

Debugging HLA Programs

ation to

ng in

ng

e

times

ce

o

erience.
tatements.
Debugging HLA Programs Appendix J

J.1 The @TRACE Pseudo-Variable

HLA v1.x has a few serious defects in its design. One major issue is debugging support. HLA v1.x
emits MASM code that it runs through MASM in order to produce executable object files. Unfortunately,
while this scheme makes the development, testing, and debugging of HLA easier, it effectively eliminates
the possibility of using existing source level debugging tools to locate defects in an HLA program1. Starting
with v1.24, HLA began supporting a new feature to help you debug your programs: the “@trace”
pseudo-variable. This appendix will explain the purpose of this compile-time variable and how you can use
it to locate defects in your programs.

By default, the compile-time variable @trace contains false. You can change its value with any variation
of the following statement:

?@trace := <<boolean constant expression>>;

Generally, “<<boolean constant expression>>” is either true or false, but you could use any compile-time
constant expression to set @trace’s value.

Once you set @trace to true, HLA begins generating extra code in your program In fact, before almost
every executable statement HLA injects the following code:

traceLine(filename, linenumber);

The filename parameter is a string specifying the name of the current source file, the linenumber parameter is
an uns32 value that is the current line number of the file. The _traceLine_ procedure uses this inform
display an appropriate trace value while the program is running.

HLA will automatically emit the above procedure call in between almost all instructions appeari
your program2. Assuming that the _traceLine_ procedure simply prints the filename and line number, when
you run your application it will create a log of each statement it executes.

You can control the emission of the _traceLine_ procedure calls in your program by alternately setti
@trace to true or false throughout your code. This lets you selectively choose which portions of your cod
will provide trace information during program execution. This feature is very important because if you’re
displaying the trace information to the console, your program runs thousands, if not millions, of
slower during the trace operation. It wouldn’t do to have to trace through a really long loop in order to tra
through following code that you’re concerned about. By setting @trace to false prior to the long loop and
setting it to true immedately after the loop, you can execute the loop at full speed and then begin tracing the
code you want to check once the loop completes execution.

HLA does not supply the _traceLine_ procedure; it is your responsibility to write the code for this pr-
cedure. The following is a typical implementation:

procedure trace(filename:string; linenum:uns32); external(“_traceLine_”);
procedure trace(filename:string; linenum:uns32); nodisplay;
begin trace;

pushfd();
stdout.put(filename, “: #”, linenum, nl);
popfd();

end trace;

1. Of course, you can also debug the MASM output using a source level debugger, but this is not a very pleasant exp
2. HLA does not emit this procedure call between statements that are composed and a few other miscellaneous s
However, your programs probably get better than 95% coverage so this will be sufficient for most purposes.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1533

Appendix J

re,

c

This particular procedure simply prints the filename and line number each time HLA calls it. Therefo
you’ll get a trace sent to the standard output device that looks something like the following:

t.hla: #19
t.hla: #20
t.hla: #21
t.hla: #22
etc.

A very important thing to note about this sample implementation of _traceLine_ is that it preserves the
FLAGs register. The _traceLine_ procedure must preserve all registers including the flags. The example
code above only preserves the FLAGS because the stdout.put macro always preserves all the registers. How-
ever, were this code to modify other registers or call some procedure that modifies some registers, you would
want to preserve those register values as well. Remember, HLA calls this procedure between most instru-
tions, if you do not preserve the registers and flags within this procedure, it will adversely affect the running
of your program.

This is very important: the @trace variable must contain false while HLA is compiling your
traceLine procedure. If HLA emits trace code inside the trace procedure, this will create an infinite loop
via infinite recursion which will crash your program. Always make sure @trace is false across the compila-
tion of your _traceLine_ procedure.

Here’s a sample program using the @trace variable and sample output for the program:

program t;
#includeOnce("stdlib.hhf")

procedure trace(filename:string; linenum:uns32); external("_traceLine_");

?@trace := false; // Must be false for TRACE routine.

procedure trace(filename:string; linenum:uns32); nodisplay;
begin trace;

 stdout.put(filename, ": #", linenum, nl);

end trace;

?@trace := true;

begin t;

 mov(0, ecx); // Line 22
 if(ecx == 0) then // Line 23

 mov(10, ecx); // Line 25

 else

 mov(5, ecx);

 endif;
 while(ecx > 0) do // Line 32

 dec(ecx); // Line 34

 endwhile;
 for(mov(0, ecx); ecx < 5; inc(ecx)) do // Line 37

Page 1534 © 2001, By Randall Hyde Beta Draft - Do not distribute

Debugging HLA Programs

 a

r

ure and

u

 is
such
 add(1, eax); // Line 39

 endfor;

end t;

Sample Output:

t.hla: #22
t.hla: #23
t.hla: #25
t.hla: #32
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #34
t.hla: #37
t.hla: #39
t.hla: #39
t.hla: #39
t.hla: #39
t.hla: #39

Although the _traceLine_ procedure in this example is very simple, you can write as sophisticated
procedure as you like. However, do keep in mind that this code executes between almost every pair of state-
ments your program has, so you should attempt to keep this procedure as short and as fast as possible.
However, if desired you can stop the program, request user input, and let the user specify how program con-
trol is to proceed.

