Introduction to Procedures

Introduction to Procedures Chapter Eight

8.1 Chapter Overview

In a procedural programming language the basic unit of code wdbedue. A procedure is a set of
instructions that compute somalwe or tak some action (such as printing or reading a charaatiee VT he
definition of a procedure isery similar to the defition of analgorithm A procedure is a set of rules to-fol
low which, if they conclude, produce some resilh algorithm is also such a sequenagt, dn algorithm is
guaranteed to terminate whereas a procedteesafo such guarantee.

This chapter discussesvia¢1LA implements proceduresThis is actually the 6t of three chapters on
this subject in this t&. This chapter presents HLA procedures from a highllenguage perspeeti. A
later chapterintermediate Procedures, discusses procedures at the machine langlagenfole olume
in this sequencédvanced Procedures,\@rs adanced programming topics of interest to teeyvserious
assembly language programmehis chapterhowever, provides the foundation for all that folks.

8.2 Procedures

Most procedural programming languages implement procedures using the call/return medfatism
is, some code calls a procedure, the procedure does its thing, and then the procedure returns td ttee caller
call and return instructions pridle the 80x8& procedue invocation melsanism The calling code calls a
procedure with th€ALL instruction, the procedure returns to the caller withRIBE instruction. Br exam
ple, the follaving 80x86 instruction calls the HLA Standard Libratgiout.ngvln routinet:

cal | stdout.new n;

The stdout.newlnprocedure prints a newline sequence to the console device and returns control to the
instruction immediately following the “call stdout.newln;” instruction.

Alas, the HLA Standard Library does not supply all the routines you will need. Most of the time you'll
have to write your own procedures. To do this, you will use HLA's procedure declaration facilities. A basic
HLA procedure declaration takes the following form:

procedur e ProcNhare,;

<< Local declarations >>
begi n Prochane;

<< procedure statenents >>
end Prochane;

Procedure declarations appear in the declaration section of your progheais, agwhere you can
put a SATIC, CONST TYPE, or other declaration section, you may place a procedure declaration. In the
syntax gample abwe, ProcNamerepresents the name of the procedure you wish toeedéfhis can be an
valid HLA identifier Whatever identifer follows the PRRCEDURE reserd word must also folle the
BEGIN and END reserd words in the procedureAs youve probably noticed, a procedure declaration
looks a whole lot lik an HLA program. Indct, the only dierence (sodr) is the use of the RRCEDURE
resened word rather than the RFGRAM resered word.

Here is a concretexample of an HLA procedure declarationhis procedure stores zeros into the 256
double vords that EBX points at upon entry into the procedure:

procedure zeroBytes;
begi n zer oBytes;

nov(0, eax);

1. Normally you would call newlIn using the “newIn();” statement, but the CALL instruction works as well.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageb41

Chapter Eight Volume Three

nov(256, ecx);
r epeat

nov(eax, [ebx]);
add(4, ebx);
dec(ecx);

until (@); // That is, until ECX=0.

end zeroBytes;

You can use the 80x86 CALL instruction to call this procedMvien, during programxecution, the
code #lls into the “end zeroBytes;” statement, the procedure returns to whooaled it and lgns e
cuting the fist instruction bgond the CALL instruction.The folloving program preides an gample of a
call to thezeoBytesroutine:

pr ogr am zer oByt esDeno;
#incl ude(“stdlib.hhf”);

procedure zeroBytes;

begi n zer oByt es;
nov(0, eax);
nmov(256, ecx);

r epeat

nmov(eax, [ebx]); // Zero out current dword.

add(4, ebx); /1 Point ebx at next dword.
dec(ecx); /1 Count off 256 dwords.
until (ecx =0); /1 Repeat for 256 dwords.

end zeroBytes;

static
dwArray: dword[256];

begi n zer oByt esDenv;

| ea(ebx, dwArray);
call zeroBytes;

end zer oByt esDenv;

Program 8.1 Example of a Simple Procedure

As you may hee noticed when calling HLA Standard Library procedures, yout@bmays need to use
the CALL instruction to call HLA proceduresThere is nothing special about the HLA Standard Library
proceduresersus your wn proceduresAlthough the formal 80x86 mechanism for calling procedures is to
use the CALL instruction, HLA prades a HLL &tension that lets you call a procedure by simply specify
ing that procedure’name follaved by an empty set of parenth@seﬁor example, either of the follwing
statements will call the HLA Standard Librastdout.n&ln procedure:

2. This assumes that the procedure does not have any parameters.

Pageb42 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

call stdout. new n;
stdout . new n();

Likewise, either of the following statements will call texoBytegprocedure irProgram 8.1

call zeroBytes;
zeroBytes();

The choice of calling mechanism is strictly up to you. Most peopleever, find the HLL syntax easier to
read.

8.3 Saving the State of the Machine

Take a look at the follving program:

pr ogr am nonVr ki ngPr ogr am
#include(“stdlib.hhf”);

procedure Print Spaces;
begi n Print Spaces;

mov(40, ecx);

r epeat
stdout.put(* *); // Print 1 of 40 spaces.
dec(ecx); /1 Count off 40 spaces.

until(ecx =0);
end Print Spaces;
begi n nonWr ki ngPr ogr am

nmov(20, ecx);
r epeat

Pri nt Spaces();
stdout.put(‘*', nl);
dec(ecx);

until (ecx = 0);

end nonWr ki ngPr ogr am

Program 8.2 Program with an Unintended Infinite Loop

This section of code attempts to print 20 lines of 40 spaces and an asterisk. Unfortineséeiy a sub
tle bug that causes it to print 40 spaces per line and an asterisk imée Infip.The main program uses the
REPEAT..UNTIL loop to call PrintSpaces20 times.PrintSpacesuses ECX to count bthe 40 spaces it
prints. PrintSpaceseturns with ECX containing zer®@he main program then prints an asterisk, &line,
decrements ECX, and then repeats because ECXzero (it will alvays contain $FFFF_FFFF at this
point).

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageb43

Chapter Eight

Volume Three

The problem here is that thi&rintSpacessubroutine doesth’presere the ECX rgister Preserving a
register means you ga it upon entry into the subroutine and restore it beforengaHad thePrintSpaces
subroutine preseed the contents of the ECXgister the program ah@ would have functioned properly

Use the 80x8&8'PUSH andPOP instructions to preseevraister \alues while you need to use them for

something else. Consider the foliog code folPrintSpaces

procedur e Print Spaces;
begi n Print Spaces;

push(eax);

push(ecx);

nmov(40, ecx);

r epeat
stdout.put(' '); // Print 1 of 40 spaces.
dec(ecx); /1 Count off 40 spaces.

until (ecx = 0);

pop(ecx);

pop(eax);

end Print Spaces;

Note thatPrintSpacesares and restores EAX and ECX (since this procedure rasdiiese igsters).
Also, note that this code pops thgisters of the stack in the kerse order that it pushed thehhe last-in,

first-out, operation of the stack imposes this ordering.

Either thecaller (the code containing the CALL instruction) or the caftbe subroutine) can tak
responsibility for preserving thegisters. In thexample abue, the callee presesd the rgisters.The fol
lowing example shars what this code might look Ekif the caller presees the rgisters:

program cal | er Preservati on;
#include(“stdlib.hhf”);

procedure Print Spaces;
begi n Print Spaces;

mov(40, ecx);

r epeat
stdout.put(* *); // Print 1 of 40 spaces.
dec(ecx); /1 Count off 40 spaces.

until (ecx =0);
end Print Spaces;
begi n cal | erPreservati on;

nmov(20, ecx);
r epeat

push(eax);

push(ecx);

Print Spaces();

pop(ecx);

pop(eax);
stdout.put(“*', nl);
dec(ecx);

Pageb44 © 2001, By Randall Hyde

Beta Draft - Do not distribute

Introduction to Procedures

until(ecx = 0);

end cal | erPreservati on;

Program 8.3 Demonstration of Caller Register Preservation

There are tw adwantages to callee presation: space and maintainability the callee presees all
affected rgisters, then there is only one gapf the PUSH and POP instructions, those the procedure con
tains. If the caller sees the alues in the mgisters, the program needs a set of PUSH and POP instructions
around gery call. Not only does this makyour programs longeit also maks them harder to maintain.
Remembering which gisters to push and pop on each procedure call is not something easily done.

