

LA,
ou're

w his-
 each
wn 4
mem-
 neces-
e to the
m is
 can
m writ-

 one
e con-

can use
rogram-

s that,
sters to
unc-
on is
ure.
e them

l

Tutorial 1: The Basics

This tutorial assumes that the reader knows how to use HLA. If you're not familiar with H
download it and study the text inside the package before going on with the tutorial. Good. Y
now ready. Let's go!

Theory:

Win32 programs run in protected mode which is available since 80286. But 80286 is no
tory. So we only have to concern ourselves with 80386 and its descendants. Windows runs
Win32 program in separated virtual space. That means each Win32 program will have its o
GB address space. However, this doesn't mean every win32 program has 4GB of physical
ory, only that the program can address any address in that range. Windows will do anything
sary to make the memory the program references valid. Of course, the program must adher
rules set by Windows, else it will cause the dreaded General Protection Fault. Each progra
alone in its address space. This is in contrast to the situation in Win16. All Win16 programs
see each other. Not so under Win32. This feature helps reduce the chance of one progra
ing over other program's code/data.

Memory model is also drastically different from the old days of the 16-bit world. Under
Win32, we need not be concerned with memory model or segments anymore! There's only
memory model: Flat memory model. There's no more 64K segments. The memory is a larg
tinuous space of 4 GB. That also means you don't have to play with segment registers. You
any segment register to address any point in the memory space. That's a GREAT help to p
mers. This is what makes Win32 assembly programming as easy as C.

When you program under Win32, you must know some important rules. One such rule i
Windows uses esi, edi, ebp and ebx internally and it doesn't expect the values in those regi
change. So remember this rule first: if you use any of those four registers in your callback f
tion, don't ever forget to restore them before returning control to Windows. A callback functi
your own function which is called by Windows. The obvious example is the windows proced
This doesn't mean that you cannot use those four registers, you can. Just be sure to restor
back before passing control back to Windows.

Content:

Here's the skeleton program. If you don't understand some of the codes, don't panic. I'l
explain each of them later.

program YourProgramName;
#include(“stdlib.hhf”)

const
 <Your compile-time constants go here>

type
 <Your type declarations go here>

static

nd pro-
ram
ro-

.
plica-

nc-

ts you

rands

 <Your initialized data>

storage
 <Your uninitialized data>

readonly
 <run-time constants and read-only data goes here>

<< Your procedures would normally go here >>

begin YourProgramName;

 <Your code goes here>

end YourProgramName;

That's all! Let's analyze this skeleton program.

program YourProgramName;

HLA supports two types of source files: programs and units. Programs have a main program
that executes when the program loads into memory. Units are simply a collection of data a
cedures that you must link with other code. An executable file consists of exactly one prog
and zero or more units linked together. For the time being we will only write HLA code in p
gram files. See the HLA documentation for more details about units.

#include(“stdlib.hhf”)

This statement tells the HLA compiler to include the HLA Standard Library Header files
Depending on your specific application, you may or may not need this statement. Some ap
tions will require the inclusion of other header files (for example, to define the win32 API fu
tions and constants).

The const Section

The const section is where you defined named constants for use in your program. Objec
define in the const section do not take up any space at run-time (other than as immediate ope
of other machine instructions). HLA supports a second constant declaration section, the val sec-
tion, but we will ignore that declaration section here. See the HLA documentation for more
details if you’re interested. The const section is optional and is absent in many programs.

Example const section:
const
 MaxCnt := 10;
 pi := 3.14159;
 HW := “Hello World”;
 AllOnes:dword := $FFFF_FFFF;

an
ue to

t
m-
mory

in the

The type Section

You may define your own data types in the type section. Like the const section, the type sec-
tion does not reserve any storage for data in your program. Objects you define in the type section
are merely templates for the actual variable declarations that come later. Also like the const sec-
tion, the type section is optional and may not be present in many HLA applications.