One very useful purpose for HLA’s trace capabilities is tracking down bad pointer references in you
program. If you program aborts with an “Illegal memory access” exception, you can pinpoint the offending
instruction by turning on the trace option and letting the program run until the exception occurs. The last
line number in the trace will be (approximately, within one or two statements) the line number of the offend-
ing instruction.

You can also display (global) values within the _traceLine_ procedure. Printing local values, unfortu-
nately, is problematic since external procedures must appear at lex level one in your program (i.e., you can-
not nest the function within some other procedure). It is possible to set up a pointer to a local proced
call that procedure indirectly from within _traceLine_, but this effort is worth it only on rare occasions.
Usually it’s just easier to stick a “stdout.put” statement directly in the code where you wish to view the out-
put. However, if some variable is being overwritten by some unknown statement in your program, and yo
don’t know where the program is modifying the variable, printing the variables value from the _traceLine_
procedure can help you pinpoint the statement that overwrites the variable.

Of course, another way to debug HLA programs is to stick a whole bunch of “print” statements in your
code. The problem with such statements, however, is that you’ve got to remember to remove them before
you ship your final version of the program. There are few things more embarrasing than having your cus-
tomer ask you why your program is printing debug messages in the middle of the reports your program
producing for them. You can use conditional compilation (#IF statements) to control the compilation of
statements, but conditional compilation statements tend to clutter up your source code (even more so than
the debugging print statements). One solution to this problem is to create a macro, let’s call it myDebugMsg,
that hides all the nasty details. Consider the following code:

#macro myDebugMsg(runTimeFlag, msg);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1535

Appendix J

t

t

.

e the
pression

pression
sprin-
ution if
#if(@defined(DEBUG)) // If DEBUG is not defined, then don’t emit code.

#if(DEBUG) // DEBUG has to be a boolean const equal to true.

#if(@isConst(runTimeFlag))

#if(runTimeFlag)

stdout.put(msg, nl);

#endif

#else // runTimeFlag is a run-time variable

if(runTimeFlag) then

stdout.put(msg, nl);

endif;

#endif // runTimeFlag is/is not Constant

#endif // DEBUG

#endif // DEBUG is defined

#endmacro

With this macro defined, you can write a statement like the following to print/not print a message a
run-time:

myDebugMsg(BooleanValue, “This is a debug message”);

The BooleanValue expression is either a boolean constant expression, a boolean variable, or a register.
If this value is true, then the program will print the message; if this value is false, the program does not prin
the message. Since this is a variable, you can control debugging output at run-time by changing the value of
the BooleanValue parameter.

As myDebugMsg is written, you must define the boolean constant DEBUG and set it to true or the pro-
gram will not compile the debugging statements. If DEBUG is a VAL object, you can actually

You can certainly expand upon this macro by providing support for a variable number of parameters
This would allow you to specify an list of values to display in the stdout.put macro invocation. See the chap-
ter on Macros for more information about variable parameter lists in macros if you want to do this.

J.2 The Assert Macro

Another tool you may use to help locate defects in your programs is the assert macro. This macro is
available in the “excepts.hhf” header file (included by “stdlib.hhf”). An invocation of this macro takes the
following form:

assert(boolean_expression);

Note that you do not preface the macro with “except.” since the macro declaration appears outsid
“except” namespace in the excepts.hhf header file. The boolean_expression component is any ex
that is legal within an HLA HLL control statement like IF, WHILE, or REPEAT..UNTIL.

The assert macro evaluates the expression and simply returns if the expression is true. If the ex
evaluates false, then this macro invocation will raise an exception (ex.AssertionFailed). By liberally
kling assert invocations through your code, you can test the behavior of your program and stop exec
an assertion fails (thus helping you to pinpoint problems in your code).
Page 1536 © 2001, By Randall Hyde Beta Draft - Do not distribute

Debugging HLA Programs
One problem with placing a lot of asserts throughout your code is that each assert takes up a small
amount of space and execution time. Fortunately, the HLA Standard Library provides a mechanism by
which you may control code generation of the assert macros. The excepts.hhf header files defines a VAL
object, ex.NDEBUG, that is initialized with the value false. When this compile-time variable is false, HLA
will emit the code for the assert macro; however, if you set this constant to true, then HLA will not emit any
code for the assert macro. Therefore, you may liberally place assert macro invocations throughout your code
and not worry about their effect on the final version of your program you ship; you can easily remove the
impact of all assert macros in your program by sticking in a statement of the form “?ex.NDEBUG:=true;” in
your source file.

Note that you may selectively turn asserts on or off by alternately placing “ex.NDEBUG:=false;” and
“?ex.NDEBUG:=true;” throughout your code. This allows you to leave some important assertions active in
your code, even when you ship the final version.

Since assert raises an exception, you may use the HLA try..exception..endtry statement to catch any
exceptions that fail. If you do not handle a specific assertion failure, HLA will abort the program with an
appropriate message that tells you the (source) file and line number where the assertion failed.

(More to come someday...)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1537

Appendix J
Page 1538 © 2001, By Randall Hyde Beta Draft - Do not distribute

	Debugging HLA Programs Appendix J
	J.1 The @TRACE Pseudo-Variable
	J.2 The Assert Macro

