

Introduction to Procedures

aller

to the

ou’ll
basic

n the

n

6

Introduction to Procedures Chapter Eight

8.1 Chapter Overview

In a procedural programming language the basic unit of code is the procedure. A procedure is a set of
instructions that compute some value or take some action (such as printing or reading a character value). The
definition of a procedure is very similar to the definition of an algorithm. A procedure is a set of rules to fol-
low which, if they conclude, produce some result. An algorithm is also such a sequence, but an algorithm is
guaranteed to terminate whereas a procedure offers no such guarantee.

This chapter discusses how HLA implements procedures. This is actually the first of three chapters on
this subject in this text. This chapter presents HLA procedures from a high level language perspective. A
later chapter, Intermediate Procedures, discusses procedures at the machine language level. A whole volume
in this sequence, Advanced Procedures, covers advanced programming topics of interest to the very serious
assembly language programmer. This chapter, however, provides the foundation for all that follows.

8.2 Procedures

Most procedural programming languages implement procedures using the call/return mechanism. That
is, some code calls a procedure, the procedure does its thing, and then the procedure returns to the c. The
call and return instructions provide the 80x86’s procedure invocation mechanism. The calling code calls a
procedure with the CALL instruction, the procedure returns to the caller with the RET instruction. For exam-
ple, the following 80x86 instruction calls the HLA Standard Library stdout.newln routine1:

call stdout.newln;

The stdout.newln procedure prints a newline sequence to the console device and returns control
instruction immediately following the “call stdout.newln;” instruction.

Alas, the HLA Standard Library does not supply all the routines you will need. Most of the time y
have to write your own procedures. To do this, you will use HLA’s procedure declaration facilities. A
HLA procedure declaration takes the following form:

procedure ProcName;
<< Local declarations >>

begin ProcName;
<< procedure statements >>

end ProcName;

Procedure declarations appear in the declaration section of your program. That is, anywhere you can
put a STATIC, CONST, TYPE, or other declaration section, you may place a procedure declaration. I
syntax example above, ProcName represents the name of the procedure you wish to define. This can be any
valid HLA identifier. Whatever identifier follows the PROCEDURE reserved word must also follow the
BEGIN and END reserved words in the procedure. As you’ve probably noticed, a procedure declaratio
looks a whole lot like an HLA program. In fact, the only difference (so far) is the use of the PROCEDURE
reserved word rather than the PROGRAM reserved word.

Here is a concrete example of an HLA procedure declaration. This procedure stores zeros into the 25
double words that EBX points at upon entry into the procedure:

procedure zeroBytes;
begin zeroBytes;

mov(0, eax);

1. Normally you would call newln using the “newln();” statement, but the CALL instruction works as well.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 541

Chapter Eight

Volume Three

ry
 to
fy
mov(256, ecx);
repeat

mov(eax, [ebx]);
add(4, ebx);
dec(ecx);

until(@z); // That is, until ECX=0.

end zeroBytes;

You can use the 80x86 CALL instruction to call this procedure. When, during program execution, the
code falls into the “end zeroBytes;” statement, the procedure returns to whomever called it and begins exe-
cuting the first instruction beyond the CALL instruction. The following program provides an example of a
call to the zeroBytes routine:

program zeroBytesDemo;
#include(“stdlib.hhf”);

 procedure zeroBytes;
 begin zeroBytes;

 mov(0, eax);
 mov(256, ecx);
 repeat

 mov(eax, [ebx]); // Zero out current dword.
 add(4, ebx); // Point ebx at next dword.
 dec(ecx); // Count off 256 dwords.

 until(ecx = 0); // Repeat for 256 dwords.

 end zeroBytes;

static
 dwArray: dword[256];

begin zeroBytesDemo;

 lea(ebx, dwArray);
 call zeroBytes;

end zeroBytesDemo;

Program 8.1 Example of a Simple Procedure

As you may have noticed when calling HLA Standard Library procedures, you don’t always need to use
the CALL instruction to call HLA procedures. There is nothing special about the HLA Standard Libra
procedures versus your own procedures. Although the formal 80x86 mechanism for calling procedures is
use the CALL instruction, HLA provides a HLL extension that lets you call a procedure by simply speci-
ing that procedure’s name followed by an empty set of parentheses2. For example, either of the following
statements will call the HLA Standard Library stdout.newln procedure:

2. This assumes that the procedure does not have any parameters.
Page 542 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

call stdout.newln;
stdout.newln();

Likewise, either of the following statements will call the zeroBytes procedure in Program 8.1:

call zeroBytes;
zeroBytes();

The choice of calling mechanism is strictly up to you. Most people, however, find the HLL syntax easier to
read.

8.3 Saving the State of the Machine

Take a look at the following program:

program nonWorkingProgram;
#include(“stdlib.hhf”);

 procedure PrintSpaces;
 begin PrintSpaces;

 mov(40, ecx);
 repeat

 stdout.put(‘ ‘); // Print 1 of 40 spaces.
 dec(ecx); // Count off 40 spaces.

 until(ecx = 0);

 end PrintSpaces;

begin nonWorkingProgram;

 mov(20, ecx);
 repeat

 PrintSpaces();
 stdout.put(‘*’, nl);
 dec(ecx);

 until(ecx = 0);

end nonWorkingProgram;

Program 8.2 Program with an Unintended Infinite Loop

This section of code attempts to print 20 lines of 40 spaces and an asterisk. Unfortunately, there is a sub-
tle bug that causes it to print 40 spaces per line and an asterisk in an infinite loop. The main program uses the
REPEAT..UNTIL loop to call PrintSpaces 20 times. PrintSpaces uses ECX to count off the 40 spaces it
prints. PrintSpaces returns with ECX containing zero. The main program then prints an asterisk, a newline,
decrements ECX, and then repeats because ECX isn’t zero (it will always contain $FFFF_FFFF at this
point).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 543

Chapter Eight Volume Three

r

The problem here is that the PrintSpaces subroutine doesn’t preserve the ECX register. Preserving a
register means you save it upon entry into the subroutine and restore it before leaving. Had the PrintSpaces
subroutine preserved the contents of the ECX register, the program above would have functioned properly.

Use the 80x86’s PUSH and POP instructions to preserve register values while you need to use them fo
something else. Consider the following code for PrintSpaces:

 procedure PrintSpaces;
 begin PrintSpaces;

 push(eax);
 push(ecx);
 mov(40, ecx);
 repeat

 stdout.put(' '); // Print 1 of 40 spaces.
 dec(ecx); // Count off 40 spaces.

 until(ecx = 0);
 pop(ecx);
 pop(eax);

 end PrintSpaces;

Note that PrintSpaces saves and restores EAX and ECX (since this procedure modifies these registers).
Also, note that this code pops the registers off the stack in the reverse order that it pushed them. The last-in,
first-out, operation of the stack imposes this ordering.

Either the caller (the code containing the CALL instruction) or the callee (the subroutine) can take
responsibility for preserving the registers. In the example above, the callee preserved the registers. The fol-
lowing example shows what this code might look like if the caller preserves the registers:

program callerPreservation;
#include(“stdlib.hhf”);

 procedure PrintSpaces;
 begin PrintSpaces;

 mov(40, ecx);
 repeat

 stdout.put(‘ ‘); // Print 1 of 40 spaces.
 dec(ecx); // Count off 40 spaces.

 until(ecx = 0);

 end PrintSpaces;

begin callerPreservation;

 mov(20, ecx);
 repeat

 push(eax);
 push(ecx);
 PrintSpaces();
 pop(ecx);
 pop(eax);
 stdout.put(‘*’, nl);
 dec(ecx);
Page 544 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

on
tions
.

 until(ecx = 0);

end callerPreservation;

Program 8.3 Demonstration of Caller Register Preservation

There are two advantages to callee preservation: space and maintainability. If the callee preserves all
affected registers, then there is only one copy of the PUSH and POP instructions, those the procedure c-
tains. If the caller saves the values in the registers, the program needs a set of PUSH and POP instruc
around every call. Not only does this make your programs longer, it also makes them harder to maintain
Remembering which registers to push and pop on each procedure call is not something easily done.

