Processes, Coroutines, and Concurrency Chapter 19

When most people speak of multitasking, they usually mean the ability to run several different appli-
cation programs concurrently on one machine. Given the structure of the original 80x86 chips and
MS-DOS’ software design, this is very difficult to achieve when running DOS. Look at how long it's taken
Microsoft to get Windows to multitask as well as it does.

Given the problems large companies like Microsoft have had trying to get multitasking to work, you
might thing that it is a very difficult thing to manage. However, this isn't true. Microsoft has problems try-
ing to make different applications that are unaware of one another work harmoniously together. Quite
frankly, they have not succeeded in getting existing DOS applications to multitask well. Instead, they've
been working on developers to write new programs that work well under Windows.

Multitasking is not trivial, but it is not that difficult when you write an application with multitasking
specifically in mind. You can even write programs that multitask under DOS if you only take a few precau-
tions. In this chapter, we will discuss the concept of a DOS process, a corouting, and a general process.

19.1 DOS Processes

Although MS-DOS is a single tasking operating system, this does not mean there can only be one pro-
gram at a time in memory. Indeed, the whole purpose of the previous chapter was to describe how to get
two or more programs operating in memory at one time. However, even if we ignore TSRs for the time
being, you can still load several programs into memory at one time under DOS. The only catch is, DOS
only provides the ability for them to run one at a time in a very specific fashion. Unless the processes are
cooperating, their execution profile follows a very strict pattern.

19.1.1 Child Processes in DOS

When a DOS application is running, it can load and executing some other program using the DOS
EXEC function (see “MS-DOS, PC-BIOS, and File I/0” on page 699). Under normal circumstances, when
an application (the parent) runs a second program (the child), the child process executes to completion
and then returns to the parent. This is very much like a procedure call, except it is a little more difficult to
pass parameters between the two.

MS-DOS provides several functions you can use to load and execute program code, terminate pro-
cesses, and obtain the exit status for a process. The following table lists many of these operations.

Table 67: DOS Character Oriented Functions

Function # Input Output Description

(AH) Parameters Parameters

4Bh al-0 ax- error code if Load and execute program
ds:dx- pointer to program name. carry set.
es:bx- pointer to LOADEXEC structure.

4Bh al-1 ax- error code if Load program
ds:dx- pointer to program name. carry set.
es:bx- pointer to LOAD structure.

4Bh al-3 ax- error code if Load overlay
ds:dx- pointer to program name. carry set.
es:bx- pointer to OVERLAY structure.

Page 1065

Chapter 19

Table 67: DOS Character Oriented Functions

Function # Input Output Description
(AH) Parameters Parameters
4Ch al- process return code Terminate execution
4Dh al- return value Get child process return value
ah- termination
method.

19.1.1.1 Load and Execute

Page 1066

The “load and execute” call requires two parameters. The first, in ds:dx, is a pointer to a zero termi-
nated string containing the pathname of the program to execute. This must be a “.COM” or “.EXE” file and
the string must contain the program name’s extension. The second parameter, in es:bx, is a pointer to a
LOADEXEC data structure. This data structure takes the following form:

LQADEXEC struct

EnvPtr wor d ? ;Pointer to environnment area
QmdLi nePtr dwor d ? ;Pointer to command |ine
FCB1 dwor d ? ;Pointer to default FCB1
FCB2 dwor d ? ;Pointer to default FCB2
LQADEXEC ends

Envptr is the segment address of the DOS environment block created for the new application. If
this field contains a zero, DOS creates a copy of the current process’ environment block for the child pro-
cess. If the program you are running does not access the environment block, you can save several hun-
dred bytes to a few kilobytes by pointing the environment pointer field to a string of four zeros.

The CmdLinePtr field contains the address of the command line to supply to the program. DOS
will copy this command line to offset 80h in the new PSP it creates for the child process. A valid command
line consists of a byte containing a character count, a least one space, any character belonging to the com-
mand line, and a terminating carriage return character (ODh). The first byte should contain the length of
the ASCII characters in the command line, not including the carriage return. If this byte contains zero, then
the second byte of the command line should be the carriage return, not a space. Example:

M/QrdLi ne byt e 12, “ filel file2",cr

The FCB1 and FCB2 fields need to point at the two default file control blocks for this program.
FCBs became obsolete with DOS 2.0, but Microsoft has kept FCBs around for compatibility anyway. For
most programs you can point both of these fields at the following string of bytes:

Dl t FCB byte 3," 00000

The load and execute call will fail if there is insufficient memory to load the child process. When you
create an “.EXE” file using MASM, it creates an executable file that grabs all available memory, by default.
Therefore, there will be no memory available for the child process and DOS will always return an error.
Therefore, you must readjust the memory allocation for the parent process before attempting to run the
child process. The section “Semiresident Programs” on page 1055 describes how to do this.

There are other possible errors as well. For example, DOS might not be able to locate the program
name you specify with the zero terminated string. Or, perhaps, there are too many open files and DOS
doesn’t have a free buffer available for the file 1/0. If an error occurs, DOS returns with the carry flag set
and an appropriate error code in the ax register. The following example program executes the
“COMMAND.COM” program, allowing a user to execute DOS commands from inside your application.
When the user types “exit” at the DOS command line, DOS returns control to your program.

; RUNDCS. ASM - Denonstrates how to i nvoke a copy of the COMVAND. COM
; DOS command line interpreter fromyour prograns.

i ncl ude stdlib.a

Processes, Coroutines, and Concurrency

includelib stdlib.lib

dseg segnent para public ‘data’

M5- DCS EXEC structure.

ExecSt ruct wor d 0 ; Use parent’s Environment bl k.
dwor d OndLi ne ; For the cnd | n parns.
dwor d DOf It FCB
dwor d DOf It FCB

Df I t FCB byte 3" 00000

OdLi ne byt e 0, 0dh ;O line for program

Pgm\ane dwor d fil ename ; Points at pgm nane.

filenane byt e “c:\ command. cont, O

dseg ends

cseg segment para public ‘code’
assumre cs: cseg, ds:dseg

Mai n proc
nov ax, dseg ;Get ptr to vars segnent
nmov ds, ax
Mem ni t ;Start the nenory ngr.

Ckay, we've built the M5-DCS execute structure and the necessary
comrand line, nowlet’s see about running the program

The first stepis to free up all the nenory that this program
isn’t using. That woul d be everything fromzzzzzzseg on.

Note: unlike some previous exanples in other chapters, it is okay
to call Standard Library routines in this programafter freeing
up nenory. The difference here is that the Standard Library
routines are |oaded early in nenory and we haven’'t free up the
storage they are sitting in.

nov ah, 62h ; Get our PSP val ue

int 21h

nov es, bx

mov ax, zzzzzzseg ; Conput e si ze of

sub ax, bx ; resident run code.
nmov bx, ax

nov ah, 4ah ; Rel ease unused nenory.
int 21h

Tell the user what is going on:

print

byt e cr,lf

byte “RUNDCS- Executing a copy of command. conf,cr,|f
byte “Type ‘EXIT to return control to RUIN ASM,cr, | f
byt e 0

Warning! No Standard Library calls after this point. W' ve just
rel eased the nermory that they're sitting in. So the program | oad
we're about to do will wpe out the Standard Library code.

nmov bx, seg ExecStruct

nmov es, bx

nmov bx, offset ExecStruct ;Ptr to program record.
| ds dx, Pgni\ane

nmov ax, 4b00h ; Exec pgm

int 21h

In M5-DCB 6.0 the followi ng code isn’t required. But in various ol der
versions of M5-DOS, the stack is nessed up at this point. Just to be
safe, let's reset the stack pointer to a decent place in nmenory.

Note that this code preserves the carry flag and the value in the
AX register so we can test for a DOS error condition when we are done

Page 1067

Chapter 19

; fixing the stack.

nmov bx, sseg

nov ss, ax

nov sp, offset EndStk
nmov bx, seg dseg

nmov ds, bx

; Test for a DOS error:

jnc GoodConmand

print

byte “DCs error #',0

put i

print

byt e “ while attenpting to run COWAND. COM, cr, | f
byt e 0

Jm Qui't

Print a wel come back message.

GoodCommand: print

byte “\¢l cone back to RUNDCS. Hope you had fun.”,cr,|f
byte “Now returning to M5-DO8 version of COMVAND. COM "
byt e cr,If,If,0

Return control to M5 DCS

Qit: Exi t Pgm
Mai n endp
cseg ends
sseg segment para stack ‘stack’
dw 128 dup (0)
sseg ends
zzzz277s€g segment para public ‘zzzzzzseg
Heap db 200h dup (?)
zz772727s€g ends
end Mai n

19.1.1.2 Load Program

The load and execute function gives the parent process very little control over the child process.
Unless the child communicates with the parent process via a trap or interrupt, DOS suspends the parent
process until the child terminates. In many cases the parent program may want to load the application
code and then execute some additional operations before the child process takes over. Semiresident pro-
grams, appearing in the previous chapter, provide a good example. The DOS “load program” function
provides this capability; it will load a program from the disk and return control back to the parent process.
The parent process can do whatever it feels is appropriate before passing control to the child process.

The load program call requires parameters that are very similar to the load and execute call. Indeed,
the only difference is the use of the LOAD structure rather than the LOADEXEC structure, and even these
structures are very similar to one another. The LOAD data structure includes two extra fields not present in

the LOADEXE structure:

LQAD struct

EnvPtr wor d ? :Pointer to environnment area.
OrdLi nePtr dwor d ? Pointer to cootmand |ine.

FCB1 dwor d ? :Pointer to default FCBL.

FCB2 dwor d ? ;Pointer to default FCB2.

SSSP dwor d ? ; SS: SP val ue for child process.
Csl P dword ? ;lnitial programstarting point.
LQAD ends

The LOAD command is useful for many purposes. Of course, this function provides the primary vehi-
cle for creating semiresident programs; however, it is also quite useful for providing extra error recovery,

Page 1068

Processes, Coroutines, and Concurrency

redirecting application I/0, and loading several executable processes into memory for concurrent execu-
tion.

After you load a program using the DOS load command, you can obtain the PSP address for that pro-
gram by issuing the DOS get PSP address call (see “MS-DOS, PC-BIOS, and File 1/0” on page 699). This
would allow the parent process to modify any values appearing in the child process’ PSP prior to its execu-
tion. DOS stores the termination address for a procedure in the PSP. This termination address normally
appears in the double word at offset 10h in the PSP. If you do not change this location, the program will
return to the first instruction beyond the int 21h instruction for the load function. Therefore, before actu-
ally transferring control to the user application, you should change this termination address.

19.1.1.3 Loading Overlays

Many programs contain blocks of code that are independent of one other; that is, while routines in
one block of code execute, the program will not call routines in the other independent blocks of code. For
example, a modern game may contain some initialization code, a “staging area” where the user chooses
certain options, an “action area” where the user plays the game, and a “debriefing area” that goes over the
player's actions. When running in a 640K MS-DOS machine, all this code may not fit into available memory
at the same time. To overcome this memory limitation, most large programs use overlays. An overlay is a
portion of the program code that shares memory for its code with other code modules. The DOS load
overlay function provides support for large programs that need to use overlays.

Like the load and load/execute functions, the load overlay expects a pointer to the code file’s path-
name in the ds:dx register pair and the address of a data structure in the es:bx register pair. This overlay
data structure has the following format:

overl ay struct

Start Seg wor d ?
Rel ocFact or wor d 0
overl ay ends

The StartSeg field contains the segment address where you want DOS to load the program. The
RelocFactor field contains a relocation factor. This value should be zero unless you want the starting
offset of the segment to be something other than zero.

19.1.1.4 Terminating a Process

The process termination function is nothing new to you by now, you've used this function over and
over again already if you written any assembly language programs and run them under DOS (the Standard
Library ExitPgm macro executes this command). In this section we'll look at exactly what the terminate
process function call does.

First of all, the terminate process function gives you the ability to pass a single byte termination code
back to the parent process. Whatever value you pass in al to the terminate call becomes the return, or ter-
mination code. The parent process can test this value using the Get Child Process Return Value call (see
the next section). You can also test this return value in a DOS batch file using the “if errorlevel” statement.

The terminate process command does the following:

e Flushes file buffers and closes files.

« Restores the termination address (int 22h) from offset 0Ah in the PSP (this is the return
address of the process).

e Restores the address of the Break handler (int 23h) from offset OEh in the PSP (see
“Exception Handling in DOS: The Break Handler” on page 1070)

* Restores the address of the critical error handler (int 24h) from offset 12h in the PSP
(see “Exception Handling in DOS: The Critical Error Handler” on page 1071).

Page 1069

Chapter 19

« Deallocates any memory held by the process.

Unless you really know what you're doing, you should not change the values at offsets 0Ah, OEh, or
12h in the PSP. By doing so you could produce an inconsistent system when your program terminates.

19.1.1.5 Obtaining the Child Process Return Code

A parent process can obtain the return code from a child process by making the DOS Get Child Pro-
cess Return Code function call. This call returns the value in the al register at the point of termination plus
information that tells you how the child process terminated.

This call (ah=4Dh) returns the termination code in the al register. It also returns the cause of termina-
tion in the ah register. The ah register will contain one of the following values:

Table 68:; Termination Cause

Value in AH Reason for Termination
Normal termination (int 21h, ah=4Ch)
Terminated by ctrl-C

Terminated by critical error
TSR termination (int 21h, ah=31h)

W N~ O

The termination code appearing in al is valid only for normal and TSR terminations.

Note that you can only call this routine once after a child process terminates. MS-DOS returns mean-
ingless values in AX after the first such call. Likewise, if you use this function without running a child pro-
cess, the results you obtain will be meaningless. DOS does not return if you do this.

19.1.2 Exception Handling in DOS: The Break Handler

Whenever the users presses a ctrl-C or ctrl-Break key MS-DOS may trap such a key sequence and exe-
cute an int 23h instruction®. MS-DOS provides a default break handler routine that terminates the pro-
gram. However, a well-written program generally replaces the default break handler with one of its own
s it can capture ctrl-C or ctrl-break key sequences and shut the program down in an orderly fashion.

When DOS terminates a program due to a break interrupt, it flushes file buffers, closes all open files,
releases memory belonging to the application, all the normal stuff it does on program termination. How-
ever, it does not restore any interrupt vectors (other than interrupt 23h and interrupt 24h). If your code
has replaced any interrupt vectors, especially hardware interrupt vectors, then those vectors will still be
pointing at your program’s interrupt service routines after DOS terminates your program. This will proba-
bly crash the system when DOS loads a new program over the top of your code. Therefore, you should
write a break handler so your application can shut itself down in an orderly fashion if the user presses
ctrl-C or ctrl-break.

The easiest, and perhaps most universal, break handler consists of a single instruction - iret. If you
point the interrupt 23h vector at an iret instruction, MS-DOS will simply ignore any ctrl-C or ctrl-break
keys you press. This is very useful for turning off the break handling during critical sections of code that
you do not want the user to interrupt.

1. MS-DOS always executes an int 23h instruction if it is processing a function code in the range 1-0Ch. For other DOS functions, MS-DOS only exe-
cutes int 23h if the Break flag is set

Page 1070

Processes, Coroutines, and Concurrency

On the other hand, simply turning off ctrl-C and ctrl-break handling throughout your entire program
is not satisfactory either. If for some reason the user wants to abort your program, pressing ctrl-break or
ctrl-C is what they will probably try to do this. If your program disallows this, the user may resort to some-
thing more drastic like ctrl-alt-delete to reset the machine. This will certainly mess up any open files and
may cause other problems as well (of course, you don't have to worry about restoring any interrupt vec-
tors!).

To patch in your own break handler is easy - just store the address of your break handler routine into
the interrupt vector 23h. You don’t even have to save the old value, DOS does this for you automatically (it
stores the original vector at offset OEh in the PSP). Then, when the users presses a ctrl-C or ctrl-break key,
MS-DOS transfers control to your break handler.

Perhaps the best response for a break handler is to set some flag to tell the application and break
occurred, and then leave it up to the application to test this flag a reasonable points to determine if it
should shut down. Of course, this does require that you test this flag at various points throughout your
application, increasing the complexity of your code. Another alternative is to save the original int 23h vec-
tor and transfer control to DOS’ break handler after you handle important operations yourself. You can
also write a specialized break handler to return a DOS termination code that the parent process can read.

Of course, there is no reason you cannot change the interrupt 23h vector at various points throughout
your program to handle changing requirements. At various points you can disable the break interrupt
entirely, restore interrupt vectors at others, or prompt the user at still other points.

19.1.3 Exception Handling in DOS: The Critical Error Handler

DOS invokes the critical error handler by executing an int 24h instruction whenever some sort of 1/0
error occurs. The default handler prints the familiar message:

1/ 0O Device Specific Error Message
Abort, Retry, lgnore, Fail?

If the user presses an “A”, this code immediately returns to DOS' COMMAND.COM program; it doesn'’t
even close any open files. If the user presses an “R” to retry, MS-DOS will retry the 1/0 operation, though
this usually results in another call to the critical error handler. The “I” option tells MS-DOS to ignore the
error and return to the calling program as though nothing had happened. An “F” response instructs
MS-DOS to return an error code to the calling program and let it handle the problem.

Of the above options, having the user press “A” is the most dangerous. This causes an immediate
return to DOS and your code does not get the chance to clean up anything. For example, if you've patched
some interrupt vectors, your program will not get the opportunity to restore them if the user selects the
abort option. This may crash the system when MS-DOS loads the next program over the top of your inter-
rupt service routine(s) in memory.

To intercept DOS critical errors, you will need to patch the interrupt 24h vector to point at your own
interrupt service routine. Upon entry into your interrupt 24h service routine, the stack will contain the fol-
lowing data;

Page 1071

Chapter 19

Page 1072

Flags
Cs Original INT 24h return address

ES
DS
BP
DI
§ Registers DOS pushes for your INT 24h handler
DX
CX
BX
AX
Flags
CS INT 24h return address (back to DOS) for your handler

Stack Contents Upon Entry to a Critical Error Handler

MS-DOS passes important information in several of the registers to your critical error handler. By
inspecting these values you can determine the cause of the critical error and the device on which it
occurred. The high order bit of the ah register determines if the error occurred on a block structured
device (typically a disk or tape) or a character device. The other bits in ah have the following meaning:

Table 69: Device Error Bitsin AH

Bit(s) Description

0 0=Read operation.
1=Write operation.
1-2 Indicates affected disk area.

00- MS-DOS area.
01- File allocation table (FAT).
10- Root directory.

11- Files area.
3 0- Fail response not allowed.
1- Fail response is okay.
4 0- Retry response not allowed.
1- Retry response is okay.
5 0- Ignore response is not allowed.
1- Ignore response is okay.
6 Undefined
7 0- Character device error.

1- Block structured device error.

Processes, Coroutines, and Concurrency

In addition to the bits in ah, for block structured devices the al register contains the drive number where
the error occurred (0=A, 1=B, 2=C, etc.). The value in the al register is undefined for character devices.

The lower half of the di register contains additional information about the block device error (the

upper byte of di is undefined, you will need to mask out those bits before attempting to test this data).

Table 70: Block Structured Device Error Codes (in L.O. byte of DI)

Error Code | Description
Write protection error.
Unknown drive.

Drive not ready.
Invalid command.

Data error (CRC error).

Length of request structure is incorrect.
Seek error on device.

Disk is not formatted for MS-DOS.
Sector not found.

OO N[O |l W NP, O

Printer out of paper.
0Ah Write error.

0Bh Read error.

0Ch General failure.

OFh Disk was changed at inappropriate time.

Upon entry to your critical error handler, interrupts are turned off. Because this error occurs as a

result of some MS-DOS call, MS-DOS is already entered and you will not be able to make any calls other
than functions 1-0Ch and 59h (get extended error information).

Your critical error handler must preserve all registers except al. The handler must return to DOS with

an iret instruction and al must contain one of the following codes:

Table 71: Critical Error Handler Return Codes

Code Meaning
0 Ignore device error.
1 Retry 1/0 operation again.
2 Terminate process (abort).
3 Fail current system call.

The following code provides a trivial example of a critical error handler. The main program attempts

to send a character to the printer. If you do not connect a printer, or turn off the printer before running this
program, it will generate the critical error.

)
’
’
’

; Sanple INT 24h critical error handler.

This code denonstrates a sanple critical error handl er.

; It patches into INT 24h and di spl ays an appropriate error

; message and asks the user if they want to retry, abort, ignore,
; or fail (just like DOB).

Page 1073

Chapter 19

Page 1074

dseg

Val ue
Er r Code

dseg

cseg

OitErrMg

M/ nt 24

I nt 24Lp

Not | gnor e

Not Ret ry:

Not Abort :

Quit24

BadChar :

M/ nt 24

.xli st
i ncl ude stdlib.a
includelib stdlib.lib

.list

segment para public ‘data
word 0

wor d 0

ends

segnent para public ‘code
assune cs: cseg, ds:dseg

A replacerment critical error handler. Note that this routine
is even worse than DOS', but it denonstrates howto wite
such a routine. Note that we cannot call any Standard Library
I/Oroutines in the critical error handl er because they do not
use DOS calls 1-0Ch, which are the only allowable DOS calls at
this point.

byt e cr,lf

byt e “DCs Oritical Error!”,cr,If

byt e “Abort, Retry, I)gnore, Fail? $
proc far

push dx

push ds

push ax

push cs

pop ds

| ea dx, OitErrMg

nmov ah, 9 ;DCB print string call
int 21h

nov ah, 1 ; DOS read character call
int 21h

and al, 5Fh ; Convert |.c. -> u.c
cnp al, ‘I’ ; I gnor e?

j ne Not | gnor e

pop ax

nmov al, 0

jm Qit24

cnp al, ‘r’ ; Retry?

j ne Not Ret ry

pop ax

nmov al, 1

jmp Qit24

cnp al, ‘A ; Abort?

j ne Not Abor t

pop ax

nmov al, 2

jnp Qit24

cnp al, ‘F

j ne BadChar

pop ax

nmv al, 3

pop ds

pop dx

iret

nov ah, 2

nov dl, 7 ; Bel | character
jnp I nt24Lp

endp

Processes, Coroutines, and Concurrency

Mai n proc
nmov ax, dseg
nov ds, ax
nov es, ax
nmem ni t
nmov ax, 0
nmov es, ax
nmv word ptr es:[24h*4], offset M/Int24
nmv es:[24h*4 + 2], cs
nmov ah, 5
nmov d, *a
int 21h
rcl Val ue, 1
and Val ue, 1
nmov Err Code, ax
printf
byte cr I f,If
byte “Print char returned with error status % and “
byt e “error code %\ n”,0
dwor d Val ue, ErrCode
Quit: Exi t Pgm ;DOS macro to quit program
Mai n endp
cseg ends

; Allocate a reasonabl e amount of space for the stack (8k).
; Note: if you use the pattern natching package you should set up a
; sonmewhat | arger stack.

sseg segnent para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

; zzzzzzseg nust be the |ast segment that gets | oaded into menory!
; This is where the heap begins.

z777277s€g segment para public ‘zzzzzz’
Last Byt es db 16 dup (?)
zz77775€g ends

end Mai n

19.1.4 Exception Handling in DOS: Traps

In addition to the break and critical error exceptions, there are the 80x86 exceptions that can happen
during the execution of your programs. Examples include the divide error exception, bounds exception,
and illegal opcode exception. A well-written application will always handle all possible exceptions.

