj you just use them thfently is all.

You still open fies withfileio.openandfileio.openN&. Random accesdds are generally opened for
reading or reading and writin¢you rarely open a random access dis write-only since a program typically
needs to read data ifstjumping around in theld.

You still close the fes withfileio.close

You can read and write thée withfileio.getandfileio.put although you wuld not normally use these
functions for random accesfi/O because each record you read or write has trdmtlythe same length
and these functions areémarticularly suited for fied-length record I1/0. Most of the time you will use one
of the folloving functions to read and writexéd-length data:

fileio.wite(fileHandl e, buffer, count);
fileio.read(fileHandl e, buffer, count);

ThefileHandleparameter is the usual file handle value (a dword variable)cdtmgparameter is an uns32
object that specifies how many bytes to read or write. bufier parameter must be an array object with at
leastcountbytes. This parameter supplies the address of the first byte in memory where the 1/O transfer will
take place. These functions return the number of bytes read or written in the EAX regisiiggioFead if

the return value in EAX does not equaiunt’s value, then you've reached the end of the file. For
fileio.write, if EAX does not equatountthen the disk is full.

Here is a typical call to thfdeio.readfunction that will read a record from éefi
fileio.read(nyHandl e, nyRecord, @ize(nyRecord));

If the return value in EAX does not equal @size(myRecord) and it does not equal zero (indicating end of
file) then there is something seriously wrong with the file since the file should contain an integral number of
records.

Writing data to a file wittileio.write uses a similar syntax fibeio.read

You can usdileio.readandfileio.write to read and write data from/to a sequential fust as you can
use routines ligfileio.get andfileio.putto read/write data from/to a random acceles fou'd typically use
these routines to read and write data from/to a binary sequésetial fi

The functions we/e discussed to this point dotet you randomly access records inle. filf you call
fileio.readseveral times in a n, the program will read those records sequentially from tttdite. To do
true random access /O we need the ability to jump around inl¢he Fortunately the HLA Standard
Library’s file module preides sgeral functions you can use to accomplish this.

Thefileio.positionfunction returns the currentfeét into the fe in the EAX rgister If you call this
function immediately before reading or writing a record tdea fhen this function will tell you thexact

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages27

Chapter Seven Volume Three

position of that recordYou can use thisalue to quickly locate that record for a future accdsee calling
sequence for this function is

fileio.position(fileHandle); // Returns current file position in EAX

Thefileio.seekunction repositions thelé pointer to the déet you specify as a parametéhe follow-
ing is the calling sequence for this function:

fileio.seek(fileHandl e, offset); // Repositions file to specified offset.

The function call abee will reposition the file pointer to the byte offset specified byotfgetparameter. If
you feed this function the value returnedfibgio.position then the next read or write operation will access
the record written (or read) immediately after filedo.positioncall.

You can pass any arbitrary offset value as a parameterfiteibseekoutine; this alue does not va
to be one that thleio.positionfunction returns. & random accesddil/O you would normally compute
this ofset fie by specifying the indeof the record you wish to access multiplied by the size of the record.
For example, the follawing code computes the bytefsdt of recordndex in the fie, repositions the &
pointer to that record, and then reads the record:

intmul (@ize(nyRecord), index, ebx);
fileio.seek(fileHandl e, ebx);
fileio.read(fileHandl e, (type byte nyRecord), @ize(nyRecord));

You can use essentially this same code sequence to select a specific record in the file for writing.

Note that it is not an error to seek beyond the current end of file and then write data. If you do this, the
OS will automatically fill in the intervening records with uninitialized data. Generally, this isn’t a great way
to create files, but it is perfectly legal. On the other hand, be aware that if you do this by accident, you may
wind up with garbage in the file and no error to indicate that this has happened.

The fileio module preides another routine for repositioning thie fpointer:fileio.rSeek This fune
tion’s calling sequence iexy similar tofileio.seekit is

fileio.rSeek(fileHandl e, offset);

The diference between this function and the regfilaio.seekunction is that this function repositions the
file pointer offset bytes from the end of the file (rather than offset bytes from the start of the file). The “r"in
“rSeek” stands for “reverse” seek.