Sample type declaration section:
type
 integer: int32;
 point: record
 x:uns16;
 y:uns16;
 endrecord;

The static Section

The static section is where you declare initialized variable objects. Actually associating
initial value with each variable you declare is optional. If you do not specifically assign a val
an object, HLA will initialize it with zero bits. The static section is optional, but this is the mos
common place where programmer declare their main program variables, so this section co
monly appears in HLA programs. Objects you declare in the static section will consume me
throughout the execution lifetime of your program; these objects will also consume space
executable file that HLA produces.

Sample static section:
static
 s:string := “Hello World”;
 counter:uns32 := 0;
 index:int32;
 chr:char;
 b:byte := $5F;

The storage Section

The storage section is where you can declare uninitialize variable objects. Technically,
Microsoft’s MASM and LINK programs (which HLA uses to generate actual machine code)
don’t support uninitialized data sections. Therefore, HLA simply initializes all objects you
declare in a storage section to all zero bits. Effectively, the static and storage sections are identi-
cal except that the storage section doesn’t let you assign an initial value to a storage variable.

Example:
storage
 u_str: string;
 i:int32;
 c:char;
 d:dword;

A

ns.

cts

ec-

 you
bove.

 in pro-
gram.
-

have a
 main
ion.
 most

meter
mple,
The readonly Section

Objects you declare in the readonly section must have an initial value. This is because HL
will load all readonly objects into a write-protected section of memory when the program ru
Any attempt to write to data you declare in a readonly section will generate a memory access
exception at run-time. The readonly section is a great place to put data tables and other obje
whose values do not change at run-time. Like the const section, objects you declare in the rea-
donly section do not change while the program executes. Unlike the const section, however,
objects you declare in the readonly section do consume memory at run time. Like the other s
tions, the readonly section is optional and most programmers don’t bother including a readonly
section in their programs.

Example:
readonly
 ConstStr: string := “Hello World!”;
 dataTable: byte[8] := [0,1,2,3,4,5,6,7];
 jmpTable: dword[4] := [&label1, &label2, &label3, &label4];

The data and var Sections

HLA has two additional variable declaration sections, var and data. We will not consider
these sections in this particular tutorial. See the HLA documentation for more details.

Section Organization

The sections may appear in any order between the program and begin statements in the
source file. All of the sections are optional and, in fact, may appear multiple times. Unless
have good reason to do otherwise, though, you should arrange these section in the order a

Executable Code

There are two places where actual machine instructions may appear in your programs:
cedures (and other procedure-like modules like iterators and methods) and in the main pro
The main program appears between the “begin YourProgramName” and “end YourProgram
Name” clauses in the program above. Procedures are optional but an HLA program must
main program section (even if the body of the main program is empty). Note that an empty
program body simply returns control back to windows when the program terminates execut
For the time being we will ignore the presence of procedures in an HLA program and write
of our code in the main program section.

Parameter Passing Conventions under Win32

The C calling convention passes parameters from right to left, that is , the rightmost para
is pushed first. The caller is responsible for balancing the stack frame after the call. For exa

C

ame-

onven-
in the

ht to
ALL

call
rame-
n to

ct
 PAS-

bject:

ng the
lls.
a tre-
 you
eters.
and
t this
 will
 the
 into

 way
s the
in order to call a function named foo(int first_param, int second_param, int third_param) in
calling convention the HLA instructions will look like this:
push(third_param);
push(second_param);
push(first_param);
call foo;
add(12, esp);

The PASCAL calling convention is the reverse of the C calling convention. It passes par
ters from left to right and the callee is responsible for the stack balancing after the call.

Win16 adopts the PASCAL convention because it produces smaller programs. The C c
tion is useful when you don't know how many parameters will be passed to the function as
case of wsprintf (). In the case of wsprintf (), the function has no way to determine beforehand
how many parameters will be pushed on the stack, so it cannot do the stack balancing.

STDCALL is the hybrid of the C and PASCAL convention. It passes parameters from rig
left but the callee is responsible for stack balancing after the call.Win32 platforms use STDC
exclusively except in one case: wsprintf(). You must use C calling convention with wsprintf ().

