
Win32 API Reference
Win32 API Reference for HLA

2 GDI32.lib

2.1 AbortDoc

The AbortDoc function stops the current print job and erases everything drawn since the last call
to the StartDoc function.

AbortDoc: procedure
(

hdc:dword
);

stdcall;
returns("eax");
external("__imp__AbortDoc@4");

Parameters

hdc

[in] Handle to the device context for the print job.

Return Values

If the function succeeds, the return value is greater than zero.

If the function fails, the return value is SP_ERROR.

Windows NT/Windows 2000: To get extended error information, call GetLastError.

Remarks

Applications should call the AbortDoc function to stop a print job if an error occurs, or to stop a
print job after the user cancels that job. To end a successful print job, an application should call
the EndDoc function.

If Print Manager was used to start the print job, calling AbortDoc erases the entire spool job, so
that the printer receives nothing. If Print Manager was not used to start the print job, the data may
already have been sent to the printer. In this case, the printer driver resets the printer (when possi-
ble) and ends the print job.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf.
Library: Use Gdi32.lib.

See Also

Printing and Print Spooler Overview, Printing and Print Spooler Functions, EndDoc, SetAbort-
Page 1

Volume 1
Proc, StartDoc

2.2 AbortPath

The AbortPath function closes and discards any paths in the specified device context.
AbortPath: procedure
(

hdc:dword
);

stdcall;
returns("eax");
external("__imp__AbortPath@4");

Parameters

hdc

[in] Handle to the device context from which a path will be discarded.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

If there is an open path bracket in the given device context, the path bracket is closed and the path
is discarded. If there is a closed path in the device context, the path is discarded.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.

See Also
Paths Overview, Path Functions, BeginPath, EndPath

2.3 AddFontMemResourceEx

The AddFontMemResourceEx function adds the font resource from a memory image to the sys-
tem.

AddFontMemResourceEx: procedure
(

var pbFont: var;
Page 2

Win32 API Reference
cbFont: dword;
var pdv: var;
var pcFonts:dword

);
stdcall;
returns("eax");
external("__imp__AddFontMemResourceEx@16");

Parameters

pbFont

[in] Pointer to a font resource.

cbFont

[in] Number of bytes in the font resource that is pointed to by pbFont.

pdv

[in] Reserved. Must be 0.

pcFonts

[in] Pointer to a variable that specifies the number of fonts installed.

Return Values

If the function succeeds, the return value specifies the handle to the font added. This handle
uniquely identifies the fonts that were installed on the system. If the function fails, the return
value is zero.

Remarks

This function allows an application to get a font that is embedded in a document or a Web page. A
font that is added by AddFontMemResourceEx is always private to the process that made the
call and is not enumerable.

A memory image can contain more than one font. When this function succeeds, pcFonts is a
pointer to a DWORD whose value is the number of fonts added to the system as a result of this
call. For example, this number could be 2 for the vertical and horizontal faces of an Asian font.

When the function succeeds, the caller of this function can free the memory pointed to by pbFont
because the system has made its own copy of the memory. To remove the fonts that were installed,
call RemoveFontMemResourceEx. However, when the process goes away, the system will unload the
fonts even if the process did not call RemoveFontMemResource.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Unsupported.
Header: Declared in gdi32.hhf.
Library: Use Gdi32.lib.

See Also
Fonts and Text Overview, Font and Text Functions, RemoveFontMemResourceEx, SendMessage, DESIGNVECTOR
Page 3

Volume 1
2.4 AddFontResource

The AddFontResource function adds the font resource from the specified file to the system font
table. The font can subsequently be used for text output by any Win32-based application.

To mark a font as private or no enumerable, use the AddFontResourceEx function.
AddFontResource: procedure
(

lpszFilename: string
);

stdcall;
returns("eax");
external("__imp__AddFontResourceA@4");

Parameters

lpszFilename

[in] Pointer to a null-terminated character string that contains a valid font file name. This
parameter can specify any of the following files.

Windows 2000: To add a font whose information comes from several resource files, have lpsz-
FileName point to a string with the file names separated by a | --for example, abcxxxxx.pfm |
abcxxxxx.pfb.

Return Values

If the function succeeds, the return value specifies the number of fonts added.

If the function fails, the return value is zero.

File extension Description

.fon Font resource file.

.fnt Raw bitmap font file.

.ttf Raw TrueType file.

.ttc Windows 95/98 East Asian and Windows NT: TrueType font col-
lection.

.fot TrueType resource file.

.otf PostScript OpenType font.

.mmm multiple master Type1 font resource file. It must be used with .pfm
and .pfb files.

.pfb Type 1 font bits file. It is used with a .pfm file.

.pfm Type 1 font metrics file. It is used with a .pfb file.
Page 4

Win32 API Reference
Remarks

Any application that adds or removes fonts from the system font table should notify other win-
dows of the change by sending a WM_FONTCHANGE message to all top-level windows in the
operating system. The application should send this message by calling the SendMessage function
and setting the hwnd parameter to HWND_BROADCAST.

When an application no longer needs a font resource that it loaded by calling the AddFontRe-
source function, it must remove that resource by calling the RemoveFontResource function.

This function installs the font only for the current session. When the system restarts, the font will
not be present. To have the font installed even after restarting the system, the font must be listed in
the registry.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Fonts and Text Overview, Font and Text Functions, AddFontResourceEx, RemoveFontResource, SendMessage

2.5 AddFontResourceEx

The AddFontResourceEx function adds the font resource from the specified file to the system.
Fonts added with the AddFontResourceEx function can be marked as private and not enumera-
ble.

AddFontResourceEx: procedure
(

lpszFilename: string;
fl: dword;

var pdv: var
);

stdcall;
returns("eax");
external("__imp__AddFontResourceExA@12");

Parameters

lpszFilename

[in] Pointer to a null-terminated character string that contains a valid font file file name. This
parameter can specify any of the following files.

File extension Description

.fon Font resource file.
Page 5

Volume 1
To add a font whose information comes from several resource files, point lpszFileName to a string
with the file names separated by a | --for example, abcxxxxx.pfm | abcxxxxx.pfb.

fl

[in] Specifies characteristics of the font to be added to the system. This parameter can be one
of the following values.

pdv

[in] Reserved. It must be 0.

Return Values

If the function succeeds, the return value specifies the number of fonts added.

If the function fails, the return value is zero.

Remarks

This function allows a process to use fonts without allowing other processes access to the fonts.

When an application no longer needs a font resource it loaded by calling the AddFontRe-
sourceEx function, it must remove the resource by calling the RemoveFontResourceEx function.

This function installs the font only for the current session. When the system restarts, the font will

.fnt Raw bitmap font file.

.ttf Raw TrueType file.

.ttc Windows 95/98 East Asian and Windows NT: True Type font col-
lection.

.fot TrueType resource file.

.otf PostScript OpenType font.

.mmm multiple master Type1 font resource file. It must be used with .pfm
and .pfb files.

.pfb Type 1 font bits file. It is used with a .pfm file.

.pfm Type 1 font metrics file. It is used with a .pfb file.

Value Meaning

FR_PRIVATE Specifies that only the process that called the AddFontResourceEx
function can use this font. When the font name matches a public font,
the private font will be chosen. When the process terminates, the sys-
tem will remove all fonts installed by the process with the AddFon-
tResourceEx function.

FR_NOT_ENUM Specifies that no process, including the process that called the
AddFontResourceEx function, can enumerate this font.
Page 6

Win32 API Reference
not be present. To have the font installed even after restarting the system, the font must be listed in
the registry.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Unsupported.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows 2000.

See Also
Fonts and Text Overview, Font and Text Functions, RemoveFontResourceEx, SendMessage

2.6 AngleArc

The AngleArc function draws a line segment and an arc. The line segment is drawn from the cur-
rent position to the beginning of the arc. The arc is drawn along the perimeter of a circle with the
given radius and center. The length of the arc is defined by the given start and sweep angles.

AngleArc: procedure
(

hdc: dword;
x: dword;
y: dword;
dwRadius: dword;
eStartAngle:dword;
eSweepAngle:dword

);
stdcall;
returns("eax");
external("__imp__AngleArc@24");

Parameters

hdc

[in] Handle to a device context.

X

[in] Specifies the logical x-coordinate of the center of the circle.

Y

[in] Specifies the logical y-coordinate of the center of the circle.

dwRadius

[in] Specifies the radius, in logical units, of the circle. This value must be positive.

eStartAngle

[in] Specifies the start angle, in degrees, relative to the x-axis.

eSweepAngle
Page 7

Volume 1
[in] Specifies the sweep angle, in degrees, relative to the starting angle.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

The AngleArc function moves the current position to the ending point of the arc.

The arc drawn by this function may appear to be elliptical, depending on the current transforma-
tion and mapping mode. Before drawing the arc, AngleArc draws the line segment from the cur-
rent position to the beginning of the arc.

The arc is drawn by constructing an imaginary circle around the specified center point with the
specified radius. The starting point of the arc is determined by measuring counterclockwise from
the x-axis of the circle by the number of degrees in the start angle. The ending point is similarly
located by measuring counterclockwise from the starting point by the number of degrees in the
sweep angle.

If the sweep angle is greater than 360 degrees, the arc is swept multiple times.

This function draws lines by using the current pen. The figure is not filled.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.

See Also
Lines and Curves Overview, Line and Curve Functions, Arc, ArcTo, MoveToEx

2.7 AnimatePalette

The AnimatePalette function replaces entries in the specified logical palette.
AnimatePalette: procedure
(

hpal: dword;
iStartIndex:dword;
cEntries: dword;

var ppe: PALETTEENTRY
);

stdcall;
returns("eax");
external("__imp__AnimatePalette@16");
Page 8

Win32 API Reference
Parameters

hpal

[in] Handle to the logical palette.

iStartIndex

[in] Specifies the first logical palette entry to be replaced.

cEntries

[in] Specifies the number of entries to be replaced.

ppe

[in] Pointer to the first member in an array of PALETTEENTRY structures used to replace the current
entries.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

An application can determine whether a device supports palette operations by calling the GetDe-
viceCaps function and specifying the RASTERCAPS constant.

The AnimatePalette function only changes entries with the PC_RESERVED flag set in the corre-
sponding palPalEntry member of the LOGPALETTE structure.

If the given palette is associated with the active window, the colors in the palette are replaced
immediately.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.

See Also
Colors Overview, Color Functions, CreatePalette, GetDeviceCaps, LOGPALETTE, PALETTEENTRY

2.8 Arc

The Arc function draws an elliptical arc.

Arc: procedure

(

hdc: dword;

nLeftRect: dword;

nTopRect: dword;

nRightRect: dword;
Page 9

Volume 1
nBottomRect: dword;

nXStartArc: dword;

nYStartArc: dword;

nXEndArc: dword;

nYEndArc: dword

);

stdcall;

returns("eax");

external("__imp__Arc@36");

Parameters

hdc

[in] Handle to the device context where drawing takes place.

nLeftRect

[in] Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle.

Windows 95/98: The sum of nLeftRect plus nRightRect must be less than 32768.

nTopRect

[in] Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle.

Windows 95/98: The sum of nTopRect plus nBottomRect must be less than 32768.

nRightRect

[in] Specifies the logical x-coordinate of the lower-right corner of the bounding rectangle.

Windows 95/98: The sum of nLeftRect plus nRightRect must be less than 32768.

nBottomRect

[in] Specifies the logical y-coordinate of the lower-right corner of the bounding rectangle.

