Tutorial 6: Keyboard Input

Thiswin32 tutorial was created and written by Iczelion for MASM 32. It was trandated for
use by HLA (High Level Assembly) users by Randall Hyde. All original copyrights and other
issues still apply to this text. The following is the copyright notice from Iczelion’s Win32 Assem-
bly Home Page:

The tutorials written by me are copyright freeware. That means they are available freely so
long as they are not included in any commercial package. Commercial use is strictly prohibited.
"Knowledge, like sex,p is better when it's free"

Note that | don't claim to be the win32asm wizard or a coding guru. I'm also learning my
ropes. Those tutorials were written as reminders of what | have learned. They will grow in number
as | learn more about win32asm programming.

You can read more about Iczelion’s tutorials at the “Iczelion’s Win32 Assembly Home Page”
found at

http://win32asm.cjb.net

That site provides the original MASM examples as well as providing additional win32 assem-
bly language programming information. Note that the MASM tutorials provide an excellent con-
trast between MASM and HLA as you can see the differences between these two languages since
MASM code exists at Iczelion’s site and the HLA translation appears at this site.

Note that references to the first person (“I”) refer to Iczelion, not Randall Hyde. Randy Hyde
has attempted to maintain the tutorial in as “pure” a state as possible, only making the modifica-
tions necessary to support HLA rather than MASM along with a few minor changes to the
English. All credit, glory, damnation, etc., is due Iczelion; Randall Hyde’s modifications to this
tutorial were rather trivial in nature.

Tutorial 6: Keyboard Input

We will learn how a Windows program receives keyboard input.

Sour ce Code for this Tutorial:
Il lczelion's tutorial #6: Keyboard I nput

pr ogr am aSi npl eW ndow;

#incl ude("w n32. hhf") /1 Standard wi ndows stuff.

#incl ude("strings.hhf") /1 Defines HLA string routines.

#i ncl ude("menory. hhf") /1 Defines "NULL" anong ot her things.
#i ncl ude("args. hhf") /1 Command |ine paranmeter stuff.

#i ncl ude("conv. hhf")

static

http://win32asm.cjb.net

hl nst ance: dwor d;
CommandLi ne: string;

readonl y

ClassNane: string := "SinpleWnd ass";
AppNarre: string := "Qur First Wndow';

static GetlLastError:procedure; external ("__inp__GetlLastError@");

/1l The wi ndow procedure. Since this gets called directly from

/1 windows we need to explicitly reverse the paraneters (conpared
/1 to the standard STDCALL declaration) in order to make HLA' s

/'l Pascal calling convention conpatible with Wndows.

11
[l This is actually a function that returns a return result in
[l EAX. If this function returns zero in EAX, then the event

/'l 1 oop term nates program executi on.

procedure WhdProc(| Param dword; wParam dword; uMsg:uns32; hWhd: dword);
nodi spl ay;

const
TestString: = "Wn32 assenbly is great and easy!"

var
hdc: dwor d;
ps: wi n. PAI NTSTRUCT;
static
kbdChar : char : ="' ';

begi n WhdPr oc;

/1 1f the WM DESTROY nessage cones al ong, then we' ve
/1 got to post a nessage telling the event |oop that
/] it’s time to quit the program The return value in
/1 EAX nust be false (zero). The GetMessage function
/1 will return this value to the event |oop which is
/1 the indication that it’s tine to quit.

if(uMsg = wi n. WM DESTROY) then

wi n. Post Qui t Message(0);

elseif(uMsg = win. WL CHAR) then

/1 When a keyboard character comes al ong, save

/1 the ASCI| code of the character and invalidate
/1 the window s rectangle so that we can force
[l a redraw.

mov((type byte wParam), al);

mov(al, kbdChar);

wi n. I nval i dateRect (hWhd, NULL, true);
el seif(uMsg = win. WM PAINT) then

/1 When W ndows requests that we draw the w ndow,
[/ fill in the string in the center of the screen.

