Debugging HLA Programs

Debugging HLA Programs Appendix J

J.1 The @TRACE Pseudo-Variable

HLA v1.x has a fer serious defects in its design. One major issue isgigbg support. HLA v1.x
emits MASM code that it runs through MASM in order to producecetable object Iés. Unfortunately
while this scheme mals the declopment, testing, and dedpging of HLA easigrit effectively eliminates
the possibility of usingxsting source feel detugging tools to locate defects in an HLA progtaStarting
with v1.24, HLA b@an supporting a me feature to help you dely your programs: the “@trace”
pseudo-ariable.This appendix will gplain the purpose of this compile-timaniable and he you can use
it to locate defects in your programs.

By default, the compile-timeariable @racecontains &lse.You can change itsalue with ay variation
of the followving statement:

?@race : = <<bool ean constant expressi on>>;

Generally “<<boolean constant expression>>" is eitlrete or false but you could use any compile-time
constant expression to setr@re’svalue.

Once you set @aceto true, HLA bgins generatingxra code in your program laét, before almost
every executable statement HLA injects the foliog code:

traceLine(filename, |inenunber);

Thefilenameparameter is a string specifying the name of the current source fiiegimembemparameter is
an uns32 value that is the current line number of the file. The _traceLine_ procedure uses this information to
display an appropriate trace value while the program is running.

HLA will automatically emit the above procedure call in between almost all instructions appearing in
your prograrﬁ. Assuming that thetraceLine_procedure simply prints thddname and line numhexhen
you run your application it will create a log of each statememneitiges.

You can control the emission of th#zaceLine_procedure calls in your program by alternately setting
@traceto true or falsethroughout your codelhis lets you seleately choose which portions of your code
will provide trace information during programegeution.This feature is &ry important because if yoe’
displaying the trace information to the console, your program runs thousands, if not millions, of times
slower during the trace operation. lbuldn't do to hae to trace through a really long loop in order to trace
through follaving code that yowe concerned about. By settingtr@ceto false prior to the long loop and
setting it to true immedately after the loop, you ceecate the loop at full speed and thegibdracing the
code you vant to check once the loop completgsaition.

HLA does not supply thetraceLine_procedure; it is your responsibility to write the code for this pro
cedureThe followving is a typical implementation:

procedure trace(filenane:string; |inenumuns32); external (“_traceLine_”);
procedure trace(filenane:string; |inenumuns32); nodisplay;
begi n trace;

pushfd();
stdout.put(filename, “: #', linenum nl);
popf d() ;

end trace;

1. Of course, you can also debug the MASM output using a source level debugger, but this is not a very pleasant experience.
2. HLA does not emit this procedure call between statements that are composed and a few other miscellaneous statements.
However, your programs probably get better than 95% coverage so this will be sufficient for most purposes.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel533

Appendix J

This particular procedure simply prints thiefiame and line number each time HLA calls it. Therefore,
you'll get a trace sent to the standard output device that looks something like the following:

t.hla: #19
t.hla: #20
t.hla: #21
t.hla: #22
etc.

A very important thing to note about this sample implementatiottrateLine _is that it presems the
FLAGs rayister The _traceLine_procedure must presenall ragisters including the digs.The example
code abwe only presemss the FLASS because th&dout.puimacro alvays preseres all the rgisters. Hav-
ever, were this code to modify othegisters or call some procedure that medifsome gisters, you wuld
want to preser those rgister \alues as well. RemembeatLA calls this procedure between most instruc
tions, if you do not preseevthe rgisters and &égs within this procedure, it will advsely affect the running
of your program.

This is very important: the @race variable must containafse while HLA is compiling your
_traceLine_procedure. If HLA emits trace code inside the trace procedure, this will createnée iofip
via infinite recursion which will crash your prografdways mak sure @raceis false across the compila
tion of your_traceLine_procedure.

Heres a sample program using ther@evariable and sample output for the program:
programt;

#i ncl udeOnce("stdlib. hhf")
procedure trace(filenane:string; linenumuns32); external ("_traceLine ");
?@race := false; // Mist be false for TRACE routine

procedure trace(filenane:string; |inenumuns32); nodisplay;
begi n trace

stdout.put(filenane, ": #", linenum nl);

end trace;

?@race = true;

begin t;

nov(0, ecx); /1 Line 22

if(ecx ==0) then /1l Line 23
nmov(10, ecx); /1 Line 25

el se
nmov(5, ecx);

endi f;

while(ecx >0) do /1l Line 32
dec(ecx); /1 Line 34

endwhi | e;

for(nov(O, ecx); ecx <5; inc(ecx)) do [// Line 37

Pagel534 © 2001, By Randall Hyde Beta Draft - Do not distribute

Debugging HLA Programs
add(1, eax); /1l Line 39

endf or;

end t;
Sanpl e Qut put:

.hla: #22
.hla: #23
.hla: #25
.hla: #32
.hla: #34
.hla: #34
.hla: #34
.hla: #34
.hla: #34
.hla: #34
.hla: #34
.hla: #34
.hla: #34
.hla: #34
.hla: #37
.hla: #39
.hla: #39
.hla: #39
.hla: #39
.hla: #39

— — o —+ ~ ~ ~+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Although the_traceLine_procedure in thisxample is ery simple, you can write as sophisticated a
procedure as you lik Havever, do keep in mind that this codeecutes between almostegy pair of state
ments your program has, so you should attempe#p khis procedure as short and &t fis possible.
However, if desired you can stop the program, request user input, and let the user spegifgdram con
trol is to proceed.

One \ery useful purpose for HLA trace capabilities is trackingwlo bad pointer references in your
program. If you program aborts with an “f memory access’xeeption, you can pinpoint thefehding
instruction by turning on the trace option and letting the program run untiktiepteon occurs.The last
line number in the trace will be (approximatedythin one or tw statements) the line number of theent
ing instruction.

You can also display (globalphies within the traceLine_procedure. Printing localalues, unfortu
nately is problematic sincexéernal procedures must appear atleel one in your program (i.e., you can
not nest the function within some other procedure). It is possible to set up a pointer to a local procedure and
call that procedure indirectly from withintraceLine, but this efort is worth it only on rare occasions.
Usually it's just easier to stick a “stdout.put” statement directly in the code where you wisl theieut
put. Havever, if some \ariable is beingerwritten by some unkmen statement in your program, and you
don’t knonv where the program is modifying thanable, printing the ariables alue from the traceLine_
procedure can help you pinpoint the statement trettaites the ariable.

Of course, anotheray to delng HLA programs is to stick a wholeihch of “print” statements in your
code. The problem with such statementsweger, is that yowe got to remember to rev® them before
you ship your fial version of the programThere are f@ things more embarrasing thanvhmey your cus
tomer ask you wyyour program is printing delg messages in the middle of the reports your program is
producing for themYou can use conditional compilation (#IF statements) to control the compilation of such
statements, Ut conditional compilation statements tend to clutter up your source ocgeterf@re so than
the delnigging print statements). One solution to this problem is to create a masroalletmyDelugMsg
that hides all the nasty details. Consider the g code:

#macr o nyDebugMsg(runTi meFl ag, nsg);

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel535

Appendix J

#if(@efined(DEBUG)) /1 1f DEBUGis not defined, then don't emt code.
f(DEBUG) /1 DEBUG has to be a bool ean const equal to true.
#if(@sConst(runTineFl ag))
#i f(runTineFl ag)
stdout.put(msg, nl);
#endi f
#else // runTineFlag is a run-tine variable
if(runTimeFl ag) then
stdout. put(nmsg, nl);
endi f;
#endif // runTimeFl ag is/is not Constant
#endi f // DEBUG
#endi f // DEBUG is defined

#endnacr o

With this macro defied, you can write a statementelikhe follaving to print/not print a message at
run-time:

nyDebugMsg(Bool eanVal ue, “This is a debug nmessage”);

The Boolean¥lue expression is either a boolean constaqression, a boolearasiable, or a rgister
If this value is true, then the program will print the message; if tiligevis &lse, the program does not print
the message. Since this isaigble, you can control defgging output at run-time by changing tredue of
theBoolean¥lue parameter

As myDelugMsgis written, you must defe the boolean constaDEBUG and set it to true or the pro
gram will not compile the delgging statements. If DRBG is aVAL object, you can actually

You can certainly xpand upon this macro by piiding support for a ariable number of parameters.
This would allov you to specify an list ofalues to display in thetdout.putnacro ivocation. See the chap
ter on Macros for more information abouatriable parameter lists in macros if yoantto do this.

J.2

The Assert Macro

Another tool you may use to help locate defects in your programs is the assertThacroacro is
available in the “&cepts.hhf’ headerlé (included by “stdlithhf”). An invocation of this macro t&ls the
following form:

assert (bool ean_expression);

Note that you do not prafe the macro with “except.” since the macro declaration appears outside the
“except” namespace in the excepts.hhf header file. The boolean_expression component is any expression
that is legal within an HLA HLL control statement like IF, WHILE, or REPEAT..UNTIL.

The assert macro evaluates the expression and simply returns if the expression is true. If the expression
evaluates false, then this macro invocation will raise an exception (ex.AssertionFailed). By liberally sprin-
kling assert invocations through your code, you can test the behavior of your program and stop execution if
an assertion fails (thus helping you to pinpoint problems in your code).

Pagel536 © 2001, By Randall Hyde Beta Draft - Do not distribute

Debugging HLA Programs

One problem with placing a lot of asserts throughout your code is that each assedpak small
amount of space andecution time. Brtunately the HLA Standard Library puides a mechanism by
which you may control code generation of the assert mathescepts.hhf headerlés defnes avAL
object, . NDEBUG, that is initialized with thealue filse.When this compile-timeariable is &lse, HLA
will emit the code for the assert macrowewer, if you set this constant to true, then HLA will not emiy an
code for the assert macitherefore, you may liberally place assert macvogations throughout your code
and not verry about their ééct on the fial version of your program you ship; you can easily resnihe
impact of all assert macros in your program by sticking in a statement of the foriDEBUG:=true;” in
your source fe.

Note that you may selegtly turn asserts on orfdby alternately placing %eNDEBUG:=false;” and
“?ex.NDEBUG:=true;” throughout your cod&his allons you to lege some important assertions eetin
your code, gen when you ship thenfal version.

Since assert raises arception, you may use the HLA trgxception..endtry statement to catclyan
exceptions thatdil. If you do not handle a specifassertiondilure, HLA will abort the program with an
appropriate message that tells you the (soureedtid line number where the assertiaitef.

(More to come someday)

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel537

Appendix J

Pagel538 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Debugging HLA Programs Appendix J
	J.1 The @TRACE Pseudo-Variable
	J.2 The Assert Macro