Windows 95/98: The sum of nTopRect plus nBottomRect must be less than 32768.

nXStartArc

[in] Specifies the logical x-coordinate of the ending point of the radial line defining the start-
ing point of the arc.

nYStartArc

[in] Specifies the logical y-coordinate of the ending point of the radial line defining the start-
ing point of the arc.

nXEndArc

[in] Specifies the logical x-coordinate of the ending point of the radial line defining the ending
point of the arc.

nYEndArc

[in] Specifies the logical y-coordinate of the ending point of the radial line defining the ending
point of the arc.
Page 10

Win32 API Reference
Return Values

If the arc is drawn, the return value is nonzero.

If the arc is not drawn, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

The points (nLeftRect, nTopRect) and (nRightRect, nBottomRect) specify the bounding rectangle.
An ellipse formed by the specified bounding rectangle defines the curve of the arc. The arc
extends in the current drawing direction from the point where it intersects the radial from the cen-
ter of the bounding rectangle to the (nXStartArc, nYStartArc) point. The arc ends where it inter-
sects the radial from the center of the bounding rectangle to the (nXEndArc, nYEndArc) point. If
the starting point and ending point are the same, a complete ellipse is drawn.

The arc is drawn using the current pen; it is not filled.

The current position is neither used nor updated by Arc.

Windows 95/98: The drawing direction is always counterclockwise.

Windows NT/2000: Use the GetArcDirection and SetArcDirection functions to get and set the
current drawing direction for a device context. The default drawing direction is counterclockwise.

Windows 95/98: The sum of the coordinates of the bounding rectangle cannot exceed 32,767.
The sum of nLeftRect and nRightRect or nTopRect and nBottomRect parameters cannot exceed
32,767.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.

See Also
Lines and Curves Overview, Line and Curve Functions, AngleArc, ArcTo, Chord, Ellipse, GetArcDirection, Pie,
SetArcDirection

2.9 ArcTo

The ArcTo function draws an elliptical arc.

ArcTo: procedure

(

hdc: dword;

nLeftRect: dword;

nTopRect: dword;

nRightRect: dword;

nBottomRect: dword;

nXRadial1: dword;
Page 11

Volume 1
nYRadial1: dword;

nXRadial2: dword;

nYRadial2: dword

);

stdcall;

returns("eax");

external("__imp__ArcTo@36");

Parameters

hdc

[in] Handle to the device context where drawing takes place.

nLeftRect

[in] Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle.

nTopRect

[in] Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle.

nRightRect

[in] Specifies the logical x-coordinate of the lower-right corner of the bounding rectangle.

nBottomRect

[in] Specifies the logical y-coordinate of the lower-right corner of the bounding rectangle.

nXRadial1

[in] Specifies the logical x-coordinate of the endpoint of the radial defining the starting point
of the arc.

nYRadial1

[in] Specifies the logical y-coordinate of the endpoint of the radial defining the starting point
of the arc.

nXRadial2

[in] Specifies the logical x-coordinate of the endpoint of the radial defining the ending point
of the arc.

nYRadial2

[in] Specifies the logical y-coordinate of the endpoint of the radial defining the ending point
of the arc.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.
Page 12

Win32 API Reference
Remarks

ArcTo is similar to the Arc function, except that the current position is updated.

The points (nLeftRect, nTopRect) and (nRightRect, nBottomRect) specify the bounding rectangle.
An ellipse formed by the specified bounding rectangle defines the curve of the arc. The arc
extends counterclockwise from the point where it intersects the radial line from the center of the
bounding rectangle to the (nXRadial1, nYRadial1) point. The arc ends where it intersects the
radial line from the center of the bounding rectangle to the (nXRadial2, nYRadial2) point. If the
starting point and ending point are the same, a complete ellipse is drawn.

A line is drawn from the current position to the starting point of the arc. If no error occurs, the cur-
rent position is set to the ending point of the arc.

The arc is drawn using the current pen; it is not filled.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.

See Also
Lines and Curves Overview, Line and Curve Functions, AngleArc, Arc, SetArcDirection

2.10 BeginPath

The BeginPath function opens a path bracket in the specified device context.
BeginPath: procedure
(

hdc:dword
);

stdcall;
returns("eax");
external("__imp__BeginPath@4");

Parameters

hdc

[in] Handle to the device context.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

After a path bracket is open, an application can begin calling GDI drawing functions to define the
Page 13

Volume 1
points that lie in the path. An application can close an open path bracket by calling the EndPath

function.

When an application calls BeginPath for a device context, any previous paths are discarded from
that device context. The following table shows which drawing functions can be used on the differ-
ent Windows operating systems.

Requirements

Drawing function Operating system

AngleArc Windows NT/2000

Arc Windows NT/2000

ArcTo Windows NT/2000

Chord Windows NT/2000

CloseFigure Windows 95/98 and Windows NT/2000

Ellipse Windows NT/2000

ExtTextOut Windows 95/98 and Windows NT/2000

LineTo Windows 95/98 and Windows NT/2000

MoveToEx Windows 95/98 and Windows NT/2000

Pie Windows NT/2000

PolyBezier Windows 95/98 and Windows NT/2000

PolyBezierTo Windows 95/98 and Windows NT/2000

PolyDraw Windows NT/2000

Polygon Windows 95/98 and Windows NT/2000

Polyline Windows 95/98 and Windows NT/2000

PolylineTo Windows 95/98 and Windows NT/2000

PolyPolygon Windows 95/98 and Windows NT/2000

PolyPolyline Windows 95/98 and Windows NT/2000

Rectangle Windows NT/2000

RoundRect Windows NT/2000

TextOut Windows 95/98 and Windows NT/2000
Page 14

Win32 API Reference
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.

See Also
Paths Overview, Path Functions, EndPath, FillPath, PathToRegion, SelectClipPath, StrokeAndFillPath, StrokePath,
WidenPath

2.11 BitBlt

The BitBlt function performs a bit-block transfer of the color data corresponding to a rectangle of
pixels from the specified source device context into a destination device context.

BitBlt: procedure
(

hdcDest :dword;
nXDest :dword;
nYDest :dword;
nWidth :dword;
nHeight :dword;
hdcSrc :dword;
nXSrc :dword;
nYSrc :dword;
dwRop :dword

);
stdcall;
returns("eax");
external("__imp__BitBlt@36");

Parameters

hdcDest

[in] Handle to the destination device context.

nXDest

[in] Specifies the logical x-coordinate of the upper-left corner of the destination rectangle.

nYDest

[in] Specifies the logical y-coordinate of the upper-left corner of the destination rectangle.

nWidth

[in] Specifies the logical width of the source and destination rectangles.

nHeight

[in] Specifies the logical height of the source and the destination rectangles.

hdcSrc

[in] Handle to the source device context.

nXSrc
Page 15

Volume 1
[in] Specifies the logical x-coordinate of the upper-left corner of the source rectangle.

nYSrc

[in] Specifies the logical y-coordinate of the upper-left corner of the source rectangle.

dwRop

[in] Specifies a raster-operation code. These codes define how the color data for the source
rectangle is to be combined with the color data for the destination rectangle to achieve the
final color.

The following list shows some common raster operation codes.

Value Description

BLACKNESS Fills the destination rectangle using the color associated with
index 0 in the physical palette. (This color is black for the default
physical palette.)

CAPTUREBLT Windows 98, Windows 2000: Includes any windows that are
layered on top of your window in the resulting image. By
default, the image only contains your window.

DSTINVERT Inverts the destination rectangle.

MERGECOPY Merges the colors of the source rectangle with the brush cur-
rently selected in hdcDest, by using the Boolean AND operator.

MERGEPAINT Merges the colors of the inverted source rectangle with the colors
of the destination rectangle by using the Boolean OR operator.

NOMIRRORBITMAP Windows 98, Windows 2000: Prevents the bitmap from being
mirrored.

NOTSRCCOPY Copies the inverted source rectangle to the destination.

NOTSRCERASE Combines the colors of the source and destination rectangles by
using the Boolean OR operator and then inverts the resultant
color.

PATCOPY Copies the brush currently selected in hdcDest, into the destina-
tion bitmap.

PATINVERT Combines the colors of the brush currently selected in hdcDest,
with the colors of the destination rectangle by using the Boolean
XOR operator.
Page 16

Win32 API Reference
Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

If a rotation or shear transformation is in effect in the source device context, BitBlt returns an
error. If other transformations exist in the source device context (and a matching transformation is
not in effect in the destination device context), the rectangle in the destination device context is
stretched, compressed, or rotated, as necessary.

If the color formats of the source and destination device contexts do not match, the BitBlt func-
tion converts the source color format to match the destination format.

When an enhanced metafile is being recorded, an error occurs if the source device context identi-
fies an enhanced-metafile device context.

Not all devices support the BitBlt function. For more information, see the RC_BITBLT raster
capability entry in the GetDeviceCaps function as well as the following functions: MaskBlt, Plg-

Blt, and StretchBlt.

BitBlt returns an error if the source and destination device contexts represent different devices.

ICM: No color management is performed when blits occur.

PATPAINT Combines the colors of the brush currently selected in hdcDest,
with the colors of the inverted source rectangle by using the
Boolean OR operator. The result of this operation is combined
with the colors of the destination rectangle by using the Boolean
OR operator.

SRCAND Combines the colors of the source and destination rectangles by
using the Boolean AND operator.

SRCCOPY Copies the source rectangle directly to the destination rectangle.

SRCERASE Combines the inverted colors of the destination rectangle with
the colors of the source rectangle by using the Boolean AND
operator.

SRCINVERT Combines the colors of the source and destination rectangles by
using the Boolean XOR operator.

SRCPAINT Combines the colors of the source and destination rectangles by
using the Boolean OR operator.

WHITENESS Fills the destination rectangle using the color associated with
index 1 in the physical palette. (This color is white for the default
physical palette.)
Page 17

Volume 1
Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.

See Also
Bitmaps Overview, Bitmap Functions

2.12 CancelDC

The CancelDC function cancels any pending operation on the specified device context (DC).
CancelDC: procedure
(

hdc:dword
);

stdcall;
returns("eax");
external("__imp__CancelDC@4");

Parameters

hdc

[in] Handle to the DC.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

The CancelDC function is used by multithreaded applications to cancel lengthy drawing opera-
tions. If thread A initiates a lengthy drawing operation, thread B may cancel that operation by
calling this function.

If an operation is canceled, the affected thread returns an error and the result of its drawing opera-
tion is undefined. The results are also undefined if no drawing operation was in progress when the
function was called.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.
Page 18

Win32 API Reference
See Also
Device Contexts Overview, Device Context Functions, CreateThread, GetCurrentThread

2.13 CheckColorsInGamut

The CheckColorsInGamut function determines whether a specified set of RGB triples lies in the
output gamut of a specified device. The RGB triples are interpreted in the input logical color
space.

CheckColorsInGamut: procedure
(

hdc :dword;
var lpRGBTriples :var;
var lpBuffer :var;

nCount :dword
);

stdcall;
returns("eax");
external("__imp__CheckColorsInGamut@16");

hDC

Handle to the device context whose output gamut to be checked.

lpRGBTriples

Pointer to an array of RGB triples to check.

lpBuffer

Pointer to the buffer in which the results are to be placed. This buffer must be at least as large
as nCount bytes.

nCount

The number of elements in the array of triples.

Return Values

If this function succeeds, the return value is a nonzero value.