Repositioning the file pointer, especially if you reposition it a fair distance from its current location, can
be a time-consuming process. If you reposition the file pointer and then attempt to read a record from the
file, the system may need to reposition a disk arm (a very slow process) and wait for the data to rotate under-
neath the disk read/write head. This is why random access I/O is much less efficient than sequential 1/0.

The following program demonstrates random access I/O by writing and reading a file of records:

pr ogr am RandonAccessDeno
#incl ude(“stdlib.hhf”)

type
fileRec:
record
X:int16;
y:int16;
nmagni t ude: uns8§;
endr ecord
const

// Sone arbitrary data we can use to initialize the file:

Pages28 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O

fileData: =
[
fileRec:[2000, 1, 1],
fileRec:[1000, 10, 2],
fileRec:[750, 100, 3],
fileRec:[500, 500, 4],
fileRec:[100, 1000, 5],
fileRec:[62, 2000, 6],
fileRec:[32, 2500, 7],
fileRec:[10, 3000, 8]
I
static
fileHandl e: dwor d;
Recor dFronfi | e: fil eRec;

Initial FileData: fileRec[8] :=fileData;

begi n RandomAccessDeno;

fileio.openNew(“fileRec.bin”);
nov(eax, fileHandl e);

Il Ckay, wite the initial data to the file in a sequential fashion:
for(nov(O, ebx); ebx < 8; inc(ebx)) do

intmul (@ize(fileRec), ebx, ecx); /1 Conpute index into fileData
fileioowite

(
fileHandl e,
(type byte Initial FileDatalecx]),
@i ze(fileRec)
)
endf or;

/1 Ckay, now let’s denonstrate a random access of this file
/1 by reading the records fromthe file backwards.

stdout. put (“Readi ng the records, backwards:” nl);
for(nov(7, ebx); (type int32 ebx) >= 0; dec(ebx)) do

intmul (@ize(fileRec), ebx, ecx); /1 Conpute file offset
fileio.seek(fileHandl e, ecx);
fileio.read
(
fil eHandl e,
(type byte RecordFrontile),
@i ze(fileRec)
)
if(eax = @ize(fileRec)) then

st dout . put

(
“Read record #",

(type uns32 ebx),
“, values:” nl
x: “, RecordFronFile.x, nl

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages29

Chapter Seven Volume Three

y: “, RecordFronfFile.y, nl
magni tude: “, RecordFrontil e. nagni tude, nl nl

);
el se
stdout.put(“Error reading record nunber “, (type uns32 ebx), nl);
endi f;

endf or;
fileio.close(fileHandl e);

end RandonAccessDeno;

Program 7.6 Random Access File 1/0 Example

7.5 ISAM (Indexed Sequential Access Method) Files

ISAM is a trick that attempts to allorandom access t@riable-length records in a sequentik. fiT his
is a technique empyed by IBM on their mainframe data bases in the 1960d 197&. Back then, disk
space ws \ery precious (remember wiwe wound up with the/2K problem?) and IBM8 engineers did
everything thg could to see space.At that time disks held aboutvé magabytes, or so, were the size of
washing machines, and cost tens of thousands of doflatscan appreciate whhey wanted to mad every
byte count. Today data base designersveadisk drves with hundreds of gidpytes per dvie and RAID
devices with dozens of these b installed. They dont bother trying to conseevspace at all (“Heck, |
don't know how big the persos’ name can get, sdllallocate 256 bytes for it!"). Nertheless,\een with
large disk arrays, sing space is often a wise idea. Nwéewone has a terabyte (1,000 ajgtes) at their
disposal and a user of your application may not appreciate your decisiast®their disk spacelhere
fore, techniques lik ISAM that can reduce disk storage requirements are still important today