On the other hand, a subroutine may unnecessarily peeseme rgisters if it presems all the rgis-
ters it modifes. In the gamples abee, the code needrsave EAX. Although PrintSpaceshanged\L, this
won't affect the prograns operation. If the caller is preserving thgisters, it doest’have to s&e registers
it doesnt care about:

program cal | er Preservat i on2;
#include(“stdlib.hhf”);

procedure Print Spaces;
begi n Print Spaces;

nmov(40, ecx);

r epeat
stdout.put(* “); // Print 1 of 40 spaces.
dec(ecx); /1 Count off 40 spaces.

until (ecx = 0);
end Print Spaces;
begi n cal | er Preservation2;

nmov(10, ecx);
r epeat

push(ecx);

Print Spaces();
pop(ecx);

stdout.put(“*', nl);
dec(ecx);
until(ecx = 0);
mov(5, ebx);
while(ebx >0) do
Pri nt Spaces();
stdout. put (ebx, nl);

dec(ebx);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageb45

Chapter Eight Volume Three

endwhi | e;

nmov(110, ecx);

for(nov(O, eax); eax < 7; inc(eax)) do
Print Spaces();

stdout . put (eax, , ecx, nl);
dec(ecx);

endfor;

end cal | er Preservation2;

Program 8.4 Demonstrating that Caller Preservation Need not Save All Registers

This example preides three dferent caseslhe first loop (REPEA..UNTIL) only preseres the ECX
register Modifying theAL register won't affect the operation of this loop. Immediately after thst fioop,
this code call®rintSpacesgin in theWHILE loop. Havever, this code doeshsave EAX or ECX because
it doesnt care ifPrintSpacexchanges them. Since thadl loop FOR) uses EAX and ECX, it sas them
both.

One big problem with hang the caller preseevragisters is that your program may changeu may
modify the calling code or the procedure so thay thee additional igisters. Such changes, of course, may
change the set of gesters that you must preserWorse still, if the modifiation is in the subroutine itself,
you will need to locatevery call to the routine andevify that the subroutine does not changg r@gisters
the calling code uses.

Preserving rgisters isrt all there is to preserving thev@onment.You can also push and pogriables
and other glues that a subroutine might change. Since the 80x&@sajlou to push and pop memory leca
tions, you can easily preserthese alues as well.

8.4

Prematurely Returning from a Procedure

The HLAEXIT and EXITIF statements let you return from a procedure withadibdgdo fall into the
corresponding END statement in the procedUreese statements befeaa whole lot lile the BREAK and
BREAKIF statements for loopsxeept thg transfer control to the bottom of the procedure rather than out of
the current loop.These statements are quite useful in ynzases.

The syntax for these twstatements is the follong:
exit procedurenant;
exi tif(bool ean_expression) procedurenant,

The proceduenameoperand is the name of the procedure you wiskito & you specify the name of
your main program, the EXIT and EXITIF statements will terminate progracugon (&en if youtre cur
rently inside a procedure rather than the body of the main program.

The EXIT statement immediately transfers control out of the spd@fiocedure or progrant.he con
ditional «it, EXITIF, statement st tests the booleaxgression andxts if the result is true. It is semanti
cally equvalent to the follaing:

i f(bool ean_expression) then

exit procedurenang,

Pageb46 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

endif;

Although the EXIT and EXITIF statements argdluable in may cases, you should try te@d using
them without careful consideration. If a simple IF statement will let you skip the rest of the code in your
procedure, by all means use the IF statement. Procedures that contain lots of EXIT and EXITIF statements
will be harder to read, understand, and maintain that procedures without these statements (after all, the EXIT
and EXITIF statements are really nothing more thaim GQtatements and ya& probably heard already
about the problems with G@s). EXIT and EXITIF are caenient when you got to return from a proce
dure inside a sequence of nested control structures and slappinde&IF around the remaining code in
the procedure is not possible.

8.5

Local Variables

HLA procedures, lik procedures and functions in most higleléanguages, let you decldoeal vari-
ables Local \ariables are generally accessible only within the procedurg atieenot accessible by the
code that calls the procedure. Localigble declarations are identical @riable declarations in your main
program &cept, of course, you declare thariables in the proceduseteclaration section rather than the
main prograns declaration sectionActually, you may declare gthing in the procedurs’declaration sec
tion that is Igal in the main prograra’declaration section, including constants, types, e@d ether proce
dures. In this section, hwever, we'll concentrate on localariables.

Local variables hee two important attribtes that dierentiate them from theaviables in your main
program (i.e.global variables)iexical scopeandlifetime Lexical scope, or justcope determines when an
identifier is usable in your program. Lifetime determines whearialle has memory associated with it and
is capable of storing data. Since these twncepts dierentiate local and globakviables, it is wise to
spend some time discussing these aitritutes.

Perhaps the best place to start when discussing the scope and lifetimes cdriabéts/is with the
scope and lifetimes of globahriables -- thoseariables you declare in your main program. Untivnine
only rule youve had to follaw concerning the declaration of youariables has been “you must declare all
variables that you use in your progrdm3he position of the HLA declaration section with respect to the
program statements automatically enforces the other major rule which is “you must declaralalits/
before their fist us€. With the introduction of procedures, it isvmgossible to violate this rule since
(1) procedures may access globatiables, and (2) procedure declarations may appgahane in a declka
ration section, wen before someaviable declarationsThe folloving program demonstrates this source
code oganization:

pr ogr am denod obal Scope;
#include(“stdlib.hhf”);

static
Accessi bl el nProc: char;
procedure aProc;
begi n aProc;

mov(‘a’, AccessiblelnProc);

end aProc;

3. The chapter on Advanced Procedures discusses the concept of local procedures in greater detail.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageb47

Chapter Eight Volume Three

static
| naccessi bl el nProc: char;

begi n denod obal Scope;

nmov(‘b, InaccessiblelnProc);
aProc();
st dout . put

(

“n wen

nl

“Accessi bl el nProc , Accessi bl el nProc,
(BRI nl

“I naccessi bl el nProc , I naccessi bl el nProc,

wen

)

end denod obal Scope;

Program 8.5 Demonstration of Global Scope

This exkample demonstrates that a procedure can access gioiadlles in the main program as long as
you declare those globahrables before the procedure. In thiample, theaProc procedure cannot access
the InaccessiblelnRyc variable because its declaration appears after the procedure declarativezetHo
aProc may referenceiccessiblelnRyc since its declaration appears before @ieroc procedure in the
source code.

A procedure can accessyaBTATIC, STORAGE, or READONLY object eactly the same ay the
main program accesses suetiables -- by simply referencing the namdthough a procedure may access
globalVAR objects, a dferent syntax is necessary and you need to learn a little more before you wil under
stand the purpose of the additional syntakerefore, wdl defer the discussion of accessMgR objects
until the chapters dealing witkdvanced Procedures.

