Mixed Language Programming

Mixed Language Programming Chapter Twelve

12.1

Chapter Overview

Most assembly language code doesppear in a stand-alone assembly language program. Instead,
most assembly code is actually part of a library package that programs written in adliggniguage wind
up calling. Although HLA males it really easy to write standalone assembly applications, at one point or
another yodl probably want to call an HLA procedure from some code written in another language or you
may want to call code written in another language from HLis chapter discusses the mechanisms for
doing this in three languageswdevel assembly (i.e., MASM or Gas), C/C++, and Delpkifk The
mechanisms for other languages are usually similar to one of these three, so the material in this chapter will
still apply even if youte using some other highviel language.

12.2

Mixing HLA and MASM/Gas Code in the Same Program

It may seem kind of weird to mix MASM or Gas and HLA code in the same progdkter.all, the/'re
both assembly languages and almogttéing you can do with MASM or Gas can be done in HLA. Sg wh
bother trying to mix the tavin the same program®/ell, there are three reasons:

* You've already got a lot of code written in MASM or Gas and you don’t want to convert it to
HLA's syntax.

* There are a few things MASM and Gas do that HLA cannot, and you happen to need to do one
of those things.

* Someone else has written some MASM or Gas code and they want to be able to call code
you've written using HLA.

In this section, we’ll discuss two ways to merge MASM/Gas and HLA code in the same program: via in-line
assembly code and through linking object files.

12.2.1 In-Line (MASM/Gas) Assembly Code in Your HLA Programs

As you'e probably ware, the HLA compiler doesréctually produce machine code directly from your
HLA source fies. Instead, it fst compiles the code to a MASM or Gas-compatible assembly language
source fie and then it calls MASM or Gas to assemble this code to object code. ri yrdarested in seeing
the MASM or Gas output HLA produces, just edit filenameASM file that HLA creates after compiling
yourfilenameHLA source fie. The output assembhidiisnt amazingly readablepbit is fairly easy to cor
relate the assembly output with the HLA sourte fi

HLA provides two mechanisms that let you injectw®ASM or Gas code directly into the outpuéfit
produces: th&tASM.#ENDASM sequence and tHEEMIT statement. The #ASM..#ENIASM sequence
copies all tet between these twclauses directly to the assembly outplet £.9.,

#asm
nov eax, O ; MASM Gas syntax for MOV(0, EAX);
add eax, ebx N “ “ ADD(ebx, eax);
#endasm

The #ASM.. #ENIASM sequence is how you inject in-line (MASM or Gas) assembly code into your HLA
programs. For the most port there is very little need to use this feature, but in a few instances it is valuable.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell51

Chapter Twelve Volume Four

Note, when using Gas, that HLA speedfithe “.intel_syntax” diretive, so you should use Intel syntax when
supplying Gas code between #asm and #endasm.

For example, if you're writing structured exception handling code under Windows, you'll need to access
the double word at address FS:[0] (offset zero in the segment pointed at by the 80x86’s FS segment register).
Unfortunately, HLA does not support segmentation and the use of segment registers. However, you can drop
into MASM for a statement or two in order to access this value:

#asm
nov ebx, fs:[0] ; Loads process pointer into EBX
#endasm

At the end of this instruction sequence, EBX will contain the pointer to the process information structure
that Windows maintains.

HLA blindly copies all text between the #ASM and #ENDASM clauses directly to the assembly output
file. HLA does not check the syntax of this code or otherwise verify its correctness. If you introduce an
error within this section of your program, the assembler will report the error when HLA assembles your
code by calling MASM or Gas.

The #EMIT statement also writes text directly to the assembly output file. However, this statement does
not simply copy the text from your source file to the output file; instead, this statement copies the value of a
string (constant) expression to the output file. The syntax for this statement is as follows:

#emt (string_expression);

This statementvaluates the expression and verifies that it's a string expression. Then it copies the string
data to the output file. Like the #ASM/#ENDASM statement, the #EMIT statement does not check the syn
tax of the MASM statement it writes to the assembily file. If there is a syntax error, MASM or Gas will catch
it later on when HLA assembles the output file.

When HLA compiles your programs into assembly language, it does not use the same symbols in the
assembly language output file that you use in the HLA source files. There are several technical reasons for
this, but the bottom line is this: you cannot easily reference your HLA identifiers in your in-line assembly
code. The only exception to this rule are external identifiers. HLA external identifiers use the same name in
the assembly file as in the HLA source file. Therefore, you can refer to external objects within your in-line
assembly sequences or in the strings you output via #EMIT.

One advantage of the #EMIT statement is that it lets you construct MASM or Gas statements under
(compile-time) program control. You can write an HLA compile-time program that generates a sequence of
strings and emits them to the assembly file via the #EMIT statement. The compile-time program has access
to the HLA symbol table; this means that you can extract the identifiers that HLA emits to the assembly file
and use these directly, even if they aren’t external objects.

The @StaticName compile-time function returns the name that HLA uses to refer to most static objects
in your program. The following program demonstrates a simple use of this compile-time function to obtain
the assembly name of an HLA procedure:

program em t Deno;
#include(“stdlib.hhf”)

procedur e nyProc;
begi n nyProc;

stdout. put(“Inside M/Proc” nl);
end nyProc;
begi n eni t Denv;

?stm:string := “call “ + @taticNane(nyProc);

Pagell52 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
#emt(st);

end eni t Deno;

Program 12.1 Using the @StaticName Function

This example creates a stringue 6tm) that contains something ék‘call ?741_myProc” and emits
this assembly instruction directly to the sourte fi?741_myProc” is typical of the type of name mangling
that HLA does to static names it writes to the outpei. filf you compile and run this program, it should dis
play “Inside MyProc” and then quit. If you look at the assembtiiat HLA emits, you will see that it has
given themyPoc procedure the same name it appends to the CALL instrdiction

The @StaticName function is onhahd for static symbolsThis includes SATIC, READONLY, and
STORAGE variables, procedures, and iterators. It does not indfddRe objects, constants, macros, class
iterators, or methods.

You can acceséAR variables by using the [EBP+eét] addressing mode, specifying thésef of the
desired local ariable.You can use th@offset compile-time function to obtain thesdt of aVAR object or
a parameterThe folloving program demonstrateswdo do this:

pr ogr am of f set Deno;
#include(“stdlib.hhf”)

var
i:int32;

begi n of f set Denv;

nov(-255, i);

?stmt 1= “nov eax, [ebp+(“ + string(@ffset(i)) + “)]";
#print(“Emtting ‘", stm, “'")

#emt(stm);

stdout.put(“eax =*“, (type int32 eax), nl);

end of f set Deno;

Program 12.2 Using the @Offset Compile-Time Function

This example emits the statement “mov eax, [ebp+(-8)]” to the assembly language source file. It turns out
that -8 is the offset of thevariable in the offsetDemo program’s activation record.

Of course, the examples of #EMIT up to this point have been somewhat ridiculous since you can
achieve the same results by using HLA statements. One very useful purpose for the #emit statement, how-
eer, is to create some instructions that HLA does not support. For example, as of this writing HLA does not
support the LES instruction because you can'’t really use it under most 32-bit operating systems. However, if

1. HLA may assign a different name that “?741_myProc” when you compile the program. The exact symbol HLA chooses
varies from version to version of the assembler (it depends on the number of symbols defined prior to the definition of
myProc In this example, there were 741 static symbols defined in the HLA Standard Library before the definition of
myProc

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel153

Chapter Twelve Volume Four

you found a need for this instruction, you could easily write a macro to emit this instruction and appropriate
operands to the assembly sourée. fiUsing the #EMIT statementvgis you the ability to reference HLA
objects, something you cannot do with the #ASM. #BISDI sequence.

12.2.2 Linking MASM/Gas-Assembled Modules with HLA Modules

Although you can do some interesting things with HLifs-line assembly statements, yibprobably
never use them. Furthduture \ersions of HLA may notven support these statements, so you shaald a
them as much as possiblesa if you see a need for them. Of course, HLA does most of thgaid want
to do with the #ASM/#ENBSM and #EMIT statements yarway, so there isery little reason to use them at
all. If you're going to combine MASM/Gas (or other assembler) code and HLA code together in a program,
most of the time this will occur because ywaigot a module or library routine written in some other assem
bly language and youauld like to tale adwantage of that code in your HLA programs. Rather thawerbn
the other assemblsrcode to HLA, the easy solution is to simply assemble that other code to an tebject fi
and link it with your HLA programs.

Once yowe compiled or assembled a sourte td an object ke, the routines in that module are €all
able from almost gnmachine code that can handle the routinaing sequences. If you V&an object
file that contains a S@Rfunction, for &le, it does’matter whether you compiled that function with
HLA, MASM, TASM, NASM, Gas, or een a high leel language; if is object code and itxports the
proper symbols, you can call it from your HLA program.

Compiling a module in MASM or Gas and linking that with your HLA program is littieiht than
linking other HLA modules with your main HLA program. In the assembly souecgdu will have to
export some symbols (using the PUBLIC dirgetin MASM or the .GLOBLL directive in Gas) and in your
HLA program youwe got to tell HLA that those symbols appear in a separate module (using the EXTER
NAL option).

Since the tw modules are written in assembly language, thererislittle language imposed structure
on the calling sequence and parameter passing mechanisms. réf gallihg a function written in MASM
or Gas from your HLA program, then all yga'got to do is to maksure that your HLA program passes
parameters in the same locations where the MASM/Gas functigpésting them.

About the only issue yowé got to deal with is the case of idewti§i in the tw programs. By deillt,
MASM and Gas are case insengti HLA, on the other hand, enforces case neutrality (which, essentially
means that it is case sengl. If youre using MASM, there is a MASM command line option (*/Cp”) that
tells MASM to preserg case in all public symbols. dta real good idea to use this option when assembling
modules you'e going to link with HLA so that MASM doegnhess with the case of your ider&i during
assembly

Of course, since MASM and Gas process symbols in a case&enstinerit’s possible to create ow
separate ident#rs that are the sameocept for alphabetic case. HLA enforces case neutrality sonit Vet
you (directly) create tevdifferent identifers that difer only in case. In general, this is such a bad program
ming practice that oneauld hope you ner encounter it (and God forbid you actually do this yourself).
However, if you inherit some MASM or Gas code written by a C legadKs quite possible the code uses this
technique.The way around this problem is to useotseparate identéis in your HLA program and use the
extended form of the EXTERAL directive to praide the a&ternal names. df example, suppose that in
MASM you have the follaving declarations:

public AVariable
public avariable

.data

AVari able dword ?
avariable byte ?

Pagell54 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

If you assemble this code with the “/Cp” or “/Cx” (total case setitsiticommand line options, MASM will

emit these two external symbols for use by other modules. Of course, were you to attempt to define vari
ables by these two names in an HLA program, HLA would complain about a duplicate symbol definition.

However, you can connect two different HLA variables to these two identifiers using code like the following:

static
AVari abl e: dword; external (“Avariable”);
Anot herVar: byte; external (“avariable”);

HLA does not check the strings you supply as parameters to the EXNIERAUse. Therefore, you
can supply tw names that are the same&ept for case and HLA will not complain. Note that when HLA
calls MASM to assemble #'output fie, HLA specifes the “/Cp” option that tells MASM to presergase in
public and global symbols. Of course, yoould use this same technique in Gas if the Gas programmer has
exported tvo symbols that are identicataept for case.

