System Organization

System Organization Chapter One

To write ezen a modest 80x86 assembly language program requires considenattikrify with the
80x86 aamily. To write good assembly language programs requires a stronglkdge of the underlying
hardware. Unfortunatelythe underlying hardare is not consisterifechniques that are crucial for 8088-pro
grams may not be useful on Pentium systemsawige, programming techniques that yide big perfor
mance boosts on the Pentium chip may not help at all on an 80d&6ndtely some programming
techniques wrk well no matter which microprocessor y@uusing.This chapter discusses théeet hard
ware has on the performance of computer soiw

11

Chapter Overview

This chapter describes the basic components tha¢ myala computer system: the CPU, memb@,
and the bs that connects thelthough you can write softare that is ignorant of these concepts, high per
formance softwre requires a complete understanding of this matdrias chapter also discusses the 80x86
memory addressing modes andvh@u access memory data from your programs.

This chapter bgins by discussingus oganization and memory ganization.These tw hardvare corm
ponents will probably he a bigger performance impact on your safevthan the CPY’speed. Under
standing the ganization of the systemub will allow you to design data structures and algorithms that
operate at maximum speed. Similakgoning about memory performance characteristics, data locatity
cache operation can help you design safeathat runs asét as possible. Of course, if yauhot interested
in writing code that runs asdt as possible, you can skip this discussiomeher, most people do care
about speed at one point or anotiserlearning this information is useful.

With the generic hardare issues out of theay this chapter then discusses the program-visible compo
nents of the memory architecture - speaifly the 80x86 addressing modes and lzoprogram can access
memory In addition to the addressing modes, this chapter introdueesakaev 80x86 instructions that
are quite useful for manipulating memoryhis chapter also presents/sgal nev HLA Standard Library
calls you can use to allocate and deallocate memory

Some might ayue that this chapter gets toodtved with computer architectur€hey feel such mate
rial should appear in an architectural book, not an assembly language programminthizoo&uldnt be
farther from the truthWriting good assembly language programs requires a stronglkdge of the archi
tecture. Hence the emphasis on computer architecture in this chapter

1.2

The Basic System Components

The basic operational design of a computer system is callacthisecture. JohnvVon Neumanna pic
neer in computer design, issgh credit for the architecture of most computers in use tédagample, the
80x86 aimily uses th&bn Neumann architecture (VNA). A typical Von Neumann system has three major
components: theentral processing unit (or CPU), memory, andinput/output (or 1/0). The way a system
designer combines these components impacts system performanE@(Bed..).

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel37



Chapter One Volume Two

Memory

1/0 Devices

Figure 1.1 Typical Von Neumann Machine

In VNA machines, lik the 80x86dmily, the CPU is where all the action éskplaceAll computations
occur inside the CPU. Data and machine instructions reside in memory until required by thHeo GiirdJ.
CPU, most I/O déces look like memory because the CPU can store data to an outpce éed read data
from an input deice. The major diference between memory and 1/O locations is #oe that I/O locations
are generally associated witkternal deices in the outside avld.

1.2.1 The System Bus

Thesystem bus connects thearious components of\8NA machine.The 80x86 &mily has three major
busses: thaddress bus, thedata bus, and theontrol bus.A bus is a collection of wires on which electrical
signals pass between components in the systbase hisses &ry from processor to processbiowever,
each los carries comparable information on all processors; e.g., theusataaly hee a diferent implemen
tation on the 80386 than on the 808&, Ihoth carry data between the proces@r, and memory

A typical 80x86 system component ustandard TTL logic levels'. This means each wire on ash
uses a standaraltage leel to represent zero and Sneve will always specify zero and one rather than the
electrical l@els because thesevéds \ary on diferent processors (especially laptops).

1.2.1.1 The Data Bus

The 80x86 processors use tiata bus to shufle data between therious components in a computer
systemThe size of this s \aries widely in the 80x8@fmily. Indeed, this bs defies the “size” of the pro
cessor

Every modern x86 CPU from the Pentium on up elypla 64-bit wide dataus. Some of the earlier
processors used 8-bit, 16-bit, or 32-bit datades, bt such machines are figfently obsolete that we do
not need to consider them here..

1. Actually, newer members of the family tend to use lower voltage signals, but these remain compatible with TTL signals.

2. TTL logic represents the value zero with a voltage in the range 0.0-0.8v. It represents a one with a voltage in the range
2.4-5v. If the signal on a bus line is between 0.8v and 2.4y, it's value is indeterminate. Such a condition should only exist
when a bus line is changing from one state to the other.

Pagel38 © 2001, By Randall Hyde Beta Draft - Do not distribute



System Organization

You'll often hear a processor called eight, 16, 32, or 64 bit processor. While there is a mild contro
versy concerning the sizd# a processomost people ne agree that the minimum of either the number of
data lines on the processor or the size of tlgefrgeneral purpose iger reyister determines the processor
size.The modern x86 CPUs all ra 64-bit lusses, bt only pravide 32-bit general purpose igeer reisters,
so most people classify thesevides as 32-bit processors.

Although the 80x86d&mily members with eight, 16, 32, and 64 bit dataslescan process data up to
the width of the bs, thg can also access smaller memory units of eight, 16, or 3Z hisefore, aything
you can do with a small dataid can be done with a tmr data bs as well; the lgier data bs, havever,
may access memorgdter and can accessger chunks of data in one memory operatitou’ll read about
the eact nature of these memory accesses a little latef $meMemory Subsystehon pagel40).