DOS does not provide direct support for these exceptions, other than a possible default handler. In
particular, DOS does not restore such vectors when the program terminates; this is something the applica-
tion, break handler, and critical error handler must take care of. For more information on these exceptions,
see “Exceptions” on page 1000.

19.1.5 Redirection of I/O for Child Processes

When a child process begins execution, it inherits all open files from the parent process (with the
exception of certain files opened with networking file functions). In particular, this includes the default

Page 1075

Chapter 19

Page 1076

files opened for the DOS standard input, standard output, standard error, auxiliary, and printer
devices. DOS assigns the file handle values zero through four, respectively, to these devices. If a parent
process closes one of these file handles and then reassigns the handle with a Force Duplicate File Handle
call.

Note that the DOS EXEC call does not process the I/0 redirection operators (“<*, and “>", and “|"). If
you want to redirect the standard 1/0 of a child process, you must do this before loading and executing
the child process. To redirect one of the five standard 1/0 devices, you should do the following steps:

1) Duplicate the file handle you want to redirect (e.g., to redirect the standard output, duplicate file
handle one).

2) Close the affected file (e.g., file handle one for standard output).

3) Open afile using the standard DOS Create or CreateNew calls.

4) Use the Force Duplicate File Handle call to copy the new file handle to file handle one.

5) Run the child process.

6) On return from the child, close the file.

7 Copy the file handle you duplicated in step one back to the standard output file handle using the

Force Duplicate Handle function.

This technique looks like it would be perfect for redirecting printer or serial port 1/0. Unfortunately,
many programs bypass DOS when sending data to the printer and use the BIOS call or, worse yet, go
directly to the hardware. Almost no software bothers with DOS’ serial port support - it truly is that bad.
However, most programs do call DOS to input or output characters on the standard input, output, and
error devices. The following code demonstrates how to redirect the output of a child process to a file.

REDI RECT. ASM - Denonstrates how to redirect I/Ofor a child process.

This particul ar programinvokes COMVAND. COMto execute
; a DR conmand, when is sent to the specified output file.

i ncl ude stdlib.a
includelib stdlib.lib

dseg segment para public ‘data’

Qi gQut Handl e wor d ? ; Hol ds copy of STDOUT handl e.
Fi | eHandl e wor d ? ;File 1/0 handl e.

Fi | eNarre byt e “dirctry.txt”,0 ;Filenane for output data.

; M5-DC5 EXEC structure.

ExecStr uct wor d 0 ; Use parent’s Environment bl k.
dwor d OndLi ne ;For the cnd I n parnms.
dwor d Df l t FCB
dwor d Df l t FCB

Df I t FCB byte 3" 00000

OndLi ne byt e 7, “ /c DR, 0dh ;Do a directory comrand.

Pgm\ane dwor d Pgnm\aneSt r ; Points at pgm nane.

Pgm\areSt r byt e “c:\ command. cont, O

dseg ends

cseg segnent para public ‘code’
assune cs: cseqg, ds:dseg

Mai n proc
nov ax, dseg ;Get ptr to vars segnent
nov ds, ax
Men ni t ;Start the mermory nor.

; Free up sone nenory for COMMAND. COM

nmov ah, 62h ; Get our PSP val ue
int 21h

nov
nov
sub
nov
nov
int
Save ori gi nal
nov

nov
int

es,
ax,
ax,
bx,
ah,
21h

bx,
ah,
21h

Processes, Coroutines, and Concurrency

bx

zzzzz72s5€g ; Conput e si ze of

bx ; resident run code.
ax

4ah ; Rel ease unused menory.

output file handle.

1 ;Std out is file handle 1.
45h ;Duplicate the file handl e.

nmov i gQut Handl e, ax; Save duplicate handl e.

pen the out put

nov
nov
| ea
int
nov

file:

ah,
CX,
dx,
21h

Fi | eHandl e, ax

3ch ;Qeate file.
0 ;Normal attributes.
Fi | eNarre

; Save opened file handl e.

Force the standard output to send its output to this file.
Do this by forcing the file's handle onto file handl e #1 (stdout).

nov
nov
nov
int

Print the first

ah,
CX,
bx,
21h

46h ; Force dup file handl e
1 ; Exi sting handl e to change.
Fi | eHandl e ;New file handle to use.

line to the file:

print

byt e

“Redirected directory listing:”,cr,If,0

; Ckay, execute the DCS DIR command (that is, execute COMWAND. COM wi t h
; the command |ine paraneter “/c DR’).
nov bx, seg ExecStruct
nmov es, bx
nmov bx, offset ExecStruct ;Ptr to program record.
| ds dx, Pgni\ane
nmov ax, 4b00h ; Exec pgm
int 21h
nov bx, sseg i Reset the stack on return.
nov ss, ax
nov sp, offset EndStk
nov bx, seg dseg
nov ds, bx
; Ckay, close the output file and switch standard output back to the
; consol e.
nmov ah, 3eh ; dose output file.
nmov bx, FileHandl e
i nt 21h
nov ah, 46h ; Force duplicate handl e
nov cx, 1 ; St dQut
nov bx, OigQutHandl e ; Restore previous handl e.
int 21h
; Return control to M5 DCS
Quit: Exi t Pgm
Mai n endp
cseg ends
sseg segment para stack ‘stack’
dw 128 dup (0)
endst k dw ?
sseg ends

Page 1077

Chapter 19

zzz7775€g segnent para public ‘zzzzzzseg
Heap db 200h dup (?)
z277775€g ends

end Mai n

19.2 Shared Memory

The only problem with running different DOS programs as part of a single application is interprocess
communication. That is, how do all these programs talk to one other? When a typical DOS application
runs, DOS loads in all code and data segments; there is no provision, other than reading data from a file or
the process termination code, for one process to pass information to another. Although file 1/0 will work,
it is cumbersome and slow. The ideal solution would be for one process to leave a copy of various vari-
ables that other processes can share. Your programs can easily do this using shared memory.

Most modern multitasking operating systems provide for shared memory — memory that appears in
the address space of two or more processes. Furthermore, such shared memory is often persistent, mean-
ing it continues to hold values after its creator process terminates. This allows other processes to start later
and use the values left behind by the shared variables’ creator.

Unfortunately, MS-DOS is not a modern multitasking operating system and it does not support shared
memory. However, we can easily write a resident program that provides this capability missing from DOS.
The following sections describe how to create two types of shared memory regions - static and dynamic.

19.2.1 Static Shared Memory

Page 1078

A TSR to implement static shared memory is trivial. It is a passive TSR that provides three functions -
verify presence, remove, and return segment pointer. The transient portion simply allocates a 64K data
segment and then terminates. Other processes can obtain the address of the 64K shared memory block by
making the “return segment pointer” call. These processes can place all their shared data into the segment
belonging to the TSR. When one process quits, the shared segment remains in memory as part of the TSR.
When a second process runs and links with the shared segment, the variables from the shared segment are
still intact, so the new process can access those values. When all processes are done sharing data, the user
can remove the shared memory TSR with the remove function.

As mentioned above, there is almost nothing to the shared memory TSR. The following code imple-
ments it:

; SHARDMVEM ASM
This TSR sets aside a 64K shared nenmory region for other processes to use.
Usage:

SHARDMEM - Loads resident portion and activates
shared menory capabilities.

SHARDMEM REMOVE - Renoves shared menory TSR from menory.

; This TSR checks to nmake sure there isn't a copy already active in
; menory. Wen renoving itself frommenory, it makes sure there are
; no other interrupts chained into INT 2Fh before doing the renove.

The foll owing segrments nust appear in this order and before the
; Standard Library includes.

Resi dent Seg segnent para public ‘ Resident’
Resi dent Seg ends

SharedMenory segnent para public ‘ Shared

Shar edMenor y

EndResi dent
EndResi dent

Processes, Coroutines, and Concurrency

ends

segnent para public ‘ EndRes’
ends

.xlist

. 286

i ncl ude stdlib.a
includelib stdlib.lib
list

; Resident segnment that holds the TSR code:

Resi dent Seg

segnent para public ‘ Resident’
assume cs: Resi dent Seg, ds: not hi ng

; Int 2Fh I D nunber for this TSR

M/ TSR D

byt e 0
byt e 0 ; Padding so we can print it.

; PSP is the psp address for this program

PSP
adint 2F

M/ nt 2F-

)
)
’
’
’
’
)
)
i
)
)
)
)
)
’

M1 nt 2F

wor d 0

dwor d ?

Provides int 2Fh (multiplex interrupt) support for this
TSR The nultiplex interrupt recognizes the follow ng
subfunctions (passed in AL):

00h- Verify presence. Returns OFFh in AL and a pointer
toan IDstring in es:di if the
TSR ID (in AH) natches this
particular TSR

01lh- Rernove. Renoves the TSR from nenory.
Returns 0 in AL if successful,
1inAL if failure.

10h- Return Seg Adrs. Returns the segnent address of the
shared segnent in ES

proc far

assune ds: not hi ng

cnp ah, M/TSR D ;Match our TSR identifier?

je Yepl tsQurs

jm adint2F

; Ckay, we know this is our ID now check for a verify, renove, or
; return segnent call.

Yepl t sQurs:

IDString
TryRw:

cnp al, O ;Verify Call

j ne TryRw

nov al, Offh ; Return success.

| esi IDString

iret ;Return back to caller.
byte “Static Shared Menory TSR, 0

cnp al, 1 ; Renove cal |l .

j ne TryRet Seg

; See if we can renove this TSR

push es

nmov ax, O

nov es, ax

cnp word ptr es:[2Fh*4], offset M/l nt2F
j ne TRDone

cnp word ptr es:[2Fh*4 + 2], seg M/Int2F

Page 1079

Chapter 19

je CanRenove; Branch i f we can.

TRDone: nov ax, 1 ;Return failure for now
pop es
iret

; Ckay, they want to renove this guy *and* we can renove it from nenory.
; Take care of all that here.

assumre ds: Resi dent Seg
CanRenove: push ds
pusha
cli ;Turn off the interrupts while
nmov ax, 0 ; Wwe mess with the interrupt
nmov es, ax , vectors.
nov ax, cs
nov ds, ax
nov ax, word ptr Adlnt2F
nmov es: [2Fh*4], ax
mov ax, word ptr Qdlnt2F+2
nmv es:[2Fh*4 + 2], ax

; Ckay, one last thing before we quit- Let’'s give the menory all ocat ed
; to this TSR back to DCS.

nov ds, PSP

nov es, ds:[2n] ;Ptr to environnent bl ock.
nov ah, 49h ; DOS rel ease menory cal l
int 21h

nmov ax, ds ; Rel ease program code space.
nov es, ax

nmov ah, 49h

i nt 21h

popa

pop ds

pop es

nmov ax, 0 ; Return Success

iret

; See if they want us to return the segment address of our shared segnent

;. here.
TryRet Seg: cnp al, 10h ; Return Segment Qpcode
jne Illegal O
nov ax, SharedMenory
nov es, ax
nov ax, 0 ; Return success
clc
iret
; They called us with an illegal subfunction value. Try to do as little
; damage as possi bl e.
Il egal Op: nmov ax, 0 ; Who knows what they were thinking?
iret
M/l nt 2F endp
assume ds: not hi ng

Resi dent Seg ends

; Here’s the segment that will actually hold the shared data.
Shar edMenory segment para public ‘ Shared’

db OFFFFh dup (?)
Shar edMenory ends

cseg segment para public ‘code’
assume cs: cseg, ds: Resident Seg

Page 1080

;. Seel f Present -

’

Seel f Present

| DLoop

TryNext :

Success
Seel f Present

Fi ndl D-

)
’
’
’
)
i

Fi ndl D

| DLoop

Success

Fi ndl D

proc
push
push
push
nov
nov
push
nov

i nt
pop
cnp

je
strcnp
byt e
je

dec
js
cnp
pop
pop
pop
ret
endp

Deternmines the first (well,
inthe miltiplex interrupt chain

Processes, Coroutines, and Concurrency

Checks to see if our TSR is already present in nenory.

Sets the zero flag if it is,

clears the zero flag if

;Start with | D OFFh.

; Verify presence call.

; Present in menory?

“Static Shared Menory TSR, 0

it is not.
near

es

ds

d

cx, Offh
ah, cl
CcX

al, 0
2Fh

CX

al, 0

Tr yNext
Success
C

| DLoop
cx, O

d

ds

es

the CL register.

; Test USER I Ds of 80h..FFh

;A ear zero flag

last actually) TSR ID avail abl e

Returns this value in

Returns the zero flag set if it |locates an enpty sl ot
Returns the zero flag clear if failure.

proc
push
push
push

nov
nov
push
nov
int
pop
cnp
je
dec
js
xor
cnp
pop
pop
pop
ret
endp

proc
mem nit
nov
nov
nov
int
nov

near
es
ds
d

cx, Offh
ah, cl
CcX

al, 0
2Fh

CX

al, 0
Success
cl

| DLoop
CX, CX
cx, 1

d

ds

es

ax, Resident Seg
ds, ax

ah, 62h
21h
PSP, bx

Start with | D OFFh.

; Verify presence call.

; Present in menory?

; Test USER | Ds of 80h.. FFh

;A ear zero flag

;Get this progranis PSP
; val ue.

; Before we do anything el se, we need to check the cormand |ine

Page 1081

Chapter 19

; paraneters. |If there is one, and it is the word “REMOVE’, then renove
; the resident copy fromnenory using the multiplex (2Fh) interrupt.

argc
cnp cx, 1 ; Must have 0 or 1 parns.
ib Tst Present
je DoRenove
Usage: print
byt e “Usage:”, cr, | f
byte “ shardnent, cr, | f
byte “or shardmem REMOVE", cr,If,0
Exi t Pgm

; Check for the REMOVE conmand.

DoRenove: nov ax, 1
argv
stricnpl
byt e “REMOVE’, O
j ne Usage
call Seel f Present
je Renovel t
print
byt e “TSRis not present in nenory, cannot renove”
byt e cr,lf,0
Exi t Pgm
Renovel t: nov MTSRI D, cl
printf
byt e “Renmoving TSR (I D #%l) frommenory...”,0
dwor d M/TSR D
nmov ah, cl
nmov al, 1 ; Renove cnd, ah contains ID
i nt 2Fh
cnp al, 1 ; Succeed?
je RwvFai |l ure
print
byt e “renoved. ”,cr,If,0
Exi t Pgm
RvFai | ure: print
byte cr,lf
byte “Coul d not renove TSR frommenory.”,cr,|f
byt e “Try renoving other TSRs in the reverse order *“
byt e “you installed them”,cr,If,0
Exi t Pgm

; Ckay, see if the TSRis already in nenmory. If so, abort the
; installation process.

Tst Present: call Seel f Present
j ne Get TSR D
print
byt e “TSRis already present in menory.”,cr,If
byt e “Aborting installation process”,cr,|f,0
Exi t Pgm

; Get an IDfor our TSR and save it away.

Get TSR D call Fi ndl D
je Get Fi | eNane
print
byt e “Too many resident TSRs, cannot install”,cr,If,0
Exi t Pgm

; Things look cool so far, so install the interrupts

Page 1082

Processes, Coroutines, and Concurrency

Cet Fi | eNane: nmov M/ TSR D, cl
print
byt e “Installing interrupts...”,0

; Patch into the INT 2Fh interrupt chain.

cli ; Turn of f interrupts!
nmov ax, O

nmv es, ax

nmv ax, es:[2Fh*4]

nmov word ptr Adlnt2F, ax

nov ax, es:[2Fh*4 + 2]

nov word ptr QAdlnt2F+2, ax

nmov es: [2Fh*4], offset M/ nt2F

nov es: [2Fh*4+2], seg Resi dent Seg

sti ; Ckay, ints back on.

; W' re hooked up, the only thing that remains is to zero out the shared
; menory segnent and then termnate and stay resident.

printf
byte “Installed, TSRID #%."”,cr,If,0
dwor d M/TSR D
nmv ax, SharedMenory ;Zero out the shared
nov es, ax ; menory segnent.
nov cx, 32768 ; 32K words = 64K byt es.
xor ax, ax ;Store all zeros,
nmov di, ax ; starting at offset zero.
rep stosw
nmv dx, EndResi dent ; Conput e size of program
sub dx, PSP
nmv ax, 3100h ; DCS TSR conmand.
int 21h
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk db 256 dup (?)
sseg ends
z77277S€g segment para public ‘zzzzzz’
Last Byt es db 16 dup (?)
z7277775€g ends
end Mai n

This program simply carves out a chunk of memory (the 64K in the SharedMemory segment) and
returns a pointer to it in es whenever a program executes the appropriate int 2Fh call (ah= TSR ID and
al=10h). The only catch is how do we declared shared variables in the applications that use shared mem-
ory? Well, that's fairly easy if we play a sneaky trick on MASM, the Linker, DOS, and the 80x86.

When DOS loads your program into memory, it generally loads the segments in the same order they
first appear in your source files. The UCR Standard Library, for example, takes advantage of this by insist-
ing that you include a segment named zzzzzzseg at the end of all your assembly language source files.
The UCR Standard Library memory management routines build the heap starting at zzzzzzseg, it must be
the last segment (containing valid data) because the memory management routines may overwrite any-
thing following zzzzzzseg.

For our shared memory segment, we would like to create a segment something like the following:
Shar edMenory segment para public ‘ Shared

« define all shared variabl es here»

SharedMenory ends

Page 1083

Chapter 19

Page 1084

Applications that share data would define all shared variables in this shared segment. There are, however,
five problems. First, how do we tell the assembler/linker/DOS/80x86 that this is a shared segment, rather
than having a separate segment for each program? Well, this problem is easy to solve; we don't bother tell-
ing MASM, the linker, or DOS anything. The way we make the different applications all share the same
segment in memory is to invoke the shared memory TSR in the code above with function code 10h. This
returns the address of the TSR's SharedMemory segment in the es register. In our assembly language pro-
grams we fool MASM into thinking es points at its local shared memory segment when, in fact, es points
at the global segment.

The second problem is minor, but annoying nonetheless. When you create a segment, MASM, the
linker, and DOS set aside storage for that segment. If you declare a large number of variables in a shared
segment, this can waste memory since the program will actually use the memory space in the global
shared segment. One easy way to reclaim the storage that MASM reserves for this segment is to define the
shared segment after zzzzzzseg in your shared memory applications. By doing so, the Standard Library
will absorb any memory reserved for the (dummy) shared memory segment into the heap, since all mem-
ory after zzzzzzseg belongs to the heap (when you use the standard meminit call).

The third problem is slightly more difficult to deal with. Since you will not be use the local segment,
you cannot initialize any variables in the shared memory segment by placing values in the operand field of
byte, word, dword, etc., directives. Doing so will only initialize the local memory in the heap, the system
will not copy this data to the global shared segment. Generally, this isn't a problem because processes
won't normally initialize shared memory as they load. Instead, there will probably be a single application
you run first that initializes the shared memory area for the rest of the processes that using the global
shared segment.

The fourth problem is that you cannot initialize any variables with the address of an object in shared
memory. For example, if the variable shared K is in the shared memory segment, you could not use a
statement like the following:

printf
byte “Val ue of shared Kis %l\n",0
dword shared_K

The problem with this code is that MASM initializes the double word after the string above with the
address of the shared_K variable in the local copy of the shared data segment. This will not print out the
copy in the global shared data segment.

The last problem is anything but minor. All programs that use the global shared memory segment
must define their variables at identical offsets within the shared segment. Given the way MASM assigns
offsets to variables within a segment, if you are one byte off in the declaration of any of your variables,
your program will be accessing its variables at different addresses than other processes sharing the global
shared segment. This will scramble memory and produce a disaster. The only reasonable way to declare
variables for shared memory programs is to create an include file with all the shared variable declarations
for all concerned programs. Then include this single file into all the programs that share the variables. Now
you can add, remove, or modify variables without having to worry about maintaining the shared variable
declarations in the other files.

The following two sample programs demonstrate the use of shared memory. The first application
reads a string from the user and stuffs it into shared memory. The second application reads that string from
shared memory and displays it on the screen.

First, here is the include file containing the single shared variable declaration used by both applica-
tions:

;. shnvars. asm

This file contains the shared nenory vari abl e decl arati ons used by
; all applications that refer to shared nmenory.

I nput Li ne byt e 128 dup (?)

Processes, Coroutines, and Concurrency

Here is the first application that reads an input string from the user and shoves it into shared memory:

SHVAPP1. ASM

This is a shared menory application that

uses the static shared menory

passes that string to SHVAPP2. ASM t hrough the shared nenory area.

TSR (SHARDMEM ASM). This programinputs a string fromthe user and

.xli st
i ncl ude stdlib.a
includelib stdlib.lib
st
dseg segnent para public ‘data’
Shm D byte 0
dseg ends
cseg segment para public ‘code’
assume cs: cseg, ds: dseg,

; Seel fPresent-Checks to see if the shared
; Sets the zero flag if it is,

es: Shar edMenor y

nmemory TSR is present in menory.
clears the zero flag if

; it is not.
Seel f Present proc
push
push
push
nov
nov
push
nov
int
pop
cnp

je
strenp
byte
je

| DLoop:

dec
js
cnp
pop
pop
pop
ret
endp

TryNext :

Success:

Seel f Present

This routine also returns the TSRIDin Q..

near
es

ds

di

cx, Offh ;Start with | D OFFh.

ah, cl

cX

al, 0 ; Verify presence call.

2Fh

cX

al, 0 ; Present in menory?

Tr yNext

“Static Shared Menmory TSR', 0

Success

cl ; Test USER | Ds of 80h..FFh
| DLoop

cx, 0 ; dear zero flag.

di

ds

es

; The main programfor application #1 links with the shared nenory
; TSR and then reads a string fromthe user (storing the string into
; shared menory) and then term nates.

Mai n proc
assune
nov
nov

mem ni t

print
byt e

cs: cseg, ds:dseg, es: SharedMenory
ax, dseg
ds, ax

“Shared menory application #1”,cr,1f,0

; See if the shared nenory TSR is around:

call
je
print
byt e
byt e

Seel f Pr esent
ItsThere

“Shared Mermory TSR (SHARDMEM is not |oaded.”,cr,|f
“Thi s program cannot continue execution.”,cr,If,0

Page 1085

Chapter 19
Exi t Pgm

; If the shared nenory TSR is present, get the address of the shared segment
; into the ES register:

It sThere: nov ah, cl ;1D of our TSR
nov al, 10h ; Get shared segnent address.
int 2Fh

; Get the input line fromthe user:

print
byte “Enter a string: “,0
|l ea di, InputLine ;ES already points at proper seg.
gets
print
byt e “Entered ‘", 0
puts
print
byte “‘* into shared menory.”,cr,|f,0
Qit: Exi t Pgm ;DOS macro to quit program
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends
zzz7775€g segnent para public ‘zzzzzz’
Last Byt es db 16 dup (?)
zz277775€g ends

; The shared menory segnent nust appear after “zzzzzzseg'.

; Note that this isn't the physical storage for the data in the

; shared segnent. It’'s really just a place hol der so we can declare

; variables and generate their offsets appropriately. The UCR Standard
; Library will reuse the menory associated with this segnment for the

; heap. To access data in the shared segment, this application calls

; the shared menory TSR to obtain the true segnent address of the

; shared nenory segnent. It can then access variables in the shared

; menory segment (where ever it happens to be) off the ES register.

Note that all the variable declarations go into an include file.
Al applications that refer to the shared nenory segnent include

this file in the SharedMenory segnent. This ensures that all
shared segments have the exact same variabl e | ayout.