If this function fails, the return value is zero.

Remarks

The function places the test results in the buffer pointed to by lpBuffer. Each byte in the buffer
corresponds to an RGB triple, and has an unsigned value between CM_IN_GAMUT (= 0) and
CM_OUT_OF_GAMUT (= 255). The value 0 denotes that the color is in gamut, while a nonzero
value denotes that it is out of gamut. For any integer n such that 0 < n < 255, a result value of n +
1 indicates that the corresponding color is at least as far out of gamut as would be indicated by a
result value of n, as specified by the ICC Profile Format Specification. For more information on
the ICC Profile Format Specification, see the sources listed in Further Information.

Note that for this function to succeed, ICM must be enabled for the device context handle that is
passed in through the hDC parameter. ICM can be enabled for a device context handle by calling
Page 19

Volume 1
the SetICMMode function.

Requirements

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf
Import Library: Use gdi32.lib.

See Also
Basic Color Management Concepts, Functions, SetICMMode

2.14 ChoosePixelFormat

The ChoosePixelFormat function attempts to match an appropriate pixel format supported by a
device context to a given pixel format specification.

ChoosePixelFormat: procedure
(

hdc :dword;
var ppfd :PIXELFORMATDESCRIPTOR

);
stdcall;
returns("eax");
external("__imp__ChoosePixelFormat@8");

Parameters

hdc

Specifies the device context that the function examines to determine the best match for the
pixel format descriptor pointed to by ppfd.

ppfd

Pointer to a PIXELFORMATDESCRIPTOR structure that specifies the requested pixel format. In this con-
text, the members of the PIXELFORMATDESCRIPTOR structure that ppfd points to are
used as follows:

nSize

Specifies the size of the PIXELFORMATDESCRIPTOR data structure. Set this member to
sizeof(PIXELFORMATDESCRIPTOR).

nVersion

Specifies the version number of the PIXELFORMATDESCRIPTOR data structure. Set this
member to 1.

dwFlags

A set of bit flags that specify properties of the pixel buffer. You can combine the following bit
flag constants by using bitwise-OR.

If any of the following flags are set, the ChoosePixelFormat function attempts to match pixel
Page 20

Win32 API Reference
formats that also have that flag or flags set. Otherwise, ChoosePixelFormat ignores that flag
in the pixel formats:

PFD_DRAW_TO_WINDOW
PFD_DRAW_TO_BITMAP
PFD_SUPPORT_GDI
PFD_SUPPORT_OPENGL

If any of the following flags are set, ChoosePixelFormat attempts to match pixel formats that
also have that flag or flags set. Otherwise, it attempts to match pixel formats without that flag
set:

PFD_DOUBLEBUFFER
PFD_STEREO

If the following flag is set, the function ignores the PFD_DOUBLEBUFFER flag in the pixel
formats:

PFD_DOUBLEBUFFER_DONTCARE

If the following flag is set, the function ignores the PFD_STEREO flag in the pixel formats:

PFD_STEREO_DONTCARE

iPixelType

Specifies the type of pixel format for the function to consider:

PFD_TYPE_RGBA
PFD_TYPE_COLORINDEX

cColorBits

Zero or greater.

cRedBits

Not used.

cRedShift

Not used.

cGreenBits

Not used.

cGreenShift

Not used.

cBlueBits

Not used.

cBlueShift

Not used.

cAlphaBits
Page 21

Volume 1
Zero or greater.

cAlphaShift

Not used.

cAccumBits

Zero or greater.

cAccumRedBits

Not used.

cAccumGreenBits

Not used.

cAccumBlueBits

Not used.

cAccumAlphaBits

Not used.

cDepthBits

Zero or greater.

cStencilBits

Zero or greater.

cAuxBuffers

Zero or greater.

iLayerType

Specifies one of the following layer type values:

PFD_MAIN_PLANE
PFD_OVERLAY_PLANE
PFD_UNDERLAY_PLANE

bReserved

Not used.

dwLayerMask

Not used.

dwVisibleMask

Not used.

dwDamageMask

Not used.

Return Values

If the function succeeds, the return value is a pixel format index (one-based) that is the closest
Page 22

Win32 API Reference
match to the given pixel format descriptor.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

You must ensure that the pixel format matched by the ChoosePixelFormat function satisfies your
requirements. For example, if you request a pixel format with a 24-bit RGB color buffer but the
device context offers only 8-bit RGB color buffers, the function returns a pixel format with an
8-bit RGB color buffer.

The following code sample shows how to use ChoosePixelFormat to match a specified pixel for-
mat:
PIXELFORMATDESCRIPTOR pfd = {

sizeof(PIXELFORMATDESCRIPTOR), // size of this pfd
1, // version number
PFD_DRAW_TO_WINDOW | // support window
PFD_SUPPORT_OPENGL | // support OpenGL
PFD_DOUBLEBUFFER, // double buffered
PFD_TYPE_RGBA, // RGBA type
24, // 24-bit color depth
0, 0, 0, 0, 0, 0, // color bits ignored
0, // no alpha buffer
0, // shift bit ignored
0, // no accumulation buffer
0, 0, 0, 0, // accum bits ignored
32, // 32-bit z-buffer
0, // no stencil buffer
0, // no auxiliary buffer
PFD_MAIN_PLANE, // main layer
0, // reserved
0, 0, 0 // layer masks ignored
};
HDC hdc;
int iPixelFormat;

iPixelFormat = ChoosePixelFormat(hdc, &pfd);

Requirements

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.
Header: Declared in gdi32.hhf
Import Library: Use gdi32.lib.

See Also
OpenGL on Windows NT, Windows 2000, and Windows 95/98, Win32 Functions, DescribePixelFormat, GetPixel-
Format, SetPixelFormat

2.15 Chord

The Chord function draws a chord (a region bounded by the intersection of an ellipse and a line
segment, called a secant). The chord is outlined by using the current pen and filled by using the
current brush.
Page 23

Volume 1
Chord: procedure
(

hdc :dword;
nLeftRect :dword;
nTopRect :dword;
nRightRect :dword;
nBottomRect :dword;
nXRadial1 :dword;
nYRadial1 :dword;
nXRadial2 :dword;
nYRadial2 :dword

);
stdcall;
returns("eax");
external("__imp__Chord@36");

Parameters

hdc

[in] Handle to the device context in which the chord appears.

nLeftRect

[in] Specifies the x-coordinate of the upper-left corner of the bounding rectangle.

nTopRect

[in] Specifies the y-coordinate of the upper-left corner of the bounding rectangle.

nRightRect

[in] Specifies the x-coordinate of the lower-right corner of the bounding rectangle.

nBottomRect

[in] Specifies the y-coordinate of the lower-right corner of the bounding rectangle.

nXRadial1

[in] Specifies the x-coordinate of the endpoint of the radial defining the beginning of the
chord.

nYRadial1

[in] Specifies the y-coordinate of the endpoint of the radial defining the beginning of the
chord.

nXRadial2

[in] Specifies the x-coordinate of the endpoint of the radial defining the end of the chord.

nYRadial2

[in] Specifies the y-coordinate of the endpoint of the radial defining the end of the chord.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/ 2000: To get extended error information, call GetLastError.
Page 24

Win32 API Reference
Remarks

The curve of the chord is defined by an ellipse that fits the specified bounding rectangle. The
curve begins at the point where the ellipse intersects the first radial and extends counterclockwise
to the point where the ellipse intersects the second radial. The chord is closed by drawing a line
from the intersection of the first radial and the curve to the intersection of the second radial and
the curve.

If the starting point and ending point of the curve are the same, a complete ellipse is drawn.

The current position is neither used nor updated by Chord.

Windows 95/98: The sum of the coordinates of the bounding rectangle cannot exceed 32,767.
The sum of nLeftRect and nRightRect or nTopRect and nBottomRect parameters cannot exceed
32,767.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.

See Also
Filled Shapes Overview, Filled Shape Functions, AngleArc, Arc, ArcTo, Pie

2.16 CloseEnhMetaFile

The CloseEnhMetaFile function closes an enhanced-metafile device context and returns a handle
that identifies an enhanced-format metafile.

CloseEnhMetaFile: procedure
(

hdc:dword
);

stdcall;
returns("eax");
external("__imp__CloseEnhMetaFile@4");

Parameters

hdc

[in] Handle to an enhanced-metafile device context.

Return Values

If the function succeeds, the return value is a handle to an enhanced metafile.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.
Page 25

Volume 1
Remarks

An application can use the enhanced-metafile handle returned by the CloseEnhMetaFile function
to perform the following tasks:

• Display a picture stored in an enhanced metafile

² Create copies of the enhanced metafile

² Enumerate, edit, or copy individual records in the enhanced metafile

² Retrieve an optional description of the metafile contents from the enhanced-metafile
header

² Retrieve a copy of the enhanced-metafile header

² Retrieve a binary copy of the enhanced metafile

² Enumerate the colors in the optional palette

² Convert an enhanced-format metafile into a Windows-format metafile

When the application no longer needs the enhanced metafile handle, it should release the handle
by calling the DeleteEnhMetaFile function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.

See Also
Metafiles Overview, Metafile Functions, CopyEnhMetaFile, CreateEnhMetaFile, DeleteEnhMetaFile, EnumEn-
hMetaFile, GetEnhMetaFileBits, GetWinMetaFileBits, PlayEnhMetaFile

2.17 CloseFigure

The CloseFigure function closes an open figure in a path.
CloseFigure: procedure
(

hdc:dword
);

stdcall;
returns("eax");
external("__imp__CloseFigure@4");

Parameters

hdc

[in] Handle to the device context in which the figure will be closed.

Return Values

If the function succeeds, the return value is nonzero.
Page 26

Win32 API Reference
If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

The CloseFigure function closes the figure by drawing a line from the current position to the first
point of the figure (usually, the point specified by the most recent call to the MoveToEx function)
and then connects the lines by using the line join style. If a figure is closed by using the LineTo
function instead of CloseFigure, end caps are used to create the corner instead of a join.

The CloseFigure function should only be called if there is an open path bracket in the specified
device context.

A figure in a path is open unless it is explicitly closed by using this function. (A figure can be
open even if the current point and the starting point of the figure are the same.)

After a call to CloseFigure, adding a line or curve to the path starts a new figure.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.

See Also
Paths Overview, Path Functions, BeginPath, EndPath, ExtCreatePen, LineTo, MoveToEx

2.18 CloseMetaFile

The CloseMetaFile function closes a metafile device context and returns a handle that identifies a
Windows-format metafile.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the CloseEnhMetaFile function.

CloseMetaFile: procedure
(

hdc:dword
);

stdcall;
returns("eax");
external("__imp__CloseMetaFile@4");

Parameters

hdc

[in] Handle to a metafile device context used to create a Windows-format metafile.

Return Values

If the function succeeds, the return value is a handle to a Windows-format metafile.
Page 27

Volume 1
If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

A Windows-format metafile does not support the new curve, path, and transformation functions,
such as PolyBezier, BeginPath, and SetWorldTransform. Applications that use these new func-
tions and use metafiles to store pictures created by these functions should call the enhanced-for-
mat metafile functions.

To convert a Windows-format metafile into a new enhanced-format metafile, use the SetWinMeta-

FileBits function.

When an application no longer needs the Windows-format metafile handle, it should delete the
handle by calling the DeleteMetaFile function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf.
Library: Use Gdi32.lib.