1.2.1.2 The Address Bus

The data bs on an 80x86aimily processor transfers information between a particular memory location
or 1/0 device and the CPUlhe only question is,Which memory location or 1/O device? ” The addressus
answers that questioiio differentiate memory locations and I/Ovaes, the system designer assigns a
unigue memory address to each memory element and Vi€ed#/hen the softare wants to access some
particular memory location or 1/O dee, it places the corresponding address on the addrss€iocuitry
associated with the memory or I/Ovite recognizes this address and instructs the memory orVi€ede
read the data from or place data on to the dasa Im either case, all other memory locations ignore the
request. Only the d&ce whose address matches thiie on the addressidresponds.

With a single address line, a processor could creaietlg two unique addresses: zero and &ugh n
address lines, the processor carvig® 2" unique addresses (since there dreirdique \alues in am-bit
binary number)Therefore, the number of bits on the addrass Wwill determine thenaximum number of
addressable memoand /O locations. Early x86 processors, fxaraple, proided only 20 bit addressib
sesTherefore, thg could only access up to 1,048,576 (8f)Znemory locations. Lger addressusses can
access more memory

Table 12: 80x86 Family Address Bus Sizes

Address Bus Max Addressable .
Processor : In English!
Size Memory
8088, 8086, 80186, 20 1,048,576 One Majabyte
80188

80286, 80386sx 24 16,777,216 Sixteen Mgabytes

80386dx 32 4,294,976,296 Four Gigabytes

80486, Pentium 32 4,294,976,296 Four Gigabytes

Pentium Pro, II, IlI, IV 36 68,719,476,736 64 Gigabytes

Future 80x86 processors (e.g., &MD “Hammer”) will probably support 40, 48, and 64-bit address
bussesThe time is coming when most programmers will consider fowahyites of storage to be too small,
much like they consider one ngabyte insuicient today(There vas a time when one gebyte vas consie
ered &r more than arone would eser need!).

1.2.1.3 The Control Bus

The control lis is an eclectic collection of signals that contrak libe processor communicates with
the rest of the system. Consider for a moment the datd e CPU sends data to memory and maedata
from memory on the dataub.This prompts the question, “Is it sending or reicg?” There are tw lines on

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel39



Chapter One Volume Two

the control los,read andwrite, which specify the direction of datawl. Other signals include system clocks,
interrupt lines, status lines, and so ©he «act male up of the controlis \aries among processors in the
80x86 amily. However, some control lines are common to all processors andatk & brief mention.

Theread andwrite control lines control the direction of data on the das\When both contain a logic
one, the CPU and memory-I/O are not communicating with one aniittiex read line is \ (logic zero),
the CPU is reading data from memory (that is, the system is transferring data from memory to the CPU). If
the write line is lay, the system transfers data from the CPU to memory

Thebyte enable lines are another set of important control lin€sese control lines allo 16, 32, and 64
bit processors to deal with smaller chunks of datiaitional details appear in thexiesection.

The 80x86 &mily, unlike maty other processors, priales two distinct address spacesie for memory
and one for I/OWhile the memory addressisses onarious 80x86 processorary in size, the I/Gddress
bus on all 80x86 CPUs is 16 bits widéis allovs the processor to address up to 65,536érdifit I/Oloca-
tions. As it turns out, most deces (like the lkeyboard, printerdisk drives, etc.) require more than one I/O
location. Nonetheless, 65,536 1/O locations are more théicisat for most application3he original IBM
PC design only allwed the use of 1,024 of these.

Although the 80x86&mily supports tw address spaces, it does noteheno address Usses (for 1/0
and memory). Instead, the system shares the addies®rmboth 1/0 and memory addressadditional
control lines decide whether the address is intended for memory dviéh such signals are aetj the 1/0
devices use the address on the L.O. 16 bits of the addies&/ben inactie, the 1/0 deices ignore the sig
nals on the addressi® (the memory subsystem ¢askwyer at that point).

1.2.2 The Memory Subsystem

A typical 80x86 processor addresses a maximun® dffferent memory locations, whends the num
ber of bits on the addresas. As youVe seen alread0x86 processors i 20, 24, 32, and 36 bit address
busses (with 64 bits on theaw).

Of course, the fst question you should ask is, “Whatetly is a memory location?The 80x86 sup
ports byte addressable memory. Therefore, the basic memory unit is a byte. So with 20, 24, 32, and 36
address lines, the 80x86 processors can address aqgabytes 16 mgabytes, four gigbytes, and 64
gigabytes of memoryespectiely.

Think of memory as a linear array of bytébe address of ther§it byte is zero and the address of the
last byte is 9-1. For an 8088 with a 20 bit addressshthe folleving pseudo-Bscal array declaration is a
good approximation of memaory:

Memory: array [0..1048575] of byte;

To executethe equialent of the Bscal statement “Memory [125] := 0;” the CPU places #iaevzero
on the datas, the address 125 on the address bnd asserts the write line (since the CPU is writing data
to memory), se€&igure 1.2

3. This is thanaximum. Most computer systems built around 80x86 family do not include the maximum addressable amount
of memory.

Pagel40 © 2001, By Randall Hyde Beta Draft - Do not distribute



System Organization

Address = 125 Memory
Data =0 Location

CPU | 125
Write = 0

=

Figure 1.2 Memory Write Operation

To execute the equalent of “CPU := Memory [125];” the CPU places the address 125 on the address
bus, asserts the read line (since the CPU is reading data from memory), and then reads the resulting data
from the data bs (sed-igure 1.3.

Address = 125 Memory

Location

Data = Memory[125]

CPU l 125
Read =0
Figure 1.3 Memory Read Operation

The abee discussion appliemly when accessing a single byte in mem&y what happens when the
processor accesses arnd or a double wrd? Since memory consists of an array of bytes, dan we possi
bly deal with \alues lager than eight bits?

Different computer systemsveadifferent solutions to this problerihe 80x86 &mily deals with this
problem by storing the L.O. byte of somd at the address speeiiand the H.O. byte at thexhdocation.
Therefore, a wrd consumes ta/consecutie memory addresses (as yoould expect, since a ard consists
of two bytes). Similarlya double wrd consumes four conseagtimemory locationsThe address for the
double vord is the address of its L.O. bylhe remaining three bytes follothis L.O. byte, with the H.O.
byte appearing at the address of the douldedwglus three (seeFigure 1.4. Bytes, words, and double
words may begin atany valid address in memarWe will soon see, hoever, that starting lager objects at
an arbitrary address is not a good idea.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel4l



Chapter One

Double Word
at address
192

Word at
address 188

Byte at
address 186

195

194

193

192

191

190

189

188

187

186

Figure 1.4 Byte, Word, and DWord Storage in Memory

Volume Two

Address

Note that it is quite possible for byteord, and double ard values to gerlap in memoryFor example,
in Figure 1.4you could hae a word variable bginning at address 193, a bytriable at address 194, and a
double vord value bginning at address 19Zhese wariables wuld all overlap.

A processor with an eight-biub (like the old 8088 CPU) can transfer eight bits of data at a time. Since
each memory address corresponds to an eight bit byte, this turns out to be the veos¢mbarrangement
(from the hardware perspeacte), sed-igure 1.5

Pagel4?2

© 2001, By Randall Hyde

Beta Draft - Do not distribute



System Organization

Address
Data comes from memory
CPU eight bits at a time.
Data
Figure 1.5 Eight-Bit CPU <-> Memory Interface

Theterm “byte addressable memory array” means that the CPU can address memory in chunks as small
as a single byte. It also means that this isthedlest unit of memory you can access at once with the proces
sor That is, if the processoramts to access a four balue, it must read eight bits and then ignore #iee
four bits.Also realize that byte addressability does not imply that the CPU can access eight bjtardni an
trary bit boundaryWhen you specify address 125 in memgmu get the entire eight bits at that address,
nothing less, nothing morAddresses are irgers; you cannot, forxample, specify address 125.5 to fetch
fewer than eight bits.

CPUs with an eight-bitus can manipulateavd and double ord \values, gen through their dataus is
only eight bits wide. Haever, this requires multiple memory operations because these processors can only
move eight bits of data at onc® load a werd requires tw memory operations; to load a doublerds
requires four memory operations.

Some older x86 CPUs (e.g., the 8086 and 8028&) &4 6 bit dataus. This allavs these processors to
access twice as much memory in the same amount of time as their eight bit biétbsenprocessorsgar
nize memory into tw banks: an “even” bank and an “odd” bank (ségure 1.9. Figure 1.7illustrates the
connection to the CPU (D0-D7 denotes the L.O. byte of the datal8-D15 denotes the H.O. byte of the
data hus):

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel43



Chapter One Volume Two

Even Odd
Word 3 6 7
Numbers in cells
Word 2 4 > represent the
Word 1 2 3 byte addresses
Word 0 0 1
Figure 1.6 Byte Addressing in Word Memory

Even Odd

Figure 1.7 Sixteen-Bit Processor (8086, 80186, 80286, 80386sx) Memory Organization

The 16 bit members of the 80x8&rhily can load a wrd from ary arbitrary addres#&is mentioned ear
lier, the processor fetches the L.O. byte of thki@ from the address speetfiand the H.O. byte from the
next consecutie addressThis creates a subtle problem if you look closely at the diagraxeabthat hap
pens when you access ang on an odd address? Suppose yantio read a ard from location 125. Okay
the L.O. byte of the ard comes from location 125 and the H.@revcomes from location 12@/hat’s the
big deal? It turns out that there aretproblems with this approach.

First, look agin atFigure 1.7 Data lus lines eight through 15 (the H.O. byte) connect to the odd bank,
and data bs lines zero throughwen (the L.O. byte) connect to thee@ bankAccessing memory location
125 will transfer data to the CPU on the H.O. byte of the dadayet we want this data in the L.O. byte!
Fortunately the 80x86 CPUs recognize this situation and automatically transfer the data on D8-D15 to the
L.O. byte.

The second problem izen more obscur&Vhen accessingavds, wefe really accessing twseparate
bytes, each of which has ita/o byte address. So the question arises, “What address appears on the address
bus?”The 16 bit 80x86 CPUswhys place een addresses on thesh Exen bytes alays appear on data
lines DO-D7 and the odd bytesvalys appear on data lines D8-D15. If you accessrd at an een address,
the CPU can bring in the entire 16 bit chunk in one memory operatimwik# if you access a single byte,

Pagel44 © 2001, By Randall Hyde Beta Draft - Do not distribute



System Organization

the CPU actiates the appropriate bank (using a “byte enable” control line). If the byte appeared at an odd
address, the CPU will automatically weoit from the H.O. byte on theub to the L.O. byte.

Sowhat happens when the CPU accessesrd at an odd address, é#khe &ample gven earlier?Vell,
the CPU cannot place the address 125 onto the address\th read the 16 bits from memdriere are no
odd addresses coming out of a 16 bit 80x86 Cd.addresses arenalys &en. So if you try to put 125 on
the addressus, this will put 124 on to the addreassb/Nere you to read the 16 bits at this address, you
would get the wrd at addresses 124 (L.O. byte) and 125 (H.O. byte) — not what gqéct.Accessing a
word at an odd address require® tlmemory operations. First the CPU must read the byte at address 125,
then it needs to read the byte at address 126. Fiitallgeds to sap the positions of these bytes internally
since both entered the CPU on the wrong half of the desta b

Fortunately the 16 bit 80x86 CPUs hide these details from Your programs can accessnds atany
address and the CPU will properly access arapgiif necessary) the data in memadtipwever, to access a
word at an odd address require® tmmemory operations (just Bkthe 8088/80188)herefore, accessing
words at odd addresses on a 16 bit processonigisthan accessingords at gen addresse8y carefully
arranging how you use memory, you can improve the speed of your program on these CPUs.

AccessingB2 bit quantities aays tales at least twmemory operations on the 16 bit processors. If you
access a 32 bit quantity at an odd address, a 16-bit processor will require three memory operations to access
the data.

The 80x86 processors with a 32-bit datia fe.g., the 80386 and 80486) use four banks of memory con
nected to the 32 hit dataid (sed-igure 1.8.

Address

D16-D23

D24-D31

Figure 1.8 32-Bit Processor (80386, 80486, Pentium Overdrive) Memory Organization

The address placed on the addrass is alvays some multiple of foutJsing \arious “byte enable”
lines, the CPU can select which of the four bytes at that address tharsofamts to accesés with the 16
bit processqrthe CPU will automatically rearrange bytes as necessary

With a 32 bit memory integaice, the 80x86 CPU can accesyg hyte with one memory operation. If
(address MOD 4) does not equal three, then a 32 bit CPU can access at that address using a single
memory operation. Heever, if the remainder is three, then it will akvo memory operations to access that
word (sed~igure 1.9. This is the same problem encountered with the 16 bit pro¢ezesept it occurs half
as often.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel45



Chapter One Volume Two

/ H.O.Byte (2nd access)
I I

| —

L.O. Byte (1st access)

Figure 1.9 Accessing a Word at (Address mod 4) = 3.

A 32 bit CPU can access a doublerd/in a single memory operatiohthe address of thalue is
evenly dvisible by four If not, the CPU will require tay memory operations.

Once agin, the CPU handles all of this automaticdifyterms of loading correct data the CPU handles
everything for you. Hwever, there is a performance bemédi proper data alignmeris a general rule you
should alvays place wrd values at een addresses and doublerd values at addresses which averdy
divisible by four This will speed up your program.

The Pentium and later processorsvite a 64-bit bit dataus and special cache memory that reduces
the impact of non-aligned data acces$though there may still be a penalty for accessing data at an inap
propriate address, modern x86 CPUsesufom the problem less frequently than the earlier CRbe. dis
cussion of cache memory in a later chapter will discuss the details.

1.2.3

The I/O Subsystem

Besides the 20, 24, or 32 address lines which access meh®B0x86 dmily provides a 16 bit 1/0
address bs. This gives the 80x86 CPUs twseparate address spaces: one for memory and one for 1fO oper
ations. Lines on the controlb diferentiate between memory and 1/0O addresses. Other than separate control
lines and a smallerus, I/O addressing beles &actly like memory addressing. Memory and I/Qvides
both share the same datzstand the L.O. 16 lines on the addrass b

There are three limitations to the 1/0 subsystem on the BE€tfie 80x86 CPUs require special instruc
tions to access I/O diees; second, the designers of the PC used the “best” I/O locations fomthgiue
poses, forcing third party delopers to use less accessible locations; third, 80x86 systems can address no
more than 65,536 (2) I/O addressedVhen you consider that a typical video display card requives o
eight mgabytes of addressable locations, you can see a problem with the size ws.1/O b

Fortunately hardvare designers can map their I/Qvides into the memory address space as easily as
they can the 1/0 address space. So by using the appropriate cjrtugrgan mak their I/O deices look
just like memoryThis is hav, for example, display adapters on the P@rkv

1.3

HLA Support for Data Alignment

In order to write thedstest running programs, you need to ensure that your data objects are properly
aligned in memory Data becomes misaligned wheaeyou allocate storage for fdifent sized objects in
adjacent memory locations. Since it is nearly impossible to writege)lprogram that uses objects that are
all the same size, some othacifity is necessary in order to realign data thati normally be unaligned
in memory

Consider the follwing HLA variable declarations:

Pagel46 © 2001, By Randall Hyde Beta Draft - Do not distribute



System Organization

static
dw. dwor d;
b: byt e;
W, wor d;
dwe: dwor d;
W2: wor d;
b2: byt e;
dws: dwor d;

The frst static declaration in a program (running undfe@rdows, Linux, and most 32-bit operating sys
tems) places itsariables at an address that is a@remultiple of 4096 bytes. Since 4096 is avpoof two,
whatever variable fist appears in the static declaration is guaranteed to be aligned on a reasonable address.
Each succesg \ariable is allocated at an address that is the sum of the sizes of all the preagédlrigss
plus the starting addres$herefore, assuming the aleovariables are allocated at a starting address of 4096,
then each ariable will be allocated at the folling addresses:

// Start Adrs Lengt h
dw dwor d; /1 4096 4
b: byt e; /1 4100 1
W, wor d; /1 4101 2
dw2: dwor d; /1 4103 4
W2: wor d; /1 4107 2
b2: byt e; /1 4109 1
dwa: dwor d; /1 4110 4

With the eception of the fist variable (which is aligned on a 4K boundary) and the bgtéables
(whose alignment doedmhatter), all of theseariables are misaligned in memoiyhew, w2, anddwz2 vari-
ables are aligned on odd addresses andviBevariable is aligned on arven address that is not avee
multiple of four

An easy vay to guarantee that youanables are aligned on an appropriate address is to put all the
dword variables fist, the vord variables second, and the bytaiables last in the declaration:

static
dw: dwor d;
dwe: dwor d;
dws: dwor d;
W, wor d;
W2: wor d;
b: byt e;
b2: byt e;

This oganization produces the following addresses in memory (again, assuming the first variable is allo
cated at address 4096):

/1 Start Adrs Lengt h
dw. dwor d; /1 4096 4
dwe: dwor d; /1 4100 4
dwa: dwor d; /1 4104 4
W, wor d; /1 4108 2
W2: wor d; /1 4110 2
b: byt e; /1 4112 1
b2: byt e; Il 4113 1

As you can see, thesanables are all aligned at reasonable addresses.

Unfortunately, it is rarely possible for you to arrange your variables in this manner. While there are lots
of technical reasons that make this alignment impossible, a good practical reason for not doing this is
because it doesn't let you organize your variable declarations by logical function (that is, you probably want
to keep related variables next to one another regardless of their size).

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel47



Chapter One Volume Two

To resole this problem, HLA prades two solutions. The first is an alignment option wherex you
encounter &tatic section. If you follav the static kyword by an intger constant inside parentheses, HLA
will align the \ery net variable declaration at an address that isvem enultiple of the specéd constant,

edgd..,

static( 4)
dw. dwor d;
b: byt e;
W, wor d;
dwe: dwor d;
W2: wor d;
b2: byt e;
dws: dwor d;

Of course, if you hee only a singlestatic section in your entire program, this declaration doesn't buy you
much because the first declaration in the section is already aligned on a 4096 byte boundary. However, HLA
does allow you to put multiplgtatic sections into your program, so you can specify an alignment constant
for eachstatic section:

static( 4)

dw. dwor d;

b: byt e;
static( 2 )

W, wor d;
static( 4)

dw2: dwor d;

W2: wor d;

b2: byt e;
static( 4)

dws: dwor d;

This particular sequence guarantees that all doubid wariables are aligned on addresses that are-multi
ples of four and all word variables are aligned on even addresses (note that a special section was not created
for w2 since its address is going to be an even multiple of four).

While the alignment parameter to thatic directive is useful on occasion, there are tsroblems with
it: The frst problem is that inserting so nyastatic directives into the middle of youraviable declarations
tends to disrupt the readability of yowariable declarations. ai of this problem can bevercome by sim
ply placing astatic directive before eery variable declaration:

static( 4 ) dw. dwor d;
static( 1) b: byt e;
static( 2 ) W, wor d;
static( 4) dw2: dwor d;
static( 2 ) W2: wor d;
static( 1) b2: byt e;
static( 4 ) dwa: dwor d;

While this approach can,grably, make a program easier to read, it certainly involves more typing and it
doesn’t address the second problem: variables appearing in sefsiagections are not guaranteed to be
allocated in adjacent memory locations. Once in a while it is very important to ensure that two variables are
allocated in adjacent memory cells and most programmers assume that variables declared next to one
another in the source code are allocated in adjacent memory cells. The mechanism above does not guarantee
this.

The second facility HLA provides to help align adjacent memory locations @igredirective. The
align directive uses the folleing syntax:

Pagel48 © 2001, By Randall Hyde Beta Draft - Do not distribute



System Organization
align( integer_constant );

The intger constant must be one of the following small unsigned integer values: 1, 2, 4, 8, or 16. If HLA
encounters thalign directive in astatic section, it will align the very next variable on an address that is an
even multiple of the specified alignment constant. The previous example could be rewritten, ualigg the
directive, as follows:

static( 4)
dw: dwor d;
b: byt e;
align( 2);
W, wor d;
align( 4);
dwe: dwor d;
W2: wor d;
b2: byt e;
align( 4);
dws: dwor d;

If you're wondering hav thealign directive works, it's really quite simple. If HLA determines that the
current address is not amem multiple of the specéd \alue, HLA will quietly emit &tra bytes of padding
after the preious \ariable declaration until the current address irstatec section is anwen multiple of the
specifed walue. This has the é&fct of making your program slightly @er (by a fev bytes) in &hange for
faster access to your data;v&i that your program will only gmoby a small number of bytes when you use
this feature, this is a good tradé. of

1.4

System Timing

Although modern computers are quitestf and gettingaster all the time, tlyestill require a fnite
amount of time to accomplistven the smallest tasks. Gfon Neumann machines ékthe 80x86, most
operations areserialized. This means that the computexeeutes commands in a prescribed arder
wouldn't do, for kample, to gecute the statemehtI*5+2; before 1=J; in the follaving sequence:

| J;
| | * 5+ 2;

Clearly we need someay to control which statement executes first and which executes second.

Of course, on real computer systems, operations do not occur instantaneously. Moving & aupy of
takes a certain amount of time. keikise, multiplyingl by five and then adding twand storing the result
back intol takes time As you might &pect, the secondaBcal statement ab® tales quite a bit longer to
execute than therft. For those interested in writing$t softvare, a natural question to ask is, tHdoes
the processonecute statements, andwhdo we measure kolong the take to xecute?”