SharedMenory segnent para public ‘ Shared
i ncl ude shnvars. asm

Shar edMenory ends
end Mai n

The second application is very similar, here it is
SHVAPP2. ASM

; This is a shared nenory application that uses the static shared nmenory
; TSR (SHARDMEM ASM). Thi s program assunes the user has already run the
; SHVAPPL programto insert a string into shared mermory. This program

; sinply prints that string fromshared nmenory.

Page 1086

Processes, Coroutines, and Concurrency

.Xxli st
i ncl ude stdlib.a
includelib stdlib.lib

st
dseg segment para public ‘data’
Shm D byt e 0
dseg ends
cseg segment para public ‘code’
assurre cs: cseg, ds:dseg, es: SharedMenory

; SeelfPresent Checks to see if the shared nemory TSR is present in nenory.
; Sets the zero flag if it is, clears the zero flag if
; it isnot. This routine also returns the TSRID in CL.

Seel f Present proc near

push es

push ds

push di

nov cx, Offh ;Start with | D OFFh.
| DLoop: nov ah, cl

push CcX

nmov al, 0 ; Verify presence call.

i nt 2Fh

pop cX

cnp al, 0 ; Present in menory?

je Tr yNext

st rcnpl

byt e “Static Shared Menory TSR, 0

je Success
TryNext : dec cl : Test USER | Ds of 80h..FFh

is | DLoop

cnp cx, 0 ;A ear zero flag.
Success: pop di

pop ds

pop es

ret

Seel f Present endp

; The main programfor application #1 links with the shared nmenory
; TSR and then reads a string fromthe user (storing the string into
; shared nenory) and then term nates.

Mai n proc
assume cs: cseg, ds:dseg, es: SharedMenory
nov ax, dseg
nov ds, ax
nmem ni t
print
byte “Shared menory application #2”,cr,1f,0

; See if the shared menmory TSR i s around:

call Seel f Present

je It sThere

print

byt e “Shared Menory TSR (SHARDMEM) is not |oaded.”,cr,|f
byt e “Thi s program cannot continue execution.”,cr,If,0
Exi t Pgm

; If the shared nenmory TSR is present, get the address of the shared segnent
; into the ES register:

I tsThere: nmov ah, cl ;1D of our TSR
nmv al, 10h ; Get shared segnent address.
int 2Fh

; Print the string input in SHVAPPL:

Page 1087

Chapter 19

print
byt e “String fromSHVWPP1 is ‘", 0
|l ea di, InputLine ; ES already points at proper seg.
puts
print
byt e “* fromshared menory.”,cr,lf,0
Qit: Exi t Pgm ; DCB macro to quit program
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends
zzz77277S€g segment para public ‘zzzzzz’
Last Byt es db 16 dup (?)
z777277s€eg ends

; The shared menory segnment nust appear after “zzzzzzseg”.

; Note that this isn't the physical storage for the data in the

; shared segnent. It’s really just a place hol der so we can declare

; variables and generate their offsets appropriately. The UCR Standard
; Library will reuse the nenory associated with this segnent for the

; heap. To access data in the shared segment, this application calls

; the shared menory TSR to obtain the true segnent address of the

; shared menory segnent. It can then access variables in the shared

; menory segnent (where ever it happens to be) off the ES register.

Note that all the variable declarations go into an include file.
; Al applications that refer to the shared nenmory segment incl ude
; this file in the SharedMenory segnent. This ensures that all
shared segnents have the exact sane variabl e | ayout.
SharedMenory segnent para public ‘ Shared
i ncl ude shnvars. asm

SharedMenory ends
end Mai n

19.2.2 Dynamic Shared Memory

Page 1088

Although the static shared memory the previous section describes is very useful, it does suffer from a
few limitations. First of all, any program that uses the global shared segment must be aware of the location
of every other program that uses the shared segment. This effectively means that the use of the shared seg-
ment is limited to a single set of cooperating processes at any one given time. You cannot have two inde-
pendent sets of programs using the shared memory at the same time. Another limitation with the static
system is that you must know the size of all variables when you write your program, you cannot create
dynamic data structures whose size varies at run time. It would be nice, for example, to have calls like
shmalloc and shmfree that let you dynamically allocate and free memory in a shared region. Fortunately, it
is very easy to overcome these limitations by creating a dynamic shared memory manager.

A reasonable shared memory manager will have four functions: initialize, shmalloc, shmattach, and
shmfree. The initialization call reclaims all shared memory in use. The shmalloc call lets a process allocate
a new block of shared memory. Only one process in a group of cooperating processes makes this call.
Once shmalloc allocates a block of memory, the other processes use the shmattach call to obtain the
address of the shared memory block. The following code implements a dynamic shared memory manager.
The code is similar to that appearing in the Standard Library except this code allows a maximum of 64K
storage on the heap.

Processes, Coroutines, and Concurrency

SHVALLCC. ASM
This TSR sets up a dynanic shared menory system

: This TSR checks to make sure there isn't a copy already active in
; menory. Wen renoving itself frommenory, it makes sure there are
; no other interrupts chained into I NT 2Fh before doing the renove.

The foll owi ng segnents nmust appear in this order and before the
Standard Library incl udes.

Resi dent Seg segnent para public ‘ Resident’
Resi dent Seg ends

SharedMenory segnent para public ‘ Shared
SharedMenory ends

EndResi dent segment para public ‘EndRes’
EndResi dent ends

.xli st

. 286

i ncl ude stdlib.a
includelib stdlib.lib
list

; Resident segnent that holds the TSR code:
Resi dent Seg segment para public ‘Resident’
assurre cs: Resi dent Seg, ds: not hi ng

NULL equ 0

Data structure for an allocated data region.

Key- user supplied IDto associate this region with a particular set
of processes.

Next- Points at the next allocated bl ock.
Prev- Points at the previous allocated bl ock.
Size- Size (in bytes) of allocated bl ock, not including header structure.

Regi on struct

key wor d ?

next wor d ?

prev word ?

bl ksi ze word ?

Regi on ends

Startnmem equ Regi on ptr [0]

Al | ocat edLi st word 0 ;Points at chain of alloc’d bl ocks.
Fr eeli st word 0 ;Points at chain of free bl ocks.

; Int 2Fh ID nunber for this TSR

M/TSRI D byt e 0
byt e 0 ; Padding so we can print it.

; PSP is the psp address for this program

PSP wor d 0
d dint 2F dword ?
;. M/l nt 2F- Provides int 2Fh (multiplex interrupt) support for this

; TSR The nmultiplex interrupt recogni zes the follow ng
; subfunctions (passed in AL):

Page 1089

Chapter 19

00h- Verify presence. Returns OFFh in AL and a pointer
toan IDstring in es:di if the
TSR ID (in AH) natches this
particular TSR

0lh- Renove. Renoves the TSR from menory.
Returns 0 in AL if successful,
1in AL if failure.

; 11h- shmal | oc CX contains the size of the bl ock

; to all ocate.

; DX contains the key for this block.
; Returns a pointer to block in ES:. D
; and size of allocated block in CX
; Returns an error code in AX Zero

; is no error, one is “key already

; exists,” two is “insufficient

; nmenory for request.”

; 12h- shnfree DX contains the key for this bl ock.

This call frees the specified bl ock
from menory.

13h- shmnit Initializes the shared nenory system
freeing all blocks currently in
use.

14h- shnattach DX contains the key for a bl ock.

Search for that block and return
its address in ES:D. AX contains
zero if successful, three if it
cannot |locate a block with the
speci fi ed key.

M/l nt 2F proc far
assune ds: not hi ng
cnp ah, M/TSRI D, Match our TSR identifier?
je Yepl tsQurs
jmp addint2F

; Ckay, we know this is our ID now check for a verify, renove, or
; return segnent call.

Yepl t sQurs: cnp al, 0 ;Verify Call
j ne TryRw
nov al, Offh; Return success.
| esi IDString
iret ;Return back to caller.

IDString byte “Dynamc Shared Menory TSR, O

TryRv: cnp al, 1 : Renove call .
j ne Tryshmal | oc

; See if we can renove this TSR

push es

mv ax, 0

nov es, ax

cnp word ptr es:[2Fh*4], offset M/l nt2F

j ne TRDone

cnp word ptr es:[2Fh*4 + 2], seg M/Int2F

je CanRenove :Branch if we can.
TRDone: nov ax, 1 :Return failure for now

pop es

iret

; Ckay, they want to renove this guy *and* we can renove it from nenory.
; Take care of all that here.

assume ds: Resi dent Seg

Page 1090

CanRenove: push

pusha
cli
nov
nov
nov
nov

nov
nov
nmov

Processes, Coroutines, and Concurrency

ds

;Turn off the interrupts while
ax, 0 ; Wwe mess with the interrupt
es, ax ; vectors.
ax, cs
ds, ax

ax, word ptr Adlnt2F
es: [2Fh*4], ax

ax, word ptr Qdlnt2F+2
es:[2Fh*4 + 2], ax

Ckay, one last thing before we quit- Let’s give the nenory all ocat ed
to this TSR back to DCS.

nov
nov
nov
int

nov
nov
nov
int

popa
pop
pop
nov
iret

ds, PSP

es, ds:[2n] ;Ptr to environnent bl ock.
ah, 49h ; DOS rel ease nmenory cal l .
21h

ax, ds ; Rel ease program code space.
es, ax

ah, 49h

21h

ds

es

ax, O i Return Success.

Stick BadKey here so that it is close to its associated branch (from bel ow).

If come here, we’ve discovered an allocated block with the
specified key. Return an error code (AX=1) and the size of that
all ocated block (in CX).

BadKey: nov

i
1
)
)
’
’
)
’
’
)

nov
pop
pop
iret

cX, [bx].Region. Bl kS ze

ax, 1 ;Already allocated error.
bx

ds

See if this is a shnalloc call.

If so, on entry -

DX contai ns the key.

CX contai ns the nunber of bytes to allocate.

O exit:

ES: D points at the allocated bl ock (if successful).

CX contai ns the actual

size of the allocated bl ock (>=CX on entry).

AX contains error code, O if no error.

Tryshmal loc: cnp
jne Tryshnfree

al, 11h ;shmal | oc function code.

First, search through the allocated list to see if a block with the
; current key nunber already exists. DX contains the requested key.

assune
assune
assune

push
push
nov
nov

ds: Shar edMenory
bx: ptr Regi on

di:ptr Region

ds

bx

bx, SharedMenory
ds, bx

Page 1091

Chapter 19

Page 1092

nmov bx, Resi dent Seg: Al | ocat edLi st
t est bx, bx ;Anything on this list?
je SrchFr eeli st
Sear chLoop: cnp dx, [bx].Key ; Key exi st already?
je BadKey
nmov bx, [bx].Next ; Get next region.
test bx, bx ; NULL?, if not, try another
j ne Sear chLoop ; entry in the list.

’

’

If an allocated block with the specified key does not al ready exist,
then try to allocate one fromthe free nenory list.

SrchFreeli st: nov bx, Resi dent Seg: FreelLi st
t est bx, bx ;Enpty free list?
je Qut aMenor y
FirstFitLp: cnp cx, [bx].B kSize ;Is this block big enough?
j be Got Bl ock
nmov bx, [bx].Next ;If not, on to the next one.
test bx, bx ;Anything on this list?
j ne FirstFitLp

’

If we drop down here, we were unable to find a block that was |arge

enough to satisfy the request.

Qut aMenory: nmv cx, 0
nmov ax, 2
pop bx
pop ds
iret

’
’
’
)
i
)
)
)
)

Return an appropriate error

; Not hi ng avai | abl e.
;Insufficient nenmory error.

If we find a |l arge enough bl ock, we’ve got to carve the new bl ock

out of it and return the rest of the storage to the free |ist.

If the

free block is at |east 32 bytes larger than the requested size, we wll

do this.

If the free block is less than 32 bytes larger, we wll

sinply

give this free block to the requesting process. The reason for the
32 bytes is sinple: W need eight bytes for the new bl ock’ s header
(the free block already has one) and it doesn’t nake sense to fragnent

bl ocks to sizes bel ow 24 bytes.

That woul d only increase processing time

when processes free up bl ocks by requiring more work coal esci ng bl ocks.

Got Bl ock: nov ax, [bx].Bl kSize ;Conpute difference in size.
sub ax, cx
cnp ax, 32 ; At least 32 bytes left?
j be G abWhol eBl k ;1 f not, take this bl ock.

Ckay, the free block is larger than the requested size by nore than 32

bytes. Carve the new block fromthe end of the free block (that way
; we do not have to change the free block's pointers, only the size.
nmov di, bx
add di, [bx].Bl kSize ;Scoot to end, mnus 8
sub di, cx :Point at new bl ock.
sub [bx].Bl kSize, cx ;Renove alloc’d bl ock and
sub [bx].B kSize, 8 ; roomfor header.
nov [di].B kS ze, cx ;Save size of block.
nmov [di].Key, dx ; Save key.

Link the new block into the list of allocated bl ocks.

nov bx, Resident Seg: Al | ocat edLi st
nmv [di].Next, bx
nmv [di].Prev, NULL ;NJLL previous pointer.
t est bx, bx ;See if it was an enpty list.
je NoPr ev
nmov [bx].Prev, di ;Set prev ptr for ol d guy.
NoPr ev: nov Resi dent Seg: Al | ocat edLi st, di
RvDone: add di, 8 ;Point at actual data area.
nov ax, ds ;Return ptr in es:di.
nov es, ax

Processes, Coroutines, and Concurrency

nmov ax, 0 ; Return success.
pop bx

pop ds

iret

; If the current free block is larger than the request, but not by nore
; that 32 bytes, just give the whole block to the user.

QG abWol eBl k: nov di, bx
nmov cX, [bx].Bl kSize ;Return actual size.
cnp [bx].Prev, NLL ;First guy inlist?
je Rnv1st
cnp [bx].Next, NULL ;Last guy in list?
je RnvLast

; kay, this record is sandw ched between two other in the free list.
; Qut it out fromanong the two.

nmov ax, [bx].Next ;Save the ptr to the next
nmov bx, [bx].Prev ; itemin the prev itenis
nmov [bx]. Next, ax ;o next field.

nmov ax, bx ; Save the ptr to the prev
nmov bx, [di]. Next ; itemin the next items
nmov [bx].Prev, bx ; prev field.

jnp RvDone

; The block we want to renove is at the beginning of the free list.
; It could also be the only itemon the free |ist!

Rv1st: nov ax, [bx].Next
nmov FreeLi st, ax Renove fromfree |ist.
jnp RnvDone

; If the block we want to renove is at the end of the list, handl e that
down here.

RwlLast : nov bx, [bx].Prev
nmov [bx]. Next, NULL
jp RnvDone
assumne ds: not hi ng, bx: not hing, di: nothing

; This code handl es the SHWREE functi on.

; O entry, DX contains the key for the block to free. W need to

; search through the allocated block list and find the block with that
; key. If we do not find such a block, this code returns without doing
; anything. If we find the block, we need to add its nenmory to the

; free pool. However, we cannot sinply insert this block on the front
; of the free list (as we did for the allocated bl ocks). It m ght

; turn out that this block we're freeing is adjacent to one or two

; other free blocks. This code has to coal esce such bl ocks into

; a single free bl ock.

Tryshnfree: cnp al, 12h
j ne Tryshm ni t

; First, search the allocated block list to see if we can find the
; block to renove. |If we don't find it in the |ist anywhere, just return.

assune ds: Shar edMenory
assune bx: ptr Regi on
assune di:ptr Region
push ds

push di

push bx

Page 1093

Chapter 19

Page 1094

nmov bx, SharedMenory
nmov ds, bx
nmov bx, Resi dent Seg: Al | ocat edLi st
t est bx, bx ; Enpty allocated |ist?
je Fr eeDone

SrchLi st: cnp dx, [bx].Key ; Search for key in DX
je Foundl t
nmov bx, [bx]. Next
t est bx, bx At end of list?
j ne SrchLi st

Fr eeDone: pop bx
pop di ;Nothing all ocated, just
pop ds ; return to caller.
iret

; Ckay, we found the block the user wants to del ete. Rermove it from

; the allocated list. There are three cases to consider:

; (1) it is at the front of the allocated list, (2) it is at the end of
; the allocated list, and (3) it isin the nddle of the allocated |ist.

Foundl t : cnp [bx].Prev, NULL ;1st itemin list?
je Freelst
cnp [bx].Next, NLL ;Last itemin list?
je Fr eeLast

; Ckay, we're renoving an allocated itemfromthe nmddl e of the allocated

;o list.
nmov di, [bx].Next ;[next].prev := [cur].prev
nmv ax, [bx].Prev
nmv [di].Prev, ax
xchg ax, di
nov [di].Next, ax ;[prev].next := [cur].next
jnp AddFr ee

; Handl e the case where we are renoving the first itemfromthe allocation
; list. It is possible that this is the only itemon the list (i.e., it

; is the first and last iten), but this code handl es that case without any
; probl ens.

Freelst: nov ax, [bx].Next
nmov Resi dent Seg: Al | ocat edLi st, ax
jnp AddFr ee

; If we're removing the last guy in the chain, sinply set the next field
; of the previous node in the list to NULL.

Fr eeLast : nmov di, [bx].Prev
nmov [di].Next, NULL

; Ckay, now we’ve got to put the freed block onto the free block Iist.

; The free block list is sorted according to address. W have to search
; for the first free block whose address is greater than the bl ock we’' ve
; just freed and insert the new free block before that one. If the two

; bl ocks are adjacent, then we've got to nerge theminto a single free

; block. Also, if the block before is adjacent, we nust merge it as

; well. This will coalesce all free blocks on the free list so there

; are as few free bl ocks as possible and those bl ocks are as | arge as

; possi bl e.

AddFr ee: nov ax, Resident Seg: FreelLi st
t est ax, ax ; Enpty list?
j ne Sr chPosn

; If the list is enpty, stick this guy on as the only entry.

nmv Resi dent Seg: FreelLi st, bx
nov [bx]. Next, NJLL

nov [bx].Prev, NULL

jp Fr eeDone

; If the free list is not enpty,
cinthe free list:

SrchPosn: nmov
cnp
ib
nov
test
j ne

di, ax

bx, di
FoundPosn

ax, [di]. Next
ax, ax
SrchPosn

Processes, Coroutines, and Concurrency

search for the position of this bl ock

At end of list?

; If we fall down here, the free bl ock bel ongs at the end of the list.
; See if we need to merge the new bl ock with the old one.

nov
add
add
cnp
je

ax, di
ax, [di].Bl kSize
ax, 8
ax, bx

Mer gelast

; Conput e address of 1st byte
; after this block.

; Ckay, just add the free block to the end of the list.

nov
nov
mov
Jnp
; Merge the freed

Mer gelLast : nov
add
add
nov

jnp

[di].Next, bx
[bx].Prev, di

[bx]. Next, NJLL

Fr eeDone

block with the block D points at.

ax, [di].B kS ze

ax,
[di].B kS ze,
Fr eeDone

ax, [bx].Bl kS ze
8

ax

; If we found a free bl ock before which we are supposed to insert
; the current free block, drop down here and handle it.

FoundPosn: nov
add
add
cnp
j ne

ax, bx
ax,

ax, di
Dont Mer ge

; Conput e the address of the

ax, [bx].Bl kSize ; next block in nenory.
8

;Equal to this bl ock?

; The next free block is adjacent to the one we're freeing, so just

; nerge the two.

nov
add
add
nov
nov
nov
nov

jnp

ax, [di].B kSize

ax, 8
[bx]. B kS ze,
ax, [di].Next

[bx]. Next, ax
ax, [di].Prev
[bx].Prev, ax
TryMer geB4

; If the bl ocks are not adjacent, just

Dont Mer ge: nmov
nmov
nmov
nmov

ax, [di].Prev

[di].Prev, bx
[bx].Prev, ax
[bx]. Next, di

; Now, see if we can merge the current

TryMer geB4: nov
nov
add
add
cnp
je
pop
pop
pop
iret

di, [bx].Prev
ax, di

ax,

ax, bx
Canher ge
bx

di

ds

; Merge the sizes together.

ax
; Tweak the |inks.

l'ink themtogether here.

free block with the previous free bl k.

|
ax, [di].B kSize
8

;Nothing all ocated, just
; return to caller.

Page 1095

Chapter 19

; If we can nmerge the previous and current free bl ocks, do that here:

Canher ge: nmov ax, [bx]. Next
nov [di].Next, ax
nmov ax, [bx].Bl kSize
add ax, 8
add [di].B kSize, ax
pop bx
pop di
pop ds
iret
assune ds: not hi ng
assune bx: not hi ng
assume di : not hi ng

; Here’s where we handl e the shared menory initializatin (SHMNT) function.
; AIl we got to do is create a single block on the free list (which is all

; available nenory), enpty out the allocated list, and then zero out all

; shared rmenory.

Tryshninit: cnp al, 13h
j ne TryShnAt t ach

; Reset the menory allocation area to contain a single, free, block of
nmenory whose size is OFFF8h (need to reserve eight bytes for the bl ock’s
; data structure).

push es

push di

push cX

nmov ax, SharedMenory ;Zero out the shared
nov es, ax ; menory segment.
nmov cx, 32768

xor ax, ax

nov di, ax

rep st osw

Note: the commented out |ines bel ow are unnecessary since the code above
has al ready zeroed out the entire shared nenory segnent.
Note: we cannot put the first record at offset zero because offset zero

is the special value for the NULL pointer. W'll| use 4 instead.
nmov di, 4
; nmov es:[di].Region.Key, O ;Key is arbitrary.
; nov es:[di].Region.Next, O ;No other entries.
; nov es:[di].Region.Prev, 0 ; Dtto.
nov es:[di]. Region. Bl kSi ze, OFFF8h ; Rest of segnent.
nmov Resi dent Seg: FreelLi st, di
pop cX
pop di
pop es
nov ax, 0 ;Return no error.
iret

; Handl e the SHVATTACH function here. On entry, DX contains a key nunber.
; Search for an allocated block with that key nunber and return a pointer
; tothat block (if found) in ES:DI. Return an error code (AX=3) if we

; cannot find the bl ock.

TryShmAttach: cnp al, 14h ; Attach opcode.
j ne I'l'legal O
nmov ax, SharedMenory
nov es, ax
nov di, ResidentSeg: Al | ocat edLi st
Fi ndQurs: cnp dx, es:[di].Region. Key
je FoundQur s
nov di, es:[di].Region. Next

Page 1096

Processes, Coroutines, and Concurrency

t est di, di
j ne FoundQur s
nmov ax, 3 ;Can’t find the key.
iret
FoundQur s: add di, 8 ;Point at actual data
nmv ax, O i No error.
iret
; They called us with an illegal subfunction value. Try to do as little
; danage as possible
Il egal Op: nmov ax, 0 ; Who knows what they were thinking?
iret
M/ nt 2F endp
assume ds: not hi ng
Resi dent Seg ends

; Here’s the segnent that will actually hold the shared data

Shar edMenor y

Shar edMenor y

cseg

. Seel f Present -

’

Seel f Present

| DLoop

TryNext :

Success:

Seel f Present

Fi ndl D-

Fi ndl D

segment para public ‘ Shared

db OFFFFh dup (?)

ends

segment para public ‘code

assumre cs: cseg, ds: Resident Seg
Checks to see if our TSRis already present in nenory.
Sets the zero flag if it is, clears the zero flag if
it is not.

proc near

push es

push ds

push di

nmov cx, Offh ;Start with | D OFFh.

nov ah, cl

push cX

nmov al, 0 ; Verify presence call

i nt 2Fh

pop cX

cnp al, 0 ;Present in menory?

je Tr yNext

strcnp

byt e “Dynam ¢ Shared Menory TSR', O

je Success

dec cl ; Test USER I Ds of 80h..FFh

js | DLoop

cnp cx, 0 ;A ear zero flag.

pop di

pop ds

pop es

ret

endp

Determnes the first (well, last actually) TSR ID avail abl e

inthe miltiplex interrupt chain. Returns this value in
the CL register.