On the other hand, a subroutine may unnecessarily preserve some registers if it preserves all the regis-
ters it modifies. In the examples above, the code needn’t save EAX. Although PrintSpaces changes AL, this
won’t affect the program’s operation. If the caller is preserving the registers, it doesn’t have to save registers
it doesn’t care about:

program callerPreservation2;
#include(“stdlib.hhf”);

 procedure PrintSpaces;
 begin PrintSpaces;

 mov(40, ecx);
 repeat

 stdout.put(‘ ‘); // Print 1 of 40 spaces.
 dec(ecx); // Count off 40 spaces.

 until(ecx = 0);

 end PrintSpaces;

begin callerPreservation2;

 mov(10, ecx);
 repeat

 push(ecx);
 PrintSpaces();
 pop(ecx);
 stdout.put(‘*’, nl);
 dec(ecx);

 until(ecx = 0);

 mov(5, ebx);
 while(ebx > 0) do

 PrintSpaces();

 stdout.put(ebx, nl);
 dec(ebx);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 545

Chapter Eight Volume Three

ay

t of

 endwhile;

 mov(110, ecx);
 for(mov(0, eax); eax < 7; inc(eax)) do

 PrintSpaces();

 stdout.put(eax, “ “, ecx, nl);
 dec(ecx);

 endfor;

end callerPreservation2;

Program 8.4 Demonstrating that Caller Preservation Need not Save All Registers

This example provides three different cases. The first loop (REPEAT..UNTIL) only preserves the ECX
register. Modifying the AL register won’t affect the operation of this loop. Immediately after the first loop,
this code calls PrintSpaces again in the WHILE loop. However, this code doesn’t save EAX or ECX because
it doesn’t care if PrintSpaces changes them. Since the final loop (FOR) uses EAX and ECX, it saves them
both.

One big problem with having the caller preserve registers is that your program may change. You may
modify the calling code or the procedure so that they use additional registers. Such changes, of course, m
change the set of registers that you must preserve. Worse still, if the modification is in the subroutine itself,
you will need to locate every call to the routine and verify that the subroutine does not change any registers
the calling code uses.

Preserving registers isn’t all there is to preserving the environment. You can also push and pop variables
and other values that a subroutine might change. Since the 80x86 allows you to push and pop memory loca-
tions, you can easily preserve these values as well.

8.4 Prematurely Returning from a Procedure

The HLA EXIT and EXITIF statements let you return from a procedure without having to fall into the
corresponding END statement in the procedure. These statements behave a whole lot like the BREAK and
BREAKIF statements for loops, except they transfer control to the bottom of the procedure rather than ou
the current loop. These statements are quite useful in many cases.

The syntax for these two statements is the following:

exit procedurename;
exitif(boolean_expression) procedurename;

The procedurename operand is the name of the procedure you wish to exit. If you specify the name of
your main program, the EXIT and EXITIF statements will terminate program execution (even if you’re cur-
rently inside a procedure rather than the body of the main program.

The EXIT statement immediately transfers control out of the specified procedure or program. The con-
ditional exit, EXITIF, statement first tests the boolean expression and exits if the result is true. It is semanti-
cally equivalent to the following:

if(boolean_expression) then

exit procedurename;
Page 546 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

 your
tements
he EXIT

e

d

ll
he

e

endif;

Although the EXIT and EXITIF statements are invaluable in many cases, you should try to avoid using
them without careful consideration. If a simple IF statement will let you skip the rest of the code in
procedure, by all means use the IF statement. Procedures that contain lots of EXIT and EXITIF sta
will be harder to read, understand, and maintain that procedures without these statements (after all, t
and EXITIF statements are really nothing more than GOTO statements and you’ve probably heard already
about the problems with GOTOs). EXIT and EXITIF are convenient when you got to return from a proce-
dure inside a sequence of nested control structures and slapping an IF..ENDIF around the remaining code in
the procedure is not possible.

8.5 Local Variables

HLA procedures, like procedures and functions in most high level languages, let you declare local vari-
ables. Local variables are generally accessible only within the procedure, they are not accessible by the
code that calls the procedure. Local variable declarations are identical to variable declarations in your main
program except, of course, you declare the variables in the procedure’s declaration section rather than th
main program’s declaration section. Actually, you may declare anything in the procedure’s declaration sec-
tion that is legal in the main program’s declaration section, including constants, types, and even other proce-
dures3. In this section, however, we’ll concentrate on local variables.

Local variables have two important attributes that differentiate them from the variables in your main
program (i.e., global variables): lexical scope and lifetime. Lexical scope, or just scope, determines when an
identifier is usable in your program. Lifetime determines when a variable has memory associated with it an
is capable of storing data. Since these two concepts differentiate local and global variables, it is wise to
spend some time discussing these two attributes.

Perhaps the best place to start when discussing the scope and lifetimes of local variables is with the
scope and lifetimes of global variables -- those variables you declare in your main program. Until now, the
only rule you’ve had to follow concerning the declaration of your variables has been “you must declare a
variables that you use in your programs.” The position of the HLA declaration section with respect to t
program statements automatically enforces the other major rule which is “you must declare all variables
before their first use.” With the introduction of procedures, it is now possible to violate this rule since
(1) procedures may access global variables, and (2) procedure declarations may appear anywhere in a decla-
ration section, even before some variable declarations. The following program demonstrates this sourc
code organization:

program demoGlobalScope;
#include(“stdlib.hhf”);

static
 AccessibleInProc: char;

 procedure aProc;
 begin aProc;

 mov(‘a’, AccessibleInProc);

 end aProc;

3. The chapter on Advanced Procedures discusses the concept of local procedures in greater detail.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 547

Chapter Eight Volume Three

s
s

s
nder

,

est

the
on

asonab

static
 InaccessibleInProc: char;

begin demoGlobalScope;

 mov(‘b’, InaccessibleInProc);
 aProc();
 stdout.put
 (
 “AccessibleInProc = ‘”, AccessibleInProc, “‘” nl
 “InaccessibleInProc = ‘”, InaccessibleInProc, “‘” nl
);

end demoGlobalScope;

Program 8.5 Demonstration of Global Scope

This example demonstrates that a procedure can access global variables in the main program as long a
you declare those global variables before the procedure. In this example, the aProc procedure cannot acces
the InaccessibleInProc variable because its declaration appears after the procedure declaration. However,
aProc may reference AccessibleInProc since it’s declaration appears before the aProc procedure in the
source code.

A procedure can access any STATIC, STORAGE, or READONLY object exactly the same way the
main program accesses such variables -- by simply referencing the name. Although a procedure may acces
global VAR objects, a different syntax is necessary and you need to learn a little more before you will u-
stand the purpose of the additional syntax. Therefore, we’ll defer the discussion of accessing VAR objects
until the chapters dealing with Advanced Procedures.

Accessing global objects is convenient and easy. Unfortunately, as you’ve probably learned when
studying high level language programming, accessing global objects makes your programs harder to read
understand, and maintain. Like most introductory programming texts, this text will discourage the use of
global variables within procedures. Accessing global variables within a procedure is sometimes the b
solution to a given problem. However, such (legitimate) access typically occurs only in advanced programs
involving multiple threads of execution or in other complex systems. Since it is unlikely you would be writ-
ing such code at this point, it is equally unlikely that you will absolutely need to access global variables in
your procedures so you should carefully consider your options before accessing global variables within your
procedures4.