The CPU is aery compla piece of circuitryWithout going into too mandetails, let us just say that
operations inside the CPU must lerwcarefully coordinated or the CPU will produce erroneous re3alts.

ensure that all operations occur at just the right moment, the 80x86 CPUs use an alternating signal called the

system clock.

141

The System Clock

At the most basic el, thesystem clock handles all synchronization within a computer sysfEme. sys
tem clock is an electrical signal on the contnas lvhich alternates between zero and one at a periodic rate
(seeFigure 1.10. All activity within the CPU is synchronized with the edges (risingaling) of this clock
signal.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel49



Chapter One Volume Two

One Clock
“Period”

1

0]

Time —pp

Figure 1.10 The System Clock

The frequeng with which the system clock alternates between zero and one sgste@a clock fre-
guency. The time it taks for the system clock to switch from zero to one and back to zercisdkperiod.
One full period is also called cock cycle. On most modern systems, the system clock switches between
zero and one at ratesaeeding seeral hundred million times per second teesal billion times per second.
The clock frequencis simply the number of clockycles which occur each secordtypical Pentium IV
chip, circa 2002, runs at speeds of 2 billignles per second oaster “Hertz” (Hz) is the technical term
meaning oneycle per secondlherefore, the aforementioned Pentium chip runs at 2000 million hertz, or
2000 mgahertz (MHz), also knen as tvo gigahertz Typical frequencies for 80x86 parts range from 5 MHz
up to seeral Gigahertz (GHz, or billions ofycles per second) andymnd. Note that one clock period (the
amount of time for one complete clogkcte) is the reciprocal of the clock frequgnEor example, a 1 MHz
clock would have a clock period of one microsecond (1/1,000t,r06Da second). Likwise, a 10 MHz clock
would hare a clock period of 100 nanoseconds (100 billionths of a se@d@BU running at 1 GHz auld
have a clock period of one nanosecond. Note that we usuglhess clock periods in millionths or billionths
of a second.

To ensure synchronization, most CPUs start an operation on eitlfigfitigeedge (when the clock goes
from one to zero) or thesing edge (when the clock goes from zero to onE)e system clock spends most
of its time at either zero or one anery little time switching between the ewTherefore clock edge is the
perfect synchronization point.

Since all CPU operations are synchronized around the clock, the CPU cannot performytéagieian
than the clock. Heever, just because a CPU is running at some clock frequsmesnt mean that it is»e-
cuting that may operations each second. Maoperations ta& multiple clock gcles to complete so the
CPU often performs operations at a siguaifitly lover rate.

1.4.2 Memory Access and the System Clock

Memory access is one of the most common CPWides. Memory access is deitiely an operation
synchronized around the system clock or some submultiple of the systemTdlatks, reading aalue
from memory or writing a alue to memory occurs no more often than omnvegyeclock gcle. Indeed, on
mary 80x86 processors, it tak sgeral clock gcles to access a memory locati®he memory access time
is the number of clockycles the system requires to access a memory location; this is an impattent v
since longer memory access times resultweloperformance..

Memory access time is the amount of time between a memory operation request (read or write) and the
time the memory operation completes. Modern x86 CPUs are so asiehthan memory that systenusito
around these CPUs often use a second clockuthelbck, that is some sub-multiple of the CPU speed. F
example, typical processors in the 100 MHz to 2 GHz range use 400MHz, 133MHz, 100MHz, or 66 MHz
bus clocks (often, theus speed is selectable on the CPU).

When reading from memarthe memory access time is the amount of time from the point that the CPU
places an address on the addressand the CPU tak the data 6the data bs. On typical x86 CPU with a

Pagel50 © 2001, By Randall Hyde Beta Draft - Do not distribute



System Organization

one gcle memory access time, a read looks somethiegsliovn in Figure 1.11Writing data to memory is
similar (see~igure 1.12.

data from the data
the address bus . N
. e bus during this time
during this time i
period The memory system must period
decode the address and

place the data on the data
bus during this time period

The CPU places / W The CPU reads the
the address on \

Figure 1.11 The 80x86 Memory Read Cycle

The CPU places Sometime before the end

the address and of the clock period the

data onto the bus memory subsystem must

at this time grab and store the specified
\ value

Figure 1.12 The 80x86 Memory Write Cycle

Note that the CPU doegnvait for memoryThe access time is speeifi by the bs clock frequenc If
the memory subsystem doeswork fast enough, the CPU will readrpage data on a memory read opera
tion and will not properly store the data on a memory write operatlua.will surely cause the system to
fail.

Memory deices hae various ratings, lit the twp major ones are capacity and speed (access fige).
ical dynamic RAM (random access memoryides hae capacities of 512 (or more) gabytes and speeds
of 0.25-100 nsYou can iy bigger or &ster deices, lut they are much morexpensve. A typical 2 GHz
Pentium system uses 2.5 ns (400 MHz) memovicds.

Wait just a second herdélt 2 GHz the clock period is roughly 0.5 ns.wigan a system designer get
away with using 2.5 ns memoryrhe answer isvait states.

1.4.3 Wait States

A wait state is nothing more than axtra clock gcle to gve some déce time to complete an opera
tion. For example, a 100 MHz Penitum system has a 10 ns clock pdtiislimplies that you need 10 ns
memory In fact, the situation is @rse than this. In most computer systems there is additional circuitry

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel51



Chapter One Volume Two

between the CPU and memory: decoding arfteling logic.This additional circuitry introduces additional
delays into the system (séeure 1.13. In this diagram, the system loses 10nstufieling and decoding.
So if the CPU needs the data back in 10 ns, the memory must respond in less than 0 ns (which is impossible).