Accessing global objects is a@nient and easy Unfortunately as yowe probably learned when
studying high lgel language programming, accessing global objectesnghur programs harder to read,
understand, and maintain. kikmost introductory programmingxts, this tet will discourage the use of
global \ariables within proceduresAccessing global ariables within a procedure is sometimes the best
solution to a gien problem. Hwever, such (Igitimate) access typically occurs only in adeed programs
involving multiple threads ofi@cution or in other comptesystems. Since it is unéky you would be writ
ing such code at this point, it is equally uelikthat you will absolutely need to access glolzaiables in
your proczdures so you should carefully consider your options before accessingajiabsds within your
procedure

Declaring local @riables in your procedures isry easyyou use the same declaration sections as the
main program: SATIC, READONLY, STORAGE, andVAR. The same rules and syntax for the declaration
sections and the access afiables you declare in these sections applies in your procetlesfolloning
example code demonstrates the declaration of a lec&lble.

pr ogr am denoLocal Vars;
#include(“stdlib.hhf”);

4. Note that this argument against accessing global variables does not apply to other global symbols. It is perfectly reasonab
to access global constants, types, procedures, and other objects in your programs.

Pageb48 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

/1 Sinple procedure that displays 0..9 using
/1 alocal variable as a |oop control variable.

procedure Ont TolO;
var
i: int32;
begi n Ont TolO;
for(nmov(O, i); i <10; inc(i)) do
stdout.put(“i=", i, nl);

endf or;

end Ont TolO;

begi n denoLocal Vars;
Ot To10() ;

end denolLocal Vars;

Program 8.6 Example of a Local Variable in a Procedure

Local variables you declare in a procedure are accessible only within that procetinesefore, the
variablei in procedureCntT010in Program 8.6s not accessible in the main program.

HLA relaxes, somehat, the rule that identdis must be unique in a program for localiables. In an
HLA program, all identi#rs must be unique within avgn scope Therefore, all global names must be
unique with respect to one anoth&imilarly, all local \ariables within a gien procedure must)@ unique
namesgout only with espect to other local symbols in thabpedue. In particulay a local name may be the
same as a global nam®/hen this occurs, HLA createsdveeparateariables for the tev objects. Within
the scope of the procedureyarference to the common name accesses the lagable; outside that pro
cedure, ay reference to the common name references the global iden#fithough the quality of the
resultant code is questionable, it is perfectbaléo hare a global identiér namedvy\Var with the same
local name in tw or more diferent proceduresThe procedures eachveatheir avn local \ariant of the
object which is independent dfy\ar in the main programProgram 8.7rovides an gample of an HLA
program that demonstrates this feature.

pr ogr am denoLocal Var s2;
#incl ude(“stdlib.hhf”);

static
i: uns32 := 10;
j: uns32 := 20;
I/ The follow ng procedure declares “i” and “j”

// as local variables, so it does not have access
/1 to the global variables by the sane nane.

5. Strictly speaking, this is not true. The chapter on Advanced Procedures will present an exception.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages49

Chapter Eight Volume Three

procedure First;
var

i: int32;

j 1 uns32;

begin First;

mov(10, j);
for(nov(O, i); i <10; inc(i)) do

stdout.put(“i=", i,” j=", j, nl);
dec(j);

endf or;
end First;

/1 This procedure declares only an “i” variabl e.
// 1t cannot access the value of the global “i”
/1 variable but it can access the value of the
/1 global “j” object since it does not provide

/1 a local variant of “j

procedur e Second;
var
i1 uns32;

begi n Second;

mov(10, j);

for(nov(O, i); i <10; inc(i)) do
stdout.put(“i=", i,”

dec(j);

=" g, nb);

endf or;

end Second;

begi n denoLocal Var s2;

First();
Second() ;

/] Since the calls to First and Second have not

// nodified variable “i”, the follow ng statenent
/1l should print “i=10". However, since the Second
|/ procedure mani pul ated gl obal variable “j”, this
[l code will print “j=0" rather than “j=20".

stdout.put(“i=", i, “j=", j, nl);

end denolLocal Var s2;

Program 8.7 Local Variables Need Not Have Globally Unique Names

Pages50 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

There are good and bad points to be made about reusing global names within a procedure. On the one
hand, there is the potential for confusion. If you use a namPiditsThis¥aras a global symbol and you
reuse that name within a procedure, someone reading the procedure might think that the procedure refers to
the global symbol rather than the local symbol. On the other hand, simple namigejs ékdk are nearly
meaningless (almosveryone &pects the program to use them as loop conttabbiles or for other local
uses), so reusing these names as local objects is probably a good idea. Froareaoffweering perspec
tive, it is probably a good idea tedp all ariables names thatvea \ery specift meaning (lile ProfitsThi
sYear) unique throughout your program. General names, tivatdaehlous meaning (likindex, counter
and names liki, j, or k) will probably be okay to reuse as globaliables

There is one last point to malabout the scope of idengifs in an HLA program:ariables in separate
procedures (that is, typrocedures where one procedure is not declared in the declaration section of the sec
ond procedure) are separategreif they have the same nam@&heFirstandSecondprocedures ifProgram
8.7, for example, share the same narddr a local ariable. Havever, thei in Firstis a completely diér-
ent\ariable than thein Second

The second major attuie that diferentiates (certain) locahviables from globalariables idifetime
Thelifetime of a \ariable spans from the point the prograrstfallocates storage for anable to the point
the program deallocates the storage for thaable. Note that lifetime is a dynamic attrié (controlled at
run time) whereas scope is a static attieb(controlled at compile time). In particylanariable can actu
ally have several lifetimes if the program repeatedly allocates and then deallocates the storage &oi-that v
able.

Global variables alays hae a single lifetime that spans from the moment the main progrstrbdjins
execution to the point the main program terminates.edige, all static objects kia a single lifetime that
spans the»ecution of the program (remembpstatic objects are those you declare in thATST, REA-
DONLY, or STORAGE sections).This is true een for procedures. So there is ndatiénce between the
lifetime of a local static object and the lifetime of a global static obj¢atiables you declare in théAR
section, hwever, are a diferent matter VAR objects useautomatic staage allocation Automatic storage
allocation means that the procedure automatically allocates storage for at@abwipon entry into a pro
cedure. Similarlythe program deallocates storage for automatic objects when the procedure returns to its
caller Therefore, the lifetime of an automatic object is from the point the procedurstisdlied to the
point it returns to its caller

Perhaps the most important thing to note about automatigbles is that you cannatpect them to
maintain their alues between calls to the procedure. Once the procedure returns to jttheadimrage for
the automatic ariable is lost and, therefore, thalwe is lost as well.Therefore you must always assume
that a localVAR object is uninitialized upon entry into apedug; even if you knev you've called the pro
cedure before and the preus procedure wocation initialized that ariable. Whatever value the last call
stored into the ariable vas lost when the procedure returned to its calfeyou need to maintain thele
of a \ariable between calls to a procedure, you should use one of the atititesdeclaration types.

Given that automaticariables cannot maintain theialues across procedure calls, you migbhder
why you would want to use them at all. Mever, there are seral benefs to automaticariables that static
variables do not ha. The biggest disadntage to staticariables is that theconsume memorywen when
the (only) procedure that references them is not runmagomatic \ariables, on the other hand, only eon
sume storage while there associated procedureetuting. Upon return, the procedure returng auno
matic storage it allocated back to the system for reuse by other procetfore.see some additional
adwantages to automati@riables later in this chapter

8.6 Other Local and Global Symbol Types

As mentioned in the pvéous section, HLA lets you declare constantugs, types, and gihing else
legal in the main prograra’declaration section within a procedsrdéclaration sectionThe same rules for
scope apply to these idergifs. Therefore, you can reuse constant names, procedure names, type names,
etc. in local declarations (although this is almostgk a bad idea).

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageb51

Chapter Eight Volume Three

Referencing global constantsglves, and types, does not present the sameasefengineering preb
lems that occur when you reference glokaiables. The problem with referencing globadnable is that a
procedure can change thalwe of a global ariable in a non-olous way. This males programs more @if
cult to read, understand, and maintain since yout cditen tell that a procedure is modifying memory by
looking only at the call to that procedure. Constaratiies, types, and other noariable objects, dohsuf
fer from this problem because you cannot change them at run-finegefore, the pressure tecéd global
objects at nearly all costs doesapply to non-gariable objects.

Having said that i okay to access global constants, types, et.algo vorth pointing out that you
should declare these objects locally within a procedure if the only place your program references such
objects is within that procedure. Doing so will reafour programs a little easier to read since the person
reading your code @n't have to search allver the place for the symbsldefnition.

8.7 Parameters

Although there is a lge class of procedures that are totally self-contained, most procedures require
some input data and return some data to the cBeameters arealues that you pass to and from a proce
dure. In straight assembly language, passing parameters can be a real chtaratefy HLA provides a
HLL-lik e syntax for procedure declarations and for procedure cedllviimg parametersThis chapter will
present HLAs HLL parameter syntax. Later chapters on Intermediate Procedurkdemted Procedures
will deal with the lav-level mechanisms for passing parameters in pure assembly code.

The first thing to consider when discussing parametdnsuswe pass them to a procedure. If you are
familiar with Rascal or C/C++ youe probably seen toways to pass parameters: pass &lye and pass by
reference. HLA certainly supports thes®tparameter passing mechanismswel@r, HLA also supports
pass by glue/result, pass by result, pass by name, and pass byéddagton. Of course, HLA is assembly
language so it is possible to pass parameters in HLA usingdmeme you can dream up (at leasy, an
scheme that is possible at all on the CPU)wéler, HLA provides special HLL syntax for pass bglwe,
reference, alue/result, result, name, and lazsleiation.

Because pass byhle/result, result, name, and laxgleation are somehat adwanced, this chapter will
not deal with those parameter passing mechanisms. leyotérested in learning more about these param
eter passing schemes, see the chapters on Intermedi#tdvamted Procedures.

Another concern you willsfice when dealing with parametersvisele you pass themThere are lots of
different places to pass parameters; the chapter on Intermediate Procedures will consider these places in
greater detail. In this chaptaince we'e using HLAs HLL syntax for declaring and calling procedures,
we’ll wind up passing procedure parameters on the stémk.dont really need to concern yourself with the
details since HLA abstracts theway for you; havever, do keep in mind that procedure calls and proce
dure parameters maluse of the stackTherefore, something you push on the stack immediately before a
procedure call is not going to be immediately on the top of the stack upon entry into the procedure.

8.7.1 Pass by Value

A parameter passed bylue is just that — the caller passesabu® to the procedureaBs by walue
parameters are input-only parametdisat is, you can pass them to a procedurtetie procedure cannot
return them. In HLA the idea of a pass Blue parameter being an input only parameteremaklot of
sense. Gien the HLA procedure call:

Cal |l Proc(l);

If you passl by value, therCallProc does not change the value lpfregardless of what happens to the
parameter insid€allProc.

Pages52 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

Since you must pass a gopf the data to the procedure, you should only use this method for passing
small objects lik bytes, wrds, and double evds. Rssing arrays and records kglue is ery ineficient
(since you must create and pass ayaufithe object to the procedure).

HLA, like Rascal and C/C++, passes parametersayevunless you specify otherwise. Henhat a
typical function looks lik with a single pass byalue parameter:

procedure PrintNSpaces(N uns32);
begi n Print NSpaces;

push(ecx);

mov(N ecx);

r epeat
stdout.put(' '); // Print 1 of N spaces.
dec(ecx); /1 Count off N spaces.

until (ecx = 0);
pop(ecx);

end Print NSpaces;

The parametéX in PrintNSpacess knovn as a formal parameteknywhere the nami appears in the
body of the procedure the program referencesahes\passed throudth by the caller

The calling sequence for PrintNSpaces can lpeoathe folloving:

Pri nt NSpaces(constant);
Print NSpaces(regs,);
Print NSpaces(uns32_variable);

Here are some concreteagnples of calls t@rintNSpaces
Pri nt NSpaces(40);
Pri nt NSpaces(EAX);
Print NSpaces(SpacesToPrint);

The parameter in the calls RrintNSpacess known as amctual parameter In the examples above, 40,
EAX, andSpacesToPrinare the actual parameters.

Note that pass by value parameters behave exactly like local variables you declare in the VAR section
with the single exception that the procedure’s caller initializes these local variables before it passes control
to the procedure.

HLA uses positional parameter notation just like most high level languages. Therefore, if you need to
pass more than one parameter, HLA will associate the actual parameters with the formal parameters by their
position in the parameter list. The followiRgintNChais procedure demonstrates a simple procedure that
has two parameters.

procedure PrintNChars(N uns32; c:char);
begi n Print NChars;

push(ecx);

mov(N ecx);

r epeat
stdout.put(c); /1 Print 1 of N characters.
dec(ecx); /1 Count off N characters.

until (ecx = 0);
pop(ecx);

end Print NChars;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages53

Chapter Eight Volume Three

The following is an invocation of the PrintNChars procedure that will print 20 asterisk characters:
PrintNChars(20, ‘*');

Note that HLA uses semicolons to separate the formal parameters in the procedure declaration and it
uses commas to separate the actual parameters in the procedoation (Rscal programmers should be
comfortable with this notation)Also note that each HLA formal parameter declaratiorgdke follaving
form:

paraneter_identifier : type identifier

In particular note that the parameter type has to be an identifier. None of the following are legal parameter
declarations because the data type is not a single identifier:

PtrVar: pointer to uns32

ArrayVar: uns32[10]

recordVar: record i:int32; u:uns32; endrecord
DynArray: array.dArray(uns32, 2)

However, don’t get the impression that you cannot pass pointer, array, record, or dynamic array variables as
parameters. The trick is to declare a data type for each of these types in the TYPE section. Then you can use
a single identifier as the type in the parameter declaration. The following code fragment demonstrates how
to do this with the four data types above:

type
uPtr: poi nter to uns32;
uArrayl0: uns32[10];
recType: record i:int32; u:uns32; endrecord
dType: array. dArray(uns32, 2);

procedur e FancyPar s

(
PtrVar: uPtr;

ArrayVar: uArrayl10;
recor dVvar: recType;
DynArray: dtype

)s

begi n FancyPar ns;

end FancyPar ns;

By default, HLA assumes that you intend to pass a parametealbg.vHLA also lets youxglicitly
state that a parameter is@uwe parameter by pifing the formal parameter declaration with\tié. key-
word. The followving is a ‘ersion of thePrintNSpacegrocedure thatxglicitly states thalN is a pass by
value parameter:

procedure PrintNSpaces(val N uns32);
begi n Print NSpaces;

push(ecx);

mv(N ecx);

r epeat
stdout.put(' '); // Print 1 of N spaces.
dec(ecx); /1 Count off N spaces.

until (ecx = 0);
pop(ecx);

end Print NSpaces;

Pageb54 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

Explicitly stating that a parameter is a pass biue parameter is a good idea if yowdanultiple
parameters in the same procedure declaration that fseedifpassing mechanisms.

When you pass a parameter ajue and call the procedure using the HLA higleléanguage syntax,
HLA will automatically generate code that will meak cop of the actual parametsrialue and cop this
data into the local storage for that parameter (i.e., the formal parameiegm&ll objects pass byle is
probably the most &tient way to pass a parametefor laige objects, hwever, HLA must generate code
that copies each andery byte of the actual parameter into the formal parameier lage arrays and
records this can be &ry expensve operatioﬁ. Unless you hae specift semantic concerns that require you
to pass an array or record glwe, you should use pass by reference or some other parameter passing mech
anism for arrays and records.

When passing parameters to a procedure, HLA checks the type of each actual parameter and compares
this type to the corresponding formal parametéthe types do not agree, HLA then checks to see if either
the actual or formal parameter is a byteydy or dword object and the other parameter is one, v four
bytes in length (respewgly). If the actual parameter does not satisfy either of these conditions, HLA
reports a parameter type mismatch errndy for some reason, you need to pass a parameter to a procedure
using a diferent type than the procedure calls fgou can aliays use the HLA type coercion operator to
override the type of the actual parameter

8.7.2

Pass by Reference

To pass a parameter by reference, you must pass the addressiable vather than itsalue. In other
words, you must pass a pointer to the dakee procedure must dereference this pointer to access the data.
Passing parameters by reference is useful when you must modify the actual parameter or when you pass
large data structures between procedures.

To declare a pass by reference parameter you musicpréfe formal parameter declaration with the
VAR keyword. The folloving code fragment demonstrates this:

procedure UsePassByReference(var PBRvar: int32);
begi n UsePassByRef er ence;

end UsePassByRef er ence;

Calling a procedure with a pass by reference parameter uses the same syntax aspass)xupept that the
parameter has to be a memory location; it cannot be a constant or a register. Furthermore, the type of the
memory location must exactly match the type of the formal parameter. The following are legal calls to the
procedure above (assumii®® is anint32 variable):

UsePassByRef erence(132);
UsePassByRef erence((type int32 [ebx]));

The following are all illegalUsePassbyRefereng®/ocations (assumptiocharVar is of typechar):

UsePassByRef erence(40); // Constants are illegal.
UsePassByRef erence(EAX); /] Bare registers are illegal.
UsePassByRef erence(charVar); /1 Actual paraneter type nust match

/1 the fornal paraneter type.

Unlike the high leel languages d&scal and C++, HLA does not completely hide tha that you are
passing a pointer rather than alue. In a procedure\acation, HLA will automatically compute the

6. Note to C/C++ programmers: HLA does not automatically pass arrays by reference. If you specify an array type as a for-
mal parameter, HLA will emit code that makes a copy of each and every byte of that array when you call the associated pro-
cedure.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageb55

Chapter Eight

Volume Three

address of aariable and pass that address to the procedifithin the procedure itself, @ver, you can

not treat the ariable like a \alue parameter (as you could in most HLLS). Instead, you treat the parameter as
a dword variable containing a pointer to the spexifidata. You must &plicitly dereference this pointer
when accessing the parameteglue. The folloving example preides a simple demonstration of this:

pr ogr am PassByRef Denv;

#include(“stdlib.hhf”);

var

i: int32

ji int32;

procedure pbr(var a:int32; var b:int32);

const
aa: text := “(type int32 [ebx])";
bb: text := “(type int32 [ebx])";

begi n pbr;
push(eax);
push(ebx); // Need to use EBX to dereference a and b.
Il a=-1;
mov(a, ebx); // Get ptr to the “a” variabl e.
mov(-1, aa); // Store -1 into the “a@” paramneter.
Il b=-2
mov(b, ebx); /] Get ptr to the “b” variable.
mov(-2, bb); /] Store -2 into the “b” parameter.

/1 Print the sumof a+tb.
/1 Note that ebx currently contains a pointer to “b”.

mov(bb, eax);
mov(a, ebx);
add(aa, eax);

stdout. put (“atb=",

end pbr;

begi n PassByRef Denv;

11

Get ptr to “a” variable.

(type int32 eax), nl);

// Gvei and j sone initial values so
/1 we can see that pass by reference will
/1l overwite these val ues.

mov(50, i);
mov(25, j);

// Call pbr passing i

por(i, j);

and j

by reference

/1 Display the results returned by pbr.

st dout . put
(

Page556

© 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

“i= %0, ol
u, j, nl

end PassByRef Deno;

Program 8.8 Accessing Pass by Reference Parameters

Passing parameters by reference can produce some peculiar results in some rare circumstances. Con
sider thepbr procedure irProgram 8.8 Were you to modify the call in the main program to be “pbr(i,i)”
rather than “pbr(i,j);” the programauld produce the folleing non-intuitve output:

atb=-4
i= -2
j= 25

The reason this code displays “a+b=-4" rather than tipected “a+b=-3" is because the “pbr(i,i);" call
passes the same actual parameteafandb. As a result, tha andb reference parameters both contain a
pointer to the same memory location- that of the variabla this casea andb arealiasesof one another.
Therefore, when the code stores -2 at the location pointedtatibgverwrites the -1 stored earlier at the
location pointed at bp. When the program fetches the value pointed at &ydb to compute their sum,

botha andb point at the same value, which is -2. Summing -2 + -2 produces the -4 result that the program
displays. This non-intuitive behavior is possible anytime you encounter aliases in a program. Passing the
same variable as two different parameters probably isn’t very common. But you could also create an alias if
a procedure references a global variable and you pass that same global variable by reference to the procedure
(this is a good example of yet one more reason why you should avoid referencing global variables in a pro
cedure).

Pass by reference is usually less efficient than pass by value. You must dereference all pass by reference
parameters on each access; this is slower than simply using a value since it typically requires at least two
instructions. However, when passing a large data structure, pass by reference is faster because you do not
have to copy a large data structure before calling the procedure. Of course, you'd probably need to access
elements of that large data structure (e.g., an array) using a pointer, so very little efficiency is lost when you
pass large arrays by reference.

8.8

Functions and Function Results

Functions are procedures that return a result. In assembly language, therg e syntactical difer-
ences between a procedure and a function which ysHA doesnt provide a specifi declaration for a
function. Neertheless, although there isry little syntacticaldifference between assembly procedures and
functions, there are considerabEmantidifferences.That is, although you can declare them the same w
in HLA, you use them diérently.

Procedures are a sequence of machine instructions thidstutfie actiity. The end result of thexecu
tion of a procedure is the accomplishment of thaviagti Functions, on the other handgeute a sequence
of machine instructions spediilly to compute somealue to return to the callelOf course, a function can
perform some actity as well and procedures can undoubtedly compute safes; it the main difer-
ence is that the purpose of a function is to return some computed result; procedurteave dnis require
ment.

A good e&le of a procedure is tisédout.puti32orocedure. This procedure requires a singte32
parameter The purpose of this procedure is to print the decimalarsion of this intger \alue to the stan
dard output dace. Note thastdout.puti32ioesnt return ai kind of value that is usable by the calling pro
gram.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageb57

Chapter Eight Volume Three

A good example of a function is thes.membefunction. This function &pects tvo parameters: ther§i
is a characteralue and the second is a character aletev This function returns true (1) in EAX if the char
acter is a member of the speeificharacter set. It returredde if the character parameter is not a member of
the character set.

Logically, the fct thatcs.membereturns a usablealue to the calling code (in EAX) whilstd
out.puti32does not is a goodkeample of the main diérence between a function and a procedure. So, in
general, a procedure becomes a function by virtue ofattettiat you xplicitly decide to return aatue
somavhere upon procedure return. No special syntax is needed to declare and use a owcsth write
the code as a procedure.

8.8.1

Returning Function Results

The 80x865 ragisters are the most popular place to return function re3iéscs.member routine in
the HLA Standard Library is a goodample of a function that returns alwe in one of the CPW'raisters.
It returns true (1) oralse (0) in the EAX mgister By corvention, programmers try to return eight, sixteen,
and thirty-two bit (non-real) results in th&l, AX, and EAX raisters, respe(m'aly7. For example, this is
where most high el languages return these types of results.

Of course, there is nothing particularly sacred abouttl&X/EAX register You could return func
tion results in apregister if it is more covenient to do so. Hwever, if you dont have a good reason for not
usingAL/AX/EAX, then you should follav the corention. Doing so will help others understand your code
better since thewill generally assume that your functions return small results iAteX/EAX re gister
set.

If you need to return a function result that ig&rthan 32 bits, you eusly must return it somehere
besides in EAX (which can holdilues 32 bits or less).oFvalues slightly lager than 32 bits (e.g., 64 bits
or maybe een as mayas 128 hits) you can split the result into pieces and return those parbsanrvere
registers. Br example, it is @ry common to see programs returning 64-aitigs in the EDX:EAX rgister
pair (e.g., the HLA Standard Librasydin.geti64 function returns a 64-bit inger in the EDX:EAX rgister
pair).

If you need to return a really tpg object as a function result, say an array of 1,000 elements, yieu ob
ously are not going to be able to return the function result in thstees. There are tw common \vays to
deal with really lage function return results: either pass the retatnevas a reference parameter or allocate
storage on the heap (usinmallog) for the object and return a pointer to it in a 32-bjiseer Of course, if
you return a pointer to storage yeel'allocated on the heap, the calling program must free this storage when
it is done with it.

8.8.2

Instruction Composition in HLA

Several HLA Standard Library functions alloyou to call them as operands of other instructiors. F
example, consider the folldng code fragment:

if(cs.nenber(al, {*a.."z'})) then

endif;

As your high leel language »@erience (and HLA »@erience) should suggest, this code calls the
cs.membefunction to check to see if the characteflnis a lowver case alphabetic charactérthecs.mem
ber function returns true then this code fragmeoeites the then section of the IF statementyeher, if
cs.membereturns &lse, this code fragment skips the THEN body There is nothing spectacular here

7. In the next chapter you'll see where most programmers return real results.

Pages58 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

except for the dct that HLA doesi’'support function calls as booleaxpesssions in the IF statement (look
back at Chaptefwo in Volume One to see the complete set ofvedlole expressions). Hwe then, does this
program compile and run producing the intgtresults?

The \ery net section will describe o you can tell HLA that you ant to use a function call in a beol
ean apression. Haever, to understand o this works, you need tort learn abouinstruction composi
tion in HLA.

Instruction composition lets you use one instruction as the operand of anathexample, consider
the MOV instruction. It has te operands, a source operand and a destination operand. Instruction compo
sition lets you substitute ahld 80x86 machine instruction for either (or both) operafide following is a
simple ekample:

nov(nov(O, eax), ebx);

Of course the immediate question is “what does this me@o?inderstand what is going on, you must
first realize that most instructions “return” @uwe to the compiler while thieare being compiled. df most
instructions, the alue thg “return” is their destination operandlherefore, “me(0, eax);” returns the
string “eax” to the compiler during compilation since EAX is the destination operand. Most of the time,
speciftally when an instruction appears on a line by itself, the compiler ignores the string result the instruc
tion returns. Hwever, HLA uses this string result wherer you supply an instruction in place of some

operand; specifally, HLA uses that string in place of the instruction as the operahdrefore, the M@
instruction abwe is equialent to the follaving two instruction sequence:

nov(0, eax); /1 HLA conpiles interior instructions first.
nov(eax, ebx);

When processing composed instructions (that is, instruction sequencesvéhathe instructions as
operands), HLA alays works in an “ left-to-right then depthesit (inside-out)” mannerTo male sense of
this, consider the folleing instructions:

add(sub(nmov(i, eax), mov(j, ebx)), mov(k, ecx));

To interpret what is happening here, begin with the source operand. It consists of the following:
sub(nov(i, eax), nmov(j, ebx))
The source operand for this instruction is fp eax)” and this instruction does not have any composition,

so HLA emits this instruction and returns its destination operand (EAX) for use as the source to the SUB
instruction. This effectively gives us the following:

sub(eax, mov(j, ebx))
Now HLA compiles the instruction that appears as the destination operand (“mov(j, ebx)”) and returns its
destination operand (EBX) to substitute for this MOV in the SUB instruction. This yields the following:

sub(eax, ebx)
This is a complete instruction, without composition, that HLA can compile. So it compiles this instruction

and returns its destination operand (EBX) as the string result to substitute for the SUB in the original ADD
instruction. So the original ADD instruction now becomes:

add(ebx, mov(i, ecx));
HLA next compiles the MOV instruction appearing in the destination operand. It returns its destination
operand as a string that HLA substitutes for the MOV, finally yielding the simple instruction:

add(ebx, ecx);

The compilation of the origind@DD instruction, therefore, yields the following instruction sequence:

mov(i, eax);
mov(j, ebx);
sub(eax, ebx);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pageb59

Chapter Eight Volume Three

nov(k, ecx);
add(ebx, ecx);

Whew! It's rather dificult to look at the original instruction and easily see that this sequence is the
result. As you can easily see in thisanple,overzealous use of instruction composition casdpce nearly
unreadable pograms You should be ery careful about using instruction compaosition in your programs.
With only a fav exceptions, writing a composed instruction sequenceesg&ur program harder to read.

Note that the xxessie use of instruction composition may reagrrors in your program di€ult to
decipher Consider the follwing HLA statement:

add(nmov(eax, i), nov(ebx, j));

This instruction composition yields the 80x86 instruction sequence:

nov(eax, i);
nov(ebx, j);
add(i, j);

Of course, the compiler will complain that yoiattempting to add one memory location to another. -How
ewer, the instruction composition effectively masks this fact and makes it difficult to comprehend the cause
of the error message. Moral of the story: avoid using instruction composition unless it really makes your
program easier to read. The few examples in this section demonstratetiowse instruction composi

tion.

There are two main areas where using instruction composition can help make your programs more read-
able. The first is in HLAS high level language control structures. The other is in procedure parameters.
Although instruction composition is useful in these two cases (and probably a few others as well), this
doesn’t give you a license to use extremely convoluted instructions like the ADD instruction in the previous
example. Instead, most of the time you will use a single instruction or a function call in place of a single
operand in a high level language boolean expression or in a procedure/function parameter.

While we're on the subject, exactly what does a procedure call return as the string that HLA substitutes
for the call in an instruction composition? For that matter, what do statements like IF..ENDIF return? How
about instructions that don’t have a destination operand? Well, function return results are the subject of the
very next section so you'll read about that in a few moments. As for all the other statements and instructions,
you should check out the HLA reference manual. It lists each instruction and its “RETURNS” value. The
“RETURNS” value is the string that HLA will substitute for the instruction when it appears as the operand
to another instruction. Note that many HLA statements and instructions return the empty string as their
“RETURNS” value (by default, so do procedure calls). If an instruction returns the empty string as its com-
position value, then HLA will report an error if you attempt to use it as the operand of another instruction.
For example, the IF..ENDIF statement returns the empty string as its “RETURNS” value, so you may not
bury an IF..ENDIF inside another instruction.

8.8.3

The HLA RETURNS Option in Procedures

HLA procedure declarations alloa special option that speei§i the string to use when a procedure
invocation appears as the operand of another instruction: the RETURNS dptemayntax for a procedure
declaration with the RETURNS option is as falo

procedure ProcNarme (optional paraneters); RETURNS(string constant);
<< Local declarations >>

begi n Prochane;
<< procedure statenments >>

end Prochang;

If the RETURNS option is not present, HLA associates the empty string with the RETUWRMSor
the procedure.This efectively males it illegal to use that procedureviscation as the operand to another
instruction.

Pages60 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

The RETURNS option requires a single string parameter surrounded by pareniftésesust be a
string constarit HLA will substitute this string constant for the procedure call ifétr @ppears as the oper
and of another instructiorilypically this string constant is agister name; haever, ary text that would be
legal as an instruction operand is okay herer ééample, you could specify memory address or constants.
For purposes of clarifyyou should alays specify the location of a functisnmeturn alue in the RETURNS
parameter

As an gample, consider the follding boolean function that returns true alsk in the EAX rgister if
the single character parameter is an alphabetic chatacter

procedure |sAl phabeticChar(c:char); RETURNS(“EAX');
begi n | sA phabeti cChar;

/] Note that cs.nenber returns true/false in EAX
cs.menber(¢, {*a ..z, ‘A.."Z});
end | sAl phabeti cChar;

Once you tack the RETURNS option on the end of this procedure declaration yogadigruke a call
to IsAlphabeticChams an operand to other HLA statements and instructions:

nov(| sA phabeticChar(al), EBX);
if(IsAl phabeticChar(ch)) then

endi f;
The last &le above demonstrates that, via the RETURNS option, you can embed calls to your ewn func
tions in the boolean expression field of various HLA statements. Note that the code above is equivalent to

I sAl phabeticChar(ch);
if(EAX) then

endi f;

Not all HLA high level language statementgpand composed instructions before the statemeot. F
example, consider the folling WHILE statement:

whi |l e(| sAl phabeticChar(ch)) do

endwhi | e;

This code does nokpand to the following:

| sAl phabeticChar(ch);
whil e(EAX) do

8. Do note, however, that it doesn’t have to be a string literal constant. A CONST string identifier or even a constant string
expression is legal here.

9. Before you run off and actually use this function in your own programs, note that the HLA Standard Library provides the
char.isAlphafunction that provides this test. See the HLA documentation for more details.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages61

Chapter Eight Volume Three

endwhi | e;

Instead, the call ttsAlphabeticCharexpands inside the WHILE’s boolean expression so that the program
calls this function on each iteration of the loop.

You should exercise caution when entering the RETURNS parameter. HLA does not check the syntax
of the string parameter when it is compiling the procedure declaration (other than to verify that it is a string
constant). Instead, HLA checks the syntax when it replaces the function call with the RETURNS string. So
if you had specified “EAZ” instead of “EAX” as the RETURNS parametelsfalphabeticChain the pre
vious xkamples, HLA vould not h&e reported an error until you actually usedliphabeticChaas an oper
and. Then of course, HLA complains about thegléoperand and &' not at all clear what the problem is
by looking at thdsAlphabeticChainvocation. So tak special care not to introduce typographical errors in
the RETURNS string; diuring out such errors later can ey difficult.

8.9

Side Effects

A side efectis ary computation or operation by a procedure that isi@ primary purpose of that prece
dure. For example, if you elect not to preserall afected rgisters within a procedure, the modifiion of
those rgisters is a side fefct of that procedure. Sidefeft programming, that is, the practice of using a pro
cedures side dects, is ery dangerousill too often a programmer will rely on a siddesit of a procedure.
Later modifcations may change the sidéeet, invalidating all code relying on that sidefesdt. This can
malke your programs hard to dejpand maintainTherefore, you shouldvaid side efiect programming.

Perhaps somexamples of side &ct programming will help enlighten you to thefidifilties you may
encounterThe following procedure zeros out an arrbgr eficieng reasons, it mads the caller responsible
for preserving necessarygisters As a result, one sidefett of this procedure is that the EBX and EC¥-re
isters are modiéd. In particularthe ECX rgister contains zero upon return.

procedure drArray;
begin A rArray;

lea(ebx, array);
nov(32, ecx);
while(ecx >0) do

mov(O, (type dword [ebx]));

add(4, ebx);
dec(ecx);
endwhi | e;
end ArArray;

If your code &pects ECX to contain zero after theseution of this subroutine, youowld be relying on
a side dect of theClrArray procedureThe main purpose behind this code is zeroing out an, anwagetting
the ECX register to zero. Laterf you modify the ClrArray procedure to the folleing, your code that
depends upoBCX containing zero wuld no longer wrk properly:

procedure drArray;
begin drArray;

nmov(0, ebx);
while(ebx < 32) do

nov(0, array[ebx*4]);
inc(ebx);

Pages62 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures
endwhi | e;

end ArArray;

So hav can you =oid the pitglls of side dkct programming in your procedures? By carefully structur
ing your code and paying close attentionxaatly hawv your calling code and the subservient procedures
interface with one anothefhese rules can help youddd problems with side &fct programming:

e Always properly document the input and output conditions of a procedure. Never rely on any
other entry or exit conditions other than these documented operations.

e Partition your procedures so that they compute a single value or execute a single operation.
Subroutines that do two or more tasks are, by definition, producing side effects unless every
invocation of that subroutine requires all the computations and operations.

* When updating the code in a procedure, make sure that it still obeys the entry and exit condi
tions. If not, either modify the program so that it does or update the documentation forthat pro
cedure to reflect the new entry and exit conditions.

* Avoid passing information between routines in the CPU’s flag register. Passing an error status
in the carry flag is about as far as you should ever go. Too many instructions affect the flags and
it's too easy to foul up a return sequence so that an important flag is modified on return.

* Always save and restore all registers a procedure modifies.

* Avoid passing parameters and function results in global variables.

* Avoid passing parameters by reference (with the intent of modifying them for use bythe call
ing code).

These rules, like all other rules, were meant to be broken. Good programming practices are often sacri-
ficed on the altar of efficiency. There is nothing wrong with breaking these rules as often as you feel neces-
sary. However, your code will be difficult to debug and maintain if you violate these rules often. But such is
the price of efficienc’;P. Until you qain enough perience to maka judicious choice about the use of side
effects in your programs, you shouldoa them. More often than not, the use of a sidecefwill cause
more problems than it sas.

8.10 Recursion

Recursion occurs when a procedure calls it3élé folloving, for example, is a recungt procedure:
procedur e Recursi ve;
begi n Recursi ve;

Recursive();

end Recur si ve;

Of course, the CPU will ver return from this procedure. Upon entry iRecursive, this procedure
will immediately call itself agin and control will neer pass to thend of the procedure. In this particular
case, runway recursion results in an infie loop-%,

Like a looping structure, recursion requires a termination condition in order to staie irgcursion.
Recusivecould be rerritten with a termination condition as folls:

procedure Recursi ve;
begi n Recursi ve;

dec(eax);
if(@z) then

10. This is not just a snide remark. Expert programmers who have to wring the last bit of performance out of a section of code
often resort to poor programming practices in order to achieve their goals. They are prepared, however, to deal with the prob-
lems that are often encountered in such situations and they are a lot more careful when dealing with such code.

11. Well, not really infinite. The stack will overflow and Windows or Linux will raise an exception at that point.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages63

Chapter Eight Volume Three

Recursive();
endi f;
end Recursive;

This modifcation to the routine caus®ecursive to call itself the number of times appearing inEae&
register On each callRecursive decrements th€AX register by one and calls itself @g. Eentually
Recursive decrement€£AX to zero and returns. Once this happens, each suszessi returns back to
Recusiveuntil control returns to the original call Recursive.

So far, hawever, there hasi’been a real need for recursiédier all, you could dfciently code this pro
cedure as follas:

procedur e Recursi ve;
begi n Recursi ve;

r epeat
dec(eax);
until (@);

end Recursive;

Both examples wuld repeat the body of the procedure the number of times passedEiaXtitegis-
ter'?. As it turns out, there are only anMfaecursve algorithms that you cannot implement in an iteeati
fashion. Havever, mary recursvely implemented algorithms are mordéi@ént than their iterate counter
parts and most of the time the recuesiorm of the algorithm is much easier to understand.

The quicksort algorithns probably the moseamous algorithm that usually appears in reger§brm
(see a “Data Structures aAffjorithms” textbook for a discussion of this algorithrdn HLA implementa
tion of this algorithm follavs:

pr ogr am QSDeno;
#include(“stdlib.hhf”);

type
ArrayType: uns32[10];

static
t heArray: ArrayType :=1[1,10,2,9,3,8,4,7,5, 6];

procedure qui cksort(var a:ArrayType; Low int32; Hgh: int32);

const
i text := “(type int32 edi)”;
j: text := “(type int32 esi)”;
Mddle: text := “(type uns32 edx)”;
ary: text 1= “[ebx]”;

begi n qui cksort;

push(eax);
push(ebx);
push(ecx);
push(edx);

12. Although the latter version will do it considerably faster since it doesn’t have the overhead of the CALL/RET instructions.