See Also
Metafiles Overview, Metafile Functions, BeginPath, CloseEnhMetaFile, CopyMetaFile, CreateMetaFile, Delete-
MetaFile, EnumMetaFile, GetMetaFileBitsEx, PlayMetaFile, PolyBezier, SetWinMetaFileBits, SetWorldTransform

2.19 ColorCorrectPalette

The ColorCorrectPalette function corrects the entries of a palette using the ICM 2.0 parameters
in the specified device context.

ColorCorrectPalette: procedure
(

hdc :dword;
hPalette :dword;
dwFirstEntry :dword;
dwNumOfEntries :dword

);
stdcall;
returns("eax");
external("__imp__ColorCorrectPalette@16");

hDC

Specifies a device context whose ICM parameters to use.

hPalette

Specifies the handle to the palette to be color corrected.

dwFirstEntry

Specifies the first entry in the palette to be color corrected.
Page 28

Win32 API Reference
dwNumOfEntries

Specifies the number of entries to color correct.

Return Values

If this function succeeds, the return value is TRUE.

If this function fails, the return value is FALSE.

Requirements

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in gdi32.hhf
Import Library: Use gdi32.lib.

See Also
Basic Color Management Concepts, Functions

2.20 ColorMatchToTarget

The ColorMatchToTarget function enables you to preview colors as they would appear on the
target device.

ColorMatchToTarget: procedure
(

hdc :dword;
hdcTarget :dword;
uiAction :dword

);
stdcall;
returns("eax");
external("__imp__ColorMatchToTarget@12");

hDC

Specifies the device context for previewing, generally the screen.

hdcTarget

Specifies the target device context, generally a printer.

uiAction

A constant that can have one of the following values.

Constant Meaning

CS_ENABLE Map the colors to the target device's color gamut.
This enables color proofing. All subsequent draw
commands to the DC will render colors as they
would appear on the target device.
Page 29

Volume 1
Return Values

If this function succeeds, the return value is TRUE.

If this function fails, the return value is FALSE.

Remarks

ColorMatchToTarget can be used to proof the colors of a color output device on another color
output device. Setting the uiAction parameter to CS_ENABLE causes all subsequent drawing
commands to the DC to render colors as they would appear on the target device. If uiAction is set
to CS_DISABLE, proofing is turned off. However, the current color transform is not deleted from
the DC. It is just inactive.

When ColorMatchToTarget is called, the color transform for the target device is performed first,
and then the transform to the preview device is applied to the results of the first transform. This is
used primarily for checking gamut mapping conditions. Before using this function, you must
enable ICM for both device contexts.

This function cannot be cascaded. While color mapping to the target is enabled by setting
uiAction to CS_ENABLE, application changes to the color space or gamut mapping method are
ignored. Those changes then take effect when color mapping to the target is disabled.

Note A memory leak will not occur if an application does not delete a transform using
CS_DELETE_TRANSFORM. The transform will be deleted when either the device context (DC)
is closed, or when the application color space is deleted. However if the transform is not going to
be used again, or if the application will not be performing any more color matching on the DC, it
should explicitly delete the transform to free the memory it occupies.

The uiAction parameter should only be set to CS_DELETE_TRANSFORM if color management
is enabled before the ColorMatchToTarget function is called.

Requirements

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in gdi32.hhf
Import Library: Use gdi32.lib.

See Also
Basic Color Management Concepts, Functions

2.21 CombineRgn

The CombineRgn function combines two regions and stores the result in a third region. The two
regions are combined according to the specified mode.

CS_DISABLE Disable color proofing.

CS_DELETE_TRANSFORM If color management is enabled for the target profile,
disable it and delete the concatenated transform.
Page 30

Win32 API Reference
CombineRgn: procedure
(

hrgnDest :dword;
hrgnSrc1 :dword;
hrgnSrc2 :dword;
fnCombineMode :dword

);
stdcall;
returns("eax");
external("__imp__CombineRgn@16");

Parameters

hrgnDest

[in] Handle to a new region with dimensions defined by combining two other regions. (This
region must exist before CombineRgn is called.)

hrgnSrc1

[in] Handle to the first of two regions to be combined.

hrgnSrc2

[in] Handle to the second of two regions to be combined.

fnCombineMode

[in] Specifies a mode indicating how the two regions will be combined. This parameter can be
one of the following values.

Return Values

The return value specifies the type of the resulting region. It can be one of the following values.

Value Description

RGN_AND Creates the intersection of the two combined regions.

RGN_COPY Creates a copy of the region identified by hrgnSrc1.

RGN_DIFF Combines the parts of hrgnSrc1 that are not part of hrgnSrc2.

RGN_OR Creates the union of two combined regions.

RGN_XOR Creates the union of two combined regions except for any overlapping
areas.

Value Meaning

NULLREGION The region is empty.

SIMPLEREGION The region is a single rectangle.

COMPLEXREGION The region is more than a single rectangle.
Page 31

Volume 1
Remarks

The three regions need not be distinct. For example, the hrgnSrc1 parameter can equal the hrgnD-
est parameter.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreateEllipticRgn, CreateEllipticRgnIndirect, CreatePolygonRgn, CreatePoly-
PolygonRgn, CreateRectRgn, CreateRectRgnIndirect, CreateRoundRectRgn

2.22 CombineTransform

The CombineTransform function concatenates two world-space to page-space transformations.

CombineTransform: procedure

(

lpxformResult :dword;

var lpxform1 :XFORM;

var lpxform2 :XFORM

);

stdcall;

returns("eax");

external("__imp__CombineTransform@12");

Parameters

lpxformResult

[out] Pointer to an XFORM structure that receives the combined transformation.

lpxform1

[in] Pointer to an XFORM structure that specifies the first transformation.

lpxform2

[in] Pointer to an XFORM structure that specifies the second transformation.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/ 2000: To get extended error information, call GetLastError.

ERROR No region is created.
Page 32

Win32 API Reference
Remarks

Applying the combined transformation has the same effect as applying the first transformation
and then applying the second transformation.

The three transformations need not be distinct. For example, lpxform1 can point to the same
XFORM structure as lpxformResult.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.
Header: Declared in gdi32.hhf.
Library: Use Gdi32.lib.

See Also
Coordinate Spaces and Transformations Overview, Coordinate Space and Transformation Functions, GetWorldTrans-
form, ModifyWorldTransform, SetWorldTransform, XFORM

2.23 CopyEnhMetaFile

The CopyEnhMetaFile function copies the contents of an enhanced-format metafile to a speci-
fied file.

CopyEnhMetaFile: procedure
(

hemfSrc :dword;
lpszFile :string

);
stdcall;
returns("eax");
external("__imp__CopyEnhMetaFileA@8");

Parameters

hemfSrc

[in] Handle to the enhanced metafile to be copied.

lpszFile

[in] Pointer to the name of the destination file. If this parameter is NULL, the source metafile
is copied to memory.

Return Values

If the function succeeds, the return value is a handle to the copy of the enhanced metafile.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

Where text arguments must use Unicode characters, use the CopyEnhMetaFile function as a
wide-character function. Where text arguments must use characters from the Windows character
Page 33

Volume 1
set, use this function as an ANSI function.

Applications can use metafiles stored in memory for temporary operations.

When the application no longer needs the enhanced-metafile handle, it should delete the handle
by calling the DeleteEnhMetaFile function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Metafiles Overview, Metafile Functions, DeleteEnhMetaFile

2.24 CopyMetaFile

The CopyMetaFile function copies the content of a Windows-format metafile to the specified
file.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the CopyEnhMetaFile function.

CopyMetaFile: procedure
(

hmfSrc :dword;
lpszFile :string

);
stdcall;
returns("eax");
external("__imp__CopyMetaFileA@8");

Parameters

hmfSrc

[in] Handle to the source Windows-format metafile.

lpszFile

[in] Pointer to the name of the destination file. If this parameter is NULL, the source metafile
is copied to memory.

Return Values

If the function succeeds, the return value is a handle to the copy of the Windows-format metafile.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.
Page 34

Win32 API Reference
Remarks

The CopyMetaFile function supports only 16-bit Windows-based applications. It does not record
or play back the new graphics device interface functions, such as PolyBezier.

Where text arguments must use Unicode characters, use this function as a wide-character func-
tion. Where text arguments must use characters from the Windows character set, use this function
as an ANSI function.

When the application no longer needs the Windows-format metafile handle, it should delete the
handle by calling the DeleteMetaFile function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Metafiles Overview, Metafile Functions, DeleteMetaFile

2.25 CreateBitmap

The CreateBitmap function creates a bitmap with the specified width, height, and color format
(color planes and bits-per-pixel).

CreateBitmap: procedure
(

nWidth :dword;
nHeight :dword;
cPlanes :dword;
cBitsPerPel :dword;

var lpvBits :dword
);

stdcall;
returns("eax");
external("__imp__CreateBitmap@20");

Parameters

nWidth

[in] Specifies the bitmap width, in pixels.

nHeight

[in] Specifies the bitmap height, in pixels.

cPlanes

[in] Specifies the number of color planes used by the device.

cBitsPerPel
Page 35

Volume 1
[in] Specifies the number of bits required to identify the color of a single pixel.

lpvBits

[in] Pointer to an array of color data used to set the colors in a rectangle of pixels. Each scan
line in the rectangle must be word aligned (scan lines that are not word aligned must be pad-
ded with zeros). If this parameter is NULL, the contents of the new bitmap is undefined.

Return Values

If the function succeeds, the return value is a handle to a bitmap.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError. This can have the fol-
lowing value.

Remarks

After a bitmap is created, it can be selected into a device context by calling the SelectObject

function.

The CreateBitmap function can be used to create color bitmaps. However,for performance rea-
sons applications should use CreateBitmap to create monochrome bitmaps and CreateCompati-

bleBitmap to create color bitmaps. When a color bitmap returned from CreateBitmap is selected
into a device context, the system must ensure that the bitmap matches the format of the device
context it is being selected into. Since CreateCompatibleBitmap takes a device context, it
returns a bitmap that has the same format as the specified device context. Because of this, subse-
quent calls to SelectObject are faster than with a color bitmap returned from CreateBitmap.

If the bitmap is monochrome, zeros represent the foreground color and ones represent the back-
ground color for the destination device context.

If an application sets the nWidth or nHeight parameters to zero, CreateBitmap returns the handle
to a 1-by-1 pixel, monochrome bitmap.

When you no longer need the bitmap, call the DeleteObject function to delete it.

Windows 95/98: The created bitmap cannot exceed 16MB in size.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Bitmaps Overview, Bitmap Functions, CreateBitmapIndirect, CreateCompatibleBitmap, CreateDIBitmap, DeleteOb-
ject, GetBitmapBits, SelectObject, SetBitmapBits

Value Meaning

ERROR_INVALID_BITMAP The calculated size of the bitmap is less than
zero.
Page 36

Win32 API Reference
2.26 CreateBitmapIndirect

The CreateBitmapIndirect function creates a bitmap with the specified width, height, and color
format (color planes and bits-per-pixel).

CreateBitmapIndirect: procedure
(

var lpbm :BITMAP
);

stdcall;
returns("eax");
external("__imp__CreateBitmapIndirect@4");

Parameters

lpbm

[in] Pointer to a BITMAP structure that contains information about the bitmap. If an application sets
the bmWidth or bmHeight members to zero, CreateBitmapIndirect returns the handle to a
1-by-1 pixel, monochrome bitmap.