Declaring local variables in your procedures is very easy, you use the same declaration sections as
main program: STATIC, READONLY, STORAGE, and VAR. The same rules and syntax for the declarati
sections and the access of variables you declare in these sections applies in your procedure. The following
example code demonstrates the declaration of a local variable.

program demoLocalVars;
#include(“stdlib.hhf”);

4. Note that this argument against accessing global variables does not apply to other global symbols. It is perfectly rele
to access global constants, types, procedures, and other objects in your programs.
Page 548 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

e

 // Simple procedure that displays 0..9 using
 // a local variable as a loop control variable.

 procedure CntTo10;
 var
 i: int32;

 begin CntTo10;

 for(mov(0, i); i < 10; inc(i)) do

 stdout.put(“i=”, i, nl);

 endfor;

 end CntTo10;

begin demoLocalVars;

 CntTo10();

end demoLocalVars;

Program 8.6 Example of a Local Variable in a Procedure

Local variables you declare in a procedure are accessible only within that procedure5. Therefore, the
variable i in procedure CntTo10 in Program 8.6 is not accessible in the main program.

HLA relaxes, somewhat, the rule that identifiers must be unique in a program for local variables. In an
HLA program, all identifiers must be unique within a given scope. Therefore, all global names must b
unique with respect to one another. Similarly, all local variables within a given procedure must have unique
names but only with respect to other local symbols in that procedure. In particular, a local name may be the
same as a global name. When this occurs, HLA creates two separate variables for the two objects. Within
the scope of the procedure any reference to the common name accesses the local variable; outside that pro-
cedure, any reference to the common name references the global identifier. Although the quality of the
resultant code is questionable, it is perfectly legal to have a global identifier named MyVar with the same
local name in two or more different procedures. The procedures each have their own local variant of the
object which is independent of MyVar in the main program. Program 8.7 provides an example of an HLA
program that demonstrates this feature.

program demoLocalVars2;
#include(“stdlib.hhf”);

static
 i: uns32 := 10;
 j: uns32 := 20;

 // The following procedure declares “i” and “j”
 // as local variables, so it does not have access
 // to the global variables by the same name.

5. Strictly speaking, this is not true. The chapter on Advanced Procedures will present an exception.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 549

Chapter Eight Volume Three
 procedure First;
 var
 i: int32;
 j:uns32;

 begin First;

 mov(10, j);
 for(mov(0, i); i < 10; inc(i)) do

 stdout.put(“i=”, i,” j=”, j, nl);
 dec(j);

 endfor;

 end First;

 // This procedure declares only an “i” variable.
 // It cannot access the value of the global “i”
 // variable but it can access the value of the
 // global “j” object since it does not provide
 // a local variant of “j”.

 procedure Second;
 var
 i:uns32;

 begin Second;

 mov(10, j);
 for(mov(0, i); i < 10; inc(i)) do

 stdout.put(“i=”, i,” j=”, j, nl);
 dec(j);

 endfor;

 end Second;

begin demoLocalVars2;

 First();
 Second();

 // Since the calls to First and Second have not
 // modified variable “i”, the following statement
 // should print “i=10”. However, since the Second
 // procedure manipulated global variable “j”, this
 // code will print “j=0” rather than “j=20”.

 stdout.put(“i=”, i, “ j=”, j, nl);

end demoLocalVars2;

Program 8.7 Local Variables Need Not Have Globally Unique Names
Page 550 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

 the one

 refers to

e sec

at v

s to its

ames,
There are good and bad points to be made about reusing global names within a procedure. On
hand, there is the potential for confusion. If you use a name like ProfitsThisYear as a global symbol and you
reuse that name within a procedure, someone reading the procedure might think that the procedure
the global symbol rather than the local symbol. On the other hand, simple names like i, j, and k are nearly
meaningless (almost everyone expects the program to use them as loop control variables or for other local
uses), so reusing these names as local objects is probably a good idea. From a software engineering perspec-
tive, it is probably a good idea to keep all variables names that have a very specific meaning (like ProfitsThi-
sYear) unique throughout your program. General names, that have a nebulous meaning (like index, counter,
and names like i, j, or k) will probably be okay to reuse as global variables

There is one last point to make about the scope of identifiers in an HLA program: variables in separate
procedures (that is, two procedures where one procedure is not declared in the declaration section of th-
ond procedure) are separate, even if they have the same name. The First and Second procedures in Program
8.7, for example, share the same name (i) for a local variable. However, the i in First is a completely differ-
ent variable than the i in Second.

The second major attribute that differentiates (certain) local variables from global variables is lifetime.
The lifetime of a variable spans from the point the program first allocates storage for a variable to the point
the program deallocates the storage for that variable. Note that lifetime is a dynamic attribute (controlled at
run time) whereas scope is a static attribute (controlled at compile time). In particular, a variable can actu-
ally have several lifetimes if the program repeatedly allocates and then deallocates the storage for thari-
able.

Global variables always have a single lifetime that spans from the moment the main program first begins
execution to the point the main program terminates. Likewise, all static objects have a single lifetime that
spans the execution of the program (remember, static objects are those you declare in the STATIC, REA-
DONLY, or STORAGE sections). This is true even for procedures. So there is no difference between the
lifetime of a local static object and the lifetime of a global static object. Variables you declare in the VAR
section, however, are a different matter. VAR objects use automatic storage allocation. Automatic storage
allocation means that the procedure automatically allocates storage for a local variable upon entry into a pro-
cedure. Similarly, the program deallocates storage for automatic objects when the procedure return
caller. Therefore, the lifetime of an automatic object is from the point the procedure is first called to the
point it returns to its caller.

Perhaps the most important thing to note about automatic variables is that you cannot expect them to
maintain their values between calls to the procedure. Once the procedure returns to its caller, the storage for
the automatic variable is lost and, therefore, the value is lost as well. Therefore, you must always assume
that a local VAR object is uninitialized upon entry into a procedure; even if you know you’ve called the pro-
cedure before and the previous procedure invocation initialized that variable. Whatever value the last call
stored into the variable was lost when the procedure returned to its caller. If you need to maintain the value
of a variable between calls to a procedure, you should use one of the static variable declaration types.

Given that automatic variables cannot maintain their values across procedure calls, you might wonder
why you would want to use them at all. However, there are several benefits to automatic variables that static
variables do not have. The biggest disadvantage to static variables is that they consume memory even when
the (only) procedure that references them is not running. Automatic variables, on the other hand, only con-
sume storage while there associated procedure is executing. Upon return, the procedure returns any auto-
matic storage it allocated back to the system for reuse by other procedures. You’ll see some additional
advantages to automatic variables later in this chapter.

8.6 Other Local and Global Symbol Types

As mentioned in the previous section, HLA lets you declare constants, values, types, and anything else
legal in the main program’s declaration section within a procedure’s declaration section. The same rules for
scope apply to these identifiers. Therefore, you can reuse constant names, procedure names, type n
etc. in local declarations (although this is almost always a bad idea).
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 551

Chapter Eight Volume Three

y

s such
son

quire
e

re

n

m

places in
s,
e
e
re a

e
Referencing global constants, values, and types, does not present the same software engineering prob-
lems that occur when you reference global variables. The problem with referencing global variable is that a
procedure can change the value of a global variable in a non-obvious way. This makes programs more diffi-
cult to read, understand, and maintain since you can’t often tell that a procedure is modifying memory b
looking only at the call to that procedure. Constants, values, types, and other non-variable objects, don’t suf-
fer from this problem because you cannot change them at run-time. Therefore, the pressure to avoid global
objects at nearly all costs doesn’t apply to non-variable objects.

Having said that it’s okay to access global constants, types, etc., it’s also worth pointing out that you
should declare these objects locally within a procedure if the only place your program reference
objects is within that procedure. Doing so will make your programs a little easier to read since the per
reading your code won’t have to search all over the place for the symbol’s definition.

8.7 Parameters

Although there is a large class of procedures that are totally self-contained, most procedures re
some input data and return some data to the caller. Parameters are values that you pass to and from a proc-
dure. In straight assembly language, passing parameters can be a real chore. Fortunately, HLA provides a
HLL-lik e syntax for procedure declarations and for procedure calls involving parameters. This chapter will
present HLA’s HLL parameter syntax. Later chapters on Intermediate Procedures and Advanced Procedures
will deal with the low-level mechanisms for passing parameters in pure assembly code.

The first thing to consider when discussing parameters is how we pass them to a procedure. If you a
familiar with Pascal or C/C++ you’ve probably seen two ways to pass parameters: pass by value and pass by
reference. HLA certainly supports these two parameter passing mechanisms. However, HLA also supports
pass by value/result, pass by result, pass by name, and pass by lazy evaluation. Of course, HLA is assembly
language so it is possible to pass parameters in HLA using any scheme you can dream up (at least, ay
scheme that is possible at all on the CPU). However, HLA provides special HLL syntax for pass by value,
reference, value/result, result, name, and lazy evaluation.

Because pass by value/result, result, name, and lazy evaluation are somewhat advanced, this chapter will
not deal with those parameter passing mechanisms. If you’re interested in learning more about these para-
eter passing schemes, see the chapters on Intermediate and Advanced Procedures.

Another concern you will face when dealing with parameters is where you pass them. There are lots of
different places to pass parameters; the chapter on Intermediate Procedures will consider these
greater detail. In this chapter, since we’re using HLA’s HLL syntax for declaring and calling procedure
we’ll wind up passing procedure parameters on the stack. You don’t really need to concern yourself with th
details since HLA abstracts them away for you; however, do keep in mind that procedure calls and proc-
dure parameters make use of the stack. Therefore, something you push on the stack immediately befo
procedure call is not going to be immediately on the top of the stack upon entry into the procedure.

8.7.1 Pass by Value

A parameter passed by value is just that – the caller passes a value to the procedure. Pass by value
parameters are input-only parameters. That is, you can pass them to a procedure but the procedure cannot
return them. In HLA the idea of a pass by value parameter being an input only parameter makes a lot of
sense. Given the HLA procedure call:

CallProc(I);

If you pass I by value, then CallProc does not change the value of I, regardless of what happens to th
parameter inside CallProc.
Page 552 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

sing

,

section
 control

eed to
 by their
hat
Since you must pass a copy of the data to the procedure, you should only use this method for pas
small objects like bytes, words, and double words. Passing arrays and records by value is very inefficient
(since you must create and pass a copy of the object to the procedure).

HLA, lik e Pascal and C/C++, passes parameters by value unless you specify otherwise. Here’s what a
typical function looks like with a single pass by value parameter:

 procedure PrintNSpaces(N:uns32);
 begin PrintNSpaces;

 push(ecx);
 mov(N, ecx);
 repeat

 stdout.put(' '); // Print 1 of N spaces.
 dec(ecx); // Count off N spaces.

 until(ecx = 0);
 pop(ecx);

 end PrintNSpaces;

The parameter N in PrintNSpaces is known as a formal parameter. Anywhere the name N appears in the
body of the procedure the program references the value passed through N by the caller.

The calling sequence for PrintNSpaces can be any of the following:

PrintNSpaces(constant);
PrintNSpaces(reg32);

PrintNSpaces(uns32_variable);

Here are some concrete examples of calls to PrintNSpaces:

PrintNSpaces(40);
PrintNSpaces(EAX);
PrintNSpaces(SpacesToPrint);

The parameter in the calls to PrintNSpaces is known as an actual parameter. In the examples above, 40
EAX, and SpacesToPrint are the actual parameters.

Note that pass by value parameters behave exactly like local variables you declare in the VAR
with the single exception that the procedure’s caller initializes these local variables before it passes
to the procedure.

HLA uses positional parameter notation just like most high level languages. Therefore, if you n
pass more than one parameter, HLA will associate the actual parameters with the formal parameters
position in the parameter list. The following PrintNChars procedure demonstrates a simple procedure t
has two parameters.

 procedure PrintNChars(N:uns32; c:char);
 begin PrintNChars;

 push(ecx);
 mov(N, ecx);
 repeat

 stdout.put(c); // Print 1 of N characters.
 dec(ecx); // Count off N characters.

 until(ecx = 0);
 pop(ecx);

 end PrintNChars;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 553

Chapter Eight Volume Three

n and it
e

ameter

bles as
 can use

tes how
The following is an invocation of the PrintNChars procedure that will print 20 asterisk characters:

PrintNChars(20, ‘*’);

Note that HLA uses semicolons to separate the formal parameters in the procedure declaratio
uses commas to separate the actual parameters in the procedure invocation (Pascal programmers should b
comfortable with this notation). Also note that each HLA formal parameter declaration takes the following
form:

parameter_identifier : type_identifier

In particular, note that the parameter type has to be an identifier. None of the following are legal par
declarations because the data type is not a single identifier:

PtrVar: pointer to uns32
ArrayVar: uns32[10]
recordVar: record i:int32; u:uns32; endrecord
DynArray: array.dArray(uns32, 2)

However, don’t get the impression that you cannot pass pointer, array, record, or dynamic array varia
parameters. The trick is to declare a data type for each of these types in the TYPE section. Then you
a single identifier as the type in the parameter declaration. The following code fragment demonstra
to do this with the four data types above:

type
uPtr: pointer to uns32;
uArray10: uns32[10];
recType: record i:int32; u:uns32; endrecord
dType: array.dArray(uns32, 2);

procedure FancyParms
(

PtrVar: uPtr;
ArrayVar:uArray10;
recordVar:recType;
DynArray: dtype

);
begin FancyParms;

.

.

.
end FancyParms;

By default, HLA assumes that you intend to pass a parameter by value. HLA also lets you explicitly
state that a parameter is a value parameter by prefacing the formal parameter declaration with the VAL key-
word. The following is a version of the PrintNSpaces procedure that explicitly states that N is a pass by
value parameter:

 procedure PrintNSpaces(val N:uns32);
 begin PrintNSpaces;

 push(ecx);
 mov(N, ecx);
 repeat

 stdout.put(' '); // Print 1 of N spaces.
 dec(ecx); // Count off N spaces.

 until(ecx = 0);
 pop(ecx);

 end PrintNSpaces;
Page 554 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

u
 mech

ompares
her

HLA
dure
o

data.
ou pass

e

e of the

 to the

as a for-
ted pro-
Explicitly stating that a parameter is a pass by value parameter is a good idea if you have multiple
parameters in the same procedure declaration that use different passing mechanisms.

When you pass a parameter by value and call the procedure using the HLA high level language syntax,
HLA will automatically generate code that will make a copy of the actual parameter’s value and copy this
data into the local storage for that parameter (i.e., the formal parameter). For small objects pass by value is
probably the most efficient way to pass a parameter. For large objects, however, HLA must generate code
that copies each and every byte of the actual parameter into the formal parameter. For large arrays and
records this can be a very expensive operation6. Unless you have specific semantic concerns that require yo
to pass an array or record by value, you should use pass by reference or some other parameter passing-
anism for arrays and records.

When passing parameters to a procedure, HLA checks the type of each actual parameter and c
this type to the corresponding formal parameter. If the types do not agree, HLA then checks to see if eit
the actual or formal parameter is a byte, word, or dword object and the other parameter is one, two, or four
bytes in length (respectively). If the actual parameter does not satisfy either of these conditions,
reports a parameter type mismatch error. If, for some reason, you need to pass a parameter to a proce
using a different type than the procedure calls for, you can always use the HLA type coercion operator t
override the type of the actual parameter.

8.7.2 Pass by Reference

To pass a parameter by reference, you must pass the address of a variable rather than its value. In other
words, you must pass a pointer to the data. The procedure must dereference this pointer to access the
Passing parameters by reference is useful when you must modify the actual parameter or when y
large data structures between procedures.

To declare a pass by reference parameter you must preface the formal parameter declaration with th
VAR keyword. The following code fragment demonstrates this:

procedure UsePassByReference(var PBRvar: int32);
begin UsePassByReference;

.

.

.
end UsePassByReference;

Calling a procedure with a pass by reference parameter uses the same syntax as pass by value except that the
parameter has to be a memory location; it cannot be a constant or a register. Furthermore, the typ
memory location must exactly match the type of the formal parameter. The following are legal calls
procedure above (assuming i32 is an int32 variable):

UsePassByReference(i32);
UsePassByReference((type int32 [ebx]));

The following are all illegal UsePassbyReference invocations (assumption: charVar is of type char):

UsePassByReference(40); // Constants are illegal.
UsePassByReference(EAX); // Bare registers are illegal.
UsePassByReference(charVar); // Actual parameter type must match

// the formal parameter type.

Unlike the high level languages Pascal and C++, HLA does not completely hide the fact that you are
passing a pointer rather than a value. In a procedure invocation, HLA will automatically compute the

6. Note to C/C++ programmers: HLA does not automatically pass arrays by reference. If you specify an array type
mal parameter, HLA will emit code that makes a copy of each and every byte of that array when you call the associa
cedure.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 555

Chapter Eight Volume Three

ter as

address of a variable and pass that address to the procedure. Within the procedure itself, however, you can-
not treat the variable like a value parameter (as you could in most HLLs). Instead, you treat the parame
a dword variable containing a pointer to the specified data. You must explicitly dereference this pointer
when accessing the parameter’s value. The following example provides a simple demonstration of this:

program PassByRefDemo;
#include(“stdlib.hhf”);

var
 i: int32;
 j: int32;

 procedure pbr(var a:int32; var b:int32);
 const
 aa: text := “(type int32 [ebx])”;
 bb: text := “(type int32 [ebx])”;

 begin pbr;

 push(eax);
 push(ebx); // Need to use EBX to dereference a and b.

 // a = -1;

 mov(a, ebx); // Get ptr to the “a” variable.
 mov(-1, aa); // Store -1 into the “a” parameter.

 // b = -2;

 mov(b, ebx); // Get ptr to the “b” variable.
 mov(-2, bb); // Store -2 into the “b” parameter.

 // Print the sum of a+b.
 // Note that ebx currently contains a pointer to “b”.

 mov(bb, eax);
 mov(a, ebx); // Get ptr to “a” variable.
 add(aa, eax);
 stdout.put(“a+b=”, (type int32 eax), nl);

 end pbr;

begin PassByRefDemo;

 // Give i and j some initial values so
 // we can see that pass by reference will
 // overwrite these values.

 mov(50, i);
 mov(25, j);

 // Call pbr passing i and j by reference

 pbr(i, j);

 // Display the results returned by pbr.

 stdout.put
 (
Page 556 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

s. Con
)”

l
 a

e

ogram
ing the
 alias if
rocedure
 a pro

eference
ast two
u do not
 access
en you

nd
 “i= “, i, nl,
 “j= “, j, nl
);

end PassByRefDemo;

Program 8.8 Accessing Pass by Reference Parameters

Passing parameters by reference can produce some peculiar results in some rare circumstance-
sider the pbr procedure in Program 8.8. Were you to modify the call in the main program to be “pbr(i,i
rather than “pbr(i,j);” the program would produce the following non-intuitive output:

a+b=-4
i= -2;
j= 25;

The reason this code displays “a+b=-4” rather than the expected “a+b=-3” is because the “pbr(i,i);” cal
passes the same actual parameter for a and b. As a result, the a and b reference parameters both contain
pointer to the same memory location- that of the variable i. In this case, a and b are aliases of one another.
Therefore, when the code stores -2 at the location pointed at by b, it overwrites the -1 stored earlier at th
location pointed at by a. When the program fetches the value pointed at by a and b to compute their sum,
both a and b point at the same value, which is -2. Summing -2 + -2 produces the -4 result that the pr
displays. This non-intuitive behavior is possible anytime you encounter aliases in a program. Pass
same variable as two different parameters probably isn’t very common. But you could also create an
a procedure references a global variable and you pass that same global variable by reference to the p
(this is a good example of yet one more reason why you should avoid referencing global variables in-
cedure).

Pass by reference is usually less efficient than pass by value. You must dereference all pass by r
parameters on each access; this is slower than simply using a value since it typically requires at le
instructions. However, when passing a large data structure, pass by reference is faster because yo
have to copy a large data structure before calling the procedure. Of course, you’d probably need to
elements of that large data structure (e.g., an array) using a pointer, so very little efficiency is lost wh
pass large arrays by reference.

8.8 Functions and Function Results

Functions are procedures that return a result. In assembly language, there are very few syntactical differ-
ences between a procedure and a function which is why HLA doesn’t provide a specific declaration for a
function. Nevertheless, although there is very little syntactical difference between assembly procedures a
functions, there are considerable semantic differences. That is, although you can declare them the same way
in HLA, you use them differently.

Procedures are a sequence of machine instructions that fulfill some activity. The end result of the execu-
tion of a procedure is the accomplishment of that activity. Functions, on the other hand, execute a sequence
of machine instructions specifically to compute some value to return to the caller. Of course, a function can
perform some activity as well and procedures can undoubtedly compute some values, but the main differ-
ence is that the purpose of a function is to return some computed result; procedures don’t have this require-
ment.

A good example of a procedure is the stdout.puti32 procedure. This procedure requires a single int32
parameter. The purpose of this procedure is to print the decimal conversion of this integer value to the stan-
dard output device. Note that stdout.puti32 doesn’t return any kind of value that is usable by the calling pro-
gram.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 557

Chapter Eight Volume Three

 of

, in

n,

de

ob

te

hen

he

e

A good example of a function is the cs.member function. This function expects two parameters: the first
is a character value and the second is a character set value. This function returns true (1) in EAX if the char-
acter is a member of the specified character set. It returns false if the character parameter is not a member
the character set.

Logically, the fact that cs.member returns a usable value to the calling code (in EAX) while std-
out.puti32 does not is a good example of the main difference between a function and a procedure. So
general, a procedure becomes a function by virtue of the fact that you explicitly decide to return a value
somewhere upon procedure return. No special syntax is needed to declare and use a function. You still write
the code as a procedure.

8.8.1 Returning Function Results

The 80x86’s registers are the most popular place to return function results. The cs.member routine in
the HLA Standard Library is a good example of a function that returns a value in one of the CPU’s registers.
It returns true (1) or false (0) in the EAX register. By convention, programmers try to return eight, sixtee
and thirty-two bit (non-real) results in the AL, AX, and EAX registers, respectively7. For example, this is
where most high level languages return these types of results.

Of course, there is nothing particularly sacred about the AL/AX/EAX register. You could return func-
tion results in any register if it is more convenient to do so. However, if you don’t have a good reason for not
using AL/AX/EAX, then you should follow the convention. Doing so will help others understand your co
better since they will generally assume that your functions return small results in the AL/AX/EAX register
set.

If you need to return a function result that is larger than 32 bits, you obviously must return it somewhere
besides in EAX (which can hold values 32 bits or less). For values slightly larger than 32 bits (e.g., 64 bits
or maybe even as many as 128 bits) you can split the result into pieces and return those parts in two or more
registers. For example, it is very common to see programs returning 64-bit values in the EDX:EAX register
pair (e.g., the HLA Standard Library stdin.geti64 function returns a 64-bit integer in the EDX:EAX register
pair).

If you need to return a really large object as a function result, say an array of 1,000 elements, you vi-
ously are not going to be able to return the function result in the registers. There are two common ways to
deal with really large function return results: either pass the return value as a reference parameter or alloca
storage on the heap (using malloc) for the object and return a pointer to it in a 32-bit register. Of course, if
you return a pointer to storage you’ve allocated on the heap, the calling program must free this storage w
it is done with it.

8.8.2 Instruction Composition in HLA

Several HLA Standard Library functions allow you to call them as operands of other instructions. For
example, consider the following code fragment:

if(cs.member(al, {‘a’..’z’})) then
.
.
.

endif;

As your high level language experience (and HLA experience) should suggest, this code calls t
cs.member function to check to see if the character in AL is a lower case alphabetic character. If the cs.mem-
ber function returns true then this code fragment executes the then section of the IF statement; however, if
cs.member returns false, this code fragment skips the IF..THEN body. There is nothing spectacular her

7. In the next chapter you’ll see where most programmers return real results.
Page 558 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

k

mpo

st

time,
struc
e

on,
e SUB

rns its
:

ction
l ADD

ation
except for the fact that HLA doesn’t support function calls as boolean expressions in the IF statement (loo
back at Chapter Two in Volume One to see the complete set of allowable expressions). How then, does this
program compile and run producing the intuitive results?

The very next section will describe how you can tell HLA that you want to use a function call in a bool-
ean expression. However, to understand how this works, you need to first learn about instruction composi-
tion in HLA.

Instruction composition lets you use one instruction as the operand of another. For example, consider
the MOV instruction. It has two operands, a source operand and a destination operand. Instruction co-
sition lets you substitute a valid 80x86 machine instruction for either (or both) operands. The following is a
simple example:

mov(mov(0, eax), ebx);

Of course the immediate question is “what does this mean?” To understand what is going on, you mu
first realize that most instructions “return” a value to the compiler while they are being compiled. For most
instructions, the value they “return” is their destination operand. Therefore, “mov(0, eax);” returns the
string “eax” to the compiler during compilation since EAX is the destination operand. Most of the
specifically when an instruction appears on a line by itself, the compiler ignores the string result the in-
tion returns. However, HLA uses this string result whenever you supply an instruction in place of som
operand; specifically, HLA uses that string in place of the instruction as the operand. Therefore, the MOV
instruction above is equivalent to the following two instruction sequence:

mov(0, eax); // HLA compiles interior instructions first.
mov(eax, ebx);

When processing composed instructions (that is, instruction sequences that have other instructions as
operands), HLA always works in an “ left-to-right then depth-first (inside-out)” manner. To make sense of
this, consider the following instructions:

add(sub(mov(i, eax), mov(j, ebx)), mov(k, ecx));

To interpret what is happening here, begin with the source operand. It consists of the following:

sub(mov(i, eax), mov(j, ebx))

The source operand for this instruction is “mov(i, eax)” and this instruction does not have any compositi
so HLA emits this instruction and returns its destination operand (EAX) for use as the source to th
instruction. This effectively gives us the following:

sub(eax, mov(j, ebx))

Now HLA compiles the instruction that appears as the destination operand (“mov(j, ebx)”) and retu
destination operand (EBX) to substitute for this MOV in the SUB instruction. This yields the following

sub(eax, ebx)

This is a complete instruction, without composition, that HLA can compile. So it compiles this instru
and returns its destination operand (EBX) as the string result to substitute for the SUB in the origina
instruction. So the original ADD instruction now becomes:

add(ebx, mov(i, ecx));

HLA next compiles the MOV instruction appearing in the destination operand. It returns its destin
operand as a string that HLA substitutes for the MOV, finally yielding the simple instruction:

add(ebx, ecx);

The compilation of the original ADD instruction, therefore, yields the following instruction sequence:

mov(i, eax);
mov(j, ebx);
sub(eax, ebx);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 559

Chapter Eight Volume Three

s the

s.

w
 cause
s your

re read-
eters.

l), this
vious

single

stitutes
 How
t of the

uctions,
. The
erand
s their
 com-
ction.
ay not

re

r

mov(k, ecx);
add(ebx, ecx);

Whew! It’s rather difficult to look at the original instruction and easily see that this sequence i
result. As you can easily see in this example, overzealous use of instruction composition can produce nearly
unreadable programs. You should be very careful about using instruction composition in your program
With only a few exceptions, writing a composed instruction sequence makes your program harder to read.

Note that the excessive use of instruction composition may make errors in your program difficult to
decipher. Consider the following HLA statement:

add(mov(eax, i), mov(ebx, j));

This instruction composition yields the 80x86 instruction sequence:

mov(eax, i);
mov(ebx, j);
add(i, j);

Of course, the compiler will complain that you’re attempting to add one memory location to another. Ho-
ever, the instruction composition effectively masks this fact and makes it difficult to comprehend the
of the error message. Moral of the story: avoid using instruction composition unless it really make
program easier to read. The few examples in this section demonstrate how not to use instruction composi-
tion.

There are two main areas where using instruction composition can help make your programs mo
able. The first is in HLA’s high level language control structures. The other is in procedure param
Although instruction composition is useful in these two cases (and probably a few others as wel
doesn’t give you a license to use extremely convoluted instructions like the ADD instruction in the pre
example. Instead, most of the time you will use a single instruction or a function call in place of a
operand in a high level language boolean expression or in a procedure/function parameter.

While we’re on the subject, exactly what does a procedure call return as the string that HLA sub
for the call in an instruction composition? For that matter, what do statements like IF..ENDIF return?
about instructions that don’t have a destination operand? Well, function return results are the subjec
very next section so you’ll read about that in a few moments. As for all the other statements and instr
you should check out the HLA reference manual. It lists each instruction and its “RETURNS” value
“RETURNS” value is the string that HLA will substitute for the instruction when it appears as the op
to another instruction. Note that many HLA statements and instructions return the empty string a
“RETURNS” value (by default, so do procedure calls). If an instruction returns the empty string as its
position value, then HLA will report an error if you attempt to use it as the operand of another instru
For example, the IF..ENDIF statement returns the empty string as its “RETURNS” value, so you m
bury an IF..ENDIF inside another instruction.

8.8.3 The HLA RETURNS Option in Procedures

HLA procedure declarations allow a special option that specifies the string to use when a procedu
invocation appears as the operand of another instruction: the RETURNS option. The syntax for a procedure
declaration with the RETURNS option is as follows:

procedure ProcName (optional parameters); RETURNS(string_constant);
<< Local declarations >>

begin ProcName;
<< procedure statements >>

end ProcName;

If the RETURNS option is not present, HLA associates the empty string with the RETURNS value for
the procedure. This effectively makes it illegal to use that procedure invocation as the operand to anothe
instruction.
Page 560 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

ts.

n func
ent to

F

nt string

es the
The RETURNS option requires a single string parameter surrounded by parentheses. This must be a
string constant8. HLA will substitute this string constant for the procedure call if it ever appears as the oper-
and of another instruction. Typically this string constant is a register name; however, any text that would be
legal as an instruction operand is okay here. For example, you could specify memory address or constan
For purposes of clarity, you should always specify the location of a function’s return value in the RETURNS
parameter.