ISAM is actually a ery simple concept. Soméere, the program ges the dket to the start ofvery
record in a fe. Since dbets are four bytes long, an array ofodds will work quite nicelf. Generallyas
you construct thel8 you fil in the list (array) of dets and &ep track of the number of records in the. fi
For example, if you were creating axtdile and you vanted to be able to quickly locateydime in the fie,
you would s&e the ofset into the fe of each line you wrote to théefi The folloving code fragment sks
how you could do this:

static
out put Li ne: string;
| SAVarray: dword[128*1024]; // allow up to 128K records.

nov(0, ecx); /'l Keep record count here.
f orever

<< create a line of text in “outputLine” >>

fileio.position(fileHandl e);

3. Redundant array of inexpensive disks. RAID is a mechanism for combining lots of cheap disk drives together to form the
equivalent of a really large disk drive.
4. This assumes, of course, that your files have a maximum size of four gigabytes.

Pages30 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O

nov(eax, |SAMVarray[ecx*4]); [/ Save away current record offset.
fileio.put(fileHandl e, outputLine, nl); // Wite the record.
inc(ecx); [// Advance to next el enent of | SAVarray.

<< determne if we're done and BREAK if we are >>
endfor;

<< At this point, ECX contains the nunber of records and >>
<< | SAMarray[0] .. | SAvarray[ecx-1] contain the offsets to >>
<< each of the records in the file. >>

After building the fle using the code alie, you can quickly jump to an arbitrary line ofttey fetching
the inde for that line from théSAMarray list. The followving code demonstrateswig/ou could read line
recodNumberfrom the fle:

nov(recordNunber, ebx);
fileio.seek(fileHandl e, | SAVarray[ebx*4]);
fileio.a gets(fileHandl e, inputString);

As long as yowe precalculated thé&SAMarraylist, accessing an arbitrary line in this text file is a trivial
matter.

Of course, back in the days when IBM programmers were trying to squeeze every byte from their data-
bases as possible so they would fit on a five megabyte disk drive, they didn’'t have 512 kilobytes of RAM to
hold 128K entries in theSAMarray list. Although a half a ngabyte is no big deal todathere are a couple
of reasons wh keeping thdSAMarray list in a memory-based array might not be such a good idea. First,
databases are muchdar these days. Some databases handreds of millions of entriedVhile setting
aside a half a ngabyte for an ISAM table might not be a bad thingy fezople are willing to set aside a half
a gigabyte for this purpose. En if your database ignamazingly big, there is another reasonywlou
might not want to lkeep younSAMarray in main memory — i the same reason you dokéep the fe in
memory — memory isolatile and the data is lost whenee the application quits or the user rem® pover
from the system.The solution is xactly the same as for thdefidata: you store thkSAMarray data in its
own file. A program that bilds the ISAM table while writing thelé is a simple modi€ation to the pna-
ous ISAM generation progranihe trick is to open tw files concurrently and write the ISAM data to one
file while youte writing the t&t to the other fe:

static
fil eHandl e: dword; /1 file handle for the text file.
out put Li ne: string; // file handle for the | SAMfile.
Qurrent O fset: dword; // Holds the current offset into the text file.

f orever
<< create a line of text in “outputLine” >>

/1 Get the offset of the next record in the text file
/1 and wite this offset (sequentially) to the |SAMfile.

fileio.position(fileHandl e);

mov(eax, QurrentCOifset);

fileio.wite(isantHandle, (type byte QurrentCifset), 4);
// Ckay, wite the actual text data to the text file:

fileio.put(fileHandl e, outputLine, nl); // Wite the record.

<< determine if we're done and BREAK if we are >>

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageb31

Chapter Seven Volume Three
endf or;

If necessaryyou can count the number of records as before. You might write this value to the first record of
the ISAM file (since you know the first record of the text file is always at offset zero, you can use the first
element of the ISAM list to hold the count of ISAM/text file records).

Since the ISAM file is just a sequence of four-byte integers, each record in the file (i.e., an integer) has
the same length. Therefore, we can easily access any value in the ISAM file using the random access file I/0
mechanism. In order to read a particular line of text from the text file, the first task is to read the offset from
the ISAM file and then use that offset to read the desired line from the text file. The code to accomplish this
is as follows:

/1 Assume we want to read the line specified by the “l'i neNunber” variable.
if(lineNunber <> 0) then

/1 If not record nunber zero, then fetch the offset to the desired
/1 line fromthe |SAMTfile:

intmul (4, lineNunber, eax); /1 Conpute the index into the ISAMfile.
fileio.seek(isanHandl e, eax);
fileio.read(isanHandl e, (type byte QurrentCffset), 4); // Read of fset

el se

nov(O, eax); [// Special case for record zero because the file
/1l contains the record count in this position.

endi f;
fileio.seek(fileHandle, QurrentCffset); // Set text file position.
fileio.a gets(fileHandl e, inputLine); /!l Read the line of text.

This operation runs at about half the speed wofrigathe ISAM array in memory (since it takes four file
accesses rather than two to read the line of text from the file), but the data is non-volatile and is not limited
by the amount of available RAM.

If you decide to use a memory-based array for your ISAM table, it’s still a good idea to keep that data in
a file somewhere so you don’t have to recompute it (by reading the entire file) every time your application
starts. If the data is present in a file, all you've got to do is read that file data inttspddarray list.
Assuming yowe stored the number of records in element number zero of the ISAMyaruagould use the
following code to read your ISAM data into #8AMarray variable:

static
i sanBi ze: uns32;
i sanHandl e: dwor d;
fil eHandl e: dword;
| SAVarray: dword[128*1024];

/! Read the first record of the ISAMfile into the isanfize variabl e:
fileio.read(isanHandle, (type byte isantize), 4);

/1 Now read the remaining data fromthe | SAMfile into the | SAVarray
/1 variabl e:

if(isanB ze >= 128*1024) then

rai se(ex.Val ueQut 0f Range);

Pages32 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O

endi f;
intnul (4, isanBize, ecx); [/ #records * 4 is nunber of bytes to read.
fileio.read(isanHandl e, (type byte |SAvarray), ecx);

/1 At this point, |SAVarray[O]..|SAVarray[isanSi ze-1] contain the indexes
/1 into the text file for each line of text.

7.6

Truncating a File

If you open ansting file (usingfileio.open for output and write data to thatefi it overwrites the
existing data from the start of thdefi However, if the nev data you write to thelé is shorter than the data
originally appearing in thelé, the ecess data from the originaldj beyond the end of the medata yowe
written, will still appear at the end of thewméata. Sometimes this might be desirable,rhost of the time
you'll want to delete the old data after writing thevraata.

One vay to delete the old data is to usefiledo.openNes function to open thel&. Thefileio.openNe
function automatically deletes yamxisting file so only the data you write to théefivill be present in the
file. However, there may be times when you magnito read the old datadf, ravind the fle, and then
overwrite the data. In this situation, yfuieed a function that witruncatethe old data at the end of thkefi
after youve written the ne data. Thefileio.truncatefunction accomplishes this taskhis function uses the
following calling syntax:

fileio.truncate(fileHandl e);

Note that this function does not close the. fivou still have to cafileio.closeto commit the data to the disk.

The following sample program demonstrates the use diléhetruncatefunction:

pr ogr am Tr uncat eDeno;
#incl ude(“stdlib.hhf”)

static
fil eHandl e: dwor d;
u: uns32;
begi n Truncat eDenv;
fileio.openNew(“nyfile.txt”);
nov(eax, fileHandl e);
for(nov(0, ecx); ecx < 20; inc(ecx)) do
fileio.put(fileHandl e, (type uns32 ecx), nl);
endf or;
// Ckay, let’s rewind to the beginning of the file and
Il rewite the first ten lines and then truncate the

/1l file at that point.

fileio.rewind(fileHandl e);
for(nov(0, ecx); ecx < 10; inc(ecx)) do

fileio.put(fileHandl e, (type uns32 ecx), nl);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageb33

Chapter Seven Volume Three
endf or ;
fileio.truncate(fileHandl e);
// Rewind and display the file contents to ensure that

/1 the file truncation has worked.

fileio.rewind(fileHandl e);
while(!fileio.eof(fileHandl e)) do

/1 Read and display the next itemfromthe file:
fileio.get(fileHandle, u);
stdout.put(“u=", u, nl);

fileio.readLn(fileHandl e);

endwhi | €;
fileio.close(fileHandl e);

end Truncat eDenvo;

Program 7.7 Using fileio.truncate to Eliminate Old Data From a File

7.7 File Utility Routines

The following subsections descrilféeio functions that manipulatelds or return meta-information
about fles (e.g., the lé size and attrilites).

7.7.1 Copying, Moving, and Renaming Files

Some ery useful fie utilities are coping, moving, and renaminglés. For example, you might ant to
copy a fle an application has created in order to enabackup cop Moving files from one subdirectory to
anothey or even from one disk to another is another common operatiorewlsg, the need to change the
name of a fe arises all the time. In this section Widke a look at the HLA Standard Library routines that
accomplish these operations.

Copying a fie is a nearly txial process undéwindows®. All you've got to do is open a sourckefi
open a destinationld, then read the bytes from the sourteednd write them to the destinatiole funtil you
hit end of fle. Unfortunatelythis simple approach to cgipg a fie can sufer from performance problems.
Windows provides an internal function to cggiles using a high performance algorithm (Linux does not
provide this call). The HLA Standard Librar§ileio.copyfunction pravides an intedce to this copopera
tion. The coyy a fie using theileio.copyprocedure, you use the folleing call sequence:

fileio.copy(sourcefileNane, destFileNane, faillfExists);

The sourceFileNameanddestFileNamgarameters are strings that specify the pathnames of the source and
destination files. These can be string constants or variables. The last parameter is a boolean variable that
specifies what should happen if the destination file exists. If this parameter contains true and the file already
exists, then the function will fail; ifaillfExistsis false, thdileio.copyroutine will replace the existing desti

nation file with a copy of the source file. In either case, of course, the source file must exist or this function

5. Sorry, thdileio.copyfunction is not available under Linux.

Pageb34 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O

will fail. This function returns a boolean success/failure result in the EAX register. It returns true if the
function returns TRUE in EAX.

Program 7.8 demonstrates the use of this function to copy a file:

pr ogr am CopyDeno;
#incl ude(“stdlib.hhf”)

begi n CopyDenv;

/1 Make a copy of nyfile.txt to itself to denonstrate
/1 a true “failslfExists” paraneter.

if(!'fileio.copy(“nyfile.txt”, “nyfile.txt”, true)) then

stdout.put(“Did not copy ‘nyfile.txt’ over itself” nl);
el se

stdout. put (“Whoa! The failslfExists paraneter didn't work.” nl);
endi f;

/1 Ckay, nake a copy of the file to a different file, to verify
I/ that this works properly:

if(fileio.copy(“nyfile.txt”, “copyCt MFile.txt”, false)) then
stdout. put (“Successfully copied the file” nl);
el se
stdout.put(“Failed to copy the file (maybe it doesn't exist?)” nl);
endi f;

end CopyDeno;

Program 7.8 Demonstration of a fileio.copy Operation

To move a fle from one location to another might seene ldnother triial task — all yowe got to do is
copy the fie to the destination and then delete the origitel flovever, these scheme is quite ifiefent in
most situations. Cging the fle can be anxg@ensve process if thelé is lage; Worse, the mee operation
may fail if you're moring the fle to a nev location on the same disk and there is ifisigit space for a sec
ond copy of the fle. A much better solution is to simply m®the fie’s directory entryfrom one location to
another on the diskwWin32's disk directory entries are quite small, soving a fie to a diferent location on
the same disk by simply maimg its directory entry isery fast and dfcient. Unfortunatelyif you move a
file from one fie system (disk) to anotherou will have to frst copy the fle and then delete the origindkfi
Once agin, you dort have to bother with the compliies of this operation becaugéindows has a hilt-in
function that automatically nves fles for you. The HLA Standard Librargfileio.moseprocedure prades
a direct interéce to this function gailable only undewindows). The calling sequence is

fileio.mve(source, dest);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages35

Chapter Seven Volume Three

The two parameters are strings providing the source and destination filenames. This function returns true or
false in EAX to denote the success or failure of the operation.