Return Values

If the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError. This can have the fol-
lowing values.

Remarks

After a bitmap is created, it can be selected into a device context by calling the SelectObject

function.

While the CreateBitmapIndirect function can be used to create color bitmaps, for performance
reasons applications should use CreateBitmapIndirect to create monochrome bitmaps and Cre-

ateCompatibleBitmap to create color bitmaps. When a color bitmap returned from CreateBitmap-
Indirect is selected into a device context, the system must ensure that the bitmap matches the
format of the device context it is being selected into. Since CreateCompatibleBitmap takes a
device context, it returns a bitmap that has the same format as the specified device context.
Because of this, subsequent calls to SelectObject are faster than with a color bitmap returned
from CreateBitmapIndirect.

Value Meaning

ERROR_INVALID_PARAMETER One or more of the input parameters was
invalid.

ERROR_NOT_ENOUGH_MEMORY The bitmap is too big for memory to be allo-
cated.
Page 37

Volume 1
If the bitmap is monochrome, zeros represent the foreground color and ones represent the back-
ground color for the destination device context.

When you no longer need the bitmap, call the DeleteObject function to delete it.

Windows 95/98: The created bitmap cannot exceed 16MB in size.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Bitmaps Overview, Bitmap Functions, BitBlt, BITMAP, CreateBitmap, CreateCompatibleBitmap, CreateDIBitmap,
DeleteObject, SelectObject

2.27 CreateBrushIndirect

The CreateBrushIndirect function creates a logical brush that has the specified style, color, and
pattern.

CreateBrushIndirect: procedure
(

var lplb :LOGBRUSH
);

stdcall;
returns("eax");
external("__imp__CreateBrushIndirect@4");

Parameters

lplb

[in] Pointer to a LOGBRUSH structure that contains information about the brush.

Return Values

If the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

A brush is a bitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateBrushIndirect, it can select it into any
device context by calling the SelectObject function.

A brush created by using a monochrome bitmap (one color plane, one bit per pixel) is drawn using
the current text and background colors. Pixels represented by a bit set to 0 are drawn with the cur-
rent text color; pixels represented by a bit set to 1 are drawn with the current background color.
Page 38

Win32 API Reference
When you no longer need the brush, call the DeleteObject function to delete it.

ICM: No color is done at brush creation. However, color management is performed when the
brush is selected into an ICM-enabled device context.

Windows 95/98: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixels is not sup-
ported. If a larger bitmap is specified, only a portion of the bitmap is used.

Windows NT/ 2000: Brushes can be created from bitmaps or DIBs larger than 8 by 8 pixels.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Brushes Overview, Brush Functions, DeleteObject, GetBrushOrgEx, LOGBRUSH, SelectObject, SetBrushOrgEx

2.28 CreateColorSpace

The CreateColorSpace function creates a logical color space.
CreateColorSpace: procedure
(

var lpLogColorSpace :LOGCOLORSPACE
);

stdcall;
returns("eax");
external("__imp__CreateColorSpaceA@4");

lpLogColorSpace

Pointer to the LOGCOLORSPACE data structure.

Return Values

If this function succeeds, the return value is a handle that identifies a color space.

If this function fails, the return value is NULL.

Remarks

When the color space is no longer needed, use DeleteColorSpace to delete it.

Requirements

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in wingdi.h.
Import Library: Use gdi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.
Page 39

Volume 1
See Also
Basic Color Management Concepts, Functions, DeleteColorSpace

2.29 CreateCompatibleBitmap

The CreateCompatibleBitmap function creates a bitmap compatible with the device that is asso-
ciated with the specified device context.

CreateCompatibleBitmap: procedure
(

hdc :dword;
nWidth :dword;
nHeight :dword

);
stdcall;
returns("eax");
external("__imp__CreateCompatibleBitmap@12");

Parameters

hdc

[in] Handle to a device context.

nWidth

[in] Specifies the bitmap width, in pixels.

nHeight

[in] Specifies the bitmap height, in pixels.

Return Values

If the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

The color format of the bitmap created by the CreateCompatibleBitmap function matches the
color format of the device identified by the hdc parameter. This bitmap can be selected into any
memory device context that is compatible with the original device.

Because memory device contexts allow both color and monochrome bitmaps, the format of the
bitmap returned by the CreateCompatibleBitmap function differs when the specified device
context is a memory device context. However, a compatible bitmap that was created for a non-
memory device context always possesses the same color format and uses the same color palette as
the specified device context.

Note: When a memory device context is created, it initially has a 1-by-1 monochrome bitmap
selected into it. If this memory device context is used in CreateCompatibleBitmap, the bitmap
that is created is a monochrome bitmap. To create a color bitmap, use the hDC that was used to
Page 40

Win32 API Reference
create the memory device context, as shown in the following code:

HDC memDC = CreateCompatibleDC (hDC);

HBITMAP memBM = CreateCompatibleBitmap (hDC);

SelectObject (memDC, memBM);

If an application sets the nWidth or nHeight parameters to zero, CreateCompatibleBitmap
returns the handle to a 1-by-1 pixel, monochrome bitmap.

If a DIB section, which is a bitmap created by the CreateDIBSection function, is selected into the
device context identified by the hdc parameter, CreateCompatibleBitmap creates a DIB section.

When you no longer need the bitmap, call the DeleteObject function to delete it.

Windows 95/98: The created bitmap cannot exceed 16MB in size.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Bitmaps Overview, Bitmap Functions, CreateDIBSection, DeleteObject, SelectObject

2.30 CreateCompatibleDC

The CreateCompatibleDC function creates a memory device context (DC) compatible with the
specified device.

CreateCompatibleDC: procedure
(

hdc :dword
);

stdcall;
returns("eax");
external("__imp__CreateCompatibleDC@4");

Parameters

hdc

[in] Handle to an existing DC. If this handle is NULL, the function creates a memory DC
compatible with the application's current screen.

Return Values

If the function succeeds, the return value is the handle to a memory DC.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.
Page 41

Volume 1
Remarks

A memory DC exists only in memory. When the memory DC is created, its display surface is
exactly one monochrome pixel wide and one monochrome pixel high. Before an application can
use a memory DC for drawing operations, it must select a bitmap of the correct width and height
into the DC. To select a bitmap into a DC, use the CreateCompatibleBitmap function, specifying
the height, width, and color organization required.

When a memory DC is created, all attributes are set to normal default values. The memory DC
can be used as a normal DC. You can set the attributes; obtain the current settings of its attributes;
and select pens, brushes, and regions.

The CreateCompatibleDC function can only be used with devices that support raster operations.
An application can determine whether a device supports these operations by calling the GetDe-

viceCaps function.

When you no longer need the memory DC, call the DeleteDC function.

ICM: If the DC that is passed to this function is enabled for Independent Color Management
(ICM), the DC created by the function is ICM-enabled. The source and destination color spaces
are specified in the DC.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Device Contexts Overview, Device Context Functions, CreateCompatibleBitmap, DeleteDC, GetDeviceCaps

2.31 CreateDC

The CreateDC function creates a device context (DC) for a device using the specified name.
CreateDC: procedure
(

lpszDriver :string;
lpszDevice :string;
lpszOutput :string;

var lpInitData :DEVMODE
);

stdcall;
returns("eax");
external("__imp__CreateDCA@16");

Parameters

lpszDriver

Windows 95/98: In Win32-based applications, lpszDriver can be NULL, WINSPL16 (a print
provider), or (to obtain a display DC) it can be either the null-terminated string DISPLAY or
Page 42

Win32 API Reference
the device name of a specific display device. If lpszDevice specifies a particular device, you
must use NULL for lpszDriver.

Windows NT 4.0: Pointer to a null-terminated character string that specifies either DISPLAY
or the name of a print provider, which is usually WINSPOOL.

Windows NT/2000: Pointer to a null-terminated character string that specifies either DIS-
PLAY or the name of a specific display device or the name of a print provider, which is usu-
ally WINSPOOL.

lpszDevice

[in] Pointer to a null-terminated character string that specifies the name of the specific output
device being used, as shown by the Print Manager (for example, Epson FX-80). It is not the
printer model name. The lpszDevice parameter must be used.

To obtain valid names for displays, call EnumDisplayDevices.

If lpszDriver is DISPLAY or the device name of a specific display device, then lpszDevice
must be NULL or that same device name. If lpszDevice is NULL, then a DC is created for the
primary display device.

Windows NT 3.51 and 4.0: There is only one (thus the primary) display device. Set lpszDe-
vice to NULL.

lpszOutput

This parameter is ignored for Win32-based applications, and should be set to NULL. It is pro-
vided only for compatibility with 16-bit Windows. For more information, see the Remarks
section.

lpInitData

[in] Pointer to a DEVMODE structure containing device-specific initialization data for the device
driver. The DocumentProperties function retrieves this structure filled in for a specified
device. The lpInitData parameter must be NULL if the device driver is to use the default ini-
tialization (if any) specified by the user.

If lpszDriver is DISPLAY, then lpInitData must be NULL. The display device's current DEV-
MODE is used.

Return Values

If the function succeeds, the return value is the handle to a DC for the specified device.

If the function fails, the return value is NULL. The function will return NULL for a DEVMODE
structure other than the current DEVMODE.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

Note that the handle to the DC can only be used by a single thread at any one time.

For parameters lpszDriver and lpszDevice, call EnumDisplayDevices to obtain valid names for
displays.
Page 43

Volume 1
Applications written for 16-bit versions of Windows used the lpszOutput parameter to specify a
port name or to print to a file. Win32-based applications do not need to specify a port name.
Win32-based applications can print to a file by calling the StartDoc function with a DOCINFO

structure whose lpszOutput member specifies the path of the output file name.

When you no longer need the DC, call the DeleteDC function.

ICM: To enable ICM, set the dmICMMethod member of the DEVMODE structure (pointed to by the
pInitData parameter) to the appropriate value.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Device Contexts Overview, Device Context Functions, Multiple Display Monitors, DeleteDC, DEVMODE, Enum-
DisplayDevices, DOCINFO, DocumentProperties, StartDoc

2.32 CreateDIBPatternBrush

The CreateDIBPatternBrush function creates a logical brush that has the pattern specified by
the specified device-independent bitmap (DIB). The brush can subsequently be selected into any
device context that is associated with a device that supports raster operations.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the CreateDIBPatternBrushPt function.

CreateDIBPatternBrush: procedure
(

hglbDIBPacked :dword;
fuColorSpec :dword

);
stdcall;
returns("eax");
external("__imp__CreateDIBPatternBrush@8");

Parameters

hglbDIBPacked

[in] Handle to a global memory object containing a packed DIB, which consists of a BITMAPINFO

structure immediately followed by an array of bytes defining the pixels of the bitmap.

Windows 95/98: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixels is not sup-
ported. If a larger bitmap is specified, only a portion of the bitmap is used.

Windows NT/ 2000: Brushes can be created from bitmaps or DIBs larger than 8 by 8 pixels.

fuColorSpec

[in] Specifies whether the bmiColors member of the BITMAPINFO structure is initialized
Page 44

Win32 API Reference
and, if so, whether this member contains explicit red, green, blue (RGB) values or indexes
into a logical palette. The fuColorSpec parameter must be one of the following values.