The following program demonstrateswdo call a MASM subroutine from an HLA main program:

/1 To conpile this nmodul e and the attendant MASM file, use the follow ng
/1 command | i ne:

/1

/1 m -c masmupper. nasm

/1 hl a masndenol. hl a nasnmupper . obj
/1

/1 Sorry about no make file for this code, but these two files are in
/1 the HLA Vol 4/ Ch12 subdirectory that has it’s own nakefile for building
/1 all the source files in the directory and | wanted to avoi d confusi on.

pr ogr am MasnDenol;
#incl ude(“stdlib.hhf”)

/1 The follow ng external declaration defines a function that
// is witten in MASMto convert the character in AL from
/1l lower case to upper case.

procedur e masnipper Case(c:char in al); external (“nmasnipper Case”);

static
s: string := “Hello Verld!”;

begi n MasnDenol;
stdout.put(“String converted to uppercase: ‘");
mov(s, edi);
while(nmov([edi], al) <> #0) do
masnmipper Case(al);
stdout.putc(al);
inc(edi);
endwhi | €;
stdout.put(“*” nl);

end MasnDenol;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel155

Chapter Twelve Volume Four

Program 12.3 Main HLA Program to Link with a MASM Program

; MASM source file to acconpany the MasnDenol. H.A source

; file. This code conpiles to an object nodul e that

; gets linked with an HLA main program The function

; bel ow converts the character in AL to upper case if it
is a lower case character

. 586
.nodel flat, pascal

. code

public nasnpper Case
masnUpper Case proc near 32

Jdf al >='a & al <='z

and al, 5fh

.endif

ret
nasnmpper Case endp

end

Program 12.4 Calling a MASM Procedure from an HLA Program: MASM Module

It is also possible to call an HLA procedure from a MASM or Gas program (this shouldiibesob
since HLA compiles its source code to an assembly solecanid that assembly sourclke ftan call HLA
procedures such as those found in the HLA Standard Librdiyg¢re are a fe restrictions when calling
HLA code from some other language. First of all, youtcaasily use HLA exception handlingdcilities
in the modules you call from other languages (including MASM or Gas}.HLA main program initializes
the exception handling system; this initialization is probably not done by your non-HLA assembly pro
grams. Furthethe HLA main programxorts a couple of important symbols needed by tcemion han
dling subsystem; an, it's unlikely your non-HLA main assembly program yides these public symbols.
In the wlume onAdvanced Procedures thisctewill discuss hav to deal with HLAs Exception Handling
subsystem. Hweever, that topic is a little too adwiced for this chapterUntil you get to the point you can
write code in MASM or Gas to properly set up the H&eption handling system, you should nxeeute
ary code that uses tAeRY..ENDTRY, RAISE, or ag other &ception handling statements.

Warning; a large percentage of the HLA Standard Library routines include exception
handling statements or call other routines that use exception handling statements. Unless
you've set up the HLA exception handling subsystem properly, you should not call any
HLA Standard Library routines from non-HLA programs.

Other than the issue of exception handling, calling HLA procedures from standard assembly code is
really easy. All you've got to do is put an EXTERNAL prototype in the HLA code to make the symbol you
wish to access public and then include an EXTERN (or EXTERNDEF) statement in the MASM/Gas source
file to provide the linkage. Then just compile the two source files and link them together.

About the only issue you need concern yourself with when calling HLA procedures from assembly is
the parameter passing mechanism. Of course, if you pass all your parameters in registers (the best place),
then communication between the two languages is trivial. Just load the registers with the appropriate param-

Pagell56 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

eters in your MASM/Gas code and call the HLA procedure. Inside the HLA procedure, the parafeter v
ues will be sitting in the appropriategisters (sort of the cerrse of what happenedirogram 1241

If you decide to pass parameters on the stack, note that HLA normally usaS®&lPlanguage call
ing model. Therefore, you push parameters on the stack in the ordeapipear in a parameter list (from
left to right) and it is the called procedweesponsibility to rem@ the parameters from the stack. Note
that you can specify theABCAL calling cowention for use with MASM INVOKE statement using the
“.model” directve, e.g.,

. 586
.nodel flat, pascal

Of course, if you manually push the parameters on the stack yourself, then the tpegifage model
doesn'’t really matter. Gas users, of course, don’t have the INVOKE statement, so they have to manually
push the parameters themselves anyway.

This section is not going to attempt to go into gory details about MASM or Gas syntax. There is an
appendix in this text that contrasts the HLA language with MASM (and Gas when using the “.intel_syntax”
directive); you should be able to get a rough idea of MASM/Gas syntax from that appendix if you’re com-
pletely unfamiliar with these assemblers. Another alternative is to read a copy of the DOS/16-bit edition of
this text that uses the MASM assembler. That text describes MASM syntax in much greater detail, albeit
from a 16-bit perspective. Finally, this section isn’t going to go into any further detail because, quite frankly,
the need to call MASM or Gas code from HLA (or vice versa) just isn’t that great. After all, most of the stuff
you can do with MASM and Gas can be done directly in HLA so there really is little need to spend much
more time on this subject. Better to move on to more important questions, like how do you call HLA rou-
tines from C or Pascal...

12.3

Programming in Delphi/Kylix and HLA

Delphiis a marelous language for writingvin32 GUI-based applications. yx is the companion
product that runs under Linuxheir support for Rapidpplication Design (RAD) and visual programming
is superior to almostvery otheiWindows or Linux programming approachieélable. Havever, being Rs
cal-based, there are some things that just cannot be done in Dgligh#kd mary things that cannot be
done as difciently in Delphi/Kylix as in assembly language orfunately Delphi/Kylix lets you call assem
bly language procedures and functions so you garcomeDelphi's limitations.

Delphi provides two ways to use assembly language in tlesdal code: via aduit-in assembler
(BASM) or by linking in separately compiled assembly language modules. huilt-in “Borland Assem
bler” (BASM) is a \ery weak Intel-syntax assembldt is suitable for injecting a¥einstructions into your
Pascal source code or perhaps writingeay\vshort assembly language function or procedure. It is net suit
able for serious assembly language programming. If yow kniel syntax and you only need teeeute a
few machine instructions, thenABM is perfect. Hwever, since this is a ¥ on assembly language pro
gramming, the assumption here is that y@nito write some serious assembly code to link with yasr P
calDelphi code. To do that, you will need to write the assembly code and compile it withfeaeahf
assembler (e.g., HLA) and link the code into yDetphiapplication. That is the approach this section will
concentrate on. df more information about&SM, check out th®elphi documentation.

Before we get started discussingvhim write HLA modules for youbelphiprograms, you must under
stand tvo very important &cts:

HLA's exception handling facilities are not directly compatible with Delphi’s. This means
that you cannot use the TRY..ENDTRY and RAISE statements in the HLA code you
intend to link to a Delphi program. This also means that you cannot call library functions

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell57

Chapter Twelve Volume Four

that contain such statements. Since the HLA Standard Library modulegcestian
handling statements all over the place, this effectively prevents you from calling HLA
Standard Library routines from the code you intend to link with D&Iphi

Although you can write console applications wiitalphi, 99% of Delphi applications are
GUI applications. You cannot call console-related functions (e.g., stdin.xxxx -or std
out.xxxx) from a GUI application. Even if HLA's console and standard input/output rou
tines didn’t use exception handling, you wouldn't be able to call them from a standard
Delphi application.

Given the rich set of language features that Delphi supports, it should come as no surprise that the inter-
face between Delphi’s Object Pascal language and assembly language is somewhat complex. Fortunately
there are two facts that reduce this problem. First, HLA uses many of the same calling conventions as Pascal;
so much of the complexity is hidden from sight by HLA. Second, the other complex stuff you won't use
very often, so you may not have to bother with it.

Note: the following sections assume you are already familiar with Delphi programming.
They make no attempt to explain Delphi syntax or features other than as needed to explain
the Delphi assembly language interface. If you're not familiar with Delphi, you will prob
ably want to skip this section.

12.3.1 Linking HLA Modules With Delphi Programs

The basic unit of inteaice between Belphi program and assembly code is the procedure or function.
That is, to combine code between the tanguages you will write procedures in HLA (that correspond to
procedures or functions Delphi) and call these procedures from Delphiprogram. Of course, there are
a faw mechanical details youe got to vorry about, this section will er those.

To begin with, when writing HLA code to link with ®elphi program yowe got to place your HLA
code in an HLA UNIT An HLA PROGRAM module contains start up code and other information that the
operating system uses to determine where ginqggrogram recution when it loads arxecutable fe from
disk. Havever, theDelphiprogram also supplies this information and specifying $tarting addresses con
fuses the linkr, therefore, you must place all your HLA code in a UNIT rather thanGGFRAM module.

Within the HLA UNIT you must create EXTERNL procedure prototypes for each procedure you wish
to call fromDelphi. If you prefeyyou can put these prototype declarations in a hedeemiil #INCLUDE
them in the HLA code, W since youl probably only reference these declarations from this singleitfs
okay to put the EXTERAL prototype declarations directly in the HLA UNIT moduléhese EXTERMNML
prototype declarations tell HLA that the associated functions will be public sDelati can access their
names during the link process. Hera'typical gample:

uni t Li nkWt hDel phi ;
procedure prototype; external;

procedur e prototype;
begi n prototype;

<< Code to inplement prototype’s functionality >>
end prot ot ype;
end Li nkWt hDel phi ;

After creating the module abe, youd compile it using HLAs “-c” (compile to object only) command
line option. This will produce an object (“.0")I8.

2. Note that the HLA Standard Library source codevélable; feel free to modify the routines you want to use and remove
any exception handling statements contained therein.

Pagell158 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

Once yowe created the HLA code and compiled it to an objéxttfie n&t step is to telDelphithat it
needs to call the HLA/assembly codgnhere are tw steps needed to achéethis: You've got to infornDel-
phithat a procedure (or function) is written in assembly language (ratherdkealPand youwe got to tell
Delphito link in the object fé youVve created when compiling tielphi code.

The second step ab®, tellingDelphito include the HLA object module, is the easiest task to aehie
All you’ve got to do is insert a compiler diregtiof the form “{$LobjectRleNameobj }" in the Delphipro-
gram before declaring and calling your object moddlgjood place to put this is after thraplementation
resened word in the module that calls your assembly procedlire code xamples a little later in this sec
tion will demonstrate this.

The net step is to telDelphi that youte supplying an>dernal procedure or functionThis is done
using theDelphi EXTERNAL directive on a procedure or function prototypeor Example, a typicalxer-
nal declaration for thprototypeprocedure appearing earlier is

procedure prototype; external; // This may |ook |ike H.LA code, but it’'s
/1l really Del phi code!

As you can see herBglphi’'s syntax for declaring external procedures is nearly identical to HLA's (in fact,
in this particular example the syntax is identical). This is not an accident, much of HLA'S syntax was bor
rowed directly from Pascal.