Returns the zero flag set if it |ocates an enpty sl ot
Returns the zero flag clear if failure.

proc
push

near
es

Page 1097

Chapter 19

push ds
push di
nmov cx, Offh ;Start with | D OFFh.
| DLoop: nov ah, cl
push cX
nov al, 0 ;Verify presence call.
int 2Fh
pop cX
cnp al, 0 ; Present in nenory?
je Success
dec cl ; Test USER | Ds of 80h..FFh
is | DLoop
xor CX, CX
cnp cx, 1 ;A ear zero flag
Success: pop di
pop ds
pop es
ret
Fi ndl D endp
Mai n proc
mem ni t
nov ax, Resident Seg
nov ds, ax
nmov ah, 62h ;Get this programs PSP
int 21h ; val ue.
nmov PSP, bx

; Before we do anything el se, we need to check the command |ine
; paraneters. |If there is one, and it is the word “REMOVE’, then renove
the resident copy fromnenory using the nultiplex (2Fh) interrupt.

argc
cnp cx, 1 ; Must have 0 or 1 parns.
ib Tst Present
je DoRenove
Usage: print
byt e “Usage:”, cr, | f
byte “ shmalloc”,cr, | f
byte “or shmall oc REMOVE", cr,If,0
Exi t Pgm

; Check for the REMOVE conmand.

DoRenove: mov ax, 1
ar gv
stricnpl
byt e “REMOVE’, 0
j ne Usage
call Seel f Present
je Renovel t
print
byt e “TSR is not present in menory, cannot renove”
byt e cr,If,0
Exi t Pgm
Renovel t: nmov MTSRI D, cl
printf
byte “Renoving TSR (I D #%) frommenmory...”,0
dword M/TSR D
nmov ah, cl
nmov al, 1 ; Renove cnd, ah contains ID
int 2Fh
cnp al, 1 ; Succeed?
je RwvFai | ure
print

Page 1098

Processes, Coroutines, and Concurrency

byte “renmoved. ", cr,1f,0
Exi t Pgm
RnvFai | ure: print
byt e cr,lf
byt e “Could not renove TSR frommenory.”, cr,|f
byt e “Try renmoving other TSRs in the reverse order “
byt e “you installed them”,cr,If,0
Exi t Pgm

; Ckay, see if the TSRis already in menory. |If so, abort the
; installation process.

Tst Present: call Seel f Present
j ne Get TSR D
print
byt e “TSR is already present in menory.”,cr,|f
byt e “Aborting installation process”,cr,|f,0
Exi t Pgm

; Get an IDfor our TSR and save it away.

Get TSR D call Fi ndl D
je Get Fi | eNane
print
byt e “Too many resident TSRs, cannot install”,cr,If,0
Exi t Pgm

; Things |l ook cool so far, so install the interrupts

Cet Fi | eNane: nmov M/ TSR D, cl
print
byt e “Installing interrupts...”,0

; Patch into the INT 2Fh interrupt chain.

cli ; Turn of f interrupts!
nmov ax, O

nmv es, ax

nmv ax, es:[2Fh*4]

nmov word ptr Adlnt2F, ax

nov ax, es:[2Fh*4 + 2]

nmov word ptr Qdlnt2F+2, ax

nmv es: [2Fh*4], offset M/ nt2F

nov es: [2Fh*4+2], seg Resi dent Seg

sti ; Ckay, ints back on.

; W&’'re hooked up, the only thing that remains is to initialize the shared
; menory segnent and then termnate and stay resident.

printf
byte “Installed, TSRID #%."”,cr,If,0
dword M/ TSR D
nmv ah, M/TSR D ;Initialization call.
nov al, 13h
int 2Fh
nmov dx, EndResi dent ; Conput e size of program
sub dx, PSP
nmv ax, 3100h ; DOB TSR conmand.
int 21h
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk db 256 dup (?)
sseg ends

Page 1099

Chapter 19

Page 1100

zz77777S€eg segnent

Last Byt es db

zz277775€g ends
end

para public ‘zzzzzz’
16 dup (?)

Mai n

We can modify the two applications from the previous section to try out this code:

SHVAPP3. ASM

This is a shared nermory application that

.xli st
i ncl ude stdlib.a
includelib stdlib.lib
st
dseg segment para public ‘data’
Shm D byt e 0
dseg ends
cseg segment para public ‘code’
assumre cs: cseg, ds:dseg,

;. Seel fPresent-Checks to see if the shared
; Sets the zero flag if it is,

uses the dynam c shared nenory

TSR (SHVALLOC. ASM). This programinputs a string fromthe user and
passes that string to SHVAPP4. ASMt hr ough the shared menory area.

es: Shar edMernor y

menmory TSR is present in menory.
clears the zero flag if

; it is not.
Seel f Present proc
push
push
push
nmov
| DLoop: nov
push
nov
int
pop
cnp
je
strcnp
byt e
je

TryNext : dec
js
cnp

Success: pop
pop
pop
ret

Seel f Present endp

This routine also returns the TSRIDin C.

near

es

ds

di

cx, Offh ;Start with | D OFFh.
ah, cl

cX

al, 0 ; Verify presence call.
2Fh

cX

al, 0 ; Present in menory?
Tr yNext

“Dynam ¢ Shared Menory TSR', O

Success

cl ; Test USER | Ds of 80h..FFh
| DLoop

cx, 0 ;A ear zero flag.

di

ds

es

; The main programfor application #1 links with the shared nenory
; TSR and then reads a string fromthe user (storing the string into
; shared menory) and then term nates.

Mai n proc
assume
nov
nov

mem ni t

cs: cseg, ds:dseg, es: SharedMenory
ax, dseg
ds, ax

Processes, Coroutines, and Concurrency

print
byt e “Shared nmenory application #3",cr,1f,0

; See if the shared nenory TSR is around

call Seel f Present

je It sThere

print

byte “Shared Menory TSR (SHVALLQOC) is not |oaded.”,cr,|f
byte “Thi s program cannot continue execution.”,cr,If,0
Exi t Pgm

; Get the input line fromthe user

ItsThere

nov sShm D, cl

print

byt e “Enter a string: “,0

| ea di, InputlLine ;ES al ready points at proper seg
get sm

; The string is in our heap space. Let’s nove it over to the shared
; nenory segnent.

Qit:
Mai n

cseg

sseg

stk

sseg
zzzz77s€g

Last Byt es
2272777s€eg

SHVAPP4. ASM

strlen

inc cX ; Add one for zero byte.
push es

push di

nmov dx, 1234h ;Qur “key” val ue

nmov ah, Shm D

nmov al, 11h :Shmal l oc call .

int 2Fh

nmov si, di ; Save as dest ptr.

nov dx, es

pop di ;Retrive source address.
pop es

strcpy ; Copy fromlocal to shared
print

byte “Entered ‘”,0

puts

print

byt e “‘ into shared nenmory.”,cr,If,0

Exi t Pgm ; DCB macro to quit program
endp

ends

segment para stack ‘stack’

db 1024 dup (“stack “)

ends

segment para public ‘zzzzzz

db 16 dup (?)

ends

end Mai n

This is a shared nenmory application that uses the dynam c shared nenory
TSR (SHVALLCC. ASNM). This program assunes the user has already run the
SHVAPP3 programto insert a string into shared menory. This program

Page 1101

Chapter 19

Page 1102

; sinply prints that string fromshared nmenory.
' xlist

i ncl ude stdlib.a

includelib stdlib.lib

st
dseg segment para public ‘data’
Shm D byt e 0
dseg ends
cseg segnent para public ‘code’
assune cs: cseg, ds:dseg, es:SharedMenory

; SeelfPresent-Checks to see if the shared nenmory TSR is present in nenory.
; Sets the zero flag if it is, clears the zero flag if
; it isnot. This routine also returns the TSRID in CL.

Seel fPresent proc near

push es

push ds

push di

nmov cx, Offh Start with | D OFFh.
| DLoop: nov ah, cl

push CX

nmv al, 0 ; Verify presence call.

int 2Fh

pop cX

cnp al, 0 ; Present in menory?

je Tr yNext

st rcnpl

byte “Dynam ¢ Shared Menory TSR', O

je Success
TryNext : dec cl : Test USER | Ds of 80h..FFh

is | DLoop

cnp cx, O ;A ear zero flag.
Success: pop di

pop ds

pop es

ret

Seel f Present endp

; The main programfor application #1 links with the shared nenory
; TSR and then reads a string fromthe user (storing the string into
; shared nenory) and then term nates.

Mai n proc
assume cs: cseg, ds:dseg, es: SharedMenory
nmov ax, dseg
nmov ds, ax
mem ni t
print
byt e “Shared nmenory application #4”,cr,1f,0

; See if the shared menmory TSR is around:

call Seel f Present

je I tsThere

print

byt e “Shared Menory TSR (SHVALLOC) is not |oaded.”,cr,|f
byte “Thi s program cannot continue execution.”,cr,If,0
Exi t Pgm

; If the shared nenory TSR is present, get the address of the shared segment
; into the ES register:

It sThere: nov ah, cl ;1D of our TSR
nov al, 14h ;Attach call
nmov dx, 1234h; Qur “key” val ue
int 2Fh

Processes, Coroutines, and Concurrency

; Print the string input in SHVAPPS:

print
byt e “String fromSHVWAPP3 is ‘", 0
puts
print
byte “* fromshared menory.”,cr,|f,0
Quit: Exi t Pgm ;DOS macro to quit program
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends
z777277s€eg segrrent para public ‘zzzzzz’
Last Byt es db 16 dup (?)
zz777725€g ends
end Mai n

19.3 Coroutines

DOS processes, even when using shared memory, suffer from one primary drawback - each program
executes to completion before returning control back to the parent process. While this paradigm is suit-
able for many applications, it certainly does not suffice for all. A common paradigm is for two programs to
swap control of the CPU back and forth while executing. This mechanism, slightly different from the sub-
routine call and return mechanism, is a coroutine.

Before discussing coroutines, it is probably a good idea to provide a solid definition for the term pro-
cess. In a nutshell, a process is a program that is executing. A program can exist on the disk; processes
exist in memory and have a program stack (with return addresses, etc.) associated with them. If there are
multiple processes in memory at one time, each process must have its own program stack.

A cocall operation transfers control between two processes. A cocall is effectively a call and a return
instruction all rolled into one operation. From the point of view of the process executing the cocall, the
cocall operation is equivalent to a procedure call; from the point of view of the processing being called,
the cocall operation is equivalent to a return operation. When the second process cocalls the first, control
resumes not at the beginning of the first process, but immediately after the cocall operation. If two pro-
cesses execute a sequence of mutual cocalls, control will transfer between the two processes in the follow-
ing fashion:

Page 1103

Chapter 19

Process #1 Process #2

/

\

cocall prcs2

d
\

——cocall prcsl

ad

cocall pres2 =

cocall prcs2 ~

\

\ cocall presl
A

/RN AN

\cocall presl

Y

Cocall Sequence Between Two Processes

Cocalls are quite useful for games where the “players” take turns, following different strategies. The
first player executes some code to make its first move, then cocalls the second player and allows it to make
amove. After the second player makes its move, it cocalls the first process and gives the first player its sec-
ond move, picking up immediately after its cocall. This transfer of control bounces back and forth until
one player wins.

The 80x86 CPUs do not provide a cocall instruction. However, it is easy to implement cocalls with
existing instructions. Even so, there is little need for you to supply your own cocall mechanism, the UCR
Standard Library provides a cocall package for 8086, 80186, and 80286 processors?. This package includes
the pcb (process control block) data structure and three functions you can call: coinit, cocall, and
cocalll.

The pcb structure maintains the current state of a process. The pcb maintains all the register values
and other accounting information for a process. When a process makes a cocall, it stores the return
address for the cocall in the pcb. Later, when some other process cocalls this process, the cocall operation
simply reloads the registers, include cs:ip, from the pcb and that returns control to the next instruction
after the first process’ cocall. The pcb structure takes the following form:

pch struct

2. The cocall package works fine with the other processors as long as you don't use the 32-bit register set. Later, we will discuss how to extend the
Standard Library routines to handle the 32-bit capabilities of the 80386 and late processors.

Page 1104

Processes, Coroutines, and Concurrency

Next Pr oc dwor d ? ;Link to next PCB (for multitasking).
regsp wor d ?

regss wor d ?

regip wor d ?

regcs wor d ?

r egax word ?

r egbx word ?

regcx word ?

r egdx word ?

regsi word ?

regdi wor d ?

regbp wor d ?

regds wor d ?

reges wor d ?

regf | ags wor d ?

Prcsi D wor d ?

StartingTime dword ? ;Used for multitaski ng accounting.
StartingDate dword ? ; Used for nultitasking accounting.
CPUTI ne dwor d ?

; Used for multitasking accounting.

Four of these fields (as labelled) exist for preemptive multitasking and have no meaning for coroutines.
We will discuss preemptive multitasking in the next section.

There are two important things that should be evident from this structure. First, the main reason the
existing Standard Library coroutine support is limited to 16 bit register is because there is only room for the
16 bit versions of each of the registers in the pcb. If you want to support the 80386 and later 32 bit register
sets, you would need to modify the pcb structure and the code that saves and restores registers in the
pcb.

The second thing that should be evident is that the coroutine code preserves all registers across a
cocall. This means you cannot pass information from one process to another in the registers when using a
cocall. You will need to pass data between processes in global memory locations. Since coroutines gener-
ally exist in the same program, you will not even need to resort to the shared memory techniques. Any
variables you declare in your data segment will be visible to all coroutines.

Note, by the way, that a program may contain more than two coroutines. If coroutine one cocalls
coroutine two, and coroutine two cocalls coroutine three, and then coroutine three cocalls coroutine one,
coroutine one picks up immediately after the cocall it made to coroutine two.

Process #1 Process #2 Process #3
cocall prcs2] cocall prcsS/
—

\

[~ cocall prcsl

Cocalls Between Three Processes

Since a cocall effectively returns to the target coroutine, you might wonder what happens on the
first cocall to any process. After all, if that process has not executed any code, there is no “return address”
where you can resume execution. This is an easy problem to solve, we need only initialize the return
address of such a process to the address of the first instruction to execute in that process.

Page 1105

Chapter 19

Page 1106

A similar problem exists for the stack. When a program begins execution, the main program (corou-
tine one) takes control and uses the stack associated with the entire program. Since each process must
have its own stack, where do the other coroutines get their stacks?

The easiest way to initialize the stack and initial address for a coroutine is to do this when declaring a
pcb for a process. Consider the following pcb variable declaration:
Pr ocessTwo pcb {0, of f set EndStack2, seg EndStack2,
offset StartlLoc2, seg StartlLoc2}
This definition initializes the NextProc field with NULL (the Standard Library coroutine functions do not
use this field) and initialize the ss:sp and cs:ip fields with the last address of a stack area (EndStack?2)
and the first instruction of the process (StartLoc2). Now all you need to do is reserve a reasonable
amount of stack storage for the process. You can create multiple stacks in the SHELL.ASM sseg as follows:

sseg segnent para stack ‘stack’
; Stack for process #2:

stk2 byt e 1024 dup (?)
EndSt ack2 wor d ?

; Stack for process #3:

stk3 byt e 1024 dup (?)
EndSt ack3 wor d ?

; The prinmary stack for the main program (process #1) nust appear at
; the end of sseg.

stk byt e 1024 dup (?)
sseg ends

There is the question of “how much space should one reserve for each stack?” This, of course, varies
with the application. If you have a simple application that doesn't use recursion or allocate any local vari-
ables on the stack, you could get by with as little as 256 bytes of stack space for a process. On the other
hand, if you have recursive routines or allocate storage on the stack, you will need considerably more
space. For simple programs, 1-8K stack storage should be sufficient. Keep in mind that you can allocate a
maximum of 64K in the SHELL.ASM sseg. If you need additional stack space, you will need to up the other
stacks in a different segment (they do not need to be in sseg, it's just a convenient place for them) or you
will need to allocate the stack space differently.

Note that you do not have to allocate the stack space as an array within your program. You can also
allocate stack space dynamically using the Standard Library malloc call. The following code demon-
strates how to set up an 8K dynamically allocated stack for the pcb variable Process2:

mv cx, 8192

mal | oc

jc I nsuf fi ci ent Room
mov Process?2. ss, es
nmov Process2. sp, di

Setting up the coroutines the main program will call is pretty easy. However, there is the issue of set-
ting up the pcb for the main program. You cannot initialize the pcb for the main program the same way
you initialize the pcb for the other processes; it is already running and has valid cs:ip and ss:sp values.
Were you to initialize the main program’s pcb the same way we did for the other processes, the system
would simply restart the main program when you make a cocall back to it. To initialize the pcb for the
main program, you must use the coinit function. The coinit function expects you to pass it the address
of the main program’s pcb in the es:di register pair. It initializes some variables internal to the Standard
Library so the first cocall operation will save the 80x86 machine state in the pcb you specify by es:di.
After the coinit call, you can begin making cocalls to other processes in your program.

Processes, Coroutines, and Concurrency

To cocall a coroutine, you use the Standard Library cocall function. The cocall function call takes
two forms. Without any parameters this function transfers control to the coroutine whose pcb address
appears in the es:di register pair. If the address of a pcb appears in the operand field of this instruction,
cocall transfers control to the specified coroutine (don't forget, the name of the pcb, not the process,
must appear in the operand field).

The best way to learn how to use coroutines is via example. The following program is an interesting
piece of code that generates mazes on the PC's display. The maze generation algorithm has one major
constraint - there must be no more than one correct solution to the maze (it is possible for there to be no
solution). The main program creates a set of background processes called “demons” (actually, daemon is
the correct term, but demon sounds more appropriate here). Each demon begins carving out a portion of
the maze subject to the main constraint. Each demon gets to dig one cell from the maze and then it passes
control to another demon. As it turns out, demons can “dig themselves into a corner” and die (demons live
only to dig). When this happens, the demon removes itself from the list of active demons. When all
demons die off, the maze is (in theory) complete. Since the demons die off fairly regularly, there must be
some mechanism to create new demons. Therefore, this program randomly spawns new demons who
start digging their own tunnels perpendicular to their parents. This helps ensure that there is a sufficient
supply of demons to dig out the entire maze; the demons all die off only when there are no, or few, cells
remaining to dig in the maze.

; ANMAZE. ASM

A maze generation/sol ution program
: Thi s program generates an 80x25 nmaze and directly draws the maze on the
; video display. It denonstrates the use of coroutines within a program
.xli st
i ncl ude stdlib.a
includelib stdlib.lib

st
byp t extequ <byte ptr>
dseg segnent para public ‘data’

Const ant s:

Define the “ToScreen” synbol (to any value) if the maze is 80x25 and you
; want to display it on the video screen.

ToScr een equ 0

; Maxi mum X and Y coordi nates for the maze (matching the display).

MaxXCoor d equ 80
MaxYCoor d equ 25

; Wseful X Y constants:

WrdsPerRow = MaxXCoor d+2

Byt esPer Row = VWr dsPer Row* 2

Start X equ 1 ;Starting X coordinate for naze
StartyY equ 3 ;Starting Y coordinate for naze
EndX equ MaxXCoor d ; Ending X coordinate for maze
EndY equ MaxYCoor d- 1 ;Ending Y coordinate for maze
EndLoc = ((EndY-1)*MaxXCoord + EndX-1)*2

StartLoc = ((StartY-1)*MaxXCoord + StartX-1)*2

; Special 16-bit PC character codes for the screen for synbols drawn during
; maze generation. See the chapter on the video display for details.

i fdef nono ; Mono di spl ay adapt er.

Wl | Char equ 7dbh ;Solid bl ock character

Page 1107

Chapter 19

Page 1108

NoWél | Char equ 720h ; space
Vi si t Char equ 72eh ; Peri od
Pat hChar equ 72ah ; Asteri sk
el se ; Col or display adapter.
Ml | Char equ 1dbh ;Solid bl ock character
NoVél | Char equ Oedbh ; space
Vi si t Char equ Obdbh ; Period
Pat hChar equ 4e2ah ; Asterisk
endi f

; The following are the constants that nmay appear in the Maze array:

Wal | = 0
NowWal | = 1
Visited = 2

; The following are the directions the denmons can go in the maze

North = 0
Sout h = 1
East = 2
Vst = 3

; Sone inportant variabl es:

; The Maze array must contain an extra row and col umm around the

; outside edges for our algorithmto work properly.

Maze wor d (MaxYCoor d+2) dup ((MaxXCoord+2) dup (Véll))
; The foll ow macro conputes an index into the above array assum ng

; adenmon’s X and Y coordinates are in the dl and dh regi sters, respectively.
; Returns index in the AX register

MazeAdr s nacro
nmov al, dh
nmv ah, WrdsPerRow ;Index into array is conputed
mul ah ; by (Yfwords/row + X)*2.
add al, dl
adc ah, 0
shl ax, 1 ; Convert to byte index
endm

The foll owi ng macro conputes an index into the screen array, using the
sane assunptions as above. Note that the screen matrix i s 80x25 whereas
the maze matrix is 82x27; The X/ Y coordinates in DL/DH are 1..80 and
1..25 rather than 0..79 and 0..24 (like we need). This macro adj usts
for that.

)
)
’
’
)

ScrnAdrs nacr o
nmov al, dh
dec al
nov ah, MaxXCoord
mul ah
add al, d
adc ah, 0
dec ax
shl ax, 1
endm

; PCB for the main program The last live denon will call this guy when
; 1t dies.

Mai nPCB pchb {}

Processes, Coroutines, and Concurrency

; List of up to 32 denons.

MaxDernons = 32 ; Must be a power of two.
MbdDernons = MaxDenons- 1 ; Mask for MOD conput ati on.
DenonLi st pcb MaxDerons dup ({})

Denonl ndex byt e 0 ;Index into denon |ist.
Dermonnt byt e 0 ; Nunber of dermons in |ist.

; Random nunber generator seed (we'll use our random nunber generator
rather than the standard library’ s because we want to be able to specify
;aninitial seed val ue).

Seed wor d 0

dseg ends

; The following is the segnent address of the video display, change this
from 0B800Oh to OBOOOh if you have a monochromre display rather than a
; color display.

Scr eenSeg segnent at 0b800h
Screen equ this word ;Don't generate in date herel
Scr eenSeg ends
cseg segment para public ‘code’
assumre cs: cseg, ds:dseg

; Totally bogus random nunber generator, but we don't need a really
; great one for this program This code uses its own random nunber
; generator rather than the one in the Standard Library so we can

; allowthe user to use a fixed seed to produce the same maze (with
; the sane seed) or different nmazes (by choosing different seeds).

RandNum pr oc near
push cX
nmov cl, byte ptr Seed
and cl, 7
add cl, 4
nmov ax, Seed
xor ax, bbaah
rol ax, cl
xor ax, Seed
inc ax
nov Seed, ax
pop cX
ret

RandNum endp

; Init- Handles all the initialization chores for the main program
; In particular, it initializes the coroutine package, gets a
; random nunber seed fromthe user, and initializes the video display.

I nit proc near
print
byt e “Enter a snall integer for a random nunber seed:”, 0
getsm
at oi
free
mov Seed, ax
; Fill the interior of the maze with wall characters, fill the outside

; two rows and colums with nowal I values. This will prevent the denons
; fromwandering outside the maze.

; Fill the first rowwth Visited val ues.

Page 1109

Chapter 19

Page 1110

’

cld

nmov cx, WrdsPer Row
| esi Maze

mov ax, Visited

rep stosw
Fill the last row with NoWal |l val ues.
nov cx, WrdsPer Row
| ea di, Maze+(MaxYCoor d+1) * Byt esPer Row
rep stosw

Wite a Nowal | value to the starting position:

nmv Maze+(St art Y*Wor dsPer Rowt+St art X) *2, NoVal |

Wite NoWal | values along the two vertical edges of the naze.

| esi Maze
nmov cx, MaxYCoord+1
EdgesLoop: nmov es:[di], ax ;Plug the left edge.
nov es: [di +Byt esPer Row 2], ax ;Plug the right edge.
add di, BytesPer Row
| oop EdgesLoop
i f def ToScr een
; Ckay, fill the screen with Val | Char val ues:
| esi Screen
nmov ax, Wall Char
nmov cx, 2000

’

rep stosw

Wite appropriate characters to the starting and endi ng | ocations:

nmov word ptr es: Screen+EndLoc, Pat hChar
nmov word ptr es:Screen+StartLoc, NoWl | Char
endi f ; ToScreen

Zero out the DenonlLi st:

nov cx, (size pcb)*MaxDenons
| ea di, DenonlLi st

nmv ax, dseg

nov es, ax

xor ax, ax

rep stosb

ret
ni t endp

CanStart- This function checks around the current position
to see if the naze generator can start digging a new tunnel
in adirection perpendicular to the current tunnel. You can
only start a newtunnel if there are wall characters for at
least two positions in the desired direction:

H#H
*H#
H#H

If “*" is current position and “#" represent wall characters
and the current direction is north or south, then it is okay
for the naze generator to start a new path in the east dir-
ection. Assuming “.” represents a tunnel, you cannot start

a newtunnel in the east direction if any of the foll ow ng
patterns occur:

’
’
)
i
i
)
)
)
1
)
’

Processes, Coroutines, and Concurrency

CH #. ## ## ## H##
THE O HH L # *#. > *HH
Hit H## ## Hi# H #.

CanStart returns true (carry set) if we can start a new tunnel off the
path being dug by the current denon.

O entry, dl is denmon’s X- Coordi nate
dh is dermon’s Y-Coordinate
cl is denon’'s direction

CanStart proc near
push ax
push bx
MazeAdr s ; Conpute index to demon(x,y) in nmaze.
nmov bx, ax

CL contains the current direction, O=north, 1l=south, 2=east, 3=west.
Note that we can test bit #1 for north/south (0) or east/west (1).

t est cl, 10b :See if north/south or east/west
jz Nor t hSout h

If the denon is going in an east or west direction, we can start a new
tunnel if there are six wall blocks just above or bel ow the current denon.
Note: W are checking if all values in these six blocks are Wall val ues.
Thi s code depends on the fact that Vall characters are zero and the sum
of these six blocks will be zero if a nmove is possible.

nmov al, byp Maze[bx+Byt esPer Row*2] ; Maze[x, y+2]
add al, byp Maze[bx+Byt esPer Row*2+2] ; Maze[x+1, y+2]
add al, byp Maze[bx+Byt esPer Row*2-2] ; Maze[x- 1, y+2]
je Ret ur nTr ue
nmv al, byp Maze[bx- Byt esPer Row 2] ; Maze[x, Yy-2]
add al, byp Maze[bx- Byt esPer Row*2+2] ; Maze[x+1, y- 2]
add al, byp Maze[bx- Byt esPer Row*2- 2] ; Maze[x-1, y-2]
je Ret ur nTr ue

ReturnFal se: clc ;Aear carry = fal se.
pop bx
pop ax
ret

If the denon is going in a north or south direction, we can start a
new tunnel if there are six wall blocks just to the left or right
of the current deron.

Nor t hSout h: nov al, byp Maze[bx+4] ; Maze[x+2, y]
add al, byp Maze[bx+Byt esPer Row+4] ; Maze[x+2, y+1]
add al, byp Maze[bx- Byt esPer Row+4] ; Maze[x+2, y- 1]
je Ret ur nTr ue
nov al, byp Maze[bx-4]; Maze[x-2,y]
add al, byp Maze[bx+Byt esPer Row 4] ; Maze[x- 2, y+1]
add al, byp Maze[bx- Byt esPer Row 4] ; Maze[x- 2, y- 1]
j ne Ret ur nFal se

Ret ur nTr ue: stc ;Set carry = true.
pop bx
pop ax
ret

CanSt art endp

CanMove- Tests to see if the current denon (dir=cl, x=dl, y=dh) can

nove in the specified direction. Mwverment is possible if

the denon will not come within one square of another tunnel.
This function returns true (carry set) if a nove is possible.
On entry, CHcontains the direction this code should test.

Page 1111

Chapter 19

Page 1112

CanMove

proc
push
push

MazeAdr s
nov

cnp
ib
je
cnp
je

ax
bx

; Put @hze[x,y] into ax.
bx, ax

ch, South
IsNorth

| sSout h
ch, East
| sEast

; If the denon is noving west, check the blocks in the rectangl e forned
; by Maze[x-2,y-1] to Maze[x-1,y+1] to nmake sure they are all wall val ues.

Ret ur nFal se:

nov
add
add
add
add
add
je
clc
pop
pop
ret

al, byp Maze[bx- Byt esPer Row 4] ; Maze[x-2, y-1]
al, byp Maze[bx- Byt esPer Row 2] ; Maze[x-1, y-1]
al, byp Maze[bx-4]; Maze[x-2, vy]

al, byp Maze[bx-2]; Maze[x-1, y]

al, byp Maze[bx+Byt esPer Row 4] ; Maze[x- 2, y+1]
al, byp Maze[bx+Byt esPer Row 2] ; Maze[x- 1, y+1]
Ret ur nTr ue

bx
ax

; If the denmon is going east, check the blocks in the rectangle formed
; by Maze[x+1,y-1] to Maze[x+2,y+1] to nake sure they are all wall val ues.

| sEast :

Ret ur nTr ue:

nov
add
add
add
add
add
j ne
stc
pop
pop
ret

al, byp Maze[bx- Byt esPer Rowt+4] ; Maze[x+2, y-1]
al, byp Maze[bx- Byt esPer Row+2] ; Maze[x+1, y-1]
al, byp Maze[bx+4]; Maze[x+2, y]

al, byp Maze[bx+2]; Maze[x+1, Y]

al, byp Maze[bx+Byt esPer Row+4] ; Maze[x+2, y+1]
al, byp Maze[bx+Byt esPer Row+2] ; Maze[x+1, y+1]
Ret ur nFal se

bx
ax

; If the denon is going north, check the blocks in the rectangl e forned
; by Maze[x-1,y-2] to Maze[x+1,y-1] to make sure they are all wall val ues.

IsNorth:

nov
add
add
add
add
add
j ne
stc
pop
pop
ret

al, byp Maze[bx- Byt esPer Row 2] ; Maze[x-1, y-1]
al, byp Maze[bx- Byt esPer Row*2- 2] ; Maze[x- 1, y-2]
al, byp Maze[bx- Byt esPer Row ; Maze[x, y-1]

al, byp Maze[bx- Byt esPer Row* 2] ; Maze[x, y-2]

al, byp Maze[bx- Byt esPer Row+2] ; Maze[x+1, y-1]
al, byp Maze[bx- Byt esPer Row*2+2] ; Maze[x+1, y-2]
Ret ur nFal se

bx
ax

; If the denon is going south, check the blocks in the rectangl e forned
; by Maze[x-1,y+2] to Maze[x+1,y+1] to nake sure they are all wall val ues.

| sSout h:

nov
add
add
add
add
add
j ne
stc

al, byp Maze[bx+Byt esPer Row 2] ; Maze[x-1, y+1]
al, byp Maze[bx+Byt esPer Row* 2- 2] ; Maze[x-1, y+2]
al, byp Maze[bx+Byt esPer Row ; Maze[x, y+1]

al, byp Maze[bx+Byt esPer Row 2] ; Maze[X, y+2]

al, byp Maze[bx+Byt esPer Row+2] ; Maze[x+1, y+1]
al, byp Maze[bx+Byt esPer Row*2+2] ; Maze[x+1, y+2]
Ret ur nFal se

Processes, Coroutines, and Concurrency

pop bx
pop ax
ret

CanMove endp

SetDir- Changes the current direction. The nmaze diggi ng al gorithm has
deci ded to change the direction of the tunnel begin dug by one

of the dermons. This code checks to see if we CAN change the direction,
and picks a new direction if possible.

; If the denmon is going north or south, a direction change causes the denon
; to go east or west. Likewise, if the denon is going east or west, a

; direction change forces it to go north or south. If the denmon cannot

; change directions (because it cannot nove in the new direction for one

; reason or another), SetDir returns without doing anything. If a direction
; change is possible, then SetDr selects a newdirection. If there is only
; one possible newdirection, the demon is sent off in that direction.

: If the denon could nove off in one of two different directions, SetDr

; “flips a coin” to choose one of the two new directions.

This function returns the newdirection in al.

SetDir pr oc near
t est cl, 10b ;See if north/south
je I sNS ; or east/west direction.

; W're going east or west. If we can nove El THER north or south from

; this point, randomy choose one of the directions. If we can only

; nove one way or the other, choose that direction. If we can't go either
; way, return without changing the direction.

mov ch, North ;See if we can nove north
call CanMove
jnc Not Nor t h
nov ch, South ;See if we can nove south
cal | CanMove
jnc DoNor t h
call RandNum ;CGet a randomdirection
and ax, 1 :Make it north or south.
ret

DoNort h: nmov ax, North
ret

Not Nort h: nov ch, South
cal | CanMove
jnc TryRever se

DoSout h: nov ax, South
ret

; If the denon is noving north or south, choose a new direction of east
; or west, if possible.

I SNS: nov ch, East ;See if we can nove East
cal | CanMove
jnc Not East
nov ch, Vest ;See if we can nove Wést
cal | CanMove
jnc DoEast
call RandNum :Get a randomdirection
and ax, 1b Make it East or Wst
or al, 10b
ret

DoEast : nov ax, East
ret

Page 1113

Chapter 19

DoVeést :

Not East :

nov
ret

nov
call
jc

ax, West

ch, VWest
CanMove
DoVest

; CGee, we can’t switch to a perpendicular direction, see if we can

; turn around.

TryRever se:

nov
xor
cal |
jc

ch, cl

ch, 1
CanMove
ReverseDir

; If we can’t turn around (likely), then keep going in the sane direction.

mov
mv
ret

ah, 0

al, cl ; Stay in sane direction.

. G herw se reverse direction down here.

ReverseDir:

SetDir

i Stuck-

St uck

Not St uck:
St uck

;. Next Denon-

Next Dernon

NDLoop:

Next Denon

Page 1114

nov
nov
xor
ret
endp

ah, O
al, cl
al, 1

This function checks to see if a denon is stuck and cannot
move in any direction. It returns true if the denon is
stuck and needs to be kill ed.

proc
nov
call
jc
nov
call
jc
nov
cal |
jc
nov
cal |
ret
endp

near
ch, North
CanMove
Not St uck
ch, South
CanMove
Not St uck
ch, East
CanMove
Not St uck
ch, West
CanMove

Sear ches through the denon list to find the next avail able
active denon. Return a pointer to this guy in es:di.

pr oc
push

i nc
and
nov
nmul

nov
add
cnp
je

near
ax

Denonl ndex ; Move on to next denon,
Denonl ndex, MbddDenons ; MOD MaxDenons.

al, size pcb ; Conput e index into
Denonl ndex ; DenonlLi st.

di, ax ;See if the denon at this
di, offset DenonLi st offset is active.
byp [di].pcb. Next Proc, O

NDLoop
ax, ds
es, ax
ax

Processes, Coroutines, and Concurrency

; Dg- This is the denon process.

; It noves the denon one position (if possible) inits current
; direction. After moving one position forward, there is

; a 25%chance that this guy will change its direction; there
; is a 25%chance this denon will spawn a child process to

; dig off in a perpendicular direction.

D g proc near

call
jc

t he program

dec

See if the current denon is stuck. If the denon is stuck, then we' ve
go to renmove it fromthe denon list. If it is not stuck, then have it
conti nue diggi ng.
then return control

is stuck and this is the |ast active denon,

to the main program

St uck
Not St uck

Ckay, kill the current denon.
Note: this will never kill the | ast denon because we have the tinmer
process running. The timer process is the one that al ways stops

Denmonnt

; Since the count is not zero, there nust be nore denons in the denon
; list. Free the stack space associated with the current denmon and
; then search out the next active denmon and have at it.

Mor eDenons: nmov al, size pcb
mul Denonl ndex
nmov bx, ax

; Free the stack space associated with this process. Note this code is
; haughty. It assunes the stack is allocated with the Standard Library
; malloc routine that always produces a base address of 8.

nov
nov
free

es, DenonlList[bx].regss
di, 8 ; Cheat i ng!

; Mark the dermon entry for this guy as unused.

nmov

byp DeronLi st [bx] . Next Proc, O ; Mark as unused.

; Ckay, locate the next active denon in the |ist.

FndNxt Dm: call

cocal |

Next Denon
; Never returns

; If the denon is not stuck, then continue digging away.

Not St uck: nmov ch, cl
cal | CanMove
jnc Dont Move

; If we can nove, then adjust the dermon’s coordinates appropriately:

cnp cl, South
ib MoveNort h
je MoveSout h
cnp cl, East
j ne MoveVeést
; Moving East:
inc dl
jnp MoveDone
MoveVest : dec dl

Page 1115

Chapter 19

jnp MoveDone
MoveNor t h: dec dh
jnp MoveDone

MoveSout h: i nc dh

; Ckay, store a NoVl | value at this entry in the naze and output a NoWal |
; character to the screen (if witing data to the screen).

MoveDone: MazeAdr s
nmov bx, ax
nov Maze[bx], Nowal |
i fdef ToScreen
ScrnAdr s
nov bx, ax
push es
nmov ax, ScreenSeg
nov es, ax
nmv word ptr es:[bx], NoWll Char
pop es
endi f

; Before leaving, see if this denon shouldn't change direction.

Dont Move: call RandNum
and al, 1ib ; 25% chance result is zero.
j ne NoChangeD r
call SetDr
mv cl, al
NoChangeDi r:

; Also, see if this denmon should spawn a child process

call RandNum
and al, 11b ;Qve it a 25%chance.
j ne NoSpawn

; Ckay, see if it’s possible to spawn a new process at this point:

cal | CanStart
jnc NoSpawn

; See if we've already got MaxDenons active:

cnp DenonCnt, MaxDenons
j ae NoSpawn
inc Denmonnt ; Add anot her denon.

; Ckay, create a new denon and add himto the list.

push dx ; Save cur denon info.
push CX

; Locate a free slot for this denon

| ea si, DenonList- size pcb
Fi ndS ot : add si, size pcb

cnp byp [si].pcb. NextProc, O

j ne Fi ndSl ot

; Allocate some stack space for the new denon.

nmov cx, 256 ; 256 byte stack.
nal | oc

; Set up the stack pointer for this guy:

Page 1116

add
nov
nov

di, 248

[si].pcb.regss,

es

[si].pcb.regsp, di

:Point stack at end.

; Set up the execution address for this guy:

nov
nov

[si].pch.regcs,
[si].pch.regip,

Cs

Processes, Coroutines, and Concurrency

offset Dg

; Initial coordinates and direction for this guy:

nov

[si].pch.regdx, dx

; Select a direction for this guy.

; Set up other msc junk:

; Restore current process’

NoSpawn:

; Ckay, with all
; digger. The follow ng cocall

; Denonli st.

Cet Next Dm:

pop
push

cal |
nov
nov

nov
sti
pushf
pop
nov

pop
pop

cal |

of the above done,

CX
CX

SetDr
ah, 0

[si].pch.regex,

[si]. pcb.regds,

ax

;Retrieve direction.

seg dseg

[si].pchb. regfl ags

byp [si].pcb. NextProc, 1

cX
dx

Next Deron

paraneters

:Restore current denon.

it's time to pass control
passes control

;Mark active.

on to a new

to the next digger in the

; Ckay, we've got a pointer to the next denon in the list (nmght be the

; same denon if there's only one),

Dg

;. Ti mer Denon-

Ti mer Denon

Wi t 4Change:

pocal |
Jnp
endp

Dg

pass control

Thi s deron introduces a del ay between

each cycle in the denmon list. This slows down the
naze generation so you can see the maze being built
(which makes the programnore interesting to watch).

proc
push
push

nov
nov
nov
cnp
je

cnp
je
pop
pop
call
cocal |

Jjnp

near
es

ax

ax, 40h

es, ax

ax, es:[60n]
ax, es:[6Qn]
Wi t 4Change
DenonOnt, 1
Qui t Program
es

ax

Next Derron

Ti ner Denon

:BIC8 variabl e area

;BICS tiner |ocation
; Bl GB changes this every

’

1/ 18t h second.

to that denon.

Page 1117

Chapter 19

Page 1118

QuitProgram cocal |
Ti mer Denon endp

Mai nPCB ;Quit the program

; What good is a maze generator programif it cannot solve the mazes it
; creates? Sol veMaze finds the solution (if any) for this naze. It marks
; the solution path and the paths it tried, but failed on.

function sol vemaze(x, y:integer): bool ean

sm X textequ

smY textequ

Sol veMaze pr oc
push
nov

<[bp+6] >
<[bp+4] >

near
bp
bp, sp

; See if we’'ve just solved the naze:

cnp
j ne
cnp
j ne
nmov
pop
ret

byte ptr smX EndX
Not Sol ved

byte ptr smY, EndY
Not Sol ved
ax, 1

bp

4

; Return true.

; See if moving to this spot was an illegal nmove. There will be
; a Novall value at this cell in the maze if the nove is |legal.

Not Sol ved: nmov d, smX
nmov dh, smY
MazeAdr s
nov bx, ax
cnp Maze[bx], NoWal |
je MoveK
nmov ax, 0 ;Return failure
pop bp
ret 4
; Wll, it is possible to nmove to this point, so place an appropriate

; value on the screen and keep searching for the solution.

MoveCK: nmov

i fdef
push
ScrnAdr s
nov

nov

nov

nov

pop

endi f

nov
dec
push
push
call
test
j ne

push

Maze[bx], Visited

ToScr een

es iWite a “VisitChar”
; character to the

bx, ax ; screen at this XY

ax, ScreenSeg ; position.

es, ax

word ptr es:[bx], VisitChar

es

Recusively call Sol veMaze until we get a solution. Just call SolveMaze
for the four possible directions (up, down, left, right) we could go.
Since we've left “Visited” values in the Maze, we will not accidentally
search back through the path we’ve already travelled. Furthermore, if
we cannot go in one of the four directions, SolveMaze will catch this

i nmedi ately upon entry (see the code at the start of this routine).

ax, smX ; Try the path at |ocation
ax (X1,

ax

smY

Sol veMaze

ax, ax ; Sol uti on?

Sol ved

sm X ; Try the path at |ocation

Processes, Coroutines, and Concurrency

nmov ax, smY (X Y-1)
dec ax
push ax
call Sol veMaze
test ax, ax ; Sol ution?
j ne Sol ved
nmov ax, smX ;Try the path at |ocation
inc ax ;o (X+, 0 Y)
push ax
push smY
call Sol veMaze
t est ax, ax ; Sol ution?
j ne Sol ved
push sm X ; Try the path at location
nmov ax, smY i (X Y+1)
inc ax
push ax
call Sol veMaze
t est ax, ax ; Sol uti on?
j ne Sol ved
pop bp
ret 4
Sol ved:
i fdef ToScr een ;Draw return path.
push es
nmov dl, smX
nmov dh, smY
ScrnAdr s
nmov bx, ax
nmov ax, ScreenSeg
nov es, ax
nov word ptr es:[bx], PathChar
pop es
nmov ax, 1 ;Return true
endi f
pop bp
ret 4
Sol veMaze endp

; Here's the main programthat drives the whol e thing:

Mai n proc
nov ax, dseg
nov ds, ax
nov es, ax
mem ni t
call Init ;lnitialize maze stuff.
| esi Mai nPCB ;lnitialize coroutine
coinit ; package.

; Oeate the first denon.
; Set up the stack pointer for this guy:

mv cx, 256

mal | oc

add di, 248

nmov DenonlLi st. regsp, di
nmov Denonli st . regss, es

; Set up the execution address for this guy:

nmv DenonlLi st . regcs, cs
nov DenonList.regip, offset Dg

; Initial coordinates and direction for this guy:

Page 1119

Chapter 19

Page 1120

nov
nov
nov
nov
nov

; Set up other nisc junk:

nmov

sti

pushf

pop

nov

inc

nov

; Set up the Tiner denon:

nmov
nmov

cx, East
dh, StartyY
dl, StartX

DenonlLi st. regcx, cx
DenonLi st. regdx, dx

Denonli st . regds, seg dseg

DenonlLi st . regf | ags

byp DernonlLi st. NextProc, 1
Denon(nt

Denonl ndex, O

DenonlLi st .
DenonlLi st .

; Set up the execution address for this guy:

nov
nov

; Set up other nisc junk:

nmv
sti
pushf
pop
nov
inc

; Start the ball rolling.

nmov

nmov

| ea

cocal |

; Wit for the user to press

getc

nov
push
nmov
push
call

DenonlLi st .
DenonlLi st .

DenonlLi st .

regsp+(si ze pch),
regss+(si ze pch),

regcs+(si ze pch),
regi p+(si ze pch),

regds+(si ze pch),

;Start of f going east.

;Denon is “active”.

of f set EndTi ner Stk
Ss

cs
of fset Ti mer Denon

seg dseg

DenonlLi st . regf | ags+(si ze pcb)
byp DernonlLi st. Next Proc+(si ze pch), 1

Denonnt
ax, ds
es, ax

di, DenonlLi st

ax, StartX
ax
ax, StartyY
ax
Sol veMaze

; Wit for another keystroke before quitting:

getc

nov

int
Qit: Exi t Pgm
Mai n endp
cseg ends
sseg segnent

; Stack for the tiner denon we create (we'll

stacks dynamically).

Ti mer St k
EndTi mer St k

byt e
wor d

ax, 3
10h

a key before solving the maze:

;A ear screen and reset vi deo node.

; DCB macro to quit program

para stack ‘stack’

256 dup (?)
?

al | ocate the ot her

Processes, Coroutines, and Concurrency

; Main program s stack:

stk byt e 512 dup (?)
sseg ends
zzz77277S€g segment para public *zzzzzz’
Last Byt es db 16 dup (?)
277727S€egQ ends

end Mai n

The existing Standard Library coroutine package is not suitable for programs that use the 80386 and
later 32 bit register sets. As mentioned earlier, the problem lies in the fact that the Standard Library only
preserves the 16-bit registers when switching between processes. However, it is a relatively trivial exten-
sion to modify the Standard Library so that it saves 32 bit registers. To do so, just change the definition of
the pcb (to make room for the 32 bit registers) and the s1_cocall routine:

. 386

option segnent : usel6
dseg segnent para public ‘data’
wp equ <word ptr>

; 32-bit PCB. Note we only keep the L.O 16 bits of SP since we are
; operating in real mode.

pch32 struc

regsp wor d ?

regss wor d ?

regip wor d ?

regcs wor d ?

r egeax dword ?

r egebx dword ?

regecx dword ?

r egedx dword ?

r egesi dword ?

r egedi dword ?

regebp dword ?

regds wor d ?

reges wor d ?

regfl ags dword ?

pch32 ends

Def aul t PCB pch32 <

Defaul tCortn pch32 <

Qur Coroutine dword DefaultCortn ;Points at the currently executing
; coroutine.

dseg ends

cseg segment para public ‘sl code’

32-Bit Coroutine support.

OO N T32- ES:D contains the address of the current (default) process’ PCB.

Col ni t 32 proc far
assune ds: dseg
push ax

Page 1121

Chapter 19

push ds
nmov ax, dseg
nmov ds, ax
nmov wp dseg: Qur Coroutine, d
nov wp dseg: Qur Corouti ne+2, es
pop ds
pop ax
ret
Col ni t 32 endp

; OOCALL32- transfers control to a coroutine. ES:D contains the address
; of the PCB. This routine transfers control to that coroutine and then
; returns a pointer to the caller’s PGB in ES: D .

cocal | 32 pr oc far
assume ds: dseg
pushfd
push ds
push es ; Save these for |ater
push edi
push eax
nmov ax, dseg
nmov ds, ax
cli ;Oritical region ahead.

; Save the current process’ state:

| es di, dseg: QurCoroutine

pop es: [di]. pcb32. regeax

nmov es: [di].pcb32.regebx, ebx

nmv es:[di].pcb32.regecx, ecx

nmv es:[di].pcb32. regedx, edx

nov es:[di]. pcb32.regesi, esi

pop es:[di]. pcb32.reged

nmov es:[di]. pcb32.regebp, ebp

pop es:[di].pcb32.reges

pop es:[di].pcb32. regds

pop es:[di].pcb32. regfl ags

pop es:[di].pcb32.regip

pop es:[di].pcb32.regcs

nmv es:[di].pcb32.regsp, sp

nmv es:[di].pcb32.regss, ss

nmov bx, es ; Save so we can return in
nmov ecx, edi ; ESD later

nov edx, es:[di].pch32.reged

nov es, es:[di].pcb32.reges

nov di, dx ; Point es:di at new PCB
nmov wp dseg: Qur Coroutine, di

nov wp dseg: Qur Corouti ne+2, es

nmv es:[di].pcb32.regedi, ecx ; The ES:D return val ues
nov es:[di]. pcb32.reges, bx

; Ckay, switch to the new process:

nov ss, es:[di].pcb32.regss
nmov sp, es:[di].pcb32.regsp
nmov eax, es:[di].pch32.regeax
nmov ebx, es:[di].pcb32.regebx
nmv ecx, es:[di].pcb32.regecx
nmov edx, es:[di].pch32.regedx
nov esi, es:[di].pcb32.regesi
nov ebp, es:[di].pcb32.regebp
nmov ds, es:[di].pcb32.regds
push es:[di].pcb32. regfl ags
push es:[di].pcb32.regcs

push es:[di].pcb32.regip

push es:[di].pcb32. reged

Page 1122

cocal | 32

CoCal | 32
; follows the cal

; Not e:

cocal | 32

; Save the current process’

;. Ckay,

cocal | 32
cseg

nmv
pop
iret
endp

works just |ike cocal

pr oc
assune
push
nov
pushfd
push
push
push
push
nov
nov
cli

es,
edi

far

ds: dseg

ebp
bp,

ds
es
edi
eax
ax,
ds,

Processes, Coroutines, and Concurrency

es:[di]. pch32.reges

sp

dseg

ax

state:

cOritical

above, except the address of the pcb
in the code streamrather than being passed in ES: D .
this code does *not* return the caller’s PCB address in ES: D .

regi on ahead.

| es di, dseg: QurCoroutine

pop es: [di]. pcb32. regeax

nov es:[di]. pcb32. regebx, ebx

nmov es:[di].pcb32.regecx, ecx

nmov es:[di].pcb32. regedx, edx

nmv es:[di].pcb32.regesi, esi

pop es:[di]. pcb32. reged

pop es:[di]. pcb32.reges

pop es:[di]. pcb32. regds

pop es:[di]. pcb32.regfl ags

pop es: [di]. pcb32. regebp

pop es:[di].pcb32.regip

pop es:[di].pcb32.regcs

nov es:[di].pcb32.regsp, sp

nmov es:[di].pcb32.regss, ss

nmv dx, es:[di].pcb32.regip ;Get return address (ptr to
nmv cx, es:[di].pcb32.regcs ; PCB address.

add es:[di].pcb32.regip, 4 ;Skip ptr on return

nmov es, cX ;Get the ptr to the new pcb
nmov di, dx ; address, then fetch the
| es di, es:[di] ; pcb val

nov wp dseg: Qur Coroutine, di

nmov wp dseg: Qur Corout i ne+2, es

switch to the new process:

nmv ss, es:[di].pcb32.regss
nmv sp, es:[di].pcb32.regsp
nov eax, es:[di].pch32.regeax
nov ebx, es:[di].pcb32.regebx
nmov ecx, es:[di].pch32.regecx
nmv edx, es:[di].pch32.regedx
nov esi, es:[di].pch32.regesi
nov ebp, es:[di].pch32.regebp
nmov ds, es:[di].pcb32.regds
push es: [di]. pcb32. regfl ags
push es:[di].pcb32.regcs

push es:[di].pcb32.regip

push es:[di]. pcb32.reged

nov es, es:[di].pcb32.reges
pop edi

iret

endp

ends

Page 1123

Chapter 19

19.4 Multitasking

Coroutines provide a reasonable mechanism for switching between processes that must take turns.
For example, the maze generation program in the previous section would generate poor mazes if the dae-
mon processes didn't take turns removing one cell at a time from the maze. However, the coroutine para-
digm isn't always suitable; not all processes need to take turns. For example, suppose you are writing an
action game where the user plays against the computer. In addition, the computer player operates inde-
pendently of the user in real time. This could be, for example, a space war game or a flight simulator game
(where you are dog fighting other pilots). Ideally, we would like to have two computers. One to handle
the user interaction and one for the computer player. Both systems would communicate their moves to
one another during the game. If the (human) player simply sits and watches the screen, the computer
player would win since it is active and the human player is not. Of course, it would considerably limit the
marketability of your game were it to require two computers to play. However, you can use multitasking
to simulate two separate computer systems on a single CPU.

The basic idea behind multitasking is that one process runs for a period of time (the time quantum
or time slice) and then a timer interrupts the process. The timer ISR saves the state of the process and then
switches control to another process. That process runs for its time slice and then the timer interrupt
switches to another process. In this manner, each process gets some amount of computer time. Note that
multitasking is very easy to implement if you have a coroutine package. All you need to do is write a timer
ISR that cocalls the various processes, one per timer interrupt A timer interrupt that switches between pro-
cesses is a dispatcher.

One decision you will need to make when designing a dispatcher is a policy for the process selection
algorithm. A simple policy is to place all processes in a queue and then rotate among them. This is known
as the round-robin policy. Since this is the policy the UCR Standard Library process package uses, we will
adopt it as well. However, there are other process selection criteria, generally involving the priority of a
process, available as well. See a good text on operating systems for details.

The choice of the time quantum can have a big impact on performance. Generally, you would like
the time quantum to be small. The time sharing (switching between processes based on the clock) will be
much smoother if you use small time quanta. For example, suppose you choose five second time quanta
and you were running four processes concurrently. Each process would get five seconds; it would run
very fast during those five seconds. However, at the end of its time slice it would have to wait for the other
three process’ turns, 15 seconds, before it ran again. The users of such programs would get very frustrated
with them, users like programs whose performance is relatively consistent from one moment to the next.

If we make the time slice one millisecond, instead of five seconds, each process would run for one
millisecond and then switch to the next processes. This means that each processes gets one millisecond
out of five. This is too small a time quantum for the user to notice the pause between processes.

Since smaller time quanta seem to be better, you might wonder “why not make them as small as pos-
sible?” For example, the PC supports a one millisecond timer interrupt. Why not use that to switch
between processes? The problem is that there is a fair amount of overhead required to switch from one
processes to another. The smaller you make the time quantum, the larger will be the overhead of using
time slicing. Therefore, you want to pick a time quantum that is a good balance between smooth process
switching and too much overhead. As it turns out, the 1/18th second clock is probably fine for most multi-
tasking requirements.

19.4.1 Lightweight and HeavyWeight Processes

Page 1124

There are two major types of processes in the world of multitasking: lightweight processes, also
known as threads, and heavyweight processes. These two types of processes differ mainly in the details of
memory management. A heavyweight process swaps memory management tables and moves lots of data

Processes, Coroutines, and Concurrency

around. Threads only swap the stack and CPU registers. Threads have much less overhead cost than
heavyweight processes.

We will not consider heavyweight processes in this text. Heavyweight processes appear in protected
mode operating systems like UNIX, Linux, OS/2, or Windows NT. Since there is rarely any memory man-
agement (at the hardware level) going on under DOS, the issue of changing memory management tables
around is moot. Switching from one heavyweight application to another generally corresponds to switch-
ing from one application to another.

Using lightweight processes (threads) is perfectly reasonable under DOS. Threads (short for “execu-
tion thread” or “thread of execution”) correspond to two or more concurrent execution paths within the
same program. For example, we could think of each of the demons in the maze generation program as
being a separate thread of execution.

Although threads have different stacks and machine states, they share code and data memory. There
is no need to use a “shared memory TSR” to provide global shared memory (see “Shared Memory” on
page 1078). Instead, maintaining local variables is the difficult task. You must either allocate local vari-
ables on the process’ stack (which is separate for each process) or you've got to make sure that no other
process uses the variables you declare in the data segment specifically for one thread.

We could easily write our own threads package, but we don't have to; the UCR Standard Library pro-
vides this capability in the processes package. To see how to incorporate threads into your programs, keep
reading...

19.4.2 The UCR Standard Library Processes Package

The UCR Standard Library provides six routines to let you manage threads. These routines include
prcsinit, presquit, fork, die, kill, and yield. These functions let you initialize and shut down the
threads system, start new processes, terminate processes, and voluntarily pass the CPU off to another pro-
cess.

The presinit and presquit functions let you initialize and shutdown the system. The prcsinit
call prepares the threads package. You must call this routine before executing any of the other five process
routines. The prcsquit function shuts down the threads system in preparation for program termination.
Prcsinit patches into the timer interrupt (interrupt 8). Prcsquit restores the interrupt 8 vector. It is
very important that you call prcsquit before your program returns to DOS. Failure to do so will leave the
int 8 vector pointing off into memory which may cause the system to crash when DOS loads the next pro-
gram. Your program must patch the break and critical error exception vectors to ensure that you call
presquit in the event of abnormal program termination. Failure to do so may crash the system if the user
terminates the program with ctrl-break or an abort on an 1/O error. Prcsinit and prcsquit do not
require any parameters, nor do they return any values.

The fork call spawns a new process. On entry, es:di must point at a pcb for the new process. The
regss and regsp fields of the pcb must contain the address of the top of the stack area for this new pro-
cess. The fork call fills in the other fields of the pcb (including cs:ip)/

For each call you make to fork, the fork routine returns twice, once for each thread of execution.
The parent process typically returns first, but this is not certain; the child process is usually the second
return from the fork call. To differentiate the two calls, fork returns two process identifiers (PIDs) in the
ax and bx registers. For the parent process, fork returns with ax containing zero and bx containing the
PID of the child process. For the child process, fork returns with ax containing the child’s PID and bx
containing zero. Note that both threads return and continuing executing the same code after the call to
fork. If you want the child and parent processes to take separate paths, you would execute code like the
following:

Page 1125

Chapter 19

| esi NewPCB ; Assume regss/regsp are initialized.
fork

t est ax, ax ;Parent PIDis zero at this point.
je Par ent Process ;G elsewhere if parent process.

; Child process continues execution here

The parent process should save the child’s PID. You can use the PID to terminate a process at some later
time.

It is important to repeat that you must initialize the regss and regsp fields in the pcb before calling
fork. You must allocate storage for a stack (dynamically or statically) and point ss:sp at the last word of
this stack area. Once you call fork, the process package uses whatever value that happens to be in the
regss and regsp fields. If you have not initialized these values, they will probably contain zero and
when the process starts it will wipe out the data at address 0:FFFE. This may crash the system at one point
or another.

The die call kills the current process. If there are multiple processes running, this call transfers con-
trol to some other processes waiting to run. If the current process is the only process on the system’s run
queue, then this call will crash the system.

The kill call lets one process terminate another. Typically, a parent process will use this call to termi-
nate a child process. To kill a process, simply load the ax register with the PID of the process you want to
terminate and then call kill. If a process supplies its own PID to the kill function, the process terminates
itself (that is, this is equivalent to a die call). If there is only one process in the run queue and that process
kills itself, the system will crash.

The last multitasking management routine in the process package is the yield call. Yield voluntar-
ily gives up the CPU. This is a direct call to the dispatcher, that will switch to another task in the run queue.
Control returns after the yield call when the next time slice is given to this process. If the current process
is the only one in the queue, yield immediately returns. You would normally use the yield call to free
up the CPU between long 1/0 operations (like waiting for a keypress). This would allow other tasks to get
maximum use of the CPU while your process is just spinning in a loop waiting for some 1/0 operation to
complete.

The Standard Library multitasking routines only work with the 16 bit register set of the 80x86 family.
Like the coroutine package, you will need to modify the pch and the dispatcher code if you want to sup-
port the 32 bit register set of the 80386 and later processors. This task is relatively simple and the code is
quite similar to that appearing in the section on coroutines; so there is no need to present the solution
here.

19.4.3 Problems with Multitasking

Page 1126

When threads share code and data certain problems can develop. First of all, reentrancy becomes a
problem. You cannot call a non-reentrant routine (like DOS) from two separate threads if there is ever the
possibility that the non-reentrant code could be interrupted and control transferred to a second thread that
reenters the same routine. Reentrancy is not the only problem, however. It is quite possible to design two
routines that access shared variables and those routines mishehave depending on where the interrupts
occur in the code sequence. We will explore these problems in the section on synchronization (see “Syn-
chronization” on page 1129), just be aware, for now, that these problems exist.

Note that simply turning off the interrupts (with c1i) may not solve the reentrancy problem. Consider
the following code:

cli ; Prevent reentrancy.

nmov ah, 3Eh :DCS cl ose cal l.

nmov bx, Handl e

int 21h

sti ;Turn interrupts back on.

Processes, Coroutines, and Concurrency

This code will not prevent DOS from being reentered because DOS (and BIOS) turn the interrupts back
on! There is a solution to this problem, but it's not by using cli and sti.

19.4.4 A Sample Program with Threads

The following program provides a simple demonstration of the Standard Library processes package.
This short program creates two threads - the main program and a timer process. On each timer tick the
background (timer) process kicks in and increments a memory variable. It then yields the CPU back to the
main program. On the next timer tick control returns to the background process and this cycle repeats.
The main program reads a string from the user while the background process is counting off timer ticks.
When the user finishes the line by pressing the enter key, the main program kills the background process
and then prints the amount of time necessary to enter the line of text.

Of course, this isn't the most efficient way to time how long it takes someone to enter a line of text,
but it does provide an example of the multitasking features of the Standard Library. This short program
segment demonstrates all the process routines except die. Note that it also demonstrates the fact that you
must supply int 23h and int 24h handlers when using the process package.

MULTI . ASM
Sinple programto denonstrate the use of multitasking.

.Xxli st
i ncl ude stdlib.a
includelib stdlib.lib

st
dseg segment para public ‘data’
Chil dPID wor d 0 ;Child's PID so we can kill it.
BackGdnt wor d 0 ; Counts of f clock ticks in backgnd.

PCB for our background process. Note we initialize ss:sp here.
BkgndPCB pcb {0, of fset EndStk2, seg EndStk2}

; Data buffer to hold an input string.

I nput Li ne byt e 128 dup (0)

dseg ends

cseg segment para public ‘code’
assume cs: cseg, ds:dseg

; Areplacenent critical error handler. This routine calls prcsquit
; if the user decides to abort the program

OitErrMg byt e cr,lf
byt e “DOS Oritical Error!”,cr,If
byt e “Abort, Retry, l)gnore, Fail? $
M/l nt 24 proc far
push dx
push ds
push ax
push cs
pop ds
I nt 24Lp: | ea dx, OitErrMg
nov ah, 9 ;D06 print string call.
int 21h
nmov ah, 1 ; DOB read character call.
int 21h

Page 1127

Chapter 19

and al, 5Fh ;Convert |.c. -> u.c.
cnp al, ‘I’ ;I gnore?
j ne Not | gnor e
pop ax
nov al, 0
jnp Qit24
Not | gnor e: cnp al, ‘r’ ; Retry?
j ne Not Ret ry
pop ax
nmov al, 1
jm Qit24
Not Ret ry: cnp al, ‘A ; Abort ?
j ne Not Abor t
prcsqui t ;If quitting, fix INT 8.
pop ax
nmov al, 2
jmp Qit24
Not Abort : cnp al, ‘F
j ne BadChar
pop ax
nmov al, 3
Qi t 24: pop ds
pop dx
iret
BadChar : nov ah, 2
nmov d, 7 ; Bel | character
jp I nt 24Lp
M/l nt 24 endp

; Ve will sinply disable INT 23h (the break exception).

M/l nt 23 proc far
iret
M/ nt 23 endp

; Ckay, this is a pretty weak background process, but it does denonstrate
how to use the Standard Library calls.

Back@ ound proc

sti

nmov ax, dseg

nov ds, ax

inc BackGhdOnt ;Bunp call Counter by one.
yield ; G ve CPU back to foregnd.
jp Back@ ound

Back@ ound endp

Mai n proc
nmov ax, dseg
nov ds, ax
nov es, ax
nmem ni t

; Initialize the INT 23h and | NT 24h exception handl er vectors.

nmov ax, 0

nov es, ax

nov word ptr es:[24h*4], offset M/Int24

nmov es:[24h*4 + 2], cs

nmv word ptr es:[23h*4], offset Mlnt23

nov es:[23h*4 + 2], cs

prcsinit ;Start nultitasking system

Page 1128

Processes, Coroutines, and Concurrency

| esi BkgndPCB ;Fire up a new process
fork
test ax, ax ;Parent’s return?
je Par ent Prcs
jnp Back@ ound ; @ do backgroun stuff.
Par ent Prcs: nov Chil dPID, bx ; Save child process ID
print
byte “l amtimng you while you enter a string. So type”
byte cr,lf
byte “quickly: “,0
| esi I nput Li ne
gets
nmov ax, ChildPID ;Stop the child fromrunning.
kill
printf
byte “Wile entering ‘%’ you took %l cl ock ticks”
byte cr,If,0
dwor d I nput Li ne, BackGdOnt
prcsquit
Qit: Exi t Pgm ;DCB macro to quit program
Mai n endp
cseg ends
sseg segment para stack ‘stack’

; Here is the stack for the background process we start

stk2 byte 256 dup (?)
EndSt k2 wor d ?

;Here’s the stack for the main progran foreground process.

stk byt e 1024 dup (?)
sseg ends
zz277775€g segnent para public ‘zzzzzz’
Last Byt es db 16 dup (?)
zz277775€g ends

end Mai n

19.5 Synchronization

Many problems occur in cooperative concurrently executing processes due to synchronization (or
the lack thereof). For example, one process can produce data that other processes consume. However, it
might take much longer for the producer to create than data than it takes for the consumer to use it. Some
mechanism must be in place to ensure that the consumer does not attempt to use the data before the pro-
ducer creates it. Likewise, we need to ensure that the consumer uses the data created by the producer
before the producer creates more data.

The producer-consumer problem is one of several very famous synchronization problems from
operating systems theory. In the producer-consumer problem there are one or more processes that pro-
duce data and write this data to a shared buffer. Likewise, there are one or more consumers that read data
from this buffer. There are two synchronization issues we must deal with - the first is to ensure that the
producers do not produce more data than the buffer can hold (conversely, we must prevent the consum-
ers from removing data from an empty buffer); the second is to ensure the integrity of the buffer data struc-
ture by allowing access to only one process at a time.

Page 1129

Chapter 19

Page 1130

Consider what can happen in a simple producer-consumer problem. Suppose the producer and con-
sumer processes share a single data buffer structure organized as follows:

buf fer struct

Count word 0

I nPtr word 0

QutPtr wor d 0

Dat a byt e MaxBuf Si ze dup (?)
buf f er ends

The Count field specifies the number of data bytes currently in the buffer. InPtr points at the next avail-
able location to place data in the buffer. OutPtr is the address of the next byte to remove from the buffer.
Data is the actual buffer array. Adding and removing data is very easy. The following code segments
almost handle this job:

; Producer - Thi s procedure adds the value in al to the buffer.
; Assune that the buffer variable M/Buffer is in the data segment.
Pr oducer pr oc near

pushf

sti ; Must have interrupts on!

push bx

; The following loop waits until there is roomin the buffer to insert
anot her byt e.

Wi t ForRoom cnp M/Buf f er. Count, MNaxBuf Si ze
j ae Wi t For Room

; Ckay, insert the byte into the buffer.

nmov bx, MBuffer.InPtr

nov M/Buf f er. Dat a[bx], al

inc M/Buf f er . Count ;W just added a byte to the buffer.
inc M/Buffer.InPtr ;Move on to next itemin buffer.

; If we are at the physical end of the buffer, wap around to the begi nning.

cnp M/Buf fer.InPtr, MaxBufSize
ib NoW ap
mov M/Buf fer.InPtr, O
NoW ap:
pop bx
popf
ret
Pr oducer endp
; Consuner - This procedure waits for data (if necessary) and returns the
; next available byte fromthe buffer.
Consuner proc near
pushf ; Must have interrupts on!
sti
push bx
WiitForData: cnp Count, O ;I's the buffer enpty?
je i t For Dat a ;If so, wait for data to arrive.

; Ckay, fetch an input character

nmov bx, M/Buffer.QutPtr
nov al, M/Buffer. Datal bx]
dec M/Buf f er . Count
inc M/Buf fer. Qut Pt r
cnp M/Buf fer. Qut Ptr, MaxBufSi ze
ib NoW ap
nov M/Buffer.QutPtr, 0
NoW ap:
pop bx
popf
ret
Consuner endp

Processes, Coroutines, and Concurrency

The only problem with this code is that it won't always work if there are multiple producer or consumer
processes. In fact, it is easy to come up with a version of this code that won't work for a single set of pro-
ducer and consumer processes (although the code above will work fine, in that special case). The problem
is that these procedures access global variables and, therefore, are not reentrant. In particular, the problem
lies with the way these two procedures manipulate the buffer control variables. Consider, for a moment,
the following statements from the Consumer procedure:

dec M/Buf f er . Count

« Suppose an interrupt occurs here »

inc M/Buf fer. Qut Ptr

cnp M/Buf fer. Qut Ptr, MaxBufSize
ib NoW ap

nmov M/Buf fer.QutPtr, O

NoW ap:

If an interrupt occurs at the specified point above and control transfers to another consumer process that
reenters this code, the second consumer would malfunction. The problem is that the first consumer has
fetched data from the buffer but has yet to update the output pointer. The second consumer comes along
and removes the same byte as the first consumer. The second consumer then properly updates the output
pointer to point at the next available location in the circular buffer. When control eventually returns to the
first consumer process, it finishes the operation by incrementing the output pointer. This causes the system
to skip over the next byte which no process has read. The end result is that two consumer processes fetch
the same byte and then skip a byte in the buffer.