Return Values

If the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

When an application selects a two-color DIB pattern brush into a monochrome device context, the
system does not acknowledge the colors specified in the DIB; instead, it displays the pattern brush
using the current background and foreground colors of the device context. Pixels mapped to the
first color of the DIB (offset 0 in the DIB color table) are displayed using the foreground color;
pixels mapped to the second color (offset 1 in the color table) are displayed using the background
color.

When you no longer need the brush, call the DeleteObject function to delete it.

ICM: No color is done at brush creation. However, color management is performed when the
brush is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Brushes Overview, Brush Functions, BITMAPINFO, CreateDIBPatternBrushPt, CreateHatchBrush, CreatePattern-
Brush, CreateSolidBrush, DeleteObject, SetBkColor, SetTextColor

2.33 CreateDIBPatternBrushPt

The CreateDIBPatternBrushPt function creates a logical brush that has the pattern specified by
the device-independent bitmap (DIB).

CreateDIBPatternBrushPt: procedure
(

var lpPackedDIB :var;

Value Meaning

DIB_PAL_COLORS A color table is provided and consists of an array of 16-bit
indexes into the logical palette of the device context into which
the brush is to be selected.

DIB_RGB_COLORS A color table is provided and contains literal RGB values.
Page 45

Volume 1
iUsage :dword
);

stdcall;
returns("eax");
external("__imp__CreateDIBPatternBrushPt@8");

Parameters

lpPackedDIB

[in] Pointer to a packed DIB consisting of a BITMAPINFO structure immediately followed by an
array of bytes defining the pixels of the bitmap.

Windows 95/98: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixels is not sup-
ported. If a larger bitmap is specified, only a portion of the bitmap is used.

Windows NT/ 2000: Brushes can be created from bitmaps or DIBs larger than 8 by 8 pixels.

iUsage

[in] Specifies whether the bmiColors member of the BITMAPINFO structure contains a
valid color table and, if so, whether the entries in this color table contain explicit red, green,
blue (RGB) values or palette indexes. The iUsage parameter must be one of the following val-
ues.

Return Values

If the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

A brush is a bitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateDIBPatternBrushPt, it can select that
brush into any device context by calling the SelectObject function.

When you no longer need the brush, call the DeleteObject function to delete it.

ICM: No color is done at brush creation. However, color management is performed when the
brush is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

Value Meaning

DIB_PAL_COLORS A color table is provided and consists of an array of 16-bit
indexes into the logical palette of the device context into which
the brush is to be selected.

DIB_RGB_COLORS A color table is provided and contains literal RGB values.
Page 46

Win32 API Reference
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Brushes Overview, Brush Functions, BITMAPINFO, CreateDIBPatternBrush, CreateHatchBrush, CreatePattern-
Brush, CreateSolidBrush, DeleteObject, GetBrushOrgEx, SelectObject, SetBrushOrgEx

2.34 CreateDIBSection

The CreateDIBSection function creates a DIB that applications can write to directly. The func-
tion gives you a pointer to the location of the bitmap's bit values. You can supply a handle to a
file-mapping object that the function will use to create the bitmap, or you can let the system allo-
cate the memory for the bitmap.

CreateDIBSection: procedure
(

hdc :dword;
var pbmi :BITMAPINFO;

iUsage :dword;
var ppvBits :var;

hSection :dword;
dwOffset :dword

);
stdcall;
returns("eax");
external("__imp__CreateDIBSection@24");

Parameters

hdc

[in] Handle to a device context. If the value of iUsage is DIB_PAL_COLORS, the function
uses this device context's logical palette to initialize the DIB's colors.

pbmi

[in] Pointer to a BITMAPINFO structure that specifies various attributes of the DIB, including the bit-
map's dimensions and colors.

iUsage

[in] Specifies the type of data contained in the bmiColors array member of the BITMAP-
INFO structure pointed to by pbmi (either logical palette indexes or literal RGB values). The
following values are defined.

Value Meaning

DIB_PAL_COLORS The bmiColors member is an array of 16-bit indexes into the
logical palette of the device context specified by hdc.

DIB_RGB_COLORS The BITMAPINFO structure contains an array of literal RGB
values.
Page 47

Volume 1
ppvBits

[out] Pointer to a variable that receives a pointer to the location of the DIB's bit values.

hSection

[in] Handle to a file-mapping object that the function will use to create the DIB. This parame-
ter can be NULL.

If hSection is not NULL, it must be a handle to a file-mapping object created by calling the Cre-

ateFileMapping function with the PAGE_READWRITE or PAGE_WRITECOPY flag.
Read-only DIB sections are not supported. Handles created by other means will cause Create-
DIBSection to fail.

If hSection is not NULL, the CreateDIBSection function locates the bitmap's bit values at offset
dwOffset in the file-mapping object referred to by hSection. An application can later retrieve
the hSection handle by calling the GetObject function with the HBITMAP returned by CreateD-
IBSection.

If hSection is NULL, the system allocates memory for the DIB. In this case, the CreateDIBSec-
tion function ignores the dwOffset parameter. An application cannot later obtain a handle to
this memory. The dshSection member of the DIBSECTION structure filled in by calling the
GetObject function will be NULL.

dwOffset

[in] Specifies the offset from the beginning of the file-mapping object referenced by hSection
where storage for the bitmap's bit values is to begin. This value is ignored if hSection is
NULL. The bitmap's bit values are aligned on doubleword boundaries, so dwOffset must be a
multiple of the size of a DWORD.

Return Values

If the function succeeds, the return value is a handle to the newly created DIB, and *ppvBits
points to the bitmap's bit values.

If the function fails, the return value is NULL, and *ppvBits is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError. This can be the fol-
lowing value.

Remarks

As noted above, if hSection is NULL, the system allocates memory for the DIB. The system
closes the handle to that memory when you later delete the DIB by calling the DeleteObject func-
tion. If hSection is not NULL, you must close the hSection memory handle yourself after calling
DeleteObject to delete the bitmap.

You cannot paste a dibsection from one application into another application.

Windows NT/ 2000: You need to guarantee that the GDI subsystem has completed any drawing

Value Meaning

ERROR_INVALID_PARAMETER One or more input parameters is invalid.
Page 48

Win32 API Reference
to a bitmap created by CreateDIBSection before you draw to the bitmap yourself. Access to the
bitmap must be synchronized. Do this by calling the GdiFlush function. This applies to any use of
the pointer to the bitmap's bit values, including passing the pointer in calls to functions such as
SetDIBits.

ICM:No color management is done.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Bitmaps Overview, Bitmap Functions, BITMAPINFO, CreateFileMapping, DeleteObject, DIBSECTION, GetDIB-
ColorTable, GetObject, GdiFlush, SetDIBits, SetDIBColorTable

2.35 CreateDIBitmap

The CreateDIBitmap function creates a device-dependent bitmap (DDB) from a DIB and,
optionally, sets the bitmap bits.

CreateDIBitmap: procedure
(

hdc :dword;
var lpbmih :BITMAPINFOHEADER;

fdwInit :dword;
var lpbInit :var;
var lpbmi :BITMAPINFO;

fuUsage :dword
);

stdcall;
returns("eax");
external("__imp__CreateDIBitmap@24");

Parameters

hdc

[in] Handle to a device context.

lpbmih

[in] Pointer to a bitmap information header structure, which may be one of those shown in the
following table.

Operating system Bitmap information header

Windows NT 3.51 and earlier BITMAPINFOHEADER

Windows NT 4.0 and Windows 95 BITMAPV4HEADER
Page 49

Volume 1
If fdwInit is CBM_INIT, the function uses the bitmap information header structure to obtain the
desired width and height of the bitmap as well as other information. Note that a positive value
for the height indicates a bottom-up DIB while a negative value for the height indicates a
top-down DIB. Calling CreateDIBitmap with fdwInit as CBM_INIT is equivalent to calling
the CreateCompatibleBitmap function to create a DDB in the format of the device and then
calling the SetDIBits function to translate the DIB bits to the DDB.

fdwInit

[in] Specifies how the system initializes the bitmap bits. The following values is defined.

If fdwInit is zero, the system does not initialize the bitmap's bits.

lpbInit

[in] Pointer to an array of bytes containing the initial bitmap data. The format of the data depends
on the biBitCount member of the BITMAPINFO structure to which the lpbmi parameter points.

lpbmi

[in] Pointer to a BITMAPINFO structure that describes the dimensions and color format of
the array pointed to by the lpbInit parameter.

fuUsage

[in] Specifies whether the bmiColors member of the BITMAPINFO structure was initialized and, if
so, whether bmiColors contains explicit red, green, blue (RGB) values or palette indexes. The
fuUsage parameter must be one of the following values.

Return Values

If the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Windows 2000 and Windows 98 BITMAPV5HEADER

Value Meaning

CBM_INIT If this flag is set, the system uses the data pointed to by the lpbInit and lpbmi
parameters to initialize the bitmap's bits.

If this flag is clear, the data pointed to by those parameters is not used.

Value Meaning

DIB_PAL_COLORS A color table is provided and consists of an array of 16-bit
indexes into the logical palette of the device context into which
the bitmap is to be selected.

DIB_RGB_COLORS A color table is provided and contains literal RGB values.
Page 50

Win32 API Reference
Remarks

The DDB that is created will be whatever bit depth your reference DC is. To create a bitmap that
is of different bit depth, use CreateDIBSection.

For a device to reach optimal bitmap-drawing speed, specify fdwInit as CBM_INIT. Then, use the
same color depth DIB as the video mode. When the video is running 4- or 8-bpp, use
DIB_PAL_COLORS.

The CBM_CREATDIB flag for the fdwInit parameter is no longer supported.

When you no longer need the bitmap, call the DeleteObject function to delete it.

ICM: No color management is performed. The contents of the resulting bitmap are not color
matched after the bitmap has been created.

Windows 95/98: The created bitmap cannot exceed 16MB in size.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Bitmaps Overview, Bitmap Functions, BITMAPINFOHEADER, BITMAPINFO, CreateCompatibleBitmap, Create-
DIBSection, DeleteObject, GetDeviceCaps, GetSystemPaletteEntries, SelectObject, SetDIBits

2.36 CreateDiscardableBitmap

The CreateDiscardableBitmap function creates a discardable bitmap that is compatible with the
specified device. The bitmap has the same bits-per-pixel format and the same color palette as the
device. An application can select this bitmap as the current bitmap for a memory device that is
compatible with the specified device.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the CreateCompatibleBitmap function.

CreateDiscardableBitmap: procedure
(

hdc :dword;
nWidth :dword;
nHeight :dword

);
stdcall;
returns("eax");
external("__imp__CreateDiscardableBitmap@12");

Parameters

hdc
Page 51

Volume 1
[in] Handle to a device context.

nWidth

[in] Specifies the width, in pixels, of the bitmap.

nHeight

[in] Specifies the height, in pixels, of the bitmap.

Return Values

If the function succeeds, the return value is a handle to the bitmap.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

When you no longer need the bitmap, call the DeleteObject function to delete it.

Windows 95/98: The created bitmap cannot exceed 16MB in size.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Bitmaps Overview, Bitmap Functions, CreateCompatibleBitmap, DeleteObject

2.37 CreateEllipticRgn

The CreateEllipticRgn function creates an elliptical region.
CreateEllipticRgn: procedure
(

nLeftRect :dword;
nTopRect :dword;
nRightRect :dword;
nBottomRect :dword

);
stdcall;
returns("eax");
external("__imp__CreateEllipticRgn@16");

Parameters

nLeftRect

[in] Specifies the x-coordinate in logical units, of the upper-left corner of the bounding rectan-
gle of the ellipse.

nTopRect
Page 52

Win32 API Reference
[in] Specifies the y-coordinate in logical units, of the upper-left corner of the bounding rectan-
gle of the ellipse.

nRightRect

[in] Specifies the x-coordinate in logical units, of the lower-right corner of the bounding rect-
angle of the ellipse.

nBottomRect

[in] Specifies the y-coordinate in logical units, of the lower-right corner of the bounding rect-
angle of the ellipse.