wi n. Begi nPai nt (hwd, ps);
mov(eax, hdc);

Wi n. Text Qut
(
hdc,
0,
0,
#{ lea(eax, kbdChar); push(eax); }#,
1
)

wi n. EndPai nt (hwd, ps);

el se

/1 1f a WM DESTROY message doesn’'t cone al ong,

/1 let the default wi ndow handl er process the

/1 message. Whatever (non-zero) value this function
/1 returns is the return result passed on to the

/1 event | oop.

wi n. Def W ndowPr oc(hwhd, uMsg, wParam | Param);
exit WhdProc;

endi f;

sub(eax, eax);
end WhdProc;
/1 W nMai n-
11

/1 This is the "main" wi ndows program |t sets up the

/1 wi ndow and then enters an "event |oop" processing

/'l whatever messages are passed along to that w ndow

/1 Since our code is the only code that calls this function,

/1l we’'ll use the Pascal calling conventions for the paraneters.

procedure W nMain

(

var

begi

hl nst : dwor d;
hPrevlinst: dword;

CmdLi ne: string;

Crrd Show: dwor d
nodi spl ay;

WC: wi n. WNDCLASSEX;
nsg: wi n. MSG,

hwnd: dwor d;

n W nMai n;

/1 Set up the wi ndow class (wc) object:

mov(@ize(w n. WIDCLASSEX), wc.chSize);

nmov(wi n. CS_HREDRAW | w n.CS VREDRAW wc.style);
mov(&WhdProc, wec. | pfnWhdProc);

mov(NULL, wc.chd sExtra);

mov(NULL, wc.cbWhdExtra);

nmov(hl nstance, wc. hlnstance);

mov(wi n. COLOR_W NDOWM1, wc. hbrBackground);
nmov(NULL, wec. | pszMenuNane);

nmov(Cl assNanme, wc. | pszCl assName);

/'l Get the icons and cursor for this application:

wi n. Loadl con(NULL, wi n.IDI _APPLI CATION);
nmov(eax, wc.hlcon);
nov(eax, wc.hlconSm);

wi n. LoadCur sor (NULL, wi n.|DC_ARROW) ;
nov(eax, wc.hCursor);

/1 Ckay, register this window with Wndows so it
/1 will start passing nessages our way. Once this
/'l is acconplished, create the wi ndow and display it.

Wi n. Regi ster C assEx(wc);

wi n. Cr eat eW ndowEx
(
NULL,
Cl assNane,
AppNane,
wi n. W6 OVERLAPPEDW NDOW

end

begi

wi n. CW USEDEFAULT,
wi n. CW USEDEFAULT,
wi n. CW USEDEFAULT,
wi n. CW USEDEFAULT,
NULL,

NULL,

hl nst

NULL

)

mov(eax, hwnd);
wi n. ShowwW ndow(hwnd, wi n. SW SHOANNORMAL) ;
wi n. Updat eW ndowm(hwnd);
/1l Here's the event | oop that processes nessages
/] sent to our window. On return from Get Message,
/1 break if EAX contains false and quit the
/1 program
forever
Wi n. Get Message(msg, NULL, 0, 0);
breakif(!eax);
wi n. Transl at eMessage(nsg);
wi n. Di spat chMessage(nsg);
endf or;
nmov(msg. wParam eax);

W nMai n;

n aSi npl eW ndow;
/1 Get this process’ handl e:

wi n. Get Modul eHandl e(NULL);
nov(eax, hlnstance);

/'l Get a copy of the command line string passed to this code:

nmov(arg. CmdLn(), CommandLine);

W nMai n(hl nstance, NULL, CommandLine, w n.SW SHOADEFAULT);

/1 WnMin returns a return code in EAX, exit the program
/1 and pass along that return code.

wi n. Exi t Process(eax);

end aSi npl eW ndow,

Theory:

Since normally there's only one keyboard in each PC, al running Windows programs must
share it between them. Windows is responsible for sending the key strokes to the window which
has the input focus.