As an example, consider the following boolean function that returns true or false in the EAX register if
the single character parameter is an alphabetic character9:

procedure IsAlphabeticChar(c:char); RETURNS(“EAX”);
begin IsAlphabeticChar;

// Note that cs.member returns true/false in EAX

cs.member(c, {‘a’..’z’, ‘A’..’Z’});

end IsAlphabeticChar;

Once you tack the RETURNS option on the end of this procedure declaration you can legally use a call
to IsAlphabeticChar as an operand to other HLA statements and instructions:

mov(IsAlphabeticChar(al), EBX);
.
.
.

if(IsAlphabeticChar(ch)) then
.
.
.

endif;

The last example above demonstrates that, via the RETURNS option, you can embed calls to your ow-
tions in the boolean expression field of various HLA statements. Note that the code above is equival

IsAlphabeticChar(ch);
if(EAX) then

.

.

.
endif;

Not all HLA high level language statements expand composed instructions before the statement. or
example, consider the following WHILE statement:

while(IsAlphabeticChar(ch)) do
.
.
.

endwhile;

This code does not expand to the following:

IsAlphabeticChar(ch);
while(EAX) do

.

.

.

8. Do note, however, that it doesn’t have to be a string literal constant. A CONST string identifier or even a consta
expression is legal here.
9. Before you run off and actually use this function in your own programs, note that the HLA Standard Library provid
char.isAlpha function that provides this test. See the HLA documentation for more details.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 561

Chapter Eight Volume Three

ram

 syntax
 string
g. So

s
 in

o

endwhile;

Instead, the call to IsAlphabeticChar expands inside the WHILE’s boolean expression so that the prog
calls this function on each iteration of the loop.

You should exercise caution when entering the RETURNS parameter. HLA does not check the
of the string parameter when it is compiling the procedure declaration (other than to verify that it is a
constant). Instead, HLA checks the syntax when it replaces the function call with the RETURNS strin
if you had specified “EAZ” instead of “EAX” as the RETURNS parameter for IsAlphabeticChar in the pre-
vious examples, HLA would not have reported an error until you actually used IsAlphabeticChar as an oper-
and. Then of course, HLA complains about the illegal operand and it’s not at all clear what the problem i
by looking at the IsAlphabeticChar invocation. So take special care not to introduce typographical errors
the RETURNS string; figuring out such errors later can be very difficult.

8.9 Side Effects

A side effect is any computation or operation by a procedure that isn’t the primary purpose of that proce-
dure. For example, if you elect not to preserve all affected registers within a procedure, the modification of
those registers is a side effect of that procedure. Side effect programming, that is, the practice of using a pr-
cedure’s side effects, is very dangerous. All too often a programmer will rely on a side effect of a procedure.
Later modifications may change the side effect, invalidating all code relying on that side effect. This can
make your programs hard to debug and maintain. Therefore, you should avoid side effect programming.

Perhaps some examples of side effect programming will help enlighten you to the difficulties you may
encounter. The following procedure zeros out an array. For efficiency reasons, it makes the caller responsible
for preserving necessary registers. As a result, one side effect of this procedure is that the EBX and ECX reg-
isters are modified. In particular, the ECX register contains zero upon return.

procedure ClrArray;
begin ClrArray;

lea(ebx, array);
mov(32, ecx);
while(ecx > 0) do

mov(0, (type dword [ebx]));
add(4, ebx);
dec(ecx);

endwhile;

end ClrArray;

If your code expects ECX to contain zero after the execution of this subroutine, you would be relying on
a side effect of the ClrArray procedure. The main purpose behind this code is zeroing out an array, not setting
the ECX register to zero. Later, if you modify the ClrArray procedure to the following, your code that
depends upon ECX containing zero would no longer work properly:

procedure ClrArray;
begin ClrArray;

mov(0, ebx);
while(ebx < 32) do

mov(0, array[ebx*4]);
inc(ebx);
Page 562 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

r
es

y

n.
ry

di
o

us
nd

l

n sacri-
 neces-
uch is
e

 of code
the prob-
endwhile;

end ClrArray;

So how can you avoid the pitfalls of side effect programming in your procedures? By carefully structu-
ing your code and paying close attention to exactly how your calling code and the subservient procedur
interface with one another. These rules can help you avoid problems with side effect programming:

• Always properly document the input and output conditions of a procedure. Never rely on an
other entry or exit conditions other than these documented operations.

• Partition your procedures so that they compute a single value or execute a single operatio
Subroutines that do two or more tasks are, by definition, producing side effects unless eve
invocation of that subroutine requires all the computations and operations.

• When updating the code in a procedure, make sure that it still obeys the entry and exit con-
tions. If not, either modify the program so that it does or update the documentation for that pr-
cedure to reflect the new entry and exit conditions.

• Avoid passing information between routines in the CPU’s flag register. Passing an error stat
in the carry flag is about as far as you should ever go. Too many instructions affect the flags a
it’s too easy to foul up a return sequence so that an important flag is modified on return.

• Always save and restore all registers a procedure modifies.
• Avoid passing parameters and function results in global variables.
• Avoid passing parameters by reference (with the intent of modifying them for use by the cal-

ing code).

These rules, like all other rules, were meant to be broken. Good programming practices are ofte
ficed on the altar of efficiency. There is nothing wrong with breaking these rules as often as you feel
sary. However, your code will be difficult to debug and maintain if you violate these rules often. But s
the price of efficiency10. Until you gain enough experience to make a judicious choice about the use of sid
effects in your programs, you should avoid them. More often than not, the use of a side effect will cause
more problems than it solves.

8.10 Recursion

Recursion occurs when a procedure calls itself. The following, for example, is a recursive procedure:

procedure Recursive;
begin Recursive;

Recursive();

end Recursive;

Of course, the CPU will never return from this procedure. Upon entry into Recursive, this procedure
will immediately call itself again and control will never pass to the end of the procedure. In this particular
case, run away recursion results in an infinite loop11.

Like a looping structure, recursion requires a termination condition in order to stop infinite recursion.
Recursive could be rewritten with a termination condition as follows:

procedure Recursive;
begin Recursive;

dec(eax);
if(@nz) then

10. This is not just a snide remark. Expert programmers who have to wring the last bit of performance out of a section
often resort to poor programming practices in order to achieve their goals. They are prepared, however, to deal with
lems that are often encountered in such situations and they are a lot more careful when dealing with such code.
11. Well, not really infinite. The stack will overflow and Windows or Linux will raise an exception at that point.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 563

Chapter Eight Volume Three

ctions.
Recursive();

endif;

end Recursive;

This modification to the routine causes Recursive to call itself the number of times appearing in the EAX
register. On each call, Recursive decrements the EAX register by one and calls itself again. Eventually,
Recursive decrements EAX to zero and returns. Once this happens, each successive call returns back to
Recursive until control returns to the original call to Recursive.

So far, however, there hasn’t been a real need for recursion. After all, you could efficiently code this pro-
cedure as follows:

procedure Recursive;
begin Recursive;

repeat

dec(eax);

until(@z);

end Recursive;

Both examples would repeat the body of the procedure the number of times passed in the EAX regis-
ter12. As it turns out, there are only a few recursive algorithms that you cannot implement in an iterative
fashion. However, many recursively implemented algorithms are more efficient than their iterative counter-
parts and most of the time the recursive form of the algorithm is much easier to understand.