Return Values

If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

A bounding rectangle defines the size, shape, and orientation of the region: The long sides of the
rectangle define the length of the ellipse's major axis; the short sides define the length of the
ellipse's minor axis; and the center of the rectangle defines the intersection of the major and minor
axes.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreateEllipticRgnIndirect, DeleteObject, SelectObject

2.38 CreateEllipticRgnIndirect

The CreateEllipticRgnIndirect function creates an elliptical region.
CreateEllipticRgnIndirect: procedure
(

var lprc :RECT
);

stdcall;
returns("eax");
external("__imp__CreateEllipticRgnIndirect@4");

Parameters

lprc
Page 53

Volume 1
[in] Pointer to a RECT structure that contains the coordinates of the upper-left and lower-right cor-
ners of the bounding rectangle of the ellipse in logical units.

Return Values

If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

A bounding rectangle defines the size, shape, and orientation of the region: The long sides of the
rectangle define the length of the ellipse's major axis; the short sides define the length of the
ellipse's minor axis; and the center of the rectangle defines the intersection of the major and minor
axes.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreateEllipticRgn, DeleteObject, RECT, SelectObject

2.39 CreateEnhMetaFile

The CreateEnhMetaFile function creates a device context for an enhanced-format metafile. This
device context can be used to store a device-independent picture.

CreateEnhMetaFile: procedure
(

hdcRef :dword;
lpFilename :string;

var lpRect :RECT;
lpDescription :string

);
stdcall;
returns("eax");
external("__imp__CreateEnhMetaFileA@16");

Parameters

hdcRef

[in] Handle to a reference device for the enhanced metafile.

lpFilename

[in] Pointer to the file name for the enhanced metafile to be created. If this parameter is NULL,
the enhanced metafile is memory based and its contents are lost when it is deleted by using the
DeleteEnhMetaFile function.
Page 54

Win32 API Reference
lpRect

[in] Pointer to a RECT structure that specifies the dimensions (in .01-millimeter units) of the picture
to be stored in the enhanced metafile.

lpDescription

[in] Pointer to a string that specifies the name of the application that created the picture, as
well as the picture's title.

Return Values

If the function succeeds, the return value is a handle to the device context for the enhanced meta-
file.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

Where text arguments must use Unicode characters, use the CreateEnhMetaFile function as a
wide-character function. Where text arguments must use characters from the Windows character
set, use this function as an ANSI function.

The system uses the reference device identified by the hdcRef parameter to record the resolution
and units of the device on which a picture originally appeared. If the hdcRef parameter is NULL,
it uses the current display device for reference.

The left and top members of the RECT structure pointed to by the lpRect parameter must be less
than the right and bottom members, respectively. Points along the edges of the rectangle are
included in the picture. If lpRect is NULL, the graphics device interface (GDI) computes the
dimensions of the smallest rectangle that surrounds the picture drawn by the application. The
lpRect parameter should be provided where possible.

The string pointed to by the lpDescription parameter must contain a null character between the
application name and the picture name and must terminate with two null characters—for example,
"XYZ Graphics Editor\0Bald Eagle\0\0", where \0 represents the null character. If lpDescription
is NULL, there is no corresponding entry in the enhanced-metafile header.

Applications use the device context created by this function to store a graphics picture in an
enhanced metafile. The handle identifying this device context can be passed to any GDI function.

After an application stores a picture in an enhanced metafile, it can display the picture on any out-
put device by calling the PlayEnhMetaFile function. When displaying the picture, the system uses
the rectangle pointed to by the lpRect parameter and the resolution data from the reference device
to position and scale the picture.

The device context returned by this function contains the same default attributes associated with
any new device context.

Applications must use the GetWinMetaFileBits function to convert an enhanced metafile to the
older Windows metafile format.

The file name for the enhanced metafile should use the .emf extension.
Page 55

Volume 1
Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Metafiles Overview, Metafile Functions, CloseEnhMetaFile, DeleteEnhMetaFile, GetEnhMetaFileDescription,
GetEnhMetaFileHeader, GetWinMetaFileBits, PlayEnhMetaFile, RECT

2.40 CreateFont

The CreateFont function creates a logical font with the specified characteristics. The logical font
can subsequently be selected as the font for any device.

CreateFont: procedure
(

nHeight :dword;
nWidth :dword;
nEscapement :dword;
nOrientation :dword;
fnWeight :dword;
fdwItalic :dword;
fdwUnderline :dword;
fdwStrikeOut :dword;
fdwCharSet :dword;
fdwOutputPrecision :dword;
fdwClipPrecision :dword;
fdwQuality :dword;
fdwPitchAndFamily :dword;
lpszFace :string

);
stdcall;
returns("eax");
external("__imp__CreateFontA@56");

Parameters

nHeight

[in] Specifies the height, in logical units, of the font's character cell or character. The character
height value (also known as the em height) is the character cell height value minus the inter-
nal-leading value. The font mapper interprets the value specified in nHeight in the following
manner.

Value Meaning
Page 56

Win32 API Reference
For all height comparisons, the font mapper looks for the largest font that does not exceed the
requested size.

This mapping occurs when the font is used for the first time.

For the MM_TEXT mapping mode, you can use the following formula to specify a height for
a font with a specified point size:

nHeight = -MulDiv(PointSize, GetDeviceCaps(hDC, LOGPIXELSY), 72);

nWidth

[in] Specifies the average width, in logical units, of characters in the requested font. If this
value is zero, the font mapper chooses a closest match value. The closest match value is deter-
mined by comparing the absolute values of the difference between the current device's aspect
ratio and the digitized aspect ratio of available fonts.

nEscapement

[in] Specifies the angle, in tenths of degrees, between the escapement vector and the x-axis of
the device. The escapement vector is parallel to the base line of a row of text.

Windows NT/ 2000: When the graphics mode is set to GM_ADVANCED, you can specify
the escapement angle of the string independently of the orientation angle of the string's char-
acters.

When the graphics mode is set to GM_COMPATIBLE, nEscapement specifies both the
escapement and orientation. You should set nEscapement and nOrientation to the same value.

Windows 95: The nEscapement parameter specifies both the escapement and orientation. You
should set nEscapement and nOrientation to the same value.

nOrientation

[in] Specifies the angle, in tenths of degrees, between each character's base line and the x-axis
of the device.

fnWeight

[in] Specifies the weight of the font in the range 0 through 1000. For example, 400 is normal
and 700 is bold. If this value is zero, a default weight is used.

The following values are defined for convenience.

> 0 The font mapper transforms this value into device units and matches it against
the cell height of the available fonts.

0 The font mapper uses a default height value when it searches for a match.

< 0 The font mapper transforms this value into device units and matches its abso-
lute value against the character height of the available fonts.

Value Weight

FW_DONTCARE 0
Page 57

Volume 1
fdwItalic

[in] Specifies an italic font if set to TRUE.

fdwUnderline

[in] Specifies an underlined font if set to TRUE.

fdwStrikeOut

[in] Specifies a strikeout font if set to TRUE.

fdwCharSet

[in] Specifies the character set. The following values are predefined:

ANSI_CHARSET
BALTIC_CHARSET
CHINESEBIG5_CHARSET
DEFAULT_CHARSET
EASTEUROPE_CHARSET
GB2312_CHARSET
GREEK_CHARSET
HANGUL_CHARSET
MAC_CHARSET
OEM_CHARSET
RUSSIAN_CHARSET
SHIFTJIS_CHARSET

FW_THIN 100

FW_EXTRALIGHT 200

FW_ULTRALIGHT 200

FW_LIGHT 300

FW_NORMAL 400

FW_REGULAR 400

FW_MEDIUM 500

FW_SEMIBOLD 600

FW_DEMIBOLD 600

FW_BOLD 700

FW_EXTRABOLD 800

FW_ULTRABOLD 800

FW_HEAVY 900

FW_BLACK 900
Page 58

Win32 API Reference
SYMBOL_CHARSET
TURKISH_CHARSET

Windows NT/ 2000 or Middle-Eastern Windows 3.1 or later:

HEBREW_CHARSET
ARABIC_CHARSET

Windows NT/ 2000 or Thai Windows 3.1 or later:

THAI_CHARSET

The OEM_CHARSET value specifies a character set that is operating-system dependent.

Windows 95/98: You can use the DEFAULT_CHARSET value to allow the name and size of a
font to fully describe the logical font. If the specified font name does not exist, a font from any
character set can be substituted for the specified font, so you should use DEFAULT_CHARSET
sparingly to avoid unexpected results.

Windows NT/ 2000: DEFAULT_CHARSET is set to a value based on the current system locale.
For example, when the system locale is English (United States), it is set as ANSI_CHARSET.

Fonts with other character sets may exist in the operating system. If an application uses a font
with an unknown character set, it should not attempt to translate or interpret strings that are ren-
dered with that font.

To ensure consistent results when creating a font, do not specify OEM_CHARSET or
DEFAULT_CHARSET. If you specify a typeface name in the lpszFace parameter, make sure that
the fdwCharSet value matches the character set of the typeface specified in lpszFace.

fdwOutputPrecision

[in] Specifies the output precision. The output precision defines how closely the output must
match the requested font's height, width, character orientation, escapement, pitch, and font
type. It can be one of the following values.

Value Meaning

OUT_CHARACTER_PRECIS Not used.

OUT_DEFAULT_PRECIS Specifies the default font mapper behavior.

OUT_DEVICE_PRECIS Instructs the font mapper to choose a Device font when the
system contains multiple fonts with the same name.

OUT_OUTLINE_PRECIS Windows NT/ 2000: This value instructs the font mapper to
choose from TrueType and other outline-based fonts.

OUT_RASTER_PRECIS Instructs the font mapper to choose a raster font when the
system contains multiple fonts with the same name.

OUT_STRING_PRECIS This value is not used by the font mapper, but it is returned
when raster fonts are enumerated.
Page 59

Volume 1
Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, and
OUT_TT_PRECIS values to control how the font mapper chooses a font when the operating
system contains more than one font with a specified name. For example, if an operating sys-
tem contains a font named Symbol in raster and TrueType form, specifying
OUT_TT_PRECIS forces the font mapper to choose the TrueType version. Specifying
OUT_TT_ONLY_PRECIS forces the font mapper to choose a TrueType font, even if it must
substitute a TrueType font of another name.

fdwClipPrecision

[in] Specifies the clipping precision. The clipping precision defines how to clip characters that
are partially outside the clipping region. It can be one or more of the following values.

OUT_STROKE_PRECIS Windows NT/ 2000: This value is not used by the font
mapper, but it is returned when TrueType, other outline-
based fonts, and vector fonts are enumerated.

Windows 95/98: This value is used to map vector fonts,
and is returned when TrueType or vector fonts are enu-
merated.

OUT_TT_ONLY_PRECIS Instructs the font mapper to choose from only TrueType
fonts. If there are no TrueType fonts installed in the system,
the font mapper returns to default behavior.