HLA supports a high-level procedure call syntax. However, HLA’s high level procedure
syntax supports only the PASCAL calling convention. This means that HLA pushes the pa
ters in the reverse order that the win32 API routines expect them. There is a simple solutio
this problem: reverse the parameter declarations in the procedure prototypes. For the foo proce-
dure mentioned above, you’d use a prototype like the following:
procedure foo(third_param:int32; second_param:int32; first_param:int32);
external;

Another minor problem between the STDCALL and PASCAL calling sequences is the fa
that the STDCALL mechanism inserts an underscore before the procedure name while the
CAL calling mechanism does not. Fortunately, HLA’s external directive syntax provides a way
around this problem: it lets you specify the exact external name of the routine as a string o
procedure foo(third_param:int32; second_param:int32; first_param:int32);
external(“_foo”);

So between reversing the parameters in the procedure’s prototype and explicitly specifyi
external name, you can overcome the technical problems associated with the win32 API ca
The only remaining problem is a psychological rather than a technical problem. There are
mendous number of win32 API routines available to you. So many, in fact, that it is unlikely
will memorize them all (or even a fair number of them) and remember the order of the param
As such, you will be looking up many functions you call in order to verify the number, type,
order of parameters. Unfortunately, all the documentation you’re going to be reading abou
will assume that you’re using the STDCALL calling convention. Therefore, those examples
have their parameter lists reversed (compared to the way you must pass the parameters in
HLA code). At best, this is annoying; at worst, it will cause you to inject lots of extra defects
your code by inadvertently swapping parameters.

A better solution is to use HLA’s macro facilities to reverse the parameters for you. This
you can create a set of procedure/function prototypes that have the same “user interface” a

e Pas-

ou.
es

 are
 then

y
e easi-
d-

er

d in

ew
 con-
etail.
e.g.,
y rou-

in
tation
standard win32 API routines yet use the HLA high level calling syntax that supports only th
cal calling convention. Consider the following modification to the foo prototype from above:
procedure foo_proc(third_param:int32; second_param:int32; first_param:int32);
external(“_foo”);

macro foo(first_param, second_param, third_param);

 foo_proc(third_param, second_param, first_param)

endmacro;

Now when you call foo via the invocation “foo(1, 2, 3);” HLA will expand the foo macro to
produce the actual call “foo_proc(3, 2, 1);” that automatically reverses the parameters for y
By supplying these macros for each win32 API routine you call, you can invoke those routin
using the same apparent calling sequence as the STDCALL interface.

Note: you should not use this technique for procedures you write yourself in HLA. If you
the only one who calls your procedures (i.e., you aren’t writing Windows callback routines),
stick with the PASCAL calling convention: it’s more efficient.

Writing a Simple Console Application

Although this tutorial series is geared towards writing true Windows applications, a good
place to start is with a standard console application. HLA generates console applications b
default (HLA was intended for teaching assembly language and console applications are th
est to write, hence HLA’s default choice). The following simple program is a complete, stan
alone, console application that implements the familiar “Hello World” application.
program helloWorld;
#include(“stdlib.hhf”)
begin helloWorld;

 stdout.put(“Hello World”, nl);

end helloWorld;

The logic of this program should be fairly obvious to anyone above the absolute beginn
level, so there is no need to discuss it farther.

To compile this program (assuming it’s named “hw.hla”) you’d use the following comman
an win32 command prompt window:
c:> hla hw.hla

The command above will produce an executable file that displays “Hello World” (and a n
line) when you execute the program from a command window prompt. This tutorial will not
sider console applications any farther since the HLA documentation covers those in great d
About the only thing worth noting is the fact that many of the HLA standard library routines (
stdout.put) are only legal in console applications. In particular, you should avoid calling an
tine that begins with stdout, stdin, and console in an application that is not a console app. Certa
other library functions may also present problems, see the HLA Standard Library documen

tines
and HLA Standard Library source code if you have any questions about the suitability of rou
in the HLA Standard Library for standard Windows applications.