The next step is to call the assembly procedure from the Delphi code. This is easily accomplished using
standard Pascal procedure calling syntax. The following two listings provide a complete, working, example
of an HLA procedure that a Delphi program can call. This program doesn’t accomplish very much other
than to demonstrate how to link in an assembly procedure. The Delphi program contains a form with a sin-
gle button on it. Pushing the button calls the HLA procedure, whose body is empty and therefore returns
immediately to the Delphi code without any visible indication that it was ever called. Nevertheless, this
code does provide all the syntactical elements necessary to create and call an assembly language routine
from a Delphi program.

uni t Li nkWt hKyl i x;
procedure Cal | edFronKylix; external;
procedure Cal | edFronkyl i x;
begi n Cal | edFronkyl i x;
end Cal | edFronKyl i x;

end Li nkWt hKyl i x;

Program 12.5 CalledFromKylix.hla Module Containing the Assembly Code

uni t Kyl i xEx1;
interface

uses

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell159

Chapter Twelve Volume Four

SysWils, Types, dasses, Variants, Q3 aphics, Qontrols, Qorns, QD al ogs,
Gstdarls;

type
TFornl = cl ass(TForn)
Buttonl: TButton;
procedure Buttonldick(Sender: TChject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forni: TForni;
i npl emrent ati on

{$R *. xf n}
{$L Cal |l edFronkylix.o }

procedure Cal | edFronKylix; external;

procedure TFornil. Buttonld i ck(Sender: TCbject);
begi n

Cal | edFronkyl i x();
end;

end.

Program 12.6 DelphiEx1— Delphi Source Code that Calls an Assembly Procedure

The full Delphiand HLA source code for the programs appearingrogram 12.5andProgram 12.6
accompanies the HLA softwe distrilution in the appropriate subdirectory for this chapter in the Example
code module. If yowe got a cop of Delphi5 or later you might vant to load this module and try compll
ing it. To compile the HLA code for thiskample, you wuld use the follwing commands from the com
mand prompt:

hla -c Cal | edFronDel phi. hla

After producing the CalledFromDelphi object module with the t@mmands above, you'd enter the Delphi
Integrated Development Environment and tell it to compile the DelphiEx1l code (i.e., you'd load the
DelphiEx1Project file into Delphi and the compile the code). This process automatically links in the HLA
code and when you run the program you can call the assembly code by simply pressing the single button on
the Delphi form.

12.3.2 Register Preservation
Delphicode epects all procedures to preseithe EBX, ESI, EDI, and EBPgisters. Routines written

in assembly language may freely modify the contents of EAX, ECX, and EDX without preservinglkheir v
ues. The HLA code will hae to modify the ESP gister to remwe the actiation record (and, possibly

Pagell60 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

some parameters). Of course, HLA procedures (unless you specify the @NOFRAME option) automatically
presere and set up EBP for you, so you doméve to worry about preserving this gisters value; of

course, you will not usually manipulate EBRalue since it points at your procedgrparameters and local
variables.

Although you can modify EAX, ECX, and EDX to your hesrtontent and not ke to worry about
preserving their alues, dort’ get the idea that thesegisters are \ailable for your procedurg’ecclusive
use. In particulaDelphimay pass parameters into a procedure within theggtees and you may need to
return function results in some of thesgiseers. Details on the further use of thesggsters appears in later
sections of this chapter

Whenever Delphi calls a procedure, that procedure can assume that the direatiois ftlear On
return, all procedures must ensure that the directonidl still clear So if you manipulate the directioad
in your assembly code (or call a routine that might set the directigy fie sure to clear the directioadfl
before returning to thBelphicode.

If you use agp MMX instructions within your assembly code, be surexiecate the EMMS instruction
before returning.Delphi code assumes that it can manipulate thatifig point stack without running into
problems.

Although theDelphi documentation doesnéxplicitly state this, periments wittDelphicode seem to
suggest that you danhave to presers the FPU (or MMX) rgisters across a procedure call other than to
ensure that yoré in FPU mode @sus MMX mode) upon return Belphi.

12.3.3 Function Results

Delphigenerally gpects functions to return their results in giseer For ordinal return results, a func
tion should return a bytealue inAL, a word value inAX, or a double wrd value in EAX. Functions return
pointer\alues in EAX. Functions return reallues in STO on the FPU stackhe code xample in this sec
tion demonstrates each of these parameter return locations.

For other return types (e.g., arrays, sets, records, Belphi generally passes artea VAR parameter
containing the address of the location where the function should store the returivesultl not consider
such return results in thisxte see théelphi documentation for more details.

The followving Delph/HLA program demonstrates Wwao return diferent types of scalar (ordinal and
real) parameters tol2elphi program from an assembly language functi®he HLA functions return boel
ean (one byte) resultsond results, double avd results, a pointer (PChar) result, andatfhg point result
when you press an appropriatattbn on the form. See the DelphiExzample code in the HLA/Art of
Assembly &les code for the full project. Note that the fwllmy code doeshteally do agthing useful
other than demonstratewado return Function results in EAX and STO.

unit Kyl i xEx2;
interface

uses
SysWils, Types, dasses, Variants, Q@ aphics, QQontrols, Qorns, D al ogs,
Gstdarls;

type
TFornl = cl ass(TForn
Bool eanBt n: TButton
Wor dBt n: TButton;
DWbr dBt n: TButton;
Poi nter Bt n: TButton;
Real Bt n: TButton;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell61l

Chapter Twelve Volume Four

Bool eanLbl : TLabel ;

Wr dLbl : TLabel ;

DWordLbl : TLabel ;

Poi nterLbl : TLabel ;

Real Lbl : TLabel ;

procedur e Bool eanBt nd i ck(Sender: Toj ect);
procedure WrdBtnd i ck(Sender: TChject);
procedure DWrdBtnd i ck(Sender: TChject);
procedur e Poi nterBtndick(Sender: Thject);
procedure Real Btnd i ck(Sender: TCbject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TForni;
i npl ement ati on

{$R *. xf
{$L ReturnVal ues.o }

function ReturnBool ean: bool ean; external;
function ReturnWrd: word; external;
function ReturnDWrd: dword; external;
function ReturnPtr:pchar; external;
functi on ReturnReal : extended; external;

procedur e TForml. Bool eanBt nd i ck(Sender: TChj ect);
begi n
i f(ReturnBool ean()) then

Bool eanLbl . caption := ‘true’

el se
Bool eanLbl . caption := ‘fal se’;
end;

procedure TForml. Wor dBt nd i ck(Sender: TChj ect);

var
W, Wwor d;
s:string;
begi n
w = ReturnWrd();
s :=format(‘$%’, [W);

WrdLbl . Caption : = s;
end;

procedure TFornl. DWr dBt nd i ck(Sender: TChj ect);
var

dw, dwor d;

s:string;
begi n

Pagell62 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

dw : = ReturnDWrd();
s :=format(‘$%', [dwW);
DWrdLbl . Caption : = s;

end;

procedure TFormil. Poi nter Bt nd i ck(Sender: TChj ect);
begi n

Poi nterLbl . caption := ReturnPtr();
end;
procedure TForml. Real Bt nd i ck(Sender: TChj ect);
var
r: ext ended;
s:string;
begi n
r := ReturnReal ();

s :=format(‘9%0e, [r]);
Real Lbl . caption :=s;

end;

end.

Program 12.7 KylixEx2: Pascal Code for Assembly Return Results Example

/1 ReturnUnit-
/1
/1 Provides the ReturnXXXX functions for the KylixEx2 program

unit ReturnUnit;
/1 Tell HLA that the ReturnXXXXX synbol s are publi c:

procedur e ReturnBool ean; external;
procedure ReturnWrd; external;
procedure ReturnDWrd; external;
procedure ReturnReal ; external;
procedure ReturnPtr; external;

/1 Denonstration of a function that returns a byte value in AL
/1 This function sinply returns a bool ean result that alterates
/1 between true and fal se on each call.

procedure ReturnBool ean; @odi spl ay; @oal i gnstack; @of rare;
static b: bool ean: =f al se;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell163

Chapter Twelve Volume Four

begi n Ret ur nBool ean;

xor(1, b); /1 Invert bool ean status

and(1, b); /1 Force to zero (false) or one (true).
mov(b, al); /! Function return result cones back in AL.
ret();

end Ret ur nBool ean;

procedure ReturnWrd; @odi spl ay; @oalignstack; @ofrane;
static wintle := 1234;
begi n Ret ur n\Wr d;

/1 Increment the static value by one on each
/] call and return the new result as the function
/] return val ue.

inc(w);
nmov(w, ax);
ret();

end Ret ur nWr d;

// Sane code as ReturnWrd except this one returns a 32-bit val ue
/1 in EAX rather than a 16-bit value in AX

procedure ReturnDWrd; @odisplay; @oalignstack; @ofrane;
static

d:int32 :=-7;
begi n Ret ur nDWr d;

inc(d);

nmov(d, eax);

ret();
end Ret ur nDWr d;
procedure ReturnPtr; @odi splay; @oalignstack; @ofrane;
static

stringbData: byte; @ostorage;

byte “Pchar object”, O;

begin ReturnPtr;

| ea(eax, stringData);
ret();

end ReturnPtr;
procedure ReturnReal ; @odi spl ay; @oalignstack; @ofrane;
static
real Data: real 80 := 1.234567890;
begi n ReturnReal ;

fld(realData);
ret();

end ReturnReal ;

Pagell64 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

end ReturnUnit;

Program 12.8 ReturnReal: Demonstrates Returning a Real Value in STO

The second thing to note is the #code, #static, etc., dgedi the bginning of each e to change the
segment name declarationgou’ll learn the reason for thesegseent renaming direets a little later in this
chapter

12.3.4 Calling Conventions

Delphi supports fre different calling mechanisms for procedures and functiwggster, pascal, cdecl,
andsafecall. Theregister andpascal calling methods areery similar &cept that thegpascal parameter
passing schemevahys passes all parameters on the stack whileetfister calling mechanism passes the
first three parameters in CPWisers. We'll return to these tov mechanisms shortly since yhare the pri
mary mechanisms wie'use. The cdecl calling cowvention uses the C/C++ programming language calling
convention. We'll study this scheme more in the section on iagrfg C/C++ with HLA. There is no need
to use this scheme when calling HLA procedures fidephi. If you must use this scheme, then see the
section on the C/C++ languages for detafiafecall is another specialized calling a@mtion that we will
not use. See, wee already reduced the comyty from five mechanisms to ' Seriouslythough, when
calling assembly language routines fr@alphi code that yowk writing, you only need to use tpascal
andregister corventions.

The calling comention options specify o Delphi passes parameters between procedures ane func
tions as well as who is responsible for cleaning up the parameters when a function or procedure returns to its
caller Thepascal calling corvention passes all parameters on the stack andshiathe procedure or func
tion’s responsibility to rem@ those parameters from the stacke pascal calling ceention mandates that
the caller push parameters in the order the compiler encounters them in the parameter list (i.e., left to right).
This is actly the calling covention that HLA uses (assuming you domse the “IN rgister” parameter
option). Heres an &le of aDelphi external procedure declaration that usespésal calling covent
tion:

procedure UsesPascal (parml:integer; parn®:integer; parn8:integer);

The follonving program provides a quick example of a Delphi program that calls an HLA procedure (func
tion) using thepascal calling convention.

unit Kyl i xEx3;
interface

uses
SysUWils, Types, dasses, Variants, Q@ aphics, Qontrols, Qorns, QD al ogs
Gstdarls;

type
TFornml = cl ass(TForm
WsesPascal Bt n: TButton;
UsesPascal Lbl : TLabel ;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell165

Chapter Twelve Volume Four

procedure WsesPascal Bt nd i ck(Sender: Thject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forni: TForni;
i npl emrent ati on

{$R *. xf n}
{$L UsesPascal . o}

function UsesPascal
(
par ni: i nt eger;
par n2: i nt eger;
par n8: i nt eger
):integer; pascal; external;

procedure TFornl. UsesPascal Bt nd i ck(Sender: TChj ect);
var

i i nt eger;

strVval: string;
begi n

i := WsesPascal (5, 6, 7);
str(i, strval);
UsesPascal Lbl . caption := ‘Uses Pascal = *‘ + strVal;

end;

end.

Program 12.9 KylixEx3 — Sample Program that Demonstrates the pascal Calling Convention

/1 UsesPascal Unit -
/1
/1l Provides the UsesPascal function for the KylixEx3 program

unit UsesPascal Unit;

/1 Tell HLA that UsesPascal is a public synbol:

procedure WsesPascal (parml:int32; parnR:int32; parn8:int32); external;
/1 Denonstration of a function that uses the PASCAL cal ling conventi on.
/1 This function sinply conputes parnil+parn®-parn8 and returns the

// result in EAX Note that this function does not have the

/1 “NOFRAME' option because it needs to build the activation record
Il (stack frame) in order to access the paraneters. Furthernore, this

Pagell66 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

// code nust clean up the paraneters upon return (another chore handl ed
/1 automatically by HLA if the “NOFRAME' option is not present).

procedure UsesPascal (parml:int32; parnR:int32; parn8:int32);
@odi spl ay;
@oal i gnst ack;
begi n UsesPascal ;
nmov(parml, eax);
add(parn2, eax);
sub(parn8, eax);

end WsesPascal ;

end UsesPascal Lhit;

Program 12.10 UsesPascal — HLA Function the Previous Kylix Code Will Call

To compile the HLA code, you auld use the follwing command from the shell:

hla -¢c UsesPascal . hl a

Once you produce the .defiwith the above two commands, you can get into Delphi and compile the Pascal
code.

The register calling cowvention also processes parameters from left to right and requires the proce
dure/function to clean up the parameters upon return; tteeatite is that procedures and functions that use
theregister calling corvention will pass their f6t three (ordinal) parameters in the EAX, EDX, and ECX
registers (in that order) rather than on the statu can use HLA “IN register’ syntax to specify that you
want the fist three parameters passed in thigsters, e.g.,

procedure UsesRegi sters

(
parnil:int32 in EAX
parn®2:int32 in EDX
parnB:int32 in ECX
)

If your procedure had four or more parameters, youldvnot specify registers as their locations. Instead,
you'd access those parameters on the stack. Since most procedures have three or fewer pararegters, the
ister calling convention will typically pass all of a procedure’s parameters in a register.

Although you can use thegister keyword just like pascal to force the use of theegister calling con
vention, the rgister calling covention is the defult mechanism iDelphi. Therefore, &elphideclaration
like the follaving will automatically use theegister calling cowention:

procedure UsesRegi sters

(
par ni: i nt eger;
par n2: i nt eger;
par n8: i nt eger
); external;

The folloving program is a modiation of the préous program in this section that uses itbgister
calling corvention rather than thgascal calling cowvention.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell67

Chapter Twelve Volume Four

unit Kyl i xEx4;
interface

uses
SysUils, Types, dasses, Variants, Qaphics, Qontrols, Qorns, QD al ogs,
Gstdarls;

type
TFornl = cl ass(TForn)
Regi sterBtn: TButton;
UsesRegi st er Label : TLabel ;
procedure RegisterBtndick(Sender: Tbject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TForni;
i npl enent ati on

{$R *. xf n}
{$L UsesRegi ster. o}

function UsesRegi ster
(
parmil: i nt eger;
par n2: i nt eger;
par n8: i nt eger ;
par md: i nt eger
):integer; external;

procedure TForml. Regi sterBtnd i ck(Sender: TChject);
var

i: i nt eger;

strVval: string;
begi n

i 1= UsesRegister(5 6, 7, 3);
str(i, strval);
UsesRegi sterLabel . caption := ‘Uses Register ="' + strVal;

end;

end.

Program 12.11 KylixEx4 — Using the register Calling Convention

Pagell168 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

/'l UsesRegisterUnit-
/1
/1 Provides the UsesRegi ster function for the Del phi Ex4 program

unit UsesRegisterUnit;
/1 Tell HLA that UsesRegister is a public synbol:

procedure UsesRegi ster

(
parml:int32 in eax;
parn®:int32 in edx;
parn8:int32 in ecx;
par mi: i nt 32

); external;

/1 Denonstration of a function that uses the REA STER cal | i ng conventi on.

/1 This function sinply conputes (parni+parn®-parn8)*parml and returns the

/1 result in EAX. Note that this function does not have the

/1 “NOFRAME’" option because it needs to build the activation record

/1l (stack frame) in order to access the fourth parameter. Furthernore, this
/1 code must clean up the fourth paraneter upon return (another chore handl ed
// automatically by HAAif the “NOFRAME’ option is not present).

procedure UsesRegi ster

(
parml:int32 in eax;
parn2:int32 in edx;
parn8:int32 in ecx;
par mi: i nt 32

); @odisplay; @oalignstack;

begi n UsesRegi ster;
nmov(parml, eax);
add(parn?, eax);
sub(parnB, eax);
intmul (parnd, eax);

end UsesRegi ster;

end UsesRegi sterUnit;

Program 12.12 HLA Code to support the KylixEx4 Program

To compile the HLA code, you auld use the follwing shell command:
hla -c UsesRegi ster. hla

Once you produce the .defiwith the above command, you can get into Delphi and compile the Pascal code.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell169

Chapter Twelve Volume Four

12.3.5 Pass by Value, Reference, CONST, and OUT in Delphi

A Delphi program can pass parameters to a procedure or function using one of fementiihecha
nisms: pass byalue, pass by reference, CONST parameters, and OUT paraniétersamples up to this
point in this chapter ha all usedDelphi's (and HLAs) defult pass by alue mechanism. In this section
we'll look at the other parameter passing mechanisms.

HLA andDelphialso share a (mostly) common syntax for pass by reference parariéiefslloving
two lines preide an &ternal declaration ifbelphi and the correspondingternal (public) declaration in
HLA for a pass by reference parameter usingptiseal calling cowention:

procedure HasRef Parn{ var refparm integer); pascal; external; // Delphi
procedure HasRef Parn{ var refparm int32); external; /1 HA

Like HLA, Delphi will pass the 32-bit address of whatever actual parameter you specify when calling the
HasRefParnprocedure. Don't forget, inside the HLA code, that you must dereference this pointer to access
the actual parameter data. See the chapter on Intermediate Procedures for more déRaitss(bgdrefer

ence” on pagél?).

The CONST and OUT parameter passing mechanisms are virtually identical to pass by reference. Like
pass by reference these two schemes pass a 32-bit address of their actual parameter. The difference is that
the called procedure is not supposed to write to CONST objects since they're, presumably, constant. Con-
versely, the called procedure is supposed to write to an OUT parameter (and not assume that it contains any
initial value of consequence) since the whole purpose of an OUT parameter is to return data from a proce-
dure or function. Other than the fact that the Delphi compiler will check procedures and functions (written
in Delphi) for compliance with these rules, there is no difference between CONST, OUT, and reference
parameters. Delphi passes all such parameters by reference to the procedure or function. Note that in HLA
you would declare all CONST and OUT parameters as pass by reference parameters. HLA does not enforce
the readonly attribute of the CONST object nor does it check for an attempt to access an uninitialized OUT
parameter; those checks are the responsibility of the assembly language programmer.

As you learned in the previous section, by default Delphi use®gister calling cowvention. If you
pass one of therfit three parameters by reference to a procedure or funogtphiwill pass the address of
that parameter in the EAX, EDX, or ECXgister This is \ery covenient as you can immediately apply the
register indirect addressing mode withoustfloading the parameter into a 32-bigister

Like HLA, Delphilets you pass untyped parameters by reference (or by CONST or Qbd syntax
to achiee this inDelphiis the follaving:

procedure UntypedRef Parn{ var parnil; const parn®; out parn8); external;

Note that you do not supply a type spexifion for these parameters. Delphi will compute the 32-bit
address of these objects and pass them on tdrttypedRefParmrocedure without any further type check

ing. In HLA, you can use the VAR keyword as the data type to specify that you want an untyped reference
parameter. Here’s the corresponding prototype fotiitgpedRefParnprocedure in HLA:

procedure UntypedRef Parn{ var parni:var; var parn®:var; var parnB:var);
external ;

As noted abee, you use the VAR keyword (pass by reference) when passing CONST and OUT parameters.
Inside the HLA procedure it's your responsibility to use these pointers in a manner that is reasonable given
the expectations of the Delphi code.

12.3.6 Scalar Data Type Correspondence Between Delphi and HLA
When passing parameters betw@&smiphi and HLA procedures and functionssitery important that

the calling code and the called code agree on the basic data types for the parameters. In this section we will
draw a correspondence between Bephi scalar data types and the HLA (v1.x) data t§pes

Pagell70 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

Assembly language supportsygrossible data format, so HlsAdata type capabilities willahys be a
superset oDelphi's. Therefore, there may be some objects you can create in HLA tlehbaounterpart
in Delphi, but the reerse is not true. Since the assembly functions and procedures you write are generally
manipulating data thdelphi provides, you dort’have to worry too much about not being able to process
some data passed to an HLA procedur®bipht*.

Delphiprovides a wide range of didrent intger data typesThe following table lists théelphitypes
and the HLA equialents:

Table 1: Delphi and HLA Integer Types

Range
Delphi HLA Equivalent
Minimum Maximum
integer int322 -2147483648 2147483647
cardinal uns3® 0 4294967295
shortint int8 -128 127
smallint intl6 -32768 32767
longint int32 -2147483648 2147483647
int64 gword 263 (263_1)
byte uns8 0 255
word unsl6 0 65535
longword uns32 0 4294967295
subrange types Depends on range | minimum range maximum range
value value

a. Int32 is the implementation of integer in Delphi. Though this may change in later releases.
b. Uns32 is the implementation of cardinal in Delphi. Though this may change in later releases.

In addition to the intger \alues Delphi supports seeral non-intger ordinal typesThe following table
provides their HLA equialents:

3. Scalar data types are the ordinal, pointer, and real types. It does not include strings or other composite data types.

4. Delphi string objects are an exception. For reasons that have nothing to do with data representation, you should not manip-
ulate string parameters passed in from Delphi to an HLA routine. This section will explain the problems more fully a little
later.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell71

Chapter Twelve Volume Four

Table 2: Non-integer Ordinal Typesin Delphi and HLA

Range
Delphi HLA

Minimum Maximum

char char #0 #255
widechar word chr(0) chr(65535)

boolean boolean false (0) true(1)

bytebool byte O(false) 255 (non-zero is
true)

wordbool word 0 (false) 65535 (non-zero is
true)

longbool dword 0 (false) 4294967295
(non-zero is true)

enumerated types | enum, byte, orwrd | O Depends on num
ber of items in the
enumeration list.
Usually the upper
limit is 256 sym
bols

Like the intger typesDelphi supports a wide range of real numeric formatke following table pre
sents these types and their HLA e@lénts.