5 ns delay

through >
decoder

Figure 1.13 Decoding and Buffer Delays

If cost-efective memory wn’t work with a &ist processphov do companies manage to selstf PCs?
One part of the answer is thaitvstate. Br example, if you hae a 2 GHz processor with a memoygle
time of 0.5 ns and you lose 2 ns tdfbring and decoding, yoliineed 2.5 ns memoryhat if your system
can only support 10 ns memory (i.e., a 100 MHz systesi?Adding three \ait states toxdend the mem
ory ¢ycle to 10 ns (oneus clock gcle) will solve this problem.

Almost every general purpose CPU irigtence proides a signal on the contrali$to allav the inser
tion of wait states. Generallyhe decoding circuitry asserts this line to delay one additional clock period, if
necessaryl his gives the memory sfi€ient access time, and the systeorks properly (se€igure 1.14.

Pagel52 © 2001, By Randall Hyde Beta Draft - Do not distribute



System Organization

The CPU reads the
\data from the data

The memory system must bus during this time
The CPU places decode the address and period
the address on place the data on the data
the address bus bus during this time period,
during this time since one clock cycle is insufficient,
period the systems adds a second clock cycle,

a wait state

Figure 1.14 Inserting a Wait State into a Memory Read Operation

Needless to sajrom the system performance point ofwjigvait states araot a good thingWhile the
CPU is waiting for data from memory it cannot operate on that datding a single \&it state to a memory
cycle on a typical CPUoublesthe amount of time required to access the ddtes, in turnhalvesthe speed
of the memory access. Running with aitvstate onery memory access is almostdikutting the processor
clock frequeng in half.You're going to get a lot lessork done in the same amount of time.

However, we're not doomed to sho execution because of addeditvstatesThere are seeral tricks
hardware designers can play to acldezero vait statesgnost of the time.The most common of these is the
use ofcache (pronounced “cash”) memary

1.4.4

Cache Memory

If you look at a typical program (as myaresearchers ka), youll discover that it tends to access the
same memory locations repeatediurthermore, you also disger that a program often accesses adjacent
memory locationsThe technical nameswgn to this phenomenon at@mporal locality of reference and
spatial locality of reference. When &hibiting spatial localitya program accesses neighboring memory-loca
tions.When displaying temporal locality of reference a program repeatedly accesses the same memory loca
tion during a short time period. Both forms of locality occur in the fiotig Pascal code ggnent:

for i :=0to 10 do
Ali] :=0;

There are tw occurrences each of spatial and temporal locality of reference within this loop. Let’s consider
the obvious ones first.

In the Pascal code above, the program references the varsmgal timesThe for loop compareis
against 10 to see if the loop is complete. It also incremieimysone at the bottom of the loophe assign
ment statement also usieas an array inde This shavs temporal locality of reference in action since the
CPU accessédsat three points in a short time period.

This program alsoxibits spatial locality of referenc&he loop itself zeros out the elements of akay
by writing a zero to therft location inA, then to the second locationAnand so onAssuming that Bscal
stores the elements Afinto consecutie memory locations, each loop iteration accesses adjacent memory
locations.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel53



Chapter One Volume Two

There is an additionalxample of temporal and spatial locality of reference in thsc@® &ample
above, although it is not so glwus. Computer instructions that tell the system to do the sgbtéfsk also
reside in memorylhese instructions appear sequentially in memory — the spatial locality [paudomputer
also &ecutes these instructions repeatedhce for each loop iteration — the temporal locality part.

If you look at the gecution profie of a typical program, yod'discaer that the program typicallyke
cutes less than half the statements. Genegatlypical program might only use 10-20% of the memory-allot
ted to it.At ary one gven time, a one ngabyte program might only access four to eight kilobytes of data
and code. So if you paid an outrageous sum of gnfareexpensve zero vait state RAM, you wuldn't be
using most of it at anone gven time!Wouldn' it be nice if you could tly a small amount ot RAM and
dynamically reassign its address(es) as the progxaouges?

This is exactly what cache memory does for you. Cache memory sits between the CPU and main mem
ory. It is a small amount ofery fast (zero wit state) memoryJUnlike normal memorythe bytes appearing
within a cache do not kia fixed addresses. Instead, cache memory can reassign the address of a data object.
This allovs the system todep recently accessedlwes in the cachéddresses that the CPU has/ee
accessed or hagrdccessed in some time remain in mainvw$lmemory Since most memory accesses are
to recently accesse@nables (or to locations near a recently accessed location), the data generally appears
in cache memory

Cache memory is not perfeétithough a program may spend considerable tirez@ting code in one
place, gentually it will call a procedure oramder of to some section of code outside cache memary
such an eent the CPU has to go to main memory to fetch the data. Since main memovy, ihislavill
require the insertion of ait states.

A cachehit occurs wheneer the CPU accesses memory anddgithe data in the cache. In such a case
the CPU can usually access data with zeait statesA cachemiss occurs if the CPU accesses memory and
the data is not present in cacfiben the CPU has to read the data from main memuyrring a perfor
mance lossTo talke adwantage of locality of reference, the CPU copies data into the cachewshéne
accesses an address not present in the cache. Since d@lyisthi& system will access that same location
shortly the system will sz wait states by hang that data in the cache.

As described ab@, cache memory handles the temporal aspects of memory actess, the spatial
aspects. Caching memory locatiomisen you access them won't speed up the program if you constantly
access consecud locations (spatial locality of referenc®). sole this problem, most caching systems read
several consecute bytes from memory when a cache miss 0éc8@x86 CPUs, forx@mple, read heeen
16 and 64 bytes at a shot (depending upon the CPU) upon a cache miss. If you read 16ybsgad, thvbm
in blocks rather than as you need theks?it turns out, most memory chipsadlable today hee special
modes which let you quickly accesyveel consecute memory locations on the chiphe cache xploits
this capability to reduce the@erage number of ait states needed to access memory

If you write a program that randomly accesses memaing a cache might actually wiggou davn.
Reading 16 bytes on each cache misgp&mrsve if you only access aiebytes in the corresponding cache
line. Nonetheless, cache memory systeragkwuite well in the @erage case.

It should come as no surprise that thgo of cache hits to misses increases with the size (in bytes) of
the cache memory subsystefhe 80486 chip, fore@mple, has 8,192 bytes of on-chip cache. Intel claims to
get an 80-95% hit rate with this cache (meaning 80-95% of the time the @Ule data in the cache).
This sounds ery impressie. Havever, if you play around with the numbers a little bit, ylbdiscover it's
not allthat impressve. Suppose we pick the 80%uie.Then one out ofvery five memory accesses, on the
average, will not be in the cache. If yowka 50 MHz processor and a 90 ns memory access time, four out
of five memory accesses require only one cloahtec(since thg are in the cache) and th&Hiwill require
about 10 \ait states, Altogether the system will require 15 cloclkdes to accessvie memory locations,

4. Engineers call this block of data a catihe.

5. Ten wait states were computed as follows: five clock cycles to read the first four bytes (10+20+20+20+20=90). However,
the cache always reads 16 consecutive bytes. Most memory subsystems let you read consecutive addresses in about 40 ns
after accessing the first location. Therefore, the 80486 will require an additional six clock cycles to read the remaining thre
double words. The total is 11 clock cycles or 10 walit states.

Pagel54 © 2001, By Randall Hyde Beta Draft - Do not distribute



System Organization

or three clock gcles per access, on thesgage That's equvalent to tvo wait states added tvery memory
access. Doesnhsound as impresa, does it?

There are a couple ofays to improe the situation. First, you can add more cache meriitig
improves the cache hit ratio, reducing the number ait states. &r example, increasing the hit ratio from
80% to 90% lets you access 10 memory locations iny2l@< This reduces thevarage number of ait
states per memory access to oratwstate in our 80486xample — a substantial imprement.Alas, you
cant pull an 80486 chip apart and solder more cache onto the chiveipmodern Pentium CPUsVea
significantly lager cache than the 80486 and operates witkifeverage vait states.

Another vay to imprae performance is touild atwo-level caching systemMary 80486 systems avk
in this fashion.The frst level is the on-chip 8,192 byte cacfide net level, between the on-chip cache and
main memoryis a secondary cacheilh on the computer system circuit board (5égure 1.1%. Pentiums
and later chips typically nve the secondary cache onto the same chip carrier as the CPU (that &, Intel’
designers hae included the secondary cache as part of the CPU module).

Memory

On-chip (primary)
cache

Secondary Cache

Figure 1.15 A Two Level Caching System

A typical secondary cache containg/ahere from 32,768 bytes to one megabyte of memory. Common
sizes on PC subsystems are 256K, 512K, and 1024 Kbytes (1 MB) of cache.

You might ask, “Why bother with a two-level cache? Why not use a 262,144 byte cache to begin with?”
Well, the secondary cache generally does not operate at zero wait states. The circuitry to support 262,144
bytes fast memory would be&ry expensve. So most system designers usastomemory which requires
one or tvo wait statesThis is stillmuch faster than main memor€ombined with the on-chip cache, you
can get better performance from the system.

Consider the prgous example with an 80% hit ratio. If the secondary cache requiresopeles for
each memory access and thrgeles for the fist access, then a cache miss on the on-chip cache will require
a total of six clock gcles.All told, the average system performance will beotalocks per memory access.
Quite a bit &ster than the three required by the system without the secondary cache. Furthermore, the sec
ondary cache can update ilwes in parallel with the CPU. So the number of cache misses (wfech af
CPU performance) goesay davn.

You're probably thinking, “Sodr this all sounds interestingytowhat does it ha to do with program
ming?” Quite a bit, actual\By writing your program carefully to tekadwantage of the ay the cache mem
ory system wrks, you can impnre your prograns performance. By co-locatin@nables you commonly
use together in the same cache line, you can force the cache system to loaatititdes as a group,\sag
extra wait states on each access.

If you organize your program so that it tends xe@ute the same sequence of instructions repeatedly
will have a high dgree of temporal locality of reference and will, thereforecate aster

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel55



Chapter One Volume Two

1.5 Putting It All Together

This chapter has pvaled a quick @erview of the components that makip a typical computer system.
The remaining chapters in thislume will expand upon these comments teegyou a completeverview of
computer system ganization.

Pagel56 © 2001, By Randall Hyde Beta Draft - Do not distribute



	System Organization Chapter One
	1.1 Chapter Overview
	1.2 The Basic System Components
	1.2.1 The System Bus
	1.2.1.1 The Data Bus
	1.2.1.2 The Address Bus
	1.2.1.3 The Control Bus

	1.2.2 The Memory Subsystem
	1.2.3 The I/O Subsystem

	1.3 HLA Support for Data Alignment
	1.4 System Timing
	1.4.1 The System Clock
	1.4.2 Memory Access and the System Clock
	1.4.3 Wait States
	1.4.4 Cache Memory

	1.5 Putting It All Together