This problem is easily solved by recognizing the fact that the code that manipulates the buffer data is
a critical region. By restricting execution in the critical region to one process at a time, we can solve this
problem. In the simple example above, we can easily prevent reentrancy by turning the interrupts off
while in the critical region. For the consumer procedure, the code would look like this:

; Consuner - This procedure waits for data (if necessary) and returns the
; next available byte fromthe buffer.
Consuner proc near
pushf ; Must have interrupts on!
sti
push bx
Wit ForData: cnp Count, O ;s the buffer enpty?
je Wi t For Dat a ;If so, wait for data to arrive.

; The following is a critical region, so turn the interrupts off.
cli

; Ckay, fetch an input character

nmov bx, MBuffer.QutPtr
nov al, M/Buffer. Data[bx]
dec M/Buf f er . Count
inc M/Buf fer. Qut Pt r
cnp M/Buf fer. Qut Ptr, MaxBufSi ze
ib NoW ap
mov M/Buf fer.QutPtr, O
NoW ap:
pop bx
popf ;Restore interrupt flag.
ret
Consuner endp

Note that we cannot turn the interrupts off during the execution of the whole procedure. Interrupts must
be on while this procedure is waiting for data, otherwise the producer process will never be able to put
data in the buffer for the consumer.

Simply turning the interrupts off does not always work. Some critical regions may take a considerable
amount of time (seconds, minutes, or even hours) and you cannot leave the interrupts off for that amount

Page 1131

Chapter 19

of time®. Another problem is that the critical region may call a procedure that turns the interrupts back on
and you have no control over this. A good example is a procedure that calls MS-DOS. Since MS-DOS is not
reentrant, MS-DOS is, by definition, a critical section; we can only allow one process at a time inside
MS-DOS. However, MS-DOS reenables the interrupts, so we cannot simply turn off the interrupts before
calling an MS-DOS function an expect this to prevent reentrancy.

Turning off the interrupts doesn’t even work for the consumer/producer procedures given earlier.
Note that interrupts must be on while the consumer is waiting for data to arrive in the buffer (conversely,
the producers must have interrupts on while waiting for room in the buffer). It is quite possible for the
code to detect the presence of data and just before the execution of the cli instruction, an interrupt trans-
fers control to a second consumer process. While it is not possible for both processes to update the buffer
variables concurrently, it is possible for the second consumer process to remove the only data value from
the input buffer and then switch back to the first consumer that removes a phantom value from the buffer
(and causes the Count variable to go negative).

One poorly thought out solution is to use a flag to control access to a critical region. A process, before
entering the critical region, tests the flag to see if any other process is currently in the critical region:; if not,
the process sets the flag to “in use” and then enters the critical region. Upon leaving the critical region, the
process sets the flag to “not in use.” If a process wants to enter a critical region and the flag's value is “in
use”, the process must wait until the process currently in the critical section finishes and writes the “not in
use” value to the flag.

The only problem with this solution is that it is nothing more than a special case of the producer/con-
sumer problem. The instructions that update the in-use flag form their own critical section that you must
protect. As a general solution, the in-use flag idea fails.

19.5.1 Atomic Operations, Test & Set, and Busy-Waiting

The problem with the in-use flag idea is that it takes several instructions to test and set the flag. A typ-
ical piece of code that tests such a flag would read its value and determine if the critical section is in use. If
not, it would then write the “in-use” value to the flag to let other processes know that it is in the critical sec-
tion. The problem is that an interrupt could occur after the code tests the flag but before it sets the flag to
“in use.” Then some other process can come along, test the flag and find that it is not in use, and enter the
critical region. The system could interrupt that second process while it is still in the critical region and
transfer control back to the first. Since the first process has already determined that the critical region is not
in use, it sets the flag to “in use™ and enters the critical region. Now we have two processes in the critical
region and the system is in violation of the mutual exclusion requirement (only one process in a critical
region at a time).

The problem with this approach is that testing and setting the in-use flag is not an uninterruptable
(atomic) operation. If it were, then there would be no problem. Of course, it is easy to make a sequence
of instructions non-interruptible by putting a cli instruction before them. Therefore, we can test and set a
flag in an atomic operation as follows (assume in-use is zero, not in-use is one):

pushf

Test Loop: cli ;Turn ints off while testing and
cnp Flag, O ; setting flag.
je I sl nse ;Already in use?
nov Flag, O ;1f not, make it so.

I sl nUse: sti ;Allowints (if in-use already).
je Test Loop ;VWait until not in use.
popf

; When we get down here, the flag was “not in-use” and we’'ve just set it
; to “in-us.” W now have excl usive access to the critical section.

3. In general, you should not leave the interrupts off for more than about 30 milliseconds when using the 1/18th second clock for multitasking. A
general rule of thumb is that interrupts should not be off for much more than abou;50% of the time quantum.

Page 1132

Processes, Coroutines, and Concurrency

Another solution is to use a so-called “test and set” instruction — one that both tests a specific condi-
tion and sets the flag to a desired value. In our case, we need an instruction that both tests a flag to see if it
is not in-use and sets it to in-use at the same time (if the flag was already in-use, it will remain in use after-
ward). Although the 80x86 does not support a specific test and set instruction, it does provide several oth-
ers that can achieve the same effect. These instructions include xchg, shl, shr, sar, rcl, rcr, rol, ror,
btc/btr/bts (available only on the 80386 and later processors), and cmpxchg (available only on the
80486 and later processors). In a limited sense, you can also use the addition and subtraction instructions
(add, sub, adc, sbb, inc, and dec) as well.

The exchange instruction provides the most generic form for the test and set operation. If you have a
flag (0=in use, 1=not in use) you can test and set this flag without messing with the interrupts using the fol-
lowing code:

I nUseLoop: nmov al, O ;0=In Use
xchg al, Flag
cnp al, 0
je I nUseLoop

The xchg instruction atomically swaps the value in al with the value in the flag variable. Although the
xchg instruction doesn't actually test the value, it does place the original flag value in a location (al) that
is safe from modification by another process. If the flag originally contained zero (in-use), this exchange
sequence swaps a zero for the existing zero and the loop repeats. If the flag originally contained a one (not
in-use) then this code swaps a zero (in-use) for the one and falls out of the in use loop.

The shift and rotate instructions also act as test and set instructions, assuming you use the proper val-
ues for the in-use flag. With in-use equal to zero and not in-use equal to one, the following code demon-
strates how to use the shr instruction for the test and set operation:

| nUselLoop: shr Flag, 1 ;In-use bit to carry, 0->F ag.
jnc I nUseLoop ;Repeat if already in use.

This code shifts the in-use bit (bit number zero) into the carry flag and clears the in-use flag. At the same
time, it zeros the Flag variable, assuming Flag always contains zero or one. The code for the atomic test
and set sequences using the other shift and rotates is very similar and appears in the exercises.

Starting with the 80386, Intel provided a set of instructions explicitly intended for test and set opera-
tions: btc (bit test and complement), bts (bit test and set), and btr (bit test and reset). These instructions
copy a specific bit from the destination operand into the carry flag and then complement, set, or reset
(clear) that bit. The following code demonstrates how to use the btr instruction to manipulate our in-use
flag:

I nUseLoop: btr Flag, O ;In-use flag is in bit zero.
jnc I nUseLoop

The btr instruction is a little more flexible than the shr instruction because you don't have to guarantee
that all the other bits in the Flag variable are zero; it tests and clears bit zero without affect any other bits
in the Flag variable.

The 80486 (and later) cmpxchg instruction provides a very generic synchronization primitive. A
“compare and swap” instruction turns out to be the only atomic instruction you need to implement almost
any synchronization primitive. However, its generic structure means that it is a little too complex for sim-
ple test and set operations. You will get an opportunity to design a test and set sequence using cmpxchg in
the exercises. For more details on cmpxchg, see “The CMPXCHG, and CMPXCHG8B Instructions” on
page 263.

Returning to the producer/consumer problem, we can easily solve the critical region problem that
exists in these routines using the test and set instruction sequence presented above. The following code
does this for the Producer procedure, you would modify the Consumer procedure in a similar fashion.

; Producer - Thi s procedure adds the value in al to the buffer.
; Assune that the buffer variable M/Buffer is in the data segment.

Pr oducer proc near

Page 1133

Chapter 19

pushf
sti ; Must have interrupts on!

Ckay, we are about to enter a critical region (this whol e procedure),
; so test the in-use flag to see if this critical region is already in use.

I nUseLoop: shr Flag, 1
jnc I nUseLoop
push bx

; The following loop waits until there is roomin the buffer to insert
; anot her byte.

Wi t ForRoom cnp M/Buf f er. Count, MaxBuf Si ze
j ae Wi t For Room

Ckay, insert the byte into the buffer.

mov bx, M/Buffer.InPtr

nmov M/Buf fer. Dat a[bx], al

inc MyBuf f er . Count ;@ just added a byte to the buffer.
inc M/Buffer. I nPtr ;Move on to next itemin buffer.

If we are at the physical end of the buffer, wap around to the begi nni ng.

cnp M/Buf fer. I nPtr, MaxBufSize
ib NoW ap
mv M/Buf fer.InPtr, O
NoW ap:
nmov Flag, 1 ;Set flag to not in use.
pop bx
popf
ret
Pr oducer endp

One minor problem with the test and set approach to protecting a critical region is that it uses a
busy-waiting loop. While the critical region is not available, the process spins in a loop waiting for its turn
at the critical region. If the process that is currently in the critical region remains there for a considerable
length of time (say, seconds, minutes, or hours), the process(es) waiting to enter the critical region con-
tinue to waste CPU time waiting for the flag. This, in turn, wastes CPU time that could be put to better use
getting the process in the critical region through it so another process can enter.

Another problem that might exist is that it is possible for one process to enter the critical region, lock-
ing other processes out, leave the critical region, do some processing, and then reenter the critical region
all during the same time slice. If it turns out that the process is always in the critical region when the timer
interrupt occurs, none of the other processes waiting to enter the critical region will ever do so. This is a
problem known as starvation — processes waiting to enter the critical region never do so because some
other process always beats them into it.

One solution to these two problems is to use a synchronization object known as a semaphore. Sema-
phores provide an efficient and general purpose mechanism for protecting critical regions. To find out
about semaphores, keep reading...

19.5.2 Semaphores

Page 1134

A semaphore is an object with two basic methods: wait and signal (or release). To use a semaphore,
you create a semaphore variable (an instance) for a particular critical region or other resource you want to
protect. When a process wants to use a given resource, it waits on the semaphore. If no other process is
currently using the resource, then the wait call sets the semaphore to in-use and immediately returns to the
process. At that time, the process has exclusive access to the resource. If some other process is already
using the resource (e.g., is in the critical region), then the semaphore blocks the current process by mov-
ing it off the run queue and onto the semaphore queue. When the process that currently holds the

Processes, Coroutines, and Concurrency

resource releases it, the release operation removes the first waiting process from the semaphore queue
and places it back in the run queue. At the next available time slice, that new process returns from its wait
call and can enter its critical region.

Semaphores solve the two important problems with the busy-waiting loop described in the previous
section. First, when a process waits and the semaphore blocks the process, that process is no longer on the
run queue, so it consumes no more CPU time until the point that a release operation places it back onto
the run queue. So unlike busy-waiting, the semaphore mechanism does not waste (as much) CPU time on
processes that are waiting for some resource.

Semaphores can also solve the starvation problem. The wait operation, when blocking a process, can
place it at the end of a FIFO semaphore queue. The release operation can fetch a new process from the
front of the FIFO queue to place back on to the run queue. This policy ensures that each process entering
the semaphore queue gets equal priority access to the resource®.

Implementing semaphores is an easy task. A semaphore generally consists of an integer variable and
a queue. The system initializes the integer variable with the number of processes than may share the
resource at one time (this value is usually one for critical regions and other resources requiring exclusive
access). The wait operation decrements this variable. If the result is greater than or equal to zero, the wait
function simply returns to the caller; if the result is less than zero, the wait function saves the machine
state, moves the process’ pcb from the run queue to the semaphore’s queue, and then switches the CPU
to a different process (i.e., a yield call).

The release function is almost the converse. It increments the integer value. If the result is not one,
the release function moves a pcb from the front of the semaphore queue to the run queue. If the integer
value becomes one, there are no more processes on the semaphore queue, so the release function simply
returns to the caller. Note that the release function does not activate the process it removes from the sema-
phore process queue. It simply places that process in the run queue. Control always returns to the process
that made the release call (unless, of course, a timer interrupt occurs while executing the release function).

Of course, any time you manipulate the system’s run queue you are in a critical region. Therefore, we
seem to have a minor problem here - the whole purpose of a semaphore is to protect a critical region, yet
the semaphore itself has a critical region we need to protect. This seems to involve circular reasoning.
However, this problem is easily solved. Remember, the main reasons we do not turn off interrupts to pro-
tect a critical region is because that critical region may take a long time to execute or it may call other rou-
tines that turn the interrupts back on. The critical section in a semaphore is very short and does not call
any other routines. Therefore, briefly turning off the interrupts while in the semaphore’s critical region is
perfectly reasonable.

If you are not allowed to turn off interrupts, you can always use a test and set instruction in a loop to
protect a critical region. Although this introduces a busy-waiting loop, it turns out that you will never wait
more than two time slices before exiting the busy-waiting loop, so you do not waste much CPU time wait-
ing to enter the semaphore’s critical region.

Although semaphores solve the two major problems with the busy waiting loop, it is very easy to get
into trouble when using semaphores. For example, if a process waits on a semaphore and the semaphore
grants exclusive access to the associate resource, then that process never releases the semaphore, any pro-
cesses waiting on that semaphore will be suspended indefinitely. Likewise, any process that waits on the
same semaphore twice without a release in-between will suspend itself, and any other processes that wait
on that semaphore, indefinitely. Any process that does not release a resource it no longer needs violates
the concept of a semaphore and is a logic error in the program. There are also some problems that may
develop if a process waits on multiple semaphores before releasing any. We will return to that problem in
the section on deadlocks (see “Deadlock” on page 1146).

4. This FIFO policy is but one example of a release policy. You could have some other policy based on a priority scheme. However, the FIFO policy
does not promote starvation.

Page 1135

Chapter 19

Although we could write our own semaphore package (and there is good reason to), the Standard
Library process package provides its own wait and release calls along with a definition for a semaphore
variable. The next section describes those calls.

19.5.3 The UCR Standard Library Semaphore Support

The UCR Standard Library process package provides two functions to manipulate semaphore vari-
ables: WaitSemaph and RlsSemaph. These functions wait and signal a semaphore, respectively. These
routines mesh with the process management facilities, making it easy to implement synchronization using
semaphores in your programs.

The process package provides the following definition for a semaphore data type:

senaphor e struct
Sema(nt wor d 1
smaphr Lst dwor d ?
endsmaphrLst dword ?
senaphor e ends

The SemaCnt field determines how many more processes can share a resource (if positive), or how many
processes are currently waiting for the resource (if negative). By default, this field is initialized to the value
one. This allows one process at a time to use the resource protected by the semaphore. Each time a pro-
cess waits on a semaphore, it decrements this field. If the decremented result is positive or zero, the wait
operation immediately returns. If the decremented result is negative, then the wait operation moves the
current process’ pcb from the run queue to the semaphore queue defined by the smaphrLst and
endsmaphrLst fields in the structure above.

Most of the time you will use the default value of one for the SemaCnt field. There are some occa-
sions, though, when you might want to allow more than one process access to some resource. For exam-
ple, suppose you've developed a multiplayer game that communicates between different machines using
the serial communications port or a network adapter card. You might have an area in the game which has
room for only two players at a time. For example, players could be racing to a particular “transporter”
room in an alien space ship, but there is room for only two players in the transporter room at a time. By
initializing the semaphore variable to two, rather than one, the wait operation would allow two players to
continue at one time rather than just one. When the third player attempts to enter the transporter room, the
WaitSemaph function would block the player from entering the room until one of the other players left
(perhaps by “transporting out” of the room).

To use the WaitSemaph or RIsSemaph function is very easy; just load the es:di register pair with
the address of desired semaphore variable and issue the appropriate function call. RlsSemaph always
returns immediately (assuming a timer interrupt doesn't occur while in RIsSemaph), the WaitSemaph
call returns when the semaphore will allow access to the resource it protects. Examples of these two calls
appear in the next section.

Like the Standard Library coroutine and process packages, the semaphore package only preserves the
16 bit register set of the 80x86 CPU. If you want to use the 32 bit register set of the 80386 and later proces-
sors, you will need to modify the source code for the WaitSemaph and RIsSemaph functions. The
code you need to change is almost identical to the code in the coroutine and process packages, so this is
nearly a trivial change. Do keep in mind, though, that you will need to change this code if you use any 32
bit facilities of the 80386 and later processors.

19.5.4 Using Semaphores to Protect Critical Regions

You can use semaphores to provide mutually exclusive access to any resource. For example, if sev-
eral processes want to use the printer, you can create a semaphore that allows access to the printer by only
one process at a time (a good example of a process that will be in the “critical region” for several minutes

Page 1136

Processes, Coroutines, and Concurrency

at a time). However the most common task for a semaphore is to protect a critical region from reentry.
Three common examples of code you need to protect from reentry include DOS calls, BIOS calls, and var-
ious Standard Library calls. Semaphores are ideal for controlling access to these functions.

To protect DOS from reentry by several different processes, you need only create a DOSsmaph vari-
able and issue appropriate WaitSemaph and RlsSemaph calls around the call to DOS. The following
sample code demonstrates how to do this.

; MULTI DOS. ASM

; This program denonstrates how to use senaphores to protect DCS calls.

.Xli st
i ncl ude stdlib.a
includelib stdlib.lib

list
dseg segment para public ‘data’
DCSsnaph senmaphore {}

; Macros to wait and rel ease the DOS semaphor e:

DCBWi t nmacr o
push es
push di
| esi DOSsnaph
Wi t Semaph
pop di
pop es
endm
DCSR s nacro
push es
push di
| esi DCOSsnaph
R sSermaph
pop di
pop es
endm

; PCB for our background process:
BkgndPCB pcb {0, of fset EndStk2, seg EndStk2}

; Data the foreground and background processes print:

StrPtrsl dword strl a, strl b, strl c, strl_d, strl_ e, strl_f
dwor d strl g, strl h, strl.i, strlj, strl k, stri_|
dwor d 0

strl a byt e “Foreground: string ‘a”,cr,If,0

strl b byt e “Foreground: string ‘b"”,cr,If,0

strl c byt e “Foreground: string ‘c’”,cr,If,0

strl d byt e “Foreground: string ‘d”,cr,If,0

strl e byt e “Foreground: string ‘e ”,cr,If,0

strl_f byt e “Foreground: string ‘f'”,cr,If,0

strl g byt e “Foreground: string ‘g ",cr,If,0

stri_h byte “Foreground: string ‘h”,cr,I1f,0

strl i byt e “Foreground: string “i’",cr,If,0

strl_j byte “Foreground: string “j'",cr,I1f,0

strl k byt e “Foreground: string ‘k’”,cr,If,0

strl | byt e “Foreground: string ‘I"",cr,If,0

StrPtrs2 dwor d str2_a, str2_b, str2_c, str2.d, str2_e, str2 f
dword str2_g, str2_h, str2_i
dwor d 0

str2_a byt e “Background: string ‘a ”,cr,If,0

str2_b byt e “Background: string ‘b’ ”,cr,If,0

Page 1137

Chapter 19

str2_c byt e “Background: string ‘c’”,cr,If,0
str2_d byt e “Background: string ‘d ”,cr,If,0
str2_e byt e “Background: string ‘e ”,cr,If,0
str2_f byt e “Background: string ‘f'”,cr,If,0
str2_g byt e “Background: string ‘g ",cr,If,0
str2_h byt e “Background: string ‘h’”,cr,If,0
str2_i byte “Background: string ‘i'",cr,1f,0
dseg ends

cseg segment para public ‘code’

assune cs: cseqg, ds:dseg

; Areplacenent critical error handler. This routine calls prcsquit
; if the user decides to abort the program

OitErrMg byt e cr,lf
byt e “DOS Oritical Error!”,cr,If
byt e “Abort, Retry, I)gnore, Fail? $
M/l nt 24 pr oc far
push dx
push ds
push ax
push cs
pop ds
I nt 24Lp: | ea dx, OritErrMg
nov ah, 9 ;DOS print string call.
int 21h
nmov ah, 1 :DCS read character call.
int 21h
and al, 5Fh ;Convert |.c. -> u.c.
cnp al, ‘I’ ; I gnore?
j ne Not | gnor e
pop ax
nov al, 0
jmp Qit24
Not | gnor e: cnp al, ‘r’ y Retry?
j ne Not Ret ry
pop ax
nmov al, 1
jm Qit24
Not Ret ry: cnp al, ‘A ; Abort ?
j ne Not Abor t
prcsqui t ;1f quitting, fix IINT 8.
pop ax
nmov al, 2
jmp Qit24
Not Abor't : cnp al, ‘F
j ne BadChar
pop ax
nmov al, 3
Qi t 24: pop ds
pop dx
iret
BadChar : nov ah, 2
mv d, 7 ;Bel |l character
jnp I nt 24Lp
M/l nt 24 endp

; Ve will sinply disable INT 23h (the break exception).

M/l nt 23 proc far
iret
M/ nt 23 endp

Page 1138

)
i
1
)
)
’
’

Processes, Coroutines, and Concurrency

Thi s background process calls DOS to print several strings to the
screen. In the nmeantine, the foreground process is also printing
strings to the screen. To prevent reentry, or at |east a junble of
characters on the screen, this code uses semaphores to protect the
DCS calls. Therefore, each process will print one conplete |ine
then rel ease the semaphore. |f the other process is waiting it will
print its line.

Back@ ound pr oc

nmov ax, dseg
nmov ds, ax
|l ea bx, StrPtrs2 ;Array of str ptrs.

Pri nt Loop: cnp word ptr [bx+2], O ;A end of pointers?
je BkGhdDone
I es di, [bx] ;Get string to print.
DCBVi t
puts ;Calls DOS to print string.
DCER s
add bx, 4 ; Point at next str ptr.
jnp Pri nt Loop

BkGhdDone: die ;Termnate this process

Back@ ound endp

Mai n proc
nmov ax, dseg
nmov ds, ax
nov es, ax
meni ni t

’

)

)

Initialize the INT 23h and | NT 24h exception handl er vectors.

nmov ax, 0

nov es, ax

nov word ptr es:[24h*4], offset MInt24

nmov es:[24h*4 + 2], cs

nmov word ptr es:[23h*4], offset M/Int23

nmov es:[23h*4 + 2], cs

prcsinit ;Start nultitasking system
| esi BkgndPCB ;Fire up a new process
fork

test ax, ax ;Parent’s return?

je Par ent Prcs

jnp Back@ ound ; @ do background stuff.

The parent process will print a bunch of strings at the sanme tine
t he background process is doing this. W' |l use the DC5 semaphore
to protect the call to DOS that PUTS makes.