	Tutorial 1: The Basics
	This tutorial assumes that the reader knows how to use HLA. If you're not familiar with HLA, down...
	Theory:

	Win32 programs run in protected mode which is available since 80286. But 80286 is now history. So...
	Memory model is also drastically different from the old days of the 16-bit world. Under Win32, we...
	When you program under Win32, you must know some important rules. One such rule is that, Windows ...
	Content:

	Here's the skeleton program. If you don't understand some of the codes, don't panic. I'll explain...
	program YourProgramName;
	#include(“stdlib.hhf”)
	const <Your compile-time constants go here> type <Your type declarations go here> static <Your in...
	That's all! Let's analyze this skeleton program.
	program YourProgramName;

	HLA supports two types of source files: programs and units. Programs have a main program that exe...
	#include(“stdlib.hhf”)

	This statement tells the HLA compiler to include the HLA Standard Library Header files. Depending...
	The const Section

	The const section is where you defined named constants for use in your program. Objects you defin...
	Example const section:
	const MaxCnt := 10; pi := 3.14159; HW := “Hello World”; AllOnes:dword := $FFFF_FFFF;
	The type Section

	You may define your own data types in the type section. Like the const section, the type section ...
	Sample type declaration section:
	type integer: int32; point: record x:uns16; y:uns16; endrecord;
	The static Section

	The static section is where you declare initialized variable objects. Actually associating an ini...
	Sample static section:
	static s:string := “Hello World”; counter:uns32 := 0; index:int32; chr:char; b:byte := $5F;
	The storage Section

	The storage section is where you can declare uninitialize variable objects. Technically, Microsof...
	Example:
	storage u_str: string; i:int32; c:char; d:dword;
	The readonly Section

	Objects you declare in the readonly section must have an initial value. This is because HLA will ...
	Example:
	readonly ConstStr: string := “Hello World!”; dataTable: byte[8] := [0,1,2,3,4,5,6,7]; jmpTable: d...
	The data and var Sections

	HLA has two additional variable declaration sections, var and data. We will not consider these se...
	Section Organization

	The sections may appear in any order between the program and begin statements in the source file....
	Executable Code

	There are two places where actual machine instructions may appear in your programs: in procedures...
	Parameter Passing Conventions under Win32

	The C calling convention passes parameters from right to left, that is , the rightmost parameter ...
	push(third_param); push(second_param); push(first_param); call foo; add(12, esp);
	The PASCAL calling convention is the reverse of the C calling convention. It passes parameters fr...
	Win16 adopts the PASCAL convention because it produces smaller programs. The C convention is usef...
	STDCALL is the hybrid of the C and PASCAL convention. It passes parameters from right to left but...
	HLA supports a high-level procedure call syntax. However, HLA’s high level procedure call syntax ...
	procedure foo(third_param:int32; second_param:int32; first_param:int32); external;
	Another minor problem between the STDCALL and PASCAL calling sequences is the fact that the STDCA...
	procedure foo(third_param:int32; second_param:int32; first_param:int32); external(“_foo”);
	So between reversing the parameters in the procedure’s prototype and explicitly specifying the ex...
	A better solution is to use HLA’s macro facilities to reverse the parameters for you. This way yo...
	procedure foo_proc(third_param:int32; second_param:int32; first_param:int32); external(“_foo”)...
	Now when you call foo via the invocation “foo(1, 2, 3);” HLA will expand the foo macro to produc...
	Note: you should not use this technique for procedures you write yourself in HLA. If you are the ...
	Writing a Simple Console Application

	Although this tutorial series is geared towards writing true Windows applications, a good place t...
	program helloWorld;
	#include(“stdlib.hhf”)
	begin helloWorld;
	stdout.put(“Hello World”, nl);
	end helloWorld;
	The logic of this program should be fairly obvious to anyone above the absolute beginner level, s...
	To compile this program (assuming it’s named “hw.hla”) you’d use the following command in an win3...
	c:> hla hw.hla
	The command above will produce an executable file that displays “Hello World” (and a new line) wh...