Although there may be several windows on the screen, only one of them has the input focus.
The window which has input focus is the only one which can receive key strokes. You can differ-
entiate the window which has input focus from other windows by looking at the title bar. Thetitle
bar of the window which has input focus is highlighted.

Actualy, there are two main types of keyboard messages, depending on your view of the key-
board. You can view a keyboard as a collection of keys. In this casg, if you press a key, Windows
sendsawin.WM_KEY DOWN message to the window which hasinput focus, notifying that akey
is pressed. When you release the key, Windows sends awin.WM_KEY UP message. You treat a
key as abutton. Another way to look at the keyboard isthat it's acharacter input device. When you
press"a’ key, Windows sends awin.WM_CHAR message to the window which has input focus,
telling it that the user sends"a" character to it. In fact, Windows sendswin.WM_KEY DOWN and
win.WM_KEY UP messages to the window which has input focus and those messages will be
translated to winWM_CHAR messages by win.TranslateMessage call. The window procedure
may decide to process all three messages or only the messages it's interested in. Most of the time,
you can ignore winWM_KEYDOWN and win.WM_KEY UP since win.Trans ateM essage func-
tion call in the message loop trandate winWM_KEYDOWN and win WM _KEY UP messagesto
winWM_CHAR messages. We will focus on win.WM_CHAR in this tutorial.

b

Analysis:

kbdChar:char :="";p//the character the program receives from keyboard
Thisisthe variable that will store the character received from the keyboard. Theinitial value
is $20 or the space since when our window refreshesiits client area the first time, there is no char-
acter input. So we want to display space instead.

elseif(uUMsg = win.WM_CHAR) then

mov((type byte wParam), al);
mov(al, kbdChar);
win.InvalidateRect(hwnd, NULL, true);

Thisis added in the window procedure to handle the win.WM_CHAR message. It just puts
the character into the variable named "char" and then callswin.InvalidateRect. win.InvalidateRect

makes the specified rectangle in the client areainvalid which forces Windows to send
win.WM_PAINT message to the window procedure. Its syntax is as follows:

procedure InvalidateRect(hwhd: dword; | pRect:dword; bErase:dword);

IpRect is a pointer to the rectagle in the client area that we want to declare invalid. If this
parameter is null, the entire client area will be marked asinvalid.

bEraseisaflag telling Windows if it needs to erase the background. If thisflag is TRUE, then
Windows will erase the backgroud of the invalid rectangle when win.BeginPaint is called.

So the strategy we used here isthat: we store all necessary information relating to painting the
client area and generate win.WM_PAINT message to paint the client area. Of course, the codesin
winWM_PAINT section must know beforehand what’s expected of them. This seems a round-
about way of doing things but it's the way of Windows.

Actually we can paint the client area during while processing the win.WM_CHAR message
by calling win.GetDC and win.ReleaseDC pair. There is no problem there. But the fun begins
when our window needs to repaint its client area. Since the codes that paint the character arein
win.WM_CHAR section, the window procedure will not be able to repaint our character in the
client area. So the bottom lineis: put all necessary data and codes that do painting in
win.WM_PAINT. You can send win. WM _PAINT message from anywherein your code anytime
you want to repaint the client area.

wi n. Text Qut

(
hdc,

0,
0,
#{ lea(eax, kbdChar); push(eax); }#,
1
)

When win.InvalidateRect is called, it sends awin.WM_PAINT message back to the window
procedure. So the codesin win.WM_PAINT sectionis called. It callswin.BeginPaint as usual to
get the handle to device context and then calls win. TextOut which draws our character in the cli-
ent area at x=0, y=0. When you run the program and press any key, you will see that character
echo in the upper left corner of the client window. And when the window is minimized and maxi-
mized again, the character is still there since all the codes and data essential to repaint are all gath-
ered inwinWM_PAINT section.

	Tutorial 6: Keyboard Input
	Tutorial 6: Keyboard Input
	Source Code for this Tutorial:
	Theory:
	Analysis:

