Calculation Via Table Lookups

Calculation Via Table Lookups Chapter Twelve

12.1 Chapter Overview

This chapter discusses arithmetic computation via table lookup. By the conclusion of this chapter you
should be able to use table lookups to quickly compute carfyohetions. You will also learn he to con
struct these tables programmatically

12.2 Tables

The term “table” has diérent meanings to ddrent programmersio most assembly language pro
grammers, a table is nothing more than an array that is initialized with som@& ltat@ssembly language
programmer often uses tables to compute compieotherwise sl functions. Mag very high level lan
guages (e.g., SNOBOL4 and Icon) directly support a table dataTgples in these languages are essen
tially arrays whose elements you can access with a nageinitede (e.g., fbating point, string, or gnother
data type). HLA preides a table module that lets you ir@d array using a string. ever, in this chapter
we will adopt the assembly language programsnégew of tables.

A table is an array containing preinitializedlwes that do not change during tixeaition of the pro
gram.A table can be compared to an array in the saayean intger constant can be compared to argieite
variable. In assembly language, you can use tables fanetywof purposes: computing functions, control
ling program fbw, or simply “looking things up”. In general, tablesyicke a fist mechanism for performing
some operation at thgmense of some space in your program (#tieespace holds the talar data). In the
following sections wél explore some of the marpossible uses of tables in an assembly language program.

Note: since tables typically contain preinitialized data that does not change during pregcatios,
the READONLY section is a good place to declare your table objects.

12.2.1 Function Computation via Table Look-up

Tables can do all kinds of things in assembly language. In HLIssRlikcal, it real easy to create a
formula which computes somalue.A simple looking arithmeticxgression can be eqailent to a consid
erable amount of 80x86 assembly language chstsembly language programmers tend to computeyman
values via table look up rather than through thtecation of some functio.his has the adntage of being
easiey and often more 8tient as well. Consider the folling Pascal statement:

if (character >=‘a’) and (character <= ‘z’) then character := chr(ord(character) - 32);

This Rascalif statement corerts the characteviable character fromveger case to upper case if char
acter is in the range ‘dz’. The HLA code that does the same thing is

nov(character, al);

if(al in‘a..”z”) then
and($5f, al); /1 Same as SUB(32, al) in this code.
endi f;

nov(al, character);

Note that HLAs high level IF statement translates into four machine instructions in this particular example.
Hence, this code requires a total of seven machine instructions.

Beta Draft - Do not distribute © 2001, By Randall Hyde Page647

Chapter Twelve Volume Three

Had you luried this code in a nested loop, yobbe hard pressed to impeothe speed of this code with
out using a table look up. Using a table look upyda@r, allows you to reduce this sequence of instructions
to just four instructions:

nov(character, al);
lea(ebx, CnvrtlLower);
x| at

mov(al, character);

You're probably wondering how this code works and what is this new instruction, XLAT? The XLAT, or
translate, instruction does the following:

mov([ebx+al *1], al);

That is, it uses the currerdlue of the AL register as an index into the array whose base address is contained

in EBX. It fetches the byte at that index in the array and copies that byte into the AL register. Intel calls this

the translate instruction because programmers typically use it to translate characters from one form to
another using a lookup table. That's exactly how we are using it here.

In the previous example, CnvrtLower is a 256-byte table which contains thalues 0..$60 at indices
0..$60, $41..$5A at indices $61..$7A, and $7B..$FF at indices $7Bh.Ti&dfefore, ifAL contains a glue
in the range $0..$60, the XMTAinstruction returns thealue $0..$60, é&ctively leaving AL unchanged.
However, if AL contains a alue in the range $61..$7A (tASCII codes for ‘a’’z’) then the XLAT instruc
tion replaces thealue inAL with a value in the range $41..$5A. $41..$5A just happen to bAS@|
codes for A'.."’Z'. Therefore, ifAL originally contains an lver case character ($61..$7A), the XLA
instruction replaces thelue inAL with a correspondingaiue in the range $61..$7Afedtively corverting
the original laver case character ($61..$7A) to an upper case character ($41.T$®Nemaining entries in
the table, lile entries $0..$60, simply contain the irdeto the table of their particular elemefitherefore,
if AL originally contains a alue in the range $7A..$Fthe XLAT instruction will return the corresponding
table entry that also contains $7A..$FF

As the complrity of the function increases, the performance b&nefi the table look up method
increase dramaticallyVhile you would almost neer use a look up table to aeart lover case to upper case,
consider what happens if yolant to svap cases:

Vi a conputation:

nmov(character, al);
if(al in‘a..”z) then

and($5f, al);
elseif(al in*A..”Z) then
or($20, al);

endi f;
nov(al, character):

The IF and ELSEIF statements generate four arechfitual machine instructions, respectively, so this code
is equivalent to 13 actual machine instructions.

The table look up code to compute this same function is:

nov(character, al);
| ea(ebx, SwapU);
xlat();

nov(al, character);

As you can see, when using a table look up to compute a function only the table changes, the code
remains the same.

Page648 © 2001, By Randall Hyde Beta Draft - Do not distribute

Calculation Via Table Lookups

Table look ups stér from one major problem — functions computed via table look up adimited
domain.The domairof a function is the set of possible inpatues (parameters) it will accepbrrexample,
the upper/laver case corersion functions ah@ have the 256-charact&SCII character set as their domain.

A function such as SIN or COS accepts the set of real numbers as possiblaingsit €learly the
domain for SIN and COS is muchdar than for the upperfieer case corersion function. If you are going
to do computations via table look up, you must limit the domain of a function to a sméHises because
each element in the domain of a function requires an entry in the look uprtableon’t find it very practi
cal to implement a function via table look up whose domain the set of real numbers.

Most look up tables are quite small, usually 10 to 128 entries. Rarely do look up tahldsegyod
1,000 entries. Most programmers domave the patience to create (angtify the correctness) of a 1,000
entry table.

Another limitation of functions based on look up tables is that the elements in the domain of the func
tion must bedirly contiguousTable look ups tak the input glue for a function, use this inputlue as an
index into the table, and return thalue at that entry in the table. If you do not pass a functigrvalnes
other than 0, 100, 1,000, and 10,000did seem an ideal candidate for implementation via table look up,
its domain consists of only four items. \Mever, the table wuld actually require 10,001 &fent elements
due to the range of the inpudlues.Therefore, you cannotfefiently create such a function via a table look
up. Throughout this section on tables, Wassume that the domain of the function isiay contiguous set
of values.

The best functions you can implement via table look ups are those whose domain ansl akays
0..255 (or some subset of this rangéu can diciently implement such functions on the 80x86 via the
XLAT instruction.The upper/laver case corersion routines presented earlier are goah®les of such a
function.Any function in this class (those whose domain and rangedakhe wlues 0..255) can be cem
puted using the same dvinstructions: fea(table, ebx);”and “xlat();” The only thing that\er changes is the
look up table.

You cannot (coveniently) use the XLA instruction to compute a functioralue once the range or
domain of the function tas on alues outside 0..25%here are three situations to consider:

e The domain is outside 0..255 but the range is within 0..255,
e The domain is inside 0..255 but the range is outside 0..255, and
* Both the domain and range of the function take on values outside 0..255.

We will consider each of these cases separately.

If the domain of a function is outside 0..255 but the range of the function falls within this set of values,
our look up table will require more than 256 entries but we can represent each entry with a single byte.
Therefore, the look up table can be an array of bytes. Next to look ups involvixigahastruction, fune
tions falling into this class are the mostieient. The folloving Pascal function imocation,

B := Func(X);

whereFuncis

function Func(X dword): byte;

consists of the follwing HLA code:

mov(X, ebx);
nov(FuncTable[ebx], al);
nov(al, B);

This code loads the function parameter iBBX, uses thisalue (in the range 0..??) as an ideo the
FuncTable table, fetches the byte at that location, and stores the resut iBtwiously, the table must cen
tain aalid entry for each possibl@le ofX. For example, suppose youamted to map a cursor position on
the video screen in the range 0..1999 (there are 2,000 character positions on an 80x25 video display) to its
orY coordinate on the screefou could easily compute thecoordinate via the function:

X:=Posn mod 80

Beta Draft - Do not distribute © 2001, By Randall Hyde Page649

Chapter Twelve Volume Three

and theY coordinate with the formula
Y:=Posn div 80

(wherepPosn is the cursor position on the scre€)is can be easily computed using the 80x86 code:

nov(Posn, ax);
div(80, ax);

// Xis nowin AH Yis nowin AL

However, the DIV instruction on the 80x86 isewy slav. If you need to do this computation foreey
character you write to the screen, you will seriouslyraée the speed of your video display cadee fol
lowing code, which realizes theseatfunctions via table look up,ould improve the performance of your
code considerably:

novzx(Posn, ebx); /1 Use a plain MV instr if Posn is uns32
nov(YCoord[ebx], al); // rather than an unsl16 val ue.
nov(XCoord[ebx], ah);

If the domain of a function is within 0..25bitthe range is outside this set, the look up table wilt con
tain 256 or fever entries bt each entry will require tovor more bytes. If both the range and domains of the
function are outside 0..255, each entry will require tw more bytes and the table will contain more than
256 entries.

Recall from the chapter on arrays that the formula forxindeinto a single dimensional array (of
which a table is a special case) is

Address : = Base + index * size

If elements in the range of the function require toytes, then the indemust be multiplied by ta
before ind&ing into the table. Likwise, if each entry requires three, foor more bytes, the indenust be
multiplied by the size of each table entry before being used as animade¢he table. &r example, suppose
you have a function, F(x), defied by the follwing (pseudo) Bscal declaration:

function F(x:dword): word;

You can easily create this function using the feitm 80x86 code (and, of course, the appropriate table
namedF):

nmov(X, ebx);
nmov(F[ebx*2], ax);

Any function whose domain is small and mostly contiguous is a good candidate for computation via
table look up. In some cases, non-contiguous domains are acceptable as well, as long as the domain can be
coerced into an appropriate set afues. Such operations are called conditioning and are the subject of the
next section.

12.2.2 Domain Conditioning

Domain conditioning is taking a set adlues in the domain of a function and massaging them so that
they are more acceptable as inputs to that function. Consider theifaléunction:

sinx = Binxx O[-21 210
This says that the (computer) function SIN(x) is ealeint to the (mathematical) functisim x where
-2TIS X< 2TT

As we all knev, sine is a circular function which will acceptyaral \alued inputThe formula used to
compute sine, hwever, only accept a small set of thesdues.

Page650 © 2001, By Randall Hyde Beta Draft - Do not distribute

Calculation Via Table Lookups

This range limitation doesnpresent apreal problems, by simply computiisgN(X mod (2*pi)) we can
compute the sine of gnnput \value. Modifying an inputalue so that we can easily compute a function is
called conditioning the input. In thexample abwe we computedX mod 2*pi” and used the result as the
input to thesin function. This truncate to the domairsin needswithout afecting the resuliWe can apply
input conditioning to table look ups as well. bcf, scaling the indeto handle wrd entries is a form of
input conditioning Consider the follwing Pascal function:

function val (x:word):word; begin
case x of
: val
val
val
val : ;
. val = 256;
ot herwi se val := 0;
end;
end;

N AR
NAREE

RowbhRoO

This function computes somalue forx in the range 0..4 and it returns zera i outside this range.
Sincex can tale on 65,536 dierent \alues (being a 16 bitavd), creating a table containing 65,536rds
where only the fst five entries are non-zero seems to be quitsteful. Hevever, we can still compute this
function using a table look up if we use input conditionifige folloving assembly language code presents

this principle:
nov(0, ax); /Il AX =0, assune X > 4.
novzx(x, ebx); /1 Note that HQ bits of EBX nust be zero!

if(bx <=4) then
nmov(val[ebx*2], ax);
endif;

This code checks to seexifs outside the range 0..4. If so, it manually g&t$o zero, otherwise it looks
up the function alue through theal table.With input conditioning, you can implementveeal functions
that would otherwise be impractical to do via table look up.

12.2.3 Generating Tables

One big problem with using table look ups is creating the table irrsti@lfce This is particularly true
if there are a laye number of entries in the table. Figuring out the data to place in the table, then laboriously
entering the data, andnélly, checking that data to malsure it is @lid, is a ery time-staking and boring
process. Br mary tables, there is noay around this processoiFother tables there is a betteayw use the
computer to generate the table for yAn.example is probably the besty to describe this. Consider the
following modification to the sine function:

(sinx) x r = (X000 X sinx)) 10 35017

1000

This states that x is an intger in the range 0..359 amdanust be an intger The computer can easily
compute this with the folleing code:

movzx(X, ebx);

nmov(Sines[ebx*2], eax); I/l Get SIN(X) * 1000

imul (r, eax); /1 Note that this extends EAX into EDX
idiv(1000, edx:eax); /1 Conpute (R*(SIN X)*1000)) / 1000

Note that intger multiplication and dision are not associag.You cannot reme the multiplication
by 1000 and the dision by 1000 because theeem to cancel one another out. Furthermore, this code must

Beta Draft - Do not distribute © 2001, By Randall Hyde Page651

Chapter Twelve Volume Three

compute this function inxactly this orderAll that we need to complete this function is a table containing
360 diferent \alues corresponding to the sine of the angle (greks) times 1,000. Entering such a table
into an assembly language program containing safiles is gtremely boring and yod’ probably mak
several mistaks entering anderifying this data. Haever, you can hae the program generate this table for
you. Consider the follwing HLA program:

progr am Cener at eSi nes;
#include(“stdlib.hhf”);

var
outFile: dword;
angl e: int32;
r: int32;
readonl y

RoundMbde: unsi16 := $23f;

begi n Gener at eSi nes;
/1 Qpen the file:
nov(fileio.openNew(“sines.hla”), outFile);
/1 Enmit the initial part of the declaration to the output file:
fileio.put

(

outFile,

stdio.tab,

“sines: int32[360] :="“ nl,

stdio.tab, stdio.tab, stdio.tab, “[“ nl);

/1 Enabl e rounding control (round to the nearest integer).
fldew(RoundMbde);

// Emt the sines table:

for(nov(O, angle); angle < 359; inc(angle)) do

/1 Convert angle in degrees to an angle in radi ans
/1l using “radians := angle * 2.0 * pi / 360.0;"

fild(angle);
fld(2.0);
ful ();

fldpi ();

ful ();

fld(360.0);
fdiv();

/1 Ckay, conpute the sine of STO
fsin();
/1 Multiply by 1000 and store the rounded result into

/1l the integer variable r.

Page652 © 2001, By Randall Hyde Beta Draft - Do not distribute

Calculation Via Table Lookups

fld(1000.0);

ful ();

fistp(r);

/1 Wite out the integers eight per line to the source file:
/1 Note: if (angle AND %411) is zero, then angle is evenly
/1 divisible by eight and we should output a newine first.

test(%11, angle);

if(@) then
fileio.put
(
outFile,
nl,
stdio.tab,
stdio.tab,
stdio.tab,
stdio.tab,
r:5,
)
el se
fileio.put(outFile, r:5 *,");
endi f;
endfor;

/1 Qutput sine(359) as a special case (no comma following it).
/1 Note: this value was conputed manual ly with a cal cul ator.

fileio.put

(
outFile,
R A
nl,
stdio.tab,
stdi 0.t ab,
stdio.tab,
‘1.7,
nl

)

fileio.close(outFile);

end Gener at eSi nes;

Program 12.1 An HLA Program that Generates a Table of Sines

The program abe@ produces the foll@ing output:

sines: int32[360] :=
[

0, 17, 35, 52, 70, 87, 105, 122,

Beta Draft - Do not distribute © 2001, By Randall Hyde Page653

Chapter Twelve Volume Three

139, 156, 174, 191, 208, 225, 242, 259
276, 292, 309, 326, 342, 358, 375 391
407, 423, 438, 454, 469, 485, 500, 515
530, 545, 559, 574, 588, 602, 616, 629,
643, 656, 669, 682, 695 707, 719, 731,
743, 755, 766, 777, 788, 799, 809, 819
829, 839, 848, 857, 866, 875, 883, 891
899, 906, 914, 921, 927, 934, 940, 946
951, 956, 961, 966, 970, 974, 978, 982
985, 988, 990, 993, 995, 996, 998, 999
999, 1000, 1000, 1000, 999, 999, 998, 996
995, 993, 990, 0988, 985, 982, 978, 974,
970, 966, 961, 956, 951, 946, 940, 934,
927, 921, 914, 906, 899, 891, 883, 875
866, 857, 848, 839, 829, 819, 809, 799,
788, 777, 766, 755, 743, 731, 719, 707
695, 682, 669, 656, 643, 629, 616, 602,
588, 574, 559, 545, 530, 515, 500, 485
469, 454, 438, 423, 407, 391, 375, 358
342, 326, 309, 292, 276, 259, 242, 225
208, 191, 174, 156, 139, 122, 105, 87

70, 52, 35, 17, 0, -17, -35 -52
-70, -87, -105, -122, -139, -156, -174, -191
-208, -225, -242, -259, -276, -292, -309, -326
-342, -358, -375, -391, -407, -423, -438, -454,
-469, -485, -500, -515, -530, -545, -559, -574,
-588, -602, -616, -629, -643, -656, -669, -682
-695, -707, -719, -731, -743, -755, -766, -777
-788, -799, -809, -819, -829, -839, -848, -857
-866, -875, -883, -891, -899, -906, -914, -921
-927, -934, -940, -946, -951, -956, -961, -966
-970, -974, -978, -982, -985, -988, -990, -993
-995, -996, -998, -999, -999, - 1000, - 1000, - 1000
-999, -999, -998, -996, -995, -993, -990, -988
-985, -982, -978, -974, -970, -966, -961, -956
-951, -946, -940, -934, -927, -921, -914, -906
-899, -891, -883, -875, -866, -857, -848, -839
-829, -819, -809, -799, -788, -777, -766, -755
-743, -731, -719, -707, -695, -682, -669, -656
-643, -629, -616, -602, -588, -574, -559, -545
-530, -515, -500, -485, -469, -454, -438, -423
-407, -391, -375, -358, -342, -326, -309, -292
=276, -259, -242, -225, -208, -191, -174, -156
-139, -122, -105, -87, -70, -52, -35, -17

I

Olviously it's much easier to write the HLA program that generated this data than to entesr{fgnd v
this data by hand. Of course, you dawen hae to write the table generation program in HLA. If youpre
fer, you might find it easier to write the program iageal/Delphi, C/C++, or some other highdElanguage.
Obviously, the program will onlyxeecute once, so the performance of the table generation program is not an
issue. If its easier to write the table generation program in a high lenguage, by all means do so. Note,
also, that HLA has adilt-in interpreter that all@s you to easily create tables withouving to use anxder-
nal program. &r more details, see the chapter on macros and the HLA compile-time language.

Once you run your table generation program, all that remains to be done is to cut and paste the table
from the fle (sines.hla in thisxample) into the program that will actually use the table.

Page654 © 2001, By Randall Hyde Beta Draft - Do not distribute

Calculation Via Table Lookups

12.3

High Performance Implementation of cs.rangeChar

Way back inChaptefThreethis wolume made the comment that the implementation afsh@ngeChar
was not ery eficient when generating lge character sets (s&@haracter Set Functiorihat Build Sets”
on paged49. That chapter also mentioned that a table lookaplevbe a better solution for this function if
you generate lge character setsThat chapter also promised an table lookup implementatios.aihge-
Char. This section fullis that promise.

Program 12.Drovides a table lookup implementation of this functidio. understand o this function
works, consider the twtables $tartRang andEndRang) appearing in this program.

Each element in th8tartRang table is a character set whose binary representation contains all one bits
from bit position zero through the indento the table.That is, element zero contains a singlebit’in bit
position zero; element one contains one bits in bit positions zero and one; elemeontains one bits in
bit positions zero, one, anddw etc.

Each element of thEndRang table contains one bits from the bit position spedifdy the inde into
the table through to bit position 12Therefore, element zero of this array contains all one bits from posi
tions zero through 127; element one of this array contains a zero in bit position zero and ones i bit posi
tions one through 127; elementowf this array contains zeros in bit positions zero and one and it contains
ones in bit positions tavthrough 127; etc.

ThefastRangCharfunction kuilds a character set containing all the characters betweechavacters
specifed as parameter3.he calling sequence for this function is

f ast RangeChar (LowBoundChar, H ghBoundChar, CsetVariable);

This function constructs the character set “WBoundChar..HighBoundChar }” and stores this character
set intoCsetVariable

As you may recall from the discussionasf.rangeChar’s low-level implementation, it constructed the
character set by running a FOR loop from tleevBoundChaithrough to theHighBoundCharand set the
corresponding bit in the character set on each iteration of the loop. @ttthb character set {'a’z’} the
loop would hare to execute 26 timesThefastRangCharfunction avoids this iteration by construction a set
containing all elements from #0 ighBoundChaiand intersecting this set with a second character set con
taining all the characters frobowBoundChato #127. ThefastRangCharfunction doesrt’actually luild
these tw sets, of course, it useéghBoundCharand LowBoundCharas indices into th&tartRang and
EndRangtables, respeately. The intersection of these twiable elements computes the desired result set.
As you'l see by looking atastRangChar this function computes the intersection of these $ets on the
fly by using theAND instruction. Without further ado, herg’'the program:

pr ogr am csRangeChar ;
#i ncl ude(“stdlib.hhf”)

static

// Note: the follow ng tables were generated
/1 by the genRangeChar program

Start Range: cset[128] : =
[

{#0},

{#0. . #1},
{#0. . #2},
{#0. . #3},
{#0. . #4},
{#0. . #5},

Beta Draft - Do not distribute © 2001, By Randall Hyde Page655

Chapter Twelve

Page656

{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.
{#0.

. #6},

HTY,

. #8},

. #9},

. #10},
C#11},
 #12},
 #13},
 #14},
. #15},
. #16},
H#1T},
. #18},
. #19},
. #20},
#21},
#22},
. #23},
 #24}
. #25},
. #26},
#2T},
. #28},
 #29},
. #30},
. #31},
. #32},
. #33},
. #34},
. #35},
. #36},
. #37},
. #38},
. #39},
. #40},
. #41},
 #42}
. #43},
. #44}
. #45}
. #46} ,
HAT},
. #48}
. #49},
. #50},
#51},
. #52},
. #53},
. #54}
. #55} ,
. #56} ,
#57},
. #58},
. #59},
. #60},
. #61},
. #62},
. #63},
. #64}
. #65} ,
. #66} ,

© 2001, By Randall Hyde

Volume Three

Beta Draft - Do not distribute

Calculation Via Table Lookups

{#0. . #67},
{#0. . #68},
{#0. . #69} ,
{#0. . #70},
{#0. . #71},
{#0. . #72},
{#0. . #73},
{#0. . #74},
{#0. . #75},
{#0. . #76},
{#0. . #77},
{#0. . #78},
{#0. . #79},
{#0. . #80},
{#0. . #81},
{#0. . #82},
{#0. . #83},
{#0. . #84}
{#0. . #85},
{#0. . #86},
{#0. . #87},
{#0. . #88},
{#0. . #89},
{#0. . #90},
{#0. . #91},
{#0. . #92},
{#0. . #93},
{#0. . #94} ,
{#0. . #95} ,
{#0. . #96} ,
{#0. . #97},
{#0. . #98},
{#0. . #99} ,
{#0. . #100}
{#0. . #101},
{#0. . #102},
{#0. . #103},
{#0. . #104}
{#0. . #105}
{#0. . #106} ,
{#0. . #107},
{#0. . #108},
{#0. . #109}
{#0. . #110},
{#0. . #111},
{#0. . #112},
{#0. . #113},
{#0. . #114},
{#0. . #115},
{#0. . #116},
{#0. . #117},
{#0. . #118},
{#0. . #119},
{#0. . #120},
{#0. . #121},
{#0. . #122},
{#0. . #123},
{#0. . #124},
{#0. . #125},
{#0. . #126},
{#0. . #127}

Beta Draft - Do not distribute © 2001, By Randall Hyde Page657

Chapter Twelve

Page658

1

EndRange: cset[128] : =

[

{#0.
{#1.
{#2.
{#3.
{#4.
{#5.
{#6.
{#7.
{#8.
{#9.

 #127},
 #127},
 #127},
 #127},
L #127Y,
L #127},
L #127},
 #127},
 #127},
 #127},
{#10.
{#11.
{#12.
{#13.
{#14.
{#15.
{#16.
{#17.
{#18.
{#19.
{#20.
{#21.
{#22.
{#23.
{#24.
{#25.
{#26.
{#27.
{#28.
{#29.
{#30.
{#31.
{#32.
{#33.
{#34.
{#35.
{#36.
{#37.
{#38.
{#39.
{#40.
{#41.
{#42.
{#43.
{#44.
{#45.
{#46.
{#47.
{#48.
{#49.
{#50.
{#51.
{#52.
{#53.
{#54.
{#55.
{#56.

L #127},
 #127},
 #127},
 #127},
 #127},
L #127},
L #127},
 #127},
 #127},
 #127},
 #127},
L #127},
L #127},
 #127},
 #127},
 #127},
 #127},
L #127},
L #127},
 #127},
 #127},
 #127},
 #127},
L #127},
L #127},
 #127},
 #127},
 #127},
 #127},
L #127},
L #127},
 #127},
 #127},
 #127},
 #127},
L #127},
L #127},
 #127},
 #127},
 #127},
 #127},
L #127},
L #127},
 #127},
 #127},
 #127},
 #127},

© 2001, By Randall Hyde

Volume Three

Beta Draft - Do not distribute

Calculation Via Table Lookups

{#57. . #127},
{#58. . #127},
{#59. . #127},
{#60. . #127},
{#61. . #127},
{#62. . #127},
{#63. . #127},
{#64. . #127},
{#65. . #127},
{#66. . #127},
{#67. . #127},
{#68. . #127},
{#69. . #127},
{#70. . #127},
{#71. . #127},
{#72. . #127},
{#73. . #127},
{#74. . #127},
{#75. . #127},
{#76. . #127},
{#77. . #127},
{#78. . #127},
{#79. . #127},
{#80. . #127},
{#81. . #127},
{#82. . #127},
{#83. . #127},
{#84. . #127},
{#85. . #127},
{#86. . #127},
{#87. . #127},
{#88. . #127},
{#89. . #127},
{#90. . #127},
{#91. . #127},
{#92. . #127},
{#93. . #127},
{#94. . #127},
{#95. . #127},
{#96. . #127},
{#97. . #127},
{#98. . #127},
{#99. . #127},
{#100. . #127},
{#101. . #127},
{#102. . #127},
{#103. . #127},
{#104. . #127},
{#105. . #127},
{#106. . #127},
{#107. . #127},
{#108. . #127},
{#109. . #127},
{#110. . #127},
{#111. . #127},
{#112. . #127},
{#113. . #127},
{#114. . #127},
{#115. . #127},
{#116. . #127},
{#117. . #127},

Beta Draft - Do not distribute © 2001, By Randall Hyde Page659

Chapter Twelve

{#118. . #127},
{#119. . #127},
{#120. . #127},
{#121. . #127},
{#122. . #127},
{#123. . #127},
{#124. . #127},
{#125. . #127},
{#126. . #127},
{#127}

I

Volume Three

/**/

/* */
/* fast RangeChar - */
/* */
/* A fast inplenentation of cs.rangeChar that uses a table | ookup */

/* to speed up the generation of the character set for really large */
/* sets (note: because of nenmory latencies, this function is probably */

/* sl owner
/*

than cs.rangeChar for small character sets).

*/
*/

/**/

procedur e fast RangeChar (LowBound: char;

begi n fast RangeChar;

push(
push(
push(
push(
nov (

/1 Copy EndRange[LowBound] into csDest. This adds al
Then i ntersect

eax);

ebx);

esi);

edi);
csDest, ebx);

/1 characters fromLowBound to #127 into csDest.
/1l this set with StartRange[H ghBound] to trimoff all the
|/ characters after H ghBound

novzx(LowBound, esi);

shl (

4, esi);

novzx(H ghBound, edi);

shl (

nov (
and(
nmov (

nov(
and(
nov(

nmov (
and(
nov(

nov(
and(
nmov (
pop(
pop(

Page660

4, edi);

(type dword EndRange[esi + 0]), eax);
(type dword StartRange[edi + 0]), eax);
eax, (type dword [ebx+0]));

(type dword EndRange[esi + 4 1), eax);
(type dword StartRange[edi + 4]), eax);
eax, (type dword [ebx+4 1));

(type dword EndRange[esi + 8 1), eax);
(type dword StartRange[edi + 8]), eax);
eax, (type dword [ebx+8 1));

(type dword EndRange[esi + 12]), eax);
(type dword StartRange[edi + 12]), eax);
eax, (type dword [ebx+12]));

edi):

esi);

© 2001, By Randall Hyde

H ghBound: char; var csDest:cset);

// Get pointer to destination character set.

t he

/1 *16 ‘cause each elenent is 16 bytes.

/] Does the intersection.

Beta Draft - Do not distribute

Calculation Via Table Lookups

pop(ebx);
pop(eax);

end fast RangeChar;

static
TestCset: cset := {};

begi n csRangeChar ;

fast RangeChar(‘a’, ‘z', TestCset);
stdout. put(“Result fromfastRangeChar: {“, TestCset, “}” nl);

end csRangeChar;

Program 12.2 Table Lookup Implementation of cs.rangeChar

Naturally the StartRang andEndRang tables were not hand-generatekh HLA program generated
these tw tables (with a combined 512 element8jogram 12.3s the program that generated these tables.

progr am Gener at eRangeChar ;
#i ncl ude(“stdlib.hhf”);

var
outFile: dword;

begi n Gener at eRangeChar ;
/1 Qpen the file:
nmov(fileio. openNew “rangeCharCset.hla”), outFile);
// Emt the initial part of the declaration to the output file:

fileio.put
(
outFile,
stdi 0.t ab,
“Start Range: cset[128] :=*“ nl,
stdio.tab, stdio.tab, stdio.tab, “[“ nl,
stdio.tab, stdio.tab, stdio.tab, stdio.tab, “{#0},” nl // elenent zero

)

for(nmov(1, ecx); ecx < 127; inc(ecx)) do

fileio.put

(

outFile,
stdio.tab, stdio.tab, stdio.tab, stdio.tab,

Beta Draft - Do not distribute © 2001, By Randall Hyde Page661

Chapter Twelve Volume Three

“{#0..#",
(type uns32 ecx),
“},7 nl
)
endf or;
fileio.put
(
outFile,
stdio.tab, stdio.tab, stdio.tab, stdio.tab,
“{#0..#127}" nl,
stdio.tab, stdio.tab, stdio.tab, “];” nl
)

/1l Now emt the second table to the file:

fileio.put
(
outFile,
nl,
stdio.tab,
“EndRange: cset[128] :=*“ nl,
stdio.tab, stdio.tab, stdio.tab, “[“ nl
)
for(nov(O, ecx); ecx < 127; inc(ecx)) do
fileio.put
(
outFil e,
stdio.tab, stdio.tab, stdio.tab, stdio.tab,
{#
(type uns32 ecx),
‘#1273, nl
)
endfor;
fileio.put
(
outFile,
stdio.tab, stdio.tab, stdio.tab, stdio.tab, “{#127}" nl,
stdio.tab, stdio.tab, stdio.tab, “];” nl nl
)

fileio.close(outFile);

end Cener at eRangeChar ;

Program 12.3 Table Generation Program for the csRangeChar Program

Page662 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Calculation Via Table Lookups Chapter Twelve
	12.1 Chapter Overview
	12.2 Tables
	12.2.1 Function Computation via Table Look-up
	12.2.2 Domain Conditioning
	12.2.3 Generating Tables

	12.3 High Performance Implementation of cs.rangeChar