Par ent Pr cs: DO t ; Force the other process
nmov cx, 0 ; towind up waiting in
D yLpO: | oop D yLpO ; the semaphore queue by
D yLp1l: | oop D yLpl ; delay for at |east one
D yLp2: | oop D yLp2 ; clock tick.
DCBR s
| ea bx, StrPtrsi ;Array of str ptrs.
Pri nt Loop: cnp word ptr [bx+2],0 ;A end of pointers?
je For eGhdDone
| es di, [bx] ;Get string to print.
DCBWi t
puts ;Calls DOB to print string.
DCSR s
add bx, 4 ; Point at next str ptr.
jnp Print Loop

ForeGhdDone: prcsquit

Page 1139

Chapter 19

Qit: Exi t Pgm ;DOS macro to quit program
Mai n endp

cseg ends

sseg segment para stack ‘stack’

; Here is the stack for the background process we start

stk2 byt e 1024 dup (?)
EndSt k2 wor d ?

;Here’'s the stack for the nain programn foreground process.

stk byt e 1024 dup (?)
sseg ends
zzz77277S€g segment para public ‘zzzzzz’
Last Byt es db 16 dup (?)
z277727SeqQ ends

end Mai n

This program doesn't directly call DOS, but it calls the Standard Library puts routine that does. In general,
you could use a single semaphore to protect all BIOS, DOS, and Standard Library calls. However, this is
not particularly efficient. For example, the Standard Library pattern matching routines make no DOS calls;
therefore, waiting on the DOS semaphore to do a pattern match while some other process is making a
DOS call unnecessarily delays the pattern match. There is nothing wrong with having one process do a
pattern match while another is making a DOS call. Unfortunately, some Standard Library routines do
make DOS calls (puts is a good example), so you must use the DOS semaphore around such calls.

In theory, we could use separate semaphores to protect DOS, different BIOS calls, and different Stan-
dard Library calls. However, keeping track of all those semaphores within a program is a big task. Further-
more, ensuring that a call to DOS does not also invoke an unprotected BIOS routine is a difficult task. So
most programmers use a single semaphore to protect all Standard Library, DOS, and BIOS calls.

19.5.5 Using Semaphores for Barrier Synchronization

Page 1140

Although the primary use of a semaphores is to provide exclusive access to some resource, there are
other synchronization uses for semaphores as well. In this section we'll look at the use of the Standard
Library’s semaphores objects to create a barrier.

A barrier is a point in a program where a process stops and waits for other processes to synchronize
(reach their respective barriers). In many respects, a barrier is the dual to a semaphore. A semaphore pre-
vents more than n processes from gaining access to some resource. A barrier does not grant access until at
least n processes are requesting access.

Given the different nature of these two synchronization methods, you might think that it would be
difficult to use the WaitSemaph and RlsSemaph routines to implement barriers. However, it turns out
to be quite simple. Suppose we were to initialize the semaphore's SemaCnt field to zero rather than one.
When the first process waits on this semaphore, the system will immediately block that process. Likewise,
each additional process that waits on this semaphore will block and wait on the semaphore queue. This
would normally be a disaster since there is no active process that will signal the semaphore so it will acti-
vate the blocked processes. However, if we modify the wait call so that it checks the SemaCnt field
before actually doing the wait, the nth process can skip the wait call and reactivate the other processes.
Consider the following macro:

Processes, Coroutines, and Concurrency

barrier nacr o Wi t 4Ont
| ocal Al Here, Al Done
cnp es: [di].semaphore. Sematnt, - (Véit4nt-1)
jle Al Here
Wi t Semaph
cnp es: [di]. semaphore. Senatnt, 0
je Al | Done
Al Here: R sSenaph
Al | Done:
endm

This macro expects a single parameter that should be the number of processes (including the current
process) that need to be at a barrier before any of the processes can proceed. The SemaCnt field is a neg-
ative number whose absolute value determines how many processes are currently waiting on the sema-
phore. If a barrier requires four processes, no process can proceed until the fourth process hits the barrier;
at that time the SemaCnt field will contain minus three. The macro above computes what the value of
SemaCnt should be if all processes are at the barrier. If SemaCnt matches this value, it signals the sema-
phore that begins a chain of operations with each blocked process releasing the next. When SemaCnt
hits zero, the last blocked process does not release the semaphore since there are no other processes wait-
ing on the queue.

It is very important to remember to initialize the SemaCnt field to zero before using semaphores for
barrier synchronization in this manner. If you do not initialize SemaCnt to zero, the WaitSemaph call
will probably not block any of the processes.

The following sample program provides a simple example of barrier synchronization using the Stan-
dard Library’s semaphore package:

BARRI ER ASM

; This sanpl e program denonstrates how to use the Standard Library’s

; semaphore objects to synchroni ze several processes at a barrier.

; This programis simlar to the MLTIDCS. ASM program i nsofar as the

; background processes all print a set of strings. However, rather than

; using an inelegant delay | oop to synchroni ze the foreground and background
; processes, this code uses barrier synchronization to achieve this.

.Xxli st
i ncl ude stdlib.a
includelib stdlib.lib

st
dseg segnent para public ‘data’
Barri er Semaph senaphore {0} ;Must init SemaOnt to zero.
DCSsnaph semaphore {}

; Macros to wait and rel ease the DOS semaphor e:

DCBV t nmacr o
push es
push di
| esi DCSsmaph
Wi t Semaph
pop di
pop es
endm
DCSR s macr o
push es
push di
| esi DCOSsnaph
R sSemaph
pop di
pop es
endm

; Macro to synchronize on a barrier:

Page 1141

Chapter 19

Page 1142

Barrier

g&

; PCBs for our

BkgndPCB2
BkgndPCB3

nacr o Wi t 4Ont

| ocal Al Here, Al Done

cnp es: [di].semaphore. SemaOnt, - (Vait4nt-1)
jle Al Here

Wi t Semaph

cnp es:[di]. senaphore. Sematnt, 0

jge Al | Done

R sSenaph

endm

background processes:
pcb {0, of fset EndStk2, seg EndStk2}
pcb {0, of fset EndStk3, seg EndStk3}

; Data the foreground and background processes print:

StrbPtrsl

strl_a
strl b
strl_c
strl d
strl e
strl f
strl g
strl h
strl i
strl j
strl k
strl |

StrPtrs2

str2_a
str2 b
str2_c
str2_d
str2_e
str2_f

str2_g
str2_h
str2_i

StrPtrs3

str3_a
str3_b
str3_c
str3 d
str3_e
str3_f

str3_g
str3_h
str3_i

dseg

cseg

dwor d strl a, strl b, strlc, strl d, strl e, strlf
dword strl g, strl h, strli, strlj, strl k, strl|
dwor d 0

byt e “Foreground: string ‘a ”,cr,If,0
byt e “Foreground: string ‘b’ ",cr,If,0
byt e “Foreground: string ‘c’”,cr,If,0
byt e “Foreground: string ‘d ”,cr,If,0
byt e “Foreground: string ‘e ”,cr,If,0
byt e “Foreground: string ‘f’'”,cr,If,0
byt e “Foreground: string ‘g ”,cr,If,0
byt e “Foreground: string ‘h"”,cr,If,0
byt e “Foreground: string “i"",cr,If,0
byt e “Foreground: string ‘j'",cr,If,0
byt e “Foreground: string ‘k’”,cr,If,0
byt e “Foreground: string ‘I'",cr,If,0
dword str2_a, str2_b, str2_c, str2_d, str2_e, str2_f
dwor d str2_g, str2_h, str2_i

dwor d 0

byt e “Background 1: string ‘a ”,cr,If,0
byt e “Background 1: string ‘b’ ”,cr,If,0
byt e “Background 1: string ‘¢’ ”,cr,If,0
byt e “Background 1: string ‘d ",cr,If,0
byt e “Background 1: string ‘e ",cr,If,0
byt e “Background 1. string ‘f'”",cr,If,0
byt e “Background 1. string ‘g ",cr,If,0
byt e “Background 1: string ‘h’”,cr,If,0
byt e “Background 1: string ‘i’”",cr,If,0
dwor d str3 a, str3 b, str3 c, str3._d, str3_e, str3_f
dword str3 g, str3_h, str3.i

dword 0

byt e “Background 2: string ‘j’",cr,If,0
byt e “Background 2: string ‘k’”,cr,If,0
byt e “Background 2: string ‘I'",cr,If,0
byt e “Background 2: string ‘m”,cr,If,0
byt e “Background 2: string ‘n'”,cr,If,0
byt e “Background 2: string ‘o' ”,cr,If,0
byte “Background 2: string ‘p'”,cr,If,0
byt e “Background 2: string ‘q ”,cr,If,0
byt e “Background 2: string ‘r’”,cr,If,0
ends

segment para public ‘code

assume cs: cseg, ds:dseg

; Areplacenent critical error handler. This routine calls prcsquit
if the user decides to abort the program

Processes, Coroutines, and Concurrency

OitErrMg byt e cr,lf
byt e “DCs Oritical Eror!”,cr,If
byt e “Abort, Retry, I)gnore, Fail? $
M/l nt 24 proc far
push dx
push ds
push ax
push cs
pop ds
I nt 24Lp: | ea dx, OitErrMg
nmov ah, 9 ;DCB print string call.
int 21h
nov ah, 1 ; DOB read character call.
int 21h
and al, 5Fh ; Convert |.c. -> u.c.
cnp al, ‘I’ ; L gnor e?
j ne Not | gnor e
pop ax
nmov al, 0
jm Qit24
Not | gnor e: cnp al, ‘r’ ; Retry?
j ne Not Ret ry
pop ax
nmov al, 1
jmp Qit24
Not Ret ry: cnp al, ‘A ; Abort ?
j ne Not Abor t
prcsqui t ;If quitting, fix INT 8.
pop ax
nov al, 2
jnp Qit24
Not Abort : cnp al, ‘F
j ne BadChar
pop ax
nmov al, 3
Qui t24: pop ds
pop dx
iret
BadChar : nov ah, 2
nov dl, 7 ; Bel | character
jnp I nt 24Lp
M/ nt 24 endp

’

Ve will sinply disable INT 23h (the break exception).

M/l nt 23 proc far
iret
M/l nt 23 endp

)
’
1
’
’
)
)

Thi s background processes call DOS to print several strings to the
screen. In the meantime, the foreground process is also printing
strings to the screen. To prevent reentry, or at |east a junble of
characters on the screen, this code uses semaphores to protect the
DCS calls. Therefore, each process will print one conplete |ine
then rel ease the semaphore. If the other process is waiting it will
print its line.

Back@ oundl proc

nmov ax, dseg
nov ds, ax

Page 1143

Chapter 19

Page 1144

; Wit for everyone else to get ready:

| esi Barri er Semaph
barrier 3

; Ckay, start printing the strings:

Pri nt Loop:

BkGhdDone:
BackG oundl

Back@G ound2

Pri nt Loop:

BkGhdDone:
BackG ound2

; Initialize the INT 23h

| ea bx, StrPtrs2 ;Array of str ptrs.
cnp word ptr [bx+2],0 ;A end of pointers?
je BkGhdDone

| es di, [bx] ;Get string to print.
DCBWi t

puts ;Calls DOB to print string.
DCSR s

add bx, 4 ; Point at next str ptr.
jnp Print Loop

die

endp

pr oc

nmov ax, dseg

nmov ds, ax

| esi Barri er Sermaph

barrier 3

| ea bx, StrPtrs3 ;Array of str ptrs.
cnp word ptr [bx+2],0 ;A end of pointers?
je BkGhdDone

| es di, [bx] ; Get string to print.
DCBW t

puts ;Calls DOB to print string.
DCSR s

add bx, 4 ;Point at next str ptr.
jnp Print Loop

die

endp

proc

nmov ax, dseg

nmov ds, ax

nov es, ax

nem ni t

and | NT 24h exception handl er vectors.

nmov ax, 0

nov es, ax

nmv word ptr es:[24h*4], offset M/Int24

nov es:[24h*4 + 2], cs

nov word ptr es:[23h*4], offset Ml nt23

nmov es:[23h*4 + 2], cs

prcsinit ;Start nultitasking system

; Start the first background process:

| esi BkgndPCB2
fork

test ax, ax

je Start B&
jnp BackG oundl

; Start the second background process:

Start B&Q:

| esi BkgndPCB3
fork

;Fire up a new process
Parent’s return?

; @ do backgroun stuff.

;Fire up a new process

Processes, Coroutines, and Concurrency

t est ax, ax Parent’s return?
je Par ent Prcs
jnp BackG ound2 ; @ do backgroun stuff.

; The parent process will print a bunch of strings at the sane tine
t he background process is doing this. W Il use the DOS semaphore
; to protect the call to DOS that PUTS nakes.

Par ent Prcs: | esi Barri er Semaph
barrier 3
| ea bx, StrPtrsi ;Array of str ptrs.

Pri nt Loop: cnp word ptr [bx+2],0 ;At end of pointers?
je For eGhdDone
| es di, [bx] ;Get string to print.
DCBVi t
puts ;Calls DOS to print string.
DCBR s
add bx, 4 ; Point at next str ptr.
jnp Print Loop

ForeGhdDone: prcsquit

Qit: Exi t Pgm ;DOS macro to quit program
Mai n endp

cseg ends

sseg segment para stack ‘stack’

; Here are the stacks for the background processes we start

stk2 byte 1024 dup (?)
EndSt k2 wor d ?
st k3 byte 1024 dup (?)
EndSt k3 wor d ?

;Here’s the stack for the main prograniforeground process.

stk byt e 1024 dup (?)
sseg ends
z777277S€g segmrent para public ‘zzzzzz’
Last Byt es db 16 dup (?)
z277775€g ends
end Mai n
Sample Output;
Background 1: string ‘a’
Background 1: string ‘b’
Background 1: string ‘c’
Background 1: string ‘d’
Background 1: string ‘e’
Background 1: string ‘f’

Foreground: string ‘a
Background 1: string ‘g’
Background 2: string ‘j’
Foreground: string ‘b’
Background 1: string ‘h’
Background 2: string ‘k’
Foreground: string ‘c’
Background 1: string ‘i’
Background 2: string ‘I’
Foreground: string ‘d
Background 2: string ‘ni
Foreground: string ‘e’
Background 2: string ‘n’
Foreground: string ‘f’
Background 2: string ‘o’
Foreground: string ‘g

Page 1145

Chapter 19

Background 2: string ‘p’
Foreground: string ‘h’
Background 2: string ‘Q’
Foreground: string ‘i’
Background 2: string ‘r’
Foreground: string ‘j’
Foreground: string ‘K’
Foreground: string ‘I’

Note how background process number one ran for one clock period before the other processes waited on
the DOS semaphore. After this initial burst, the processes all took turns calling DOS.

19.6 Deadlock

Page 1146

Although semaphores can solve any synchronization problems, don't get the impression that sema-
phores don't introduce problems of their own. As you've already seen, the improper use of semaphores
can result in the indefinite suspension of processes waiting on the semaphore queue. However, even if
you correctly wait and signal individual semaphores, it is quite possible for correct operations on
combinations of semaphores to produce this same effect. Indefinite suspension of a process because of
semaphore problems is a serious issue. This degenerate situation is known as deadlock or deadly
embrace.

Deadlock occurs when one process holds one resource and is waiting for another while a second
process is holding that other resource and waiting for the first. To see how deadlock can occur, consider
the following code:

Process one:

| esi Semaphl
Wi t Semaph

« Assune interrupt occurs here »

| esi Sermaph2
Wi t Semaph

Process two:

| esi Semaph2
Vi t Serraph
| esi Semaphl
Wi t Semaph

Process one grabs the semaphore associated with Semaph1. Then a timer interrupt comes along which
causes a context switch to process two. Process two grabs the semaphore associated with Semaph2 and
then tries to get Semaph1. However, process one is already holding Semaph1, so process two blocks
and waits for process one to release this semaphore. This returns control (eventually) to process one. Pro-
cess one then tries to graph Semaph2. Unfortunately, process two is already holding Semaphz2, so pro-
cess one blocks waiting for Semaph2. Now both processes are blocked waiting for the other. Since
neither process can run, neither process can release the semaphore the other needs. Both processes are
deadlocked.

One easy way to prevent deadlock from occurring is to never allow a process to hold more than one
semaphore at a time. Unfortunately, this is not a practical solution; many processes may need to have
exclusive access to several resources at one time. However, we can devise another solution by observing
the pattern that resulted in deadlock in the previous example. Deadlock came about because the two pro-
cesses grabbed different semaphores and then tried to grab the semaphore that the other was holding. In

Processes, Coroutines, and Concurrency

other words, they grabbed the two semaphores in a different order (process one grabbed Semaph first
and Semaph? second, process two grabbed Semaph?2 first and Semaph1 second). It turns out that two
process will never deadlock if they wait on common semaphores in the same order. We could modify the
previous example to eliminate the possibility of deadlock thusly:

. Process one:

| esi Semaphl
Wi t Semaph
| esi Semaph2
Wi t Semaph

. Process two:

| esi Semaphl
Wi t Semaph
| esi Semaph?2
Wi t Semaph

Now it doesn’t matter where the interrupt occurs above, deadlock cannot occur. If the interrupt occurs
between the two WaitSemaph calls in process one (as before), when process two attempts to wait on
Semaph1, it will block and process one will continue with Semaph?2 available.

An easy way to keep out of trouble with deadlock is to number all your semaphore variables and
make sure that all processes acquire (wait on) semaphores from the smallest numbered semaphore to the
highest. This ensures that all processes acquire the semaphores in the same order, and that ensures that
deadlock cannot occurs.

Note that this policy of acquiring semaphores only applies to semaphores that a process holds con-
currently. If a process needs semaphore six for a while, and then it needs semaphore two after it has
released semaphore six, there is no problem acquiring semaphore two after releasing semaphore six.
However, if at any point the process needs to hold both semaphores, it must acquire semaphore two first.

Processes may release the semaphores in any order. The order that a process releases semaphores
does not affect whether deadlock can occur. Of course, processes should always release a semaphore as
soon as the process is done with the resource guarded by that semaphore; there may be other processes
waiting on that semaphore.

While the above scheme works and is easy to implement, it is by no means the only way to handle
deadlock, nor is it always the most efficient. However, it is simple to implement and it always works. For
more information on deadlocks, see a good operating systems text.

19.7 Summary

Despite the fact that DOS is not reentrant and doesn't directly support multitasking, that doesn’t mean
your applications can’'t multitask; it's just difficult to get different applications to run independently of one
another under DOS.

Although DOS doesn't switch among different programs in memory, DOS certainly allows you to load
multiple programs into memory at one time. The only catch is that only one such program actually exe-
cutes. DOS provides several calls to load and execute “.EXE” and “.COM” files from the disk. These pro-
cesses effectively behave like subroutine calls, with control returning to the program invoking such a
program only after that “child” program terminates. For more details, see

e “DOS Processes” on page 1065
e “Child Processes in DOS” on page 1065

Page 1147

Chapter 19

Page 1148

« “Load and Execute” on page 1066

e “Load Program” on page 1068

e “Loading Overlays™ on page 1069

e “Terminating a Process” on page 1069

* “Obtaining the Child Process Return Code” on page 1070

Certain errors can occur during the execution of a DOS process that transfer control to exception han-
dlers. Besides the 80x86 exceptions, DOS’ break handler and critical error handler are the primary
examples. Any program that patches the interrupt vectors should provide its own exception handlers for
these conditions so it can restore interrupts on a ctrl-C or 1/O error exception. Furthermore, well-written
program always provide replacement exception handlers for these two conditions that provide better sup-
port that the default DOS handlers. For more information on DOS exceptions, see

« “Exception Handling in DOS: The Break Handler” on page 1070
* “Exception Handling in DOS: The Critical Error Handler” on page 1071
« “Exception Handling in DOS: Traps” on page 1075

When a parent process invokes a child process with the LOAD or LOADEXEC calls, the child process
inherits all open files from the parent process. In particular, the child process inherits the standard input,
standard output, standard error, auxiliary I/O, and printer devices. The parent process can easily redi-
rect 1/0 to/from these devices before passing control to a child process. This, in effect, redirects the 1/0
during the execution of the child process. For more details, see

= “Redirection of 1/0 for Child Processes” on page 1075

When two DOS programs want to communicate with each other, they typically read and write data to
afile. However, creating, opening, reading, and writing files is a lot of work, especially just to share a few
variable values. A better alternative is to use shared memory. Unfortunately, DOS does not provide sup-
port to allow two programs to share a common block of memory. However, it is very easy to write a TSR
that manages shared memory for various programs. For details and the complete code to two shared mem-
Ory managers, see:

e “Shared Memory” on page 1078
e “Static Shared Memory” on page 1078
e “Dynamic Shared Memory” on page 1088

A coroutine call is the basic mechanism for switching control between two processes. A “cocall” oper-
ation is the equivalent of a subroutine call and return all rolled into one operation. A cocall transfers con-
trol to some other process. When some other process returns control to a coroutine (via cocall), control
resumes with the first instruction after the cocall code. The UCR Standard Library provides complete
coroutine support so you can easily put coroutines into your assembly language programs. For all the
details on coroutines, plus a neat maze generator program that uses coroutines, see

e “Coroutines” on page 1103

Although you can use coroutines to simulate multitasking (“cooperative multitasking”), the major
problem with coroutines is that each application must decide when to switch to another process via a
cocall. Although this eliminates certain reentrancy and synchronization problems, deciding when and
where to make such calls increases the work necessary to write multitasking applications. A better
approach is to use preemptive multitasking where the timer interrupt performs the context switches.
Reentrancy and synchronization problems develop in such a system, but with care those problems are eas-
ily overcome. For the details on true preemptive multitasking, and to see how the UCR Standard Library
supports multitasking, see

e “Multitasking” on page 1124

e ‘“Lightweight and HeavyWeight Processes” on page 1124

e “The UCR Standard Library Processes Package” on page 1125
e “Problems with Multitasking” on page 1126

e “A Sample Program with Threads” on page 1127

Processes, Coroutines, and Concurrency

Preemptive multitasking opens up a Pandora’s box. Although multitasking makes certain programs
easier to implement, the problems of process synchronization and reentrancy rears its ugly head in a mul-
titasking system. Many processes require some sort of synchronized access to global variables. Further,
most processes will need to call DOS, BIOS, or some other routine (e.g., the Standard Library) that is not
reentrant. Somehow we need to control access to such code so that multiple processes do not adversely
affect one another. Synchronization is achievable using several different techniques. In some simple cases
we can simply turn off the interrupts, eliminating the reentrancy problems. In other cases we can use test
and set or semaphores to protect a critical region. For more details on these synchronization operations,
see

« “Synchronization” on page 1129

e “Atomic Operations, Test & Set, and Busy-Waiting” on page 1132
e “Semaphores” on page 1134

« “The UCR Standard Library Semaphore Support” on page 1136

« “Using Semaphores to Protect Critical Regions” on page 1136

e “Using Semaphores for Barrier Synchronization” on page 1140

The use of synchronization objects, like semaphores, can introduce new problems into a system.
Deadlock is a perfect example. Deadlock occurs when one process is holding some resource and wants
another and a second process is hold the desired resource and wants the resource held by the first pro-
cess®. You can easily avoid deadlock by controlling the order that the various processes acquire groups of
semaphores. For all the details, see

* “Deadlock” on page 1146

5. Or any chain of processes where everyone in the chain is holding something that another process in the chain wants.

Page 1149

Chapter 19

Page 1150