Not only can thdileio.move procedure mee a fle around on the disk, it can also vecsubdirectories
around. The only catch is that you cannot weoa subdirectory from oneolume (fle system/disk) to
another

If both the destination and sourckeffiames are simplddnames, not a pathnames, thenfileé.move
function maes the sourcelé from the current directory back to the current directddyhough this seems
rather weird, this is aery common operation; this iswwg/ou rename alé. The HLA Standard Library
does not hee a separate t&io.rename” function. Instead, you use tleidimove function to renamelés
by moving them to the same directorytbwith a diferent flename. Program 7.@lemonstrates koto use
fileio.movein this capacity

program Fi | eMoveDeno;
#include(“stdlib.hhf”)

begi n Fi | eMoveDeno;

/1 Rename the “nyfile.txt” file to the nane “renamned. txt”.

if(!'fileio. nove(“nyfile.txt”, “renaned.txt”)) then
st dout . put
(“Coul d not renane ‘nyfile.txt’ (maybe it doesn't exist?)” nl
);

el se

stdout. put (“Successfully renaned the file” nl);

endi f;

end Fi | eMoveDeno;

Program 7.9 Using fileio.move to Rename a File

7.7.2 Computing the File Size

Another useful function to lva is one that computes the size of aisteng file on the disk. The
fileio.sizefunction praides this capability The calling sequences for this function are

fileio.size(filenanmeString);
fileio.size(fileHandl e);

The first form above expects you to pass the filename as a string parameter. The second form expects a han
dle to a file you've opened wiffileio.openor fileio.openNew These two calls return the size of the file in

EAX. If an error occurs, these functions return -1 ($FFFF_FFFF) in EAX. Note that the files must be less
than four gigabytes in length when using this function (if you need to check the size of larger files, you will
have to call the appropriate OS function rather than these functions; however, since files larger than four
gigabytes are rather rare, you probably won't have to worry about this problem).

Pageb36 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O

One interesting use for this function is to determine the number of recordséad-defigth-record ran
dom accesslé. By getting the size of thddiand dviding by the size of a record, you can determine the
number of records in thddi

Another use for this function is to alloyou to determine the size of a (smallelg,fallocate siicient
storage to hold the entirdefiin memory (by usingnallog), and then read the entiréefinto memory using
thefileio.readfunction. This is generally theaStest ey to read data from ddiinto memory

Program 7.1@emonstrates the use of theotiorms of thefileio.sizefunction by displaying the size of
the “myfile.txt” file created by other sample programs in this chapter

program Fi | eSi zeDenvo;
#include(“stdlib.hhf”)

static
handl e: dwor d;

begi n Fil eSi zeDenv;
I/l Display the size of the “FileSizeDeno. hla” file:

fileio.size(“FileS zeDeno.hla”);
if(eax <> -1) then

stdout.put(“Size of file: “, (type uns32 eax), nl);
el se

stdout.put(“Error calculating file size” nl);
endi f;
/1 Sane thing, using the file handle as a paraneter:
fileio.open(“FileSi zeDeno.hla”, fileio.r);
nov(eax, handle);
fileio.size(handle);
if(eax < -1) then

stdout.put(“Size of file(2): “, (type uns32 eax), nl);
el se

stdout.put(“Error calculating file size” nl);

endi f;
fileio.close(handle);

end Fil eSi zeDenv;

Program 7.10 Sample Program That Demonstrates the fileio.size Function

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages37

Chapter Seven Volume Three

7.7.3 Deleting Files

Another useful fe utility function is the feio.delete function.As its nhame suggests, this function
deletes a e that you specify as the functisrparameterThe calling sequence for this function is

fileio.delete(filenaneToDel ete);
The single parameter is a string containing the pathname ofetlyedi wish to delete. This function returns
true/false in the EAX register to denote success/failure.
Program 7.11 provides an example of the use diltie.deletefunction.