The quicksort algorithm is probably the most famous algorithm that usually appears in recursive form
(see a “Data Structures and Algorithms” textbook for a discussion of this algorithm). An HLA implementa-
tion of this algorithm follows:

program QSDemo;
#include(“stdlib.hhf”);

type
 ArrayType: uns32[10];

static
 theArray: ArrayType := [1,10,2,9,3,8,4,7,5,6];

 procedure quicksort(var a:ArrayType; Low:int32; High: int32);
 const
 i: text := “(type int32 edi)”;
 j: text := “(type int32 esi)”;
 Middle: text := “(type uns32 edx)”;
 ary: text := “[ebx]”;

 begin quicksort;

 push(eax);
 push(ebx);
 push(ecx);
 push(edx);

12. Although the latter version will do it considerably faster since it doesn’t have the overhead of the CALL/RET instru
Page 564 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
 push(esi);
 push(edi);

 mov(a, ebx); // Load BASE address of “a” into EBX

 mov(Low, edi); // i := Low;
 mov(High, esi); // j := High;

 // Compute a pivotal element by selecting the
 // physical middle element of the array.

 mov(i, eax);
 add(j, eax);
 shr(1, eax);
 mov(ary[eax*4], Middle); // Put middle value in EDX

 // Repeat until the EDI and ESI indicies cross one
 // another (EDI works from the start towards the end
 // of the array, ESI works from the end towards the
 // start of the array).

 repeat

 // Scan from the start of the array forward
 // looking for the first element greater or equal
 // to the middle element).

 while(Middle > ary[i*4]) do

 inc(i);

 endwhile;

 // Scan from the end of the array backwards looking
 // for the first element that is less than or equal
 // to the middle element.

 while(Middle < ary[j*4]) do

 dec(j);

 endwhile;

 // If we’ve stopped before the two pointers have
 // passed over one another, then we’ve got two
 // elements that are out of order with respect
 // to the middle element. So swap these two elements.

 if(i <= j) then

 mov(ary[i*4], eax);
 mov(ary[j*4], ecx);
 mov(eax, ary[j*4]);
 mov(ecx, ary[i*4]);
 inc(i);
 dec(j);

 endif;

 until(i > j);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 565

Chapter Eight Volume Three
 // We have just placed all elements in the array in
 // their correct positions with respect to the middle
 // element of the array. So all elements at indicies
 // greater than the middle element are also numerically
 // greater than this element. Likewise, elements at
 // indicies less than the middle (pivotal) element are
 // now less than that element. Unfortunately, the
 // two halves of the array on either side of the pivotal
 // element are not yet sorted. Call quicksort recursively
 // to sort these two halves if they have more than one
 // element in them (if they have zero or one elements, then
 // they are already sorted).

 if(Low < j) then

 quicksort(a, Low, j);

 endif;
 if(i < High) then

 quicksort(a, i, High);

 endif;

 pop(edi);
 pop(esi);
 pop(edx);
 pop(ecx);
 pop(ebx);
 pop(eax);

 end quicksort;

begin QSDemo;

 stdout.put(“Data before sorting: “ nl);
 for(mov(0, ebx); ebx < 10; inc(ebx)) do

 stdout.put(theArray[ebx*4]:5);

 endfor;
 stdout.newln();

 quicksort(theArray, 0, 9);

 stdout.put(“Data after sorting: “ nl);
 for(mov(0, ebx); ebx < 10; inc(ebx)) do

 stdout.put(theArray[ebx*4]:5);

 endfor;
 stdout.newln();

end QSDemo;

Program 8.9 Recursive Quicksort Program
Page 566 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

decla
tly

o

o

Just use

ith

on (we

fi

Note that this quicksort procedure uses registers for all non-parameter local variables. Also note how
Quicksort uses TEXT constant definitions to provide more readable names for the registers. This technique
can often make an algorithm easier to read; however, one must take care when using this trick not to forget
that those registers are being used.

8.11 Forward Procedures

As a general rule HLA requires that you declare all symbols before their first use in a program13.
Therefore, you must define all procedures before their first call. There are two reasons this isn’t always prac-
tical: mutual recursion (two procedures call each other) and source code organization (you prefer to place a
procedure in your code after the point you’ve first called it). Fortunately, HLA lets you use a forward proce-
dure definition to declare a procedure prototype. Forward declarations let you define a procedure before you
actually supply the code for that procedure.

A forward procedure declaration is a familiar procedure declaration that uses the reserved word FOR-
WARD in place of the procedure’s declaration section and body. The following is a forward declaration for
the quicksort procedure appearing in the last section:

procedure quicksort(var a:ArrayType; Low:int32; High: int32); forward;

A forward declaration in an HLA program is a promise to the compiler that the actual procedure -
ration will appear, exactly as stated in the forward declaration, at a later point in the source code. “Exac
as stated” means exactly that. The forward declaration must have the same parameters, they must be passed
the same way, and they must all have the same types as the formal parameters in the procedure14.

Routines that are mutually recursive (that is, procedure A calls procedure B and procedure B calls pr-
cedure A) require at least one forward declaration since only one of procedure A or B can be declared before
the other. In practice, however, mutual recursion (direct or indirect) doesn’t occur very frequently, so the
need for forward declarations is not that great.

In the absence of mutual recursion, it is always possible to organize your source code so that each pr-
cedure declaration appears before its first invocation. What’s possible and what’s desired are two different
things, however. You might want to group a related set of procedures at the beginning of your source code
and a different set of procedures towards the end of your source code. This logical grouping, by function
rather than by invocation, may make your programs much easier to read and understand. However, this
organization may also yield code that attempts to call a procedure before its declaration. No sweat.
a forward procedure definition to resolve the problem.

One major difference between the forward definition and the actual procedure declaration has to do w
the procedure options. Some options, like RETURNS may appear only in the forward declaration (if a FOR-
WARD declaration is present). Other options may only appear in the actual procedure declarati
haven’t covered any of the other procedure options yet, so don’t worry about them just yet). If your proce-
dure requires a RETURNS option, the RETURNS option must appear before the FORWARD reserved word.
E.g.,

procedure IsItReady(valueToTest: dword); returns(“EAX”); forward;

The RETURNS option must not also appear in the actual procedure declaration later in your source le.

8.12 Putting It All Together

This chapter has filled in one of the critical elements missing from your assembly language knowledge:
how to create user-defined procedures in an HLA program. This chapter discussed HLA’s high level proce-

13. There are a few minor exceptions to this rule, but it is certainly true for procedure calls.
14. Actually, “exactly” is too strong a word. You will see some exceptions in a moment.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 567

Chapter Eight Volume Three

e.
s.
dure declaration and calling syntax. It also described how to pass parameters by value and by reference as
well as the use of local variables in HLA procedures. This chapter also provided information about instruc-
tion composition and the RETURNS option for procedures. Finally, this chapter explained recursion and the
use of forward procedure declarations (prototypes).

The one thing this chapter did not discuss was how procedures are written in “pure” assembly languag
This chapter presents just enough information to let you start using procedures in your HLA programThe
“real stuff” will have to wait for a few chapters. Fear not, however; later chapters will teach you far more
than you probably care to know about procedures in assembly language programs.
Page 568 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Introduction to Procedures Chapter Eight
	8.1 Chapter Overview
	8.2 Procedures
	8.3 Saving the State of the Machine
	8.4 Prematurely Returning from a Procedure
	8.5 Local Variables
	8.6 Other Local and Global Symbol Types
	8.7 Parameters
	8.7.1 Pass by Value
	8.7.2 Pass by Reference

	8.8 Functions and Function Results
	8.8.1 Returning Function Results
	8.8.2 Instruction Composition in HLA
	8.8.3 The HLA RETURNS Option in Procedures

	8.9 Side Effects
	8.10 Recursion
	8.11 Forward Procedures
	8.12 Putting It All Together