Pageb64 © 2001, By Randall Hyde Beta Draft - Do not distribute

push(esi);

push(edi);

mov(a, ebx); /1 Load BASE address of “a” into EBX
nmov(Low, edi); /1 i := Low,

nmov(Hgh, esi); Il j = Hgh;

/1 Conpute a pivotal elenent by selecting the
/1 physical mddle element of the array.

nmov(i, eax);
add(j, eax);
shr(1, eax);
nmov(ary[eax*4], Mddle); // Put mddl e value in EDX

/1 Repeat until the EDI and ESI indicies cross one
/1 another (ED works fromthe start towards the end
/1 of the array, ESI works fromthe end towards the
[l start of the array).
r epeat
/!l Scan fromthe start of the array forward
/1 1ooking for the first elenent greater or equal
/1 to the mddl e elenent).
while(Mddle > ary[i*4]) do
inc(i);
endwhi | e;
/1 Scan fromthe end of the array backwards | ooki ng
// for the first elenment that is |ess than or equal
/1 to the mddle el enent.
while(Mddle < ary[j*4]) do
dec(j);
endwhi | e;
/1 1f we've stopped before the two pointers have

/1 passed over one another, then we’ve got two
/1l elenments that are out of order wth respect

Introduction to Procedures

/1 to the nmddle elenent. So swap these two el enents.

if(i <=j) then

nmov(ary[i*4], eax);
nmov(ary[j*4], ecx);
nov(eax, ary[j*4]);
nov(ecx, ary[i*4]);
inc(i);
dec(j);

endi f;

until (i >):

Beta Draft - Do not distribute © 2001, By Randall Hyde

Page565

Chapter Eight Volume Three

/1 VW have just placed all elenents in the array in

/1 their correct positions with respect to the niddle

/1l element of the array. So all elenents at indicies

/1 greater than the niddl e element are al so nunerically

/1l greater than this element. Likew se, elenents at

/1 indicies less than the mddle (pivotal) elenent are

/1 now less than that elenent. Unfortunately, the

/1 two halves of the array on either side of the pivotal
/1 element are not yet sorted. Call quicksort recursively
/1 to sort these two halves if they have nore than one

/1l element in them (if they have zero or one el enents, then
/1l they are already sorted).

if(Low<j) then
qui cksort(a, Low |);

endi f;
if(i <Hgh) then

quicksort(a, i, Hgh);
endi f;
pop(edi);
pop(esi);
pop(edx);
pop(ecx);
pop(ebx);
pop(eax);
end qui cksort;

begi n BDenv;

stdout. put(“Data before sorting: “ nl);
for(nov(O, ebx); ebx < 10; inc(ebx)) do

stdout. put (theArray[ebx*4]:5);

endf or;
stdout . new n();

qui cksort(theArray, 0, 9);

stdout.put(“Data after sorting: “ nl);
for(nmov(O, ebx); ebx < 10; inc(ebx)) do

stdout. put (theArray[ebx*4]:5);

endf or;
stdout. new n();

end QBSDenv;

Program 8.9 Recursive Quicksort Program

Pages66 © 2001, By Randall Hyde Beta Draft - Do not distribute

Introduction to Procedures

Note that this quicksort procedure usegisters for all non-parameter locarniables. Also note hav
Quicksort useSEXT constant defiitions to preide more readable names for thgiséers. This technique
can often mad an algorithm easier to read; waver, one must tad care when using this trick not to det
that those rgisters are being used.

8.11

Forward Procedures

As a general rule HLA requires that you declare all symbols before tretiuge in a progra’rﬁ
Therefore, you must de# all procedures before theisficall. There are tw reasons this ishalways prae
tical: mutual recursion (tavprocedures call each other) and source cagenamation (you prefer to place a
procedure in your code after the point waufirst called it). Brtunately HLA lets you use &rward proce
dure defiition to declare a procedupgototype Forward declarations let you deé a procedure before you
actually supply the code for that procedure.

A forward procedure declaration isanfiliar procedure declaration that uses the resewnrd FOR
WARD in place of the proceduseteclaration section and bodihe folloving is a forvard declaration for
the quicksort procedure appearing in the last section:

procedure quicksort(var a:ArrayType; Low int32; Hgh: int32); forward,

A forward declaration in an HLA program is a promise to the compiler that the actual procedure decla
ration will appearexactly as stated in the foard declaration, at a later point in the source code. “Exactly
as stated” meansactly that. The forward declaration must i@ the same parameters,thmsust be passed
the same @y, and thg must all hae the same types as the formal parameters in the protédure

Routines that are mutually recwsi(that is, procedur calls procedure B and procedure B calls-pro
cedureA) require at least one foerd declaration since only one of procediier B can be declared before
the other In practice, havever, mutual recursion (direct or indirect) dodsoccur \ery frequently so the
need for forvard declarations is not that great.

In the absence of mutual recursion, it iwafts possible to ganize your source code so that each pro
cedure declaration appears before it fivocation. What's possible and what'desired are tavdifferent
things, havever. You might vant to group a related set of procedures at tgeébig of your source code
and a diferent set of procedureswards the end of your source codghis logical grouping, by function
rather than by wocation, may mak your programs much easier to read and understandevelo this
organization may also yield code that attempts to call a procedure before its declaration. No sweat. Just use
a forward procedure defition to resole the problem.

One major difierence between the foand defhition and the actual procedure declaration has to do with
the procedure options. Some optiong RETURNS may appear only in the fana declaration (if a FOR
WARD declaration is present). Other options may only appear in the actual procedure declaration (we
haven't covered awg of the other procedure options yet, so devorry about them just yet). If your prece
dure requires a RETURNS option, the RETURNS option must appear before tiiéARDResered word.
E.g.,

procedure |sltReady(val ueToTest: dword); returns(“EAX’); forward;

The RETURNS option must not also appear in the actual procedure declaration later in yourleource fi

8.12

Putting It All Together

This chapter hasllied in one of the critical elements missing from your assembly languagédddue:
how to create usedefined procedures in an HLA programihis chapter discussed HlsAhigh level proce

13. There are a few minor exceptions to this rule, but it is certainly true for procedure calls.
14. Actually, “exactly” is too strong a word. You will see some exceptions in a moment.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pages67

Chapter Eight Volume Three

dure declaration and calling syntax. It also describedtbgass parameters bglue and by reference as
well as the use of locahviables in HLA proceduresThis chapter also pvided information about instruc
tion composition and the RETURNS option for procedures. Firtallychapterxglained recursion and the
use of forvard procedure declarations (prototypes).

The one thing this chapter did not discuss\wov procedures are written in “pure” assembly language.
This chapter presents just enough information to let you start using procedures in your HLA prddgrams.
“real stuf” will have to wait for a fav chapters. Fear not, Wwever; later chapters will teach yoarfmore
than you probably care to kwaabout procedures in assembly language programs.

Pages68 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Introduction to Procedures Chapter Eight
	8.1 Chapter Overview
	8.2 Procedures
	8.3 Saving the State of the Machine
	8.4 Prematurely Returning from a Procedure
	8.5 Local Variables
	8.6 Other Local and Global Symbol Types
	8.7 Parameters
	8.7.1 Pass by Value
	8.7.2 Pass by Reference

	8.8 Functions and Function Results
	8.8.1 Returning Function Results
	8.8.2 Instruction Composition in HLA
	8.8.3 The HLA RETURNS Option in Procedures

	8.9 Side Effects
	8.10 Recursion
	8.11 Forward Procedures
	8.12 Putting It All Together