Table 3: Real Typesin Delphi and HLA

Range
Delphi HLA
Minimum Maximum
real real64 5.0 E-324 1.7 E+308
single real32 1.5 E-45 3.4 E+38
double real64 5.0 E-324 1.7 E+308
extended real80 3.6 E-4951 1.1 E+4932
comp real80 2631 2631
curreny real80 -922337203685477.% 922337203685477.%
808 807

Pagell72 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

The last scalar type of interest is the pointer type. Both HLADsiphi use a 32-bit address to repre
sent pointers, so these data types are completelyadeypti in both languages.

12.3.7 Passing String Data Between Delphi and HLA Code

Delphi supports a couple of &rent string formatsThe natve string format is actuallyevy similar to
HLA'’s string format.A string object is a pointer that points at a zero terminated sequence of characters. In
the four bytes preceding thesti character of the strinfelphi stores the current dynamic length of the
string (just like HLA). In the four bytes before the lengibelphi stores a reference count (ulikiLA,
which stores a maximum lengthlue in this location) Delphiuses the reference count el track of ha
mary different pointers contain the address of this particular string olijedphiwill automatically free the
storage associated with a string object when the reference count drops to zero (this iakgobage col
lection).

The Delphistring format is just close enough to HsAo tempt you to use some HLA string functions
in the HLA Standard LibraryThis will fail for two reasons: (1) marof the HLA Standard Library string
functions check the maximum lengtkld, so thg will not work properly when theacces®elphi's refer
ence count @ld; (2) HLA Standard Library string functionsvieaa habit of raising stringverflow (and
other) exceptions if thg detect a problem (such aseeding the maximum string lengtalwe). Remember
the HLA exception handlingdcility is not directly compatible witBelphi's, so you should ner call ary
HLA code that might raise axeeption.

Of course, you canwhys grab the source code to some HLA Standard Library string function and strip
out the code that raisegoeptions and checks the maximum lengdiidfithis is usually the same code that
raises gceptions). Hwever, you could still run into problems if you attempt to manipulate sbelghi
string. In general, ¥ okay to read the data from a string parameterQbfthi passes to your assembly
code, lnt you should neer change thealue of such a stringTo understand the problem, consider the fol
lowing HLA code sequence:

static
s:string := “Hello Wrld”;
sref:string;
scopy: string;

str.a_cpy(s, scopy); // scopy has its ow copy of “Hello Wrld”

nov(s, eax); // After this sequence, s and sref point at
nov(eax, sref); /1l the same character string in nenory.

After the code sequence aleg ary change you wuld male to thescopystring would afect onlyscopy
because it has itsnm copy of the “HelloWorld” string. On the other hand, if you nealiry changes to the
characters thatpoints at, youl also be changing the string thsaef points at becaussef contains the same
pointer \alue ass; in other vords,sandsrefare aliases of the same da#dthough this aliasing process can
lead to the creation of some killer defects in your code, there is a kdgtade to using cepy reference
rather than cop by value: cop by reference is much quiek since it only iWolves coging a single
four-byte pointer If you rarely change a stringiable after you assign one string to theatiable, cog by
reference can becsvy eficient.

Of course, what happens if you use by reference to cgpsto sref and then youamt to modify the
string thatsref points at without changing the string tisgoints at? One &y to do this is to maka cop of
the string at the time youamt to changeref and then modify the cgp This is knavn ascopy on write
semantics In the &erage program, cgmn write tends to producadter running programs because the typ
ical program tends to assign one string to another without roatiliin more often that it assigns a string
value and then modés it later Of course, the real problem is ¥hao you knav whether multiple string
variables are pointing at the same string in memo®f®&r all, if only one string ariable is pointing at the
string data, you dohhave to male a cop of the data, you can manipulate the string data ditettig ref

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell73

Chapter Twelve Volume Four

erence counter éid thatDelphi attaches to the string data ssthis problem. Each timeDeelphi program
assigns one stringaviable to anothetheDelphicode simply copies a pointer and then increments the refer
ence counter Similarly, if you assign a string address to sdbedphi string \ariable and thatariable vas
previously pointing at some other string deeelphi decrements the reference counteldfiof that preious
string \alue. When the reference count hits zeébelphiautomatically deallocates storage for the string (this
is the @rbage collection operation).

Note thatDelphistrings dort need a maximum lengttefd becaus®elphidynamically allocates (stan
dard) strings whemner you create a mestring. Hence, stringverflow doesnt occur and there is no need to
check for string eerflow (and, therefore, no need for the maximum lengtld¥i For literal string constants
(which the compiler allocates staticalfyot dynamically on the hea)elphiuses a reference courglél of
-1 so that the compiler will not attempt to deallocate the static object.

It wouldn't be that hard to t&kthe HLA Standard Library strings module and modify it toDskphi's
dynamically allocated string formafThere is, hwever, one problem with this approach: Borland has not
published the internal string format f@relphi strings (the information appearing akois the result of
sleuthing through memory with a dedger). They have probably withheld this information becauseythe
want the ability to change the internal representation of their string data type without bregdting Bel-
phi programs. So if you pekaround in memory and modiBelphi string data (or allocate or deallocate
these strings on youmm), dont be surprised if your program malfunctions when a lagesion ofDelphi
appears (indeed, this information may already be obsolete).

Like HLA strings, delphistring is a pointer that happens to contain the address ofghehtaracter of
a zero terminated string in memows long as you doth’'modify this pointeryou dont modify ary of the
characters in that string, and you daaittempt to access amytes before therft character of the string or
after the zero terminating byte, you can safely access the string data in your HLA programs. Just remember
that you cannot use wistandard Library routines that check the maximum string length or rgissap
tions. If you need the length ofCelphistring that you pass as a parameter to an HLA procedureuitw
be wise to use thBelphi Lengthfunction to compute the length and pass thisi® as an additional param
eter to your procedurerlhis will keep your code wrking should Borlandwer decide to change their inter
nal string representation.

Delphi also supports &hortStringdata type. This data type proades backwrds compatibility with
older \ersions of Borland Turbo Rascal (Borland Objectadcal) product.ShortStringobjects are traeli
tional length-prefied strings (se&Character Strings” on pagkl9). A short string ariable is a sequence of
one to 256 bytes where thesfibyte contains the current dynamic string lengtha{aevin the range 0..255)
and the follaving n bytes hold the actual characters in the strimgeing the alue found in the ffst byte of
the string data). If you need to manipulate taki@ of a string ariable within an assembly language mod
ule, you should pass that parameter &hartStringvariable (assuming, of course, that you dowed to
handle strings longer than 256 charactersy. gficieng/ reasons, you shouldvedys pasSshortStringvari-
ables by reference (or CONST or OUT) rather thandlye: If you pass a short string bglwe, Delphi
must copy all the characters allocated for that stringeteif the current length is shorter) into the proce
dures actvation record. This can be ery slav. If you pass &hortStringby reference, thebelphi will
only need to pass a pointer to the stsnggata; this isery eficient.

Note thatShortStringobjects do not hae a zero terminating byte follang the string dataTherefore,
your assembly code should use the lengthplsfie to determine the end of the string, it should not search
for a zero byte in the string.

If you need the maximum length oShortStringobject, you can use ttizelphihigh function to obtain
this information and pass it to your HLA code as another paramitee that the high function is an com
piler intrinsic much lile HLA's @size function.Delphisimply replaces this “function” with the egalent
constant at compile-time; this isra true function you can callThis maximum size information is not
available at run-time (unless ya& used th®elphihighfunction) and you cannot compute this information
within your HLA code.

Pagell74 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

12.3.8 Passing Record Data Between HLA and Delphi

Records in HLA are (mostly) compatible witrelphirecords. Syntactically their declarations aseyv
similar and if youre specifed the correcbelphi compiler options you can easily translat®elphirecord
to an HLA record. In this section Wieéxplore hav to do this and learn about the incompatibilities théte
between HLA records aridelphirecords.

For the most part, translatiigelphirecords to HLA is a no brainefhe two record declarations are so
similar syntactically that caersion is tvial. The only time you really run into a problem in theension
process is when you encounter caggant records ielphi; fortunately these dort’occur \ery often and
when thg do, HLAs anolymous unions within a record come to the rescue.

Consider the follwing Pascal record type declaration:

type
recType =
record
day: byte;
nont h: byt e;

year:integer;
dayr Veek: byt e;

end;
The translation to an HLA record is, for the most pasty\straight-forward. Just translate the field types

accordingly and use the HLA record syntax ($®ecords” on pagd83) and you're in business. The trans
lation is the following:

type
recType:
record
day: byte;
nont h: byt e;
year:int32

dayr Veek: byt e;
endr ecor d;

There is one minor problem with thigaenple: data alignment. By defit Delphi aligns each &ld of a
record on the size of that object and pads the entire record so its sizees anuitiple of the lagest (sca
lar) object in the recordThis means that theelphi declaration abee is really equialent to the follaving

HLA declaration:
type
recType:
record

day: byte;
nont h: byt e;
paddi ng: byt e[2] ; /1 Aign year on a four-byte boundary.
year:int32

dayCf Veek: byt e;
nor ePaddi ng: byte[3]; // Make record an even nultiple of four bytes.

endr ecor d;

Of course, a better solution is to use P ALIGN directive to automatically align theelds in the
record:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell75

Chapter Twelve

type
recType:
record

day: byte;
nont h: byt e;
align(4)
year:int32

dayCf Veek: byt e;

align(4);

endr ecor d;

/1 Align year on a four-byte boundary.

/1 Make record an even multiple of four bytes.

Volume Four

Alignment of the flds is good insafr as access to thelfis is &ster if thg are aligned appropriately
However, aligning records in thisakhion does consumegte space (fie bytes in thexamples abee) and
that can bexpensve if you hae a lage array of records whoselfis need padding for alignment.

The alignment parameters for an HLA record should be thenfiolip

Table 4: Alignment of Record Fields

DataType

Alignment

Ordinal Types

Size of the type: 1, 2, or 4 bytes.

RealTypes 2 for real48 andx@ended, 4 bytes for othe
real types

ShortString 1

Arrays Same as the element size

Records Same as the Igest alignment of all the
fields.

Sets 1 or two if the set has feer than 8 or 16 ele

ments, 4 otherwise

All other types

4

Another possibility is to telDelphinot to align the &lds in the recordThere are tw ways to do this:
use thgpacked resered word or use the {$A-} compiler directs.

The packd keyword tells Delphi not to add padding to a specifiecord. Br example, you could
declare the origindDelphirecord as follas:

type
recType =

packed record
day: byte;
nmont h: byt e;
year: i nt eger;
dayCf Veek: byt e;

end;

Pagell76

© 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

With the packed reserved word present, Delphi does not add any padding to the fields in the record. The
corresponding HLA code would be the original record declaration above, e.g.,

type
recType:
record
day: byte;
nont h: byte;
year:int 32;

dayCf Veek: byt e;

endr ecor d;

The nice thing about thgacked keyword is that it lets youxlicitly state whether you ant data aligh
ment/padding in a record. On the other hand, if y@got a lot of records and you dbwant field align
ment on ap of them, youll probably want to use the “{$A-}" (turn data alignmentfpbption rather than
add thepacked resened word to each record deition. Note that you can turn data alignment back on with
the “{$A+"} directive if you want a sequence of records to be palcnd the rest of them to be aligned.