progr am Del et eFi | eDeno;
#include(“stdlib. hhf”)

static
handl e: dwor d;

begi n Del et eFi | eDenv;
Il Delete the “nyfile.txt” file:

fileio.delete(“xyz”);
if(eax) then

stdout.put(“Deleted the file”, nl);
el se
stdout.put(“Error deleting the file” nl);

endi f;

end Del et eFi | eDenv;

Program 7.11 Example Usage of the fileio.delete Procedure

7.8

Directory Operations

In addition to manipulatinglés, you can also manipulate directories with some ofiléie functions.
The HLA Standard Library includeswaral functions that let you create and use subdirectoFtesse fune
tions arefileio.cd (change directory)fjleio.gwd(get working directory), andileio.mkdir (make directory).
Their calling sequences are

fileio.cd(pathnameString);
fileio.gwd(stringToHol dPat hnane);
fileio.nkdir(newD rectoryNanme);

Thefileio.cdandfileio.mkdirfunctions return success or failure (true or false, respectively) in the EAX reg
ister. For thdileio.gwdfunction, the string parameter is a destination string where the system will store the
pathname to the current directory. You must allocate sufficient storage for the string prior to passing the
string to this function (260 charact®iis a good defult amount if you're unsure how long the pathname

Pages38 © 2001, By Randall Hyde Beta Draft - Do not distribute

File I/O

could be). If the actual pathname is too long ttanfthe destination string you supply as a parameter, the
fileio.gwdfunction will raise thex.StringOverflonexception.

Thefileio.cdfunction sets the currentasking directory to the pathname you speciéifter calling this
function, the OS will assume that all future “unadorndé’riéferences (those withoutyg\” or “/” charae
ters in the pathname) will daflt to the directory you specify as tfileio.cd parameter Proper use of this
function can help makyour program much more a@nient to use by your prograsnusers since tle
won't have to enter full pathnames fovery file they manipulate.

Thefileio.gwdfunction lets you query the system to determine the currerking directory After a
call tofileio.cd the string thatileio.gwdreturns should be the same filgio.cd’s parameter Typically, you
would use this function todep track of the datilt directory when your progranrdt starts runningYou
program will exhibit good manners by switching back to thisadgif directory when your program termi
nates.

Thefileio.mkdirfunction lets your program create awnsubdirectory If your program creates datke
and stores them in a @efit directory someghere, its good etiquette to let the user specify the subdirectory
where your program should put thesedi If you do this, you shouldvg your users the option to create a
new directory (in case tlyewant the data placed in a brandangirectory). You can usdileio.mkdirfor this
purpose.

7.9

Putting It All Together

This chapter bgan with a discussion of the basile foperations.That section \&s rather short because
you've already learned most of what you need tonkabout fie 1/0O when learning thetdoutand stdin
functions. So the introductory material concentrated oteagéneral fe concepts (lik the diferences
between sequential and random accdss éind the diérences between binary andttéles). After teach
ing you the fev extra routines you need in order to open and cldssg, fihe remainder of this chapter simply
concentrated on pviding a fav examples (lile ISAM) of file access and a discussion of fiteio routines
available in the HLA Standard Library

While this chapter demonstrates the mechanicdeof/®, hav you eficiently use fes is well bgond
the scope of this chaptein future wlumes you will see hato search for data indis, sort data inlés, and
even create databases. S®f on reading if yote interested in more information aboue foperations.

6. This is the default MAX_PATH value in Windows. This is probably sufficient for most Linux applications, too.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages39

Chapter Seven Volume Three

Pages40 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Files Chapter Seven
	7.1 Chapter Overview
	7.2 File Organization
	7.2.1 Files as Lists of Records
	7.2.2 Binary vs. Text Files

	7.3 Sequential Files
	7.4 Random Access Files
	7.5 ISAM (Indexed Sequential Access Method) Files
	7.6 Truncating a File
	7.7 File Utility Routines
	7.7.1 Copying, Moving, and Renaming Files
	7.7.2 Computing the File Size
	7.7.3 Deleting Files

	7.8 Directory Operations
	7.9 Putting It All Together