While it's far easier (and syntactically safer) to used pdckcords when passing record data between
assembly language aielphi, you will hase to determine on a case-by-case basis whethereywilling to
give up the performanceip in exchange for using less memory (and a simpler iabe). It is certainly the
case that pa@d records are easier to maintain in HLA than aligned records (since yaiund@nto care
fully placeALIGN directives throughout the record in the HLA code). Furthermore, @86 processors
most mis-aligned data accesses drpafticularly epensve (the cache tas care of this). Hwever, if per
formance really matters you will ato measure the performance of your program and determine the cost
of using packd records.

Case wariant records irDelphi let you add mutually xelusive fields to a record with an optional tag
field. Here are tovexamples:

type
ri=
record

stdFi el d: integer
case choi ce: bool ean of
true:(i:integer);
false:(r:real);
end;

r2=
record
s2:real
case bool ean of // Notice no tag object here.
true:(s:string)
false:(c:char);
end;

HLA does not support the casariant syntax, bt it does support angmous unions in a record that let
you achiee the same semanticEhe two examples abee, cowerted to HLA (assuming “{A-}") are

type
rl.
record

stdFi el d: int32;
choi ce: bool ean; /1 Notice that the tag field is just another field
uni on

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell77

Chapter Twelve Volume Four

i:int32
r:real 64;

enduni on;
endr ecor d;

r2.
record

s2:real 64;
uni on

s: string;
c: char;

enduni on;
endr ecor d;

Again, you should insert approprigkeIGN directives if youre not creating a paekl record. Note that
you shouldrt place ag ALIGN directives inside the angmous union section; instead, place a single
ALIGN directive before the UNION resezd word that speciéis the size of the Igest (scalar) object in the
union as gien by the tabléAlignment of Record Fields” on padd 79

In general, if the size of a recordoeeds about 16-32 bytes, you should pass the record by reference
rather than by alue.

12.3.9 Passing Set Data Between Delphi and HLA

Sets inDelphi can hae between 1 and 256 elemenfBelphi implements sets using an array of bits,
exactly as HLA implements character sets (4ebaracter Sets” on pagell). Delphiresenes one to 32
bytes for each set; the size of the set (in bytes) is (Number_of elements/487)Ldke HLA's character
sets,Delphi uses a set bit to indicate that a particular object is a member of the set and a zero bit indicates
absence from the seYou can use the bit test (and set/complement/reset) instructions and all the other bit
manipulation operations to manipulate character sets. Furthermore, the MMX instructions nviglet gro
little added performance boost to your set operations‘{deeMMX Instruction Set” on pag#l13. For
more details on the possibilities, consult Brephidocumentation and the chapters on character sets and the
MMX instructions in this tet.

Generally sets are sfitiently short (maximum of 32 bytes) that passing thedbyevisnt totally horr
ble. Havever, you will get slightly better performance if you pasgéarsets by reference. Note that HLA
often passes character sets ljue (16 bytes per set) t@anous Standard Library routines, so dooé
totally afraid of passing sets bglue.

12.3.10Passing Array Data Between HLA and Delphi

Passing array data between some procedures writ®elphi and HLA is little diferent than passing
array data between bAHLA procedures. Generallij the arrays are lge, youll want to pass the arrays by
reference rather tharale. Other than that, you should declare an appropriate array type in HLA to match
the type you'e passing in fronbelphiand hae at it. The following code fragments pvae a simple xam-
ple:

type
Pascal Array = array[0..127, 0..3] of integer;

procedure PassedArrray(var ary: Pascal Array); external

Pagell78 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

Corresponding HLA code:

type
Pascal Array: int32] 128, 4];

procedure PassedArray(var ary: Pascal Array); external;

As the abwe examples demonstratBelphi's array declarations specify the starting and ending indicies
while HLA's array bounds specify the number of elements for each dimension. Other tharfetieisodif
however, you can see that thedvdeclarations areevy similar

Delphi uses rer-major ordering for arrays. So if yoa'accessing elements oDelphi multi-dimen
sional array in HLA code, be sure to use the-major order computation (séBow Major Ordering” on
page469).

12.3.11Referencing Delphi Objects from HLA Code

Symbols you declare in the INTEREE section of @elphiprogram are publicTherefore, you can
access these objects from HLA code if you declare those objecteasaéin the HLA programThe fol
lowing sample program demonstrates thist by declaring a structured constantand a functionqallmé
that the HLA code uses when you press th#on on a form. The HLA code calls theallme function
(which returns thealue 10) and then the HLA code stores the function return result injostinectured
constant (which is really just a statiariable).

uni t Del phi Ex5;
interface

uses
Wndows, Messages, SysWils, dasses, Gaphics, Controls, Forns, D al ogs,
StdQrls;

type
TDat aTabl e = cl ass(TForm
Cet DataBtn: TButton;
Dat aLabel : TLabel ;
procedure GetDataBtnd ick(Sender: Thject);

private

{ Private declarations }
public

{ Public declarations }
end,

/l Here’s a static variable that we will export to
/1 the HLA source code (in Delphi, structured constants
// are initialized static variabl es).

const
y:integer = 12345;

var
Dat aTabl e: TDat aTabl €;

/1 Here's the function we will export to the HLA code:

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell79

Chapter Twelve Volume Four
function call nme:integer;
i npl ement ati on

{$R *. DFM}
{$L Tabl eDat a. obj }

function Tabl eData:integer; external;

/1 This function will sinply return 10 as the function
/1l result (remenber, function results come back in EAX).

function call ne;
begi n

callne : = 10;

end;

procedure TDat aTabl e. Get Dat aBt nd i ck(Sender: Tbj ect);

var
strVval: string;
yVal : string;
begi n

/1 Display the value that Tabl eData returns.
/1 Al 'so display the value of y, which Tabl eVal ue nodifies

str(TableData(), strval);
str(y, yval);
Dat aLabel . caption := ‘Data = * + strVal +

y=" + yVal;
end;

end.

Program 12.13 DelphiEx5 — Static Data and Delphi Public Symbols Demonstration

unit Tabl eDat alnit;

static
y:int32; external; // Static object from Del phi code

//d: dat aseg: nostorage; // Al of our static variables are here.
index: dword :=-1; // index initial val ue;

TheTabl e: dword[12] : =
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6]; // TheTabl e val ues.

/1 Interface to “callne” procedure found in the Del phi code:

Pagell80 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

procedure call ne; external;

/1 Declare the procedure we’'re supplying to the Del phi code:

procedure Tabl eData; external;
procedure Tabl eData; @odi spl ay; @oal i gnstack; @ofrane;
begi n Tabl eDat a;

cal l me(); /1 Call Del phi code.
nov(eax, Yy); // Store return result in Y.

/1 Ckay, on each successive call to this function, return
/1 the next elenent (or waparound to the first element) from
/1 the “TheTabl e” array:

inc(index);
nov(index, eax);
if(eax > 11) then

xor(eax, eax);
nmov(eax, index);

endi f;
nov(TheTabl e[eax*4], eax);
ret();

end Tabl eDat a;

end Tabl eDat alni t;

Program 12.14 HLA Code for DelphiEx5 Example

uni t Kyl i xEx5;
interface

uses
SysUils, Types, dasses, Variants, Q& aphics, Qontrols, Qorns, QD al ogs,
Gstdarls;

type
TFornl = cl ass(TForn)
Get Data: TButton;
Dat aLabel : TLabel ;
procedur e GetDatad ick(Sender: TCbject);
private
{ Private declarations }
public

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell81

Chapter Twelve Volume Four

{ Public declarations }
end,;

/l Here’s a static variable that we will export to
/1 the HLA source code (in Del phi, structured constants
// are initialized static variabl es).

const
y:integer = 12345;

var
Forml: TForni;

// Here's the function we will export to the HLA code:

function callme:integer;

i npl enent ati on

{$R *. xf n}
{$L Tabl eData.o }

function Tabl eData:integer; external;

/1 This function will sinply return 10 as the function
/1 result (remenber, function results cone back in EAX).

function call ng;
begi n

callne := 10;
end;

procedure TForml. Get Dat ad i ck(Sender: TCbj ect);

var
strVval: string;
yVal : string;
begi n

/1 D splay the value that Tabl eData returns.
/'l Al'so display the value of y, which Tabl eVal ue nodifies

str(Tabl eData(), strVval);
str(y, yval);
Dat alLabel .caption := ‘Data = + strVal + ‘ y= + yVal;

end;

end.

Program 12.15 KylixEx5 — Static Data and Delphi Public Symbols Demonstration

Pagel182 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
unit Tabl eDat alni t;

static
y:int32; external; // Static object from Del phi code

//d: dat aseg: nostorage; // Al of our static variables are here.
index: dword :=-1; // index initial val ue;

TheTabl e: dword[12] : =
[-5 -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6]; // TheTabl e val ues.

/1l Interface to “callne” procedure found in the Del phi code:

procedure call ne; external;

I/ Declare the procedure we're supplying to the Del phi code:

procedure Tabl eData; external;
procedure Tabl eData; @odi spl ay; @oal i gnstack; @ofrane;
begi n Tabl eDat a;

callnme(); /1 Call Del phi code.
nov(eax, Yy); // Store return result in Y.

/1 Ckay, on each successive call to this function, return
// the next elenent (or waparound to the first element) from
I/ the “TheTabl e” array:

inc(index);
nov(index, eax);
if(eax > 11) then

xor(eax, eax);
nmov(eax, index);

endi f;
nov(TheTabl e[eax*4], eax);
ret();

end Tabl eDat a;

end Tabl eDat alni t;

Program 12.16 HLA Code for KylixEx5 Example

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel183

Chapter Twelve Volume Four

12.4

Programming in C/C++ and HLA

Unlike Delphi, that has only a singlesmdor there are mandifferent C/C++ compilersvailable on the
market. Each endor (Microsoft, Borlandyatcom, GNU, etc.) has theiwo ideas about o C/C++
should interéce to gternal code. Manvendors hee their avn extensions to the C/C++ language to aid in
the interfice to assembly and other languages. ekample, Borland pnddes a specialdyword to let Bor
land C++ (and C++ Builder) programmers cadlsPal code (Qrcorversely allow Pascal code to call the
C/C++ code). Microsoft, who stopped makingsPal compilers years ago, no longer supports this option.
This is unfortunate since HLA uses thasPal calling corentions. Brtunately HLA provides a special
interface to code that C/C++ systems generate.

Before we get started discussingvhio write HLA modules for your C/C++ programs, you must under
stand tvo very important &cts:

HLA'’s exception handling facilities are not directly compatible with C/C++'s exception
handling facilities. This means that you cannot use the TRY..ENDTRY and RAISE state
ments in the HLA code you intend to link to a C/C++ program. This also means that you
cannot call library functions that contain such statements. Since the HLA Standard
Library modules use exception handling statements all over the place, this effectively pre
vents you from calling HLA Standard Library routines from the code you intend to link
with C/C++.

Given the rich set of language features that C/C++ supports, it should come as no surprise that the inter
face between the C/C++ language and assembly language istetrocempl&. Fortunately there are tw
facts that reduce this problem. First, HLA (v1.26 and later) supports &GCalihg comentions. Second,
the other compbestuff you won't use \ery often, so you may notveto bother with it.

Note: the following sections assume you are already familiar with C/C++ programming.
They make no attempt to explain C/C++ syntax or features other than as needed to explain
the C/C++ assembly language interface. If you're not familiar with C/C++, you wilt prob
ably want to skip this section.

Also note: although this text uses the generic term “C/C++" when describing the interface
between HLA and various C/C++ compilers, the truth is that you're really interfacing
HLA with the C language. There is a fairly standardized interface between C and assem
bly language that most vendors follow. No such standard exists for the C++ language and
ewvery vendor, if they even support an interface between C++ and assembly, uses a different
scheme. In this text we will stick to interfacing HLA with the C language. Fortunately, all
popular C++ compilers support the C interface to assembly, so this isn’t much of a prob
lem.

The examples in this text will use the GNU C++ compiler. There may be some minor adjustments you
need to make if you're using some other C/C++ compiler; please see the vendor's documentation for more
details.

12.4.1 Linking HLA Modules With C/C++ Programs

One big adantage of C/C++\eer Delphiis that (most) C/C++ compileremdors’products emit stan
dard object fes. So, working with object fies and a true lirde is much nicer than g to deal withDel-
phi's kuilt-in linker. As nice as th®elphisystem is, integfcing with assembly language is much easier in
C/C++ than inDelphi.

The diference between a C and a C++ compilation occurs inxteenal declarations for the functions
you intend to write in assembly languager Bxample, in a C sourcddiyou would simply write:

5. Note that the HLA Standard Library source code is available; feel free to modify the routines you want to use and remove
any exception handling statements contained therein.

Pagell84 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming
extern char* RetHW void);

However, in a C++ environment, you would need the following external declaration:

extern “C

{
}

extern char* RetHW void);

The ‘extern “C™ clause tells the compiler to use standard C linkage even though the compiler is processing
a C++ source file (C++ linkage is different than C and definitely far more complex; this text will not con
sider pure C++ linkage since it varies so much from vendor to vendor).

The following sample program demonstrates this external linkage mechanism by writing a short HLA
program that returns the address of a string (“Hello World”) in the EAX register (like Delphi, C/C++ expects
functions to return their results in EAX). The main C/C++ program then prints this string to the console
device.

#i ncl ude <stdlib. h>
#include "ratc. h"

extern "C'

{
b

extern char* ReturnHW void);
int main()
_begin(main)

printf("%\n", ReturnHW));
_return O;

_end(nain)

Program 12.17 Cex1 - A Simple Example of a Call to an Assembly Function from C++

unit ReturnHWMNi t;
procedure ReturnHW external ("_ReturnHW);
procedure ReturnHW nodi spl ay; noframe; noalignstk;
begi n Ret ur nHW

lea(eax, "Hello World");
ret();

end Ret ur nHW

end Ret urnHWni t;

Program 12.18 RetHW.hla - Assembly Code that Cex1 Calls

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel185

Chapter Twelve Volume Four

There are seeral nev things in both the C/C++ and HLA code that might confuse yousagfance, so
let's discuss these things real quick here.

The frst strange thing you will notice in the C++ code is the #include “ratc.h” statement. RatC is a
C/C++ macro library that addsveszal nev features to the C++ language. RatC adders¢interesting fea
tures and capabilities to the C/C++ languagg,bprimary purpose of RatC is to help ma&/C++ pre
grams a little more readable. Of course, if yeulerer seen RatC before, yduyrobably ague that its not
as readable as pure C/C+ttlaven someone who hasuvee seen RatC before caguire out 80% of Ratc
within a minutes. In thexample abwe, the _bgin and _end clauses clearly map to the “{* and “}" symbols
(notice hav the use of _lgn and _end makit clear what function or statement associates with the braces;
unlike the guessark youve got in standard C)The _return statement is clearly eglént to the C return
statement. As you'll quickly see, all of the standard C control structures are iepraslightly in RatC.
You'll have no trouble recognizing them sincejthese the standard control structure names with an -under
score prefi. This text promotes the creation of readable programs, hence the use of RatCxartipdes
appearing in this chapférYou can find out more about RatC &debster at http://webstes.ucredu.

The C/C++ program ishthe only sourcel# to introduce something we If you look at the HLA code
you'll notice that the LEA instruction appears to beggle It tales the follaving form:

lea(eax, “Hello World”);

The LEA instruction is supposed toveaa memory and a register operand. This example has a register and
a constant; what is the address of a constant, anyway? Well, this is a syntactical extension that HLA pro
vides to 80x86 assembly language. If you supply a constant instead of a memory operand to LEA, HLA will
create a static (readonly) object initialized with that constant and the LEA instruction will return the address
of that object. In this example, HLA will emit the string to the constants segment and then load EAX with
the address of the first character of that string. Since HLA strings always have a zero terminating byte, EAX
will contain the address of a zero-terminated string which is exactly what C++ wants. If you look back at the
original C++ code, you will see thRetHWreturns achar* object and the main C++ program displays this
result on the console device.

If you haven't figured it out yet, this is a round-about version of the venerable “Hello World” program.
Microsoft VC++ users can compile this program from the command line by using the following com-

mands:
hla -c RetHWhl a /1 Conpiles and assenbl es Ret HWhl a t o Ret HWV obj
cl Cexl.cpp Ret HWobj /1 Conpiles C++ code and links it wth Ret HV obj

If you're a Borland C++ user, you'd use the following command sequence:

hla -o:onf RetHWhI a // Conpile HLA file to an OW file.
bcc32i Cexl. cpp Ret HW obj // Conpile and link C++ and assenbly code.
/1 Could al so use the BCGC32 conpil er.

GCC users can compile this program from the command line by using theirigllcommands:

hla -o:onf RetHWhI a /1 Conpile HLA file to an QW file.
bcc32i Cexl. cpp Ret HW obj // Conpile and link C++ and assenbly code.
/1 Could al so use the BCC32 conpil er.

6. If RatC really annoys you, just keep in mind that you’ve only got to look at a few RatC programs in this chapter. Then you
can go back to the old-fashioned C code and hack to your heart’s content!

7. This text assumes you've executed the VCVARS32.BAT file that sets up the system to allow the use of VC++ from the
command line.

Pagel186 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

12.4.2 Register Preservation

Unlike Delphi, a single language with a singlendor there is no single list of gésters that you can
freely use as scratchpadlwes within an assembly language functidhe list changes byendor andeen
changes betweerersions from the samerdor However, you can safely assume that EAX V&itable for
scratchpad use since C functions return their result in the Edidtee You should probably preseresery-
thing else.

12.4.3 Function Results

C/C++ compilers uniersally seem to return ordinal and pointer function resulf&sLinAX, or EAX
depending on the operasdize. The compilers probably returroéiting point results on the top of the FPU
stack as well. Other than that, check your C/Cemdors documentation for more details on function
return locations.

12.4.4 Calling Conventions

The standard C/C++ calling caetion is probably the biggest area of contention between the C/C++

and HLA languagesVC++ and BCC both support multiple calling eentions. BCC een supports the
Pascal calling covention that HLA uses, making it wial to write HLA functions for BCC prograrfis
However, before we get into the details of these other callingamions, its probably a wise idea tadt
discuss the standard C/C++ calling wemtion.

BothVC++ and BCCdecomtethe function name when you declare atemal function. Br external
“C” functions, the decoration consists of an underscore. If you look b&chagtam 12.1§ou’ll notice that
the external name the HLA program actually uses is “_RetHW” rather than simply “RetHW&. HLA
program itself, of course, uses the symbol “RetHW” to refer to the functibthéd eternal name (as speci
fied by the optional parameter to the EXTERNoption) is “_RetHW". In the C/C++ progranPfogram
12.17 there is noxplicit indication of this decoration; you simply\yeato read the compiler documentation
to discwer that the compiler automatically prepends this character to the functior. naoreunately
HLA’s EXTERML option syntax allas us toundecoatethe name, so we can refer to the function using
the same name as the C/C++ program. Name decorationvibriratter easily fked by HLA.

A big problem is thedct that C/C++ pushes parameters on the stack in the opposite direction of just

about eery other (non-C based) language on the planet; smlifiC/C++ pushes actual parameters on
the stack from right to left instead of the more common left to rilhts means that you cannot declare a
C/C++ function with tva or more parameters and use a simple translation of the CKtarihad declaration
as your HLA procedure declaration, i.e., the folleg are not equalent:

external void CToH.LA(int p, unsigned g, double r);
procedure CToHLA(p:int32; g:uns32; r:real 64); external;

Were you to calCToHLAfrom the C/C++ program, the compiler would push thmrameter first, thg

parameter second, and thg@arameter third - exactly the opposite order that the HLA code expects. As a

result, the HLA code would use the L.O. double word asp’s value, the H.O. double word ofasq’s
value, and the combination pfandq’s values as the value for Obviously, you'd most likely get an ineor

rect result from this calculation. Fortunately, there’s an easy solution to this problem: use the @CDECL

procedure option in the HLA code to tell it to reverse the parameters:
procedure CToHLA(p:int32; q:uns32; r:real 64); @decl; external;

8. Microsoft used to support the Pascal calling convention, but when they stopped supporting their QuickPascal language,

they dropped support for this option.

9. Most compilers provide an option to turn this off if you don’t want this to occur. We will assume that this optioe is activ

in this text since that'’s the standard for external C names.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel187

Chapter Twelve Volume Four

Now when the C/C++ code calls this procedure, it push the parameters on the stack and the HLA code will
retrieve them in the proper order.

There is another big difference between the C/C++ calling convention and HLA: HLA procedures auto-
matically clean up after themselves by removing all parameters pass to a procedure prior to returning to the
caller. C/C++, on the other hand, requires the caller, not the procedure, to clean up the parameters. This has
two important ramifications: (1) if you call a C/C++ function (or one that uses the C/C++ calling sequence),
then your code has to remove any parameters it pushed upon return from that function; (2) your HLA code
cannot automatically remove parameter data from the stack if C/C++ code calls it. The @CDECL procedure
option tells HLA not to generate the code that automatically removes parameters from the stack upon return.
Of course, if you use the @NOFRAME option, you must ensure that you don’t remove these parameters
yourself when your procedures return to their caller.

One thing HLA cannot handle automatically for you is removing parameters from the stack when you
call a procedure or function that uses the @CDECL calling convention; for example, you must manually
pop these parameters whenever you call a C/C++ function from your HLA code.

Removing parameters from the stack when a C/C++ function returns to your code is very easy, just exe-
cute an “add(constant, esp);” instruction wharestanis the number of parameter bytes waupushed on
the stack. Br example, theCToHLA function has 16 bytes of parametersqint32 objects and onezal64
object) so the calling sequence (in HLAYwid look something li& the follaving:

CToHLA(pVval, qgval, rVal); // Assune this is the nacro version.
add(16, esp); /! Renove paraneters fromthe stack.

Cleaning up after a call is easy enough.wHer, if you're writing the function that must leait up to
the caller to remee the parameters from the stack, then y@got a tiy problem — by defult, HLA proce
dures alays clean up after themseb: If you use the @CDECL option and dospecify the @NOF
RAME option, then HLA automatically handles this for you.weeer, if you use the @NOFRAME option,
then youve got to ensure that you leathe parameter data on the stack when returning from a function/pro
cedure that uses the @CDECL calling\eamtion.

If you want to leae the parameters on the stack for the caller to veprtben you must write the stan
dard entry andxét sequences for the procedure thaldand destrg the actvation record (se€The Stan
dard Entry Sequence” on pag&3and“The Standard Exit Sequence” on pa&je)). This means yowe got
to use the @NOFRAME (and @NODISPYAoptions on your procedures that C/C++ will call. Hera’
sample implementation of the GHILA procedure thatuilds and destrgs the actiation record:

procedure _CToHLA(rVal ue:real 64; q:uns32; p:int32); @odisplay;, @ofrane;
begin _CToHLA

push(ebp); /1 Standard Entry Sequence
mov(esp, ebp);
/1l sub(_vars_, esp); /1 Needed if you have |ocal variables.

/1 Code to inplement the function s body.

nov(ebp, esp); /'l Restore the stack pointer.

pop(ebp); /!l Restore link to previous activation record.

ret(); /1 Note that we don't remove any paraneters.
end _CToH.A

12.4.5 Pass by Value and Reference in C/C++

A C/C++ program can pass parameters to a procedure or function using omediffévent mecha
nisms: pass byalue and pass by reference. Since pass by reference parameters use pointers, this parameter
passing mechanism is completely compatible between HLA and C/TheHollowing two lines preide an

Pagel188 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

external declaration in C++ and the correspondixtgr@al (public) declaration in HLA for a pass by refer
ence parameter using the calling wemtion:

extern void HasRefParn{ int& refparm); Il C++
procedure HasRef Parn{ var refparm int32); external; /1 HA

Like HLA, C++ will pass the 32-bit address of whatever actual parameter you specify when callag the
RefParmprocedure. Don't forget, inside the HLA code, that you must dereference this pointer to access the
actual parameter data. See the chapter on Intermediate Procedures for more déRilsybgeReference”

on page3l17).

Like HLA, C++ lets you pass untyped parameters by reference. The syntax to achieve this in C++ is the
following:

extern voi d UntypedRef Parn{ voi d* parnl);

Actually, this is not a reference parameter, but a value parameter with an untyped pointer.

In HLA, you can use the VAR keyword as the data type to specify that you want an untyped reference
parameter. Here’s the corresponding prototype foUtitgpedRef&rm procedure in HLA:

procedure Unt ypedRef Parn{ var parni:var);
external ;

12.4.6 Scalar Data Type Correspondence Between C/C++ and HLA

When passing parameters between C/C++ and HLA procedures and funcsomsy itmportant that
the calling code and the called code agree on the basic data types for the parameters. In this section we will
drav a correspondence between the C/C++ scalar data types and the HLA (v1.x) data types.

Assembly language supportsyguossible data format, so HlsAdata type capabilities wilhahys be a
superset of C/C+%. Therefore, there may be some objects you can create in HLA tlehbaounterpart
in C/C++, lut the reerse is not true. Since the assembly functions and procedures you write are generally
manipulating data that C/C++ piides, you dort’ have to worry too much about not being able to process
some data passed to an HLA procedure by C/C++.

C/C++ praides a wide range of dérent intger data types. Unfortunatethe exact representation of
these types is implementation spexifi he following table lists the C/C++ types as currently implemented
by Borland C++ and MicrosoffC++. This table may &ry well change as 64-bit compilers becomaila

able.
Table5: C/C++ and HLA Integer Types
Range
C/C++ HLA Equivalent — :
Minimum Maximum

int int32 -2147483648 2147483647
unsigned uns32 0 4294967295
signed char int8 -128 127

short intl6 -32768 32767

long int32 -2147483648 2147483647

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel189

Chapter Twelve Volume Four

Table5: C/C++ and HLA Integer Types

Range
C/C++ HLA Equivalent
Minimum Maximum
unsigned char uns8 0 255
unsigned short unsle6 0 65535

In addition to the intger \alues, C/C++ supports\aral non-intger ordinal typesThe following table
provides their HLA equialents:

Like the intger types, C/C++ supports a wide range of real numeric formats followving table pre
sents these types and their HLA eglénts.

Table 6: Real Typesin C/C++ and HLA

Range
C/C++ HLA
Minimum Maximum
double real64 5.0 E-324 1.7 E+308
float real32 1.5 E-45 3.4 E+38

The last scalar type of interest is the pointer type. Both HLA and C/C++ use a 32-bit address to repre
sent pointers, so these data types are completelyadeji in both languages.

12.4.7 Passing String Data Between C/C++ and HLA Code

C/C++ uses zero terminated stringdgorithms that manipulate zero-terminated strings are noffias ef
cient as functions thatark on length-prefied strings; on the plus side,wever, zero-terminated strings
are \ery easy to wrk with. HLA's strings are denwards compatible with C/C++ strings since HLA places
a zero byte at the end of each HLA string. Sincellyprobably not be calling HLA Standard Library string
routines, the dct that C/C++ strings are not uamls compatible with HLA strings generallyomt be a
problem. If you do decide to modify some of the HLA string functions so thatithet raise &ceptions,
you can alays translate thetr.cStroStr function that translates zero-terminated C/C++ strings to HLA
strings.

A C/C++ string ariable is typically a char* object or an array of characters. In either case, C/C++ will
pass the address of thesticharacter of the string to axternal procedure whewer you pass a string as a
parameter Within the procedure, you can treat the parameter as an indirect reference and dereference to
pointer to access characters within the string.

12.4.8 Passing Record/Structure Data Between HLA and C/C++

Records in HLA are (mostly) compatible with C/C++ strudtsu can easily translate a C/C++ struct to
an HLA record. In this section wkéxplore hav to do this and learn about the incompatibilities tixadte
between HLA records and C/C++ structures.

Pagell190 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

For the most part, translating C/C++ records to HLA is a no braihest grab the “guts” of a structure
declaration and translate the declarations to HLA syntax within a RECORD..ENDRECORD block and
you're done.

Consider the follwing C/C++ structure type declaration:
typedef struct

{

unsi gned char day;

unsi gned char nont h;

int year;

unsi gned char dayC Wek;
} dat eType;

The translation to an HLA record is, for the most pagty\straight-forward. Just translate the field types
accordingly and use the HLA record syntax ($®ecords” on pagd83) and you're in business. The trans
lation is the following:

type
recType:
record
day: byte;
nmont h: byt e;
year:int 32;

dayCr Veek: byt e;
endr ecor d;

There is one minor problem with thisaanple: data alignment. Depending on your compiler and-what
ever defwlts it uses, C/C++ might not pack the data in the structure as compactly as possible. Some C/C++
compilers will attempt to align theefds on double wrd or other boundariedVith double vord alignment
of objects lager than a byte, the prieus C/C++typedef statement is probably better modelled by

type
recType:
record
day: byte;
nmont h: byt e;
paddi ng: byt e[2] ; /1 Align year on a four-byte boundary.
year:int 32;

dayCf Veek: byt e;
nor ePaddi ng: byte[3]; // Make record an even nultiple of four bytes.

endr ecor d;

Of course, a better solution is to use PEALIGN directive to automatically align theefids in the
record:

type
recType:
record

day: byte;

nont h: byte;

align(4); /1 Aign year on a four-byte boundary.
year:int 32;

dayCf Veek: byt e;

align(4); /1 Make record an even multiple of four bytes.

endr ecor d;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagell191

Chapter Twelve Volume Four

Alignment of the ®lds is good insafr as access to thelffis is &ster if thg are aligned appropriately
However, aligning records in thisaEhion does consumegte space (fie bytes in thexamples abee) and
that can bexpensve if you hae a lage array of records whoselfis need padding for alignment.

You will need to check your compileerndors documentation to determine whether it packs or pads
structures by defult. Most compilers ge you seeral options for packing or padding theldis on arious
boundaries. &lded structures might be a laisfer while pacd structures (i.e., no padding) are going to be
more compact.You'll have to decide which is more important to you and then adjust your HLA code
accordingly

Note that by defult, C/C++ passes structures lue. A C/C++ program mustxlicitly take the
address of a structure object and pass that address in order to simulate pass by reference. In general, if the
size of a structurexeeeds about 16 bytes, you should pass the structure by reference rather #iaa.by v

12.4.9 Passing Array Data Between HLA and C/C++

Passing array data between some procedures written in C/C++ and HLA is liglerdithan passing
array data between oAHLA procedures. First of all, C/C++ can only pass arrays by referenas, me
value. Therefore, you mustwahys use pass by reference inside the HLA coliee following code frag
ments pruide a simple xample:

int CArray[128][4];
extern void PassedArrray(int array[128][4]);

Corresponding HLA code:
t ype
CArray: int32] 128, 4];
procedure PassedArray(var ary: CArray); external;
As the abwe examples demonstrate, C/Cs+array declarations are similar to HeAnso#r as you
specify the bounds of each dimension in the array

C/C++ uses ny-major ordering for arrays. So if yoa’'accessing elements of a C/C++ multi-dimen
sional array in HLA code, be sure to use the-major order computation (séBow Major Ordering” on
page469).

12.5

Putting It All Together

Most real-vorld assembly code that is written consists of small modules that programmers link to pro
grams written in other languages. Most languageggesome scheme for intading that language with
assembly (HLA) code. Unfortunatelyne number of inteaice mechanisms is $igiently close to the num
ber of language implementations to raakcompletexposition of this subject impossible. In general, you
will have to refer to the documentation for your particular compiler in order to leditiesuff details to suc
cessfully interace assembly with that language.

Fortunately nagging details aside, most highidelanguages do share some common traits with respect
to assembly language intace. Rrameter passing ceentions, stack clean up,gister presertion, and
several other important topics often apply from one language to ttte fikerefore, once you learn\do
interface a couple of languages to assemjayw’ll quickly be able to fiure out hw to interface to others
(given the documentation for themnéanguage).

This chapter discusses the ingad between thBelphiand C/C++ languages and assembly language.
Although there are more popular languages out there {&sgal Basic) Delphiand C/C++ introduce most
of the concepts yoli'need to kna in order to intedice a high leel language with assembly language.

Pagel192 © 2001, By Randall Hyde Beta Draft - Do not distribute

Mixed Language Programming

Beyond that point, all you need is the documentation for your spexifnpiler and youl' be interfacing
assembly with that language in no time.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel193

Chapter Twelve Volume Four

Pagell94 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Mixed Language Programming Chapter Twelve
	12.1 Chapter Overview
	12.2 Mixing HLA and MASM/Gas Code in the Same Program
	12.2.1 In-Line (MASM/Gas) Assembly Code in Your HLA Programs
	12.2.2 Linking MASM/Gas-Assembled Modules with HLA Modules

	12.3 Programming in Delphi/Kylix and HLA
	12.3.1 Linking HLA Modules With Delphi Programs
	12.3.2 Register Preservation
	12.3.3 Function Results
	12.3.4 Calling Conventions
	12.3.5 Pass by Value, Reference, CONST, and OUT in Delphi
	12.3.6 Scalar Data Type Correspondence Between Delphi and HLA
	12.3.7 Passing String Data Between Delphi and HLA Code
	12.3.8 Passing Record Data Between HLA and Delphi
	12.3.9 Passing Set Data Between Delphi and HLA
	12.3.10 Passing Array Data Between HLA and Delphi
	12.3.11 Referencing Delphi Objects from HLA Code

	12.4 Programming in C/C++ and HLA
	12.4.1 Linking HLA Modules With C/C++ Programs
	12.4.2 Register Preservation
	12.4.3 Function Results
	12.4.4 Calling Conventions
	12.4.5 Pass by Value and Reference in C/C++
	12.4.6 Scalar Data Type Correspondence Between C/C++ and HLA
	12.4.7 Passing String Data Between C/C++ and HLA Code
	12.4.8 Passing Record/Structure Data Between HLA and C/C++
	12.4.9 Passing Array Data Between HLA and C/C++

	12.5 Putting It All Together