OUT_TT_PRECIS Instructs the font mapper to choose a TrueType font when
the system contains multiple fonts with the same name.

Value Meaning

CLIP_DEFAULT_PRECIS Specifies default clipping behavior.

CLIP_CHARACTER_PRECIS Not used.

CLIP_STROKE_PRECIS Not used by the font mapper, but is returned when raster,
vector, or TrueType fonts are enumerated.

Windows NT/ 2000: For compatibility, this value is
always returned when enumerating fonts.

CLIP_MASK Not used.

CLIP_EMBEDDED You must specify this flag to use an embedded read-only
font.
Page 60

Win32 API Reference
fdwQuality

[in] Specifies the output quality. The output quality defines how carefully GDI must attempt
to match the logical-font attributes to those of an actual physical font. It can be one of the fol-
lowing values.

CLIP_LH_ANGLES When this value is used, the rotation for all fonts depends
on whether the orientation of the coordinate system is left-
handed or right-handed.

If not used, device fonts always rotate counterclock-
wise, but the rotation of other fonts is dependent on the
orientation of the coordinate system.

For more information about the orientation of coordi-
nate systems, see the description of the nOrientation
parameter

CLIP_TT_ALWAYS Not used.

Value Meaning

ANTIALIASED_QUALITY Windows NT 4.0 and later: Font is antialiased, or
smoothed, if the font supports it and the size of the font is
not too small or too large.

Windows 95 with Plus! and later: In addition to the
comments for Windows NT, the display must greater
than 8-bit color, it must be a single plane device, it can-
not be a palette display, and it cannot be in a multiple
display monitor setup. In addition, you must select a
TrueType font into a screen DC prior to using it in a
DIBSection, otherwise antialiasing does not happen.

DEFAULT_QUALITY Appearance of the font does not matter.

DRAFT_QUALITY Appearance of the font is less important than when the
PROOF_QUALITY value is used. For GDI raster fonts,
scaling is enabled, which means that more font sizes are
available, but the quality may be lower. Bold, italic, under-
line, and strikeout fonts are synthesized, if necessary.

NONANTIALIASED_QUALI
TY

Windows 95 with Plus!, Windows 98, Windows NT 4.0,
and Windows 2000: Font is never antialiased, that is, font
smoothing is not done.
Page 61

Volume 1
If neither ANTIALIASED_QUALITY nor NONANTIALIASED_QUALITY is selected, the font
is antialiased only if the user chooses "smooth screen fonts" in Control Panel.

fdwPitchAndFamily

[in] Specifies the pitch and family of the font. The two low-order bits specify the pitch of the
font and can be one of the following values:

• DEFAULT_PITCH

² FIXED_PITCH

² VARIABLE_PITCH

The four high-order bits specify the font family and can be one of the following values.

An application can specify a value for the fdwPitchAndFamily parameter by using the Boolean
OR operator to join a pitch constant with a family constant.

Font families describe the look of a font in a general way. They are intended for specifying
fonts when the exact typeface requested is not available.

lpszFace

[in] Pointer to a null-terminated string that specifies the typeface name of the font. The length of
this string must not exceed 32 characters, including the null terminator. The EnumFontFamilies

function can be used to enumerate the typeface names of all currently available fonts. For

PROOF_QUALITY Character quality of the font is more important than exact
matching of the logical-font attributes. For GDI raster fonts,
scaling is disabled and the font closest in size is chosen.
Although the chosen font size may not be mapped exactly
when PROOF_QUALITY is used, the quality of the font is
high and there is no distortion of appearance. Bold, italic,
underline, and strikeout fonts are synthesized, if necessary.

Value Description

FF_DECORATIVE Novelty fonts. Old English is an example.

FF_DONTCARE Don't care or don't know.

FF_MODERN Fonts with constant stroke width, with or without serifs.
Pica, Elite, and Courier New® are examples.

FF_ROMAN Fonts with variable stroke width and with serifs. MS® Serif
is an example.

FF_SCRIPT Fonts designed to look like handwriting. Script and Cursive
are examples.

FF_SWISS Fonts with variable stroke width and without serifs. MS
Sans Serif is an example.
Page 62

Win32 API Reference
more information, see the Remarks.

If lpszFace is NULL or empty string, GDI uses the first font that matches the other specified
attributes.

Return Values

If the function succeeds, the return value is a handle to a logical font.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

When you no longer need the font, call the DeleteObject function to delete it.

To help protect the copyrights of vendors who provide fonts for Windows 95/98 and Windows
NT/Windows 2000, Win32-based applications should always report the exact name of a selected
font. Because available fonts can vary from system to system, do not assume that the selected font
is always the same as the requested font. For example, if you request a font named Palatino, but
no such font is available on the system, the font mapper will substitute a font that has similar
attributes but a different name. Always report the name of the selected font to the user.

Windows 95/98 and Windows NT 4.0: The fonts for many East Asian languages have two type-
face names: an English name and a localized name. CreateFont, CreateFontIndirect and Cre-

ateFontIndirectEx take the localized typeface name on a system locale that matches the
language, but they take the English typeface name on all other system locales. The best method is
to try one name and, on failure, try the other. Note that EnumFonts, EnumFontFamilies, and Enum-

FontFamiliesEx return the English typeface name if the system locale does not match the lan-
guage of the font.

Windows 2000: The font mapper for CreateFont, CreateFontIndirect, and CreateFontIndi-
rectEx recognizes both the English and the localized typeface name, regardless of locale.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Fonts and Text Overview, Font and Text Functions, CreateFontIndirect, CreateFontIndirectEx, DeleteObject, Enum-
Fonts, EnumFontFamilies, EnumFontFamiliesEx, SelectObject, EnumFontFamilies

2.41 CreateFontIndirect

The CreateFontIndirect function creates a logical font that has the specified characteristics. The
font can subsequently be selected as the current font for any device context.
Page 63

Volume 1
CreateFontIndirect: procedure
(

var lplf:LOGFONT
);

stdcall;
returns("eax");
external("__imp__CreateFontIndirectA@4");

Parameters

lplf

[in] Pointer to a LOGFONT structure that defines the characteristics of the logical font.

Return Values

If the function succeeds, the return value is a handle to a logical font.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

The CreateFontIndirect function creates a logical font with the characteristics specified in the
LOGFONT structure. When this font is selected by using the SelectObject function, GDI's font
mapper attempts to match the logical font with an existing physical font. If it fails to find an exact
match, it provides an alternative whose characteristics match as many of the requested character-
istics as possible.

When you no longer need the font, call the DeleteObject function to delete it.

Windows 95/98 and Windows NT 4.0: The fonts for many East Asian languages have two type-
face names: an English name and a localized name. CreateFont, CreateFontIndirect, and Cre-

ateFontIndirectEx take the localized typeface name only on a system locale that matches the
language, while they take the English typeface name on all other system locales. The best method
is to try one name and, on failure, try the other. Note that EnumFonts, EnumFontFamilies, and
EnumFontFamiliesEx return the English typeface name if the system locale does not match the lan-
guage of the font.

Windows 2000: The font mapper for CreateFont, CreateFontIndirect, and CreateFontIndi-
rectEx recognizes both the English and the localized typeface name, regardless of locale.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Fonts and Text Overview, Font and Text Functions, CreateFont, CreateFontIndirectEx, DeleteObject, EnumFonts,
EnumFontFamilies, EnumFontFamiliesEx, LOGFONT, SelectObject
Page 64

Win32 API Reference
2.42 CreateFontIndirectEx

The CreateFontIndirectEx function specifies a logical font that has the characteristics in the
specified structure. The font can subsequently be selected as the current font for any device con-
text.

CreateFontIndirectEx: procedure
(

var penumlfex :ENUMLOGFONTEXDV
);

stdcall;
returns("eax");
external("__imp__CreateFontIndirectExA@4");

Parameters

penumlfex

[in] Pointer to an ENUMLOGFONTEXDV structure that defines the characteristics of a multiple master
font.

Note, this function ignores the elfDesignVector member in ENUMLOGFONTEXDV.

Return Values

If the function succeeds, the return value is the handle to the new ENUMLOGFONTEXDV
structure.

If the function fails, the return value is zero.

Remarks

The CreateFontIndirectEx function creates a logical font with the characteristics specified in the
ENUMLOGFONTEXDV structure. When this font is selected by using the SelectObject func-
tion, GDI's font mapper attempts to match the logical font with an existing physical font. If it fails
to find an exact match, it provides an alternative whose characteristics match as many of the
requested characteristics as possible.

When you no longer need the font, call the DeleteObject function to delete it.

Windows 95/98 and Windows NT 4.0: The fonts for many East Asian languages have two type-
face names: an English name and a localized name. CreateFont, CreateFontIndirect, and Cre-
ateFontIndirectEx take the localized typeface name only on a system locale that matches the
language, while they take the English typeface name on all other system locales. The best method
is to try one name and, on failure, try the other. Note that EnumFonts, EnumFontFamilies, and
EnumFontFamiliesEx return the English typeface name if the system locale does not match the lan-
guage of the font.

Windows 2000: The font mapper for CreateFont, CreateFontIndirect, and CreateFontIndi-
rectEx recognizes both the English and the localized typeface name, regardless of locale.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Unsupported.
Page 65

Volume 1
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Fonts and Text Overview, Font and Text Functions, CreateFont, CreateFontIndirect, EnumFonts, EnumFontFamilies,
EnumFontFamiliesEx, ENUMLOGFONTEXDV

2.43 CreateHalftonePalette

The CreateHalftonePalette function creates a halftone palette for the specified device context
(DC).

CreateHalftonePalette: procedure

(

hdc :dword

);

stdcall;

returns("eax");

external("__imp__CreateHalftonePalette@4");

Parameters

hdc

[in] Handle to the device context.

Return Values

If the function succeeds, the return value is a handle to a logical halftone palette.

If the function fails, the return value is zero.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

An application should create a halftone palette when the stretching mode of a device context is set
to HALFTONE. The logical halftone palette returned by CreateHalftonePalette should then be
selected and realized into the device context before the StretchBlt or StretchDIBits function is
called.

When you no longer need the palette, call the DeleteObject function to delete it.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Colors Overview, Color Functions, DeleteObject, RealizePalette, SelectPalette, SetStretchBltMode, StretchDIBits,
Page 66

Win32 API Reference
StretchBlt

2.44 CreateHatchBrush

The CreateHatchBrush function creates a logical brush that has the specified hatch pattern and
color.

CreateHatchBrush: procedure
(

fnStyle :dword;
clrref :COLORREF

);
stdcall;
returns("eax");
external("__imp__CreateHatchBrush@8");

Parameters

fnStyle

[in] Specifies the hatch style of the brush. This parameter can be one of the following values.

clrref

[in] Specifies the foreground color of the brush that is used for the hatches. To create a COLORREF

color value, use the RGB macro.

Return Values

If the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

A brush is a bitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateHatchBrush, it can select that brush into
any device context by calling the SelectObject function.

Value Meaning

HS_BDIAGONAL 45-degree upward left-to-right hatch

HS_CROSS Horizontal and vertical crosshatch

HS_DIAGCROSS 45-degree crosshatch

HS_FDIAGONAL 45-degree downward left-to-right hatch

HS_HORIZONTAL Horizontal hatch

HS_VERTICAL Vertical hatch
Page 67

Volume 1
If an application uses a hatch brush to fill the backgrounds of both a parent and a child window
with matching color, it may be necessary to set the brush origin before painting the background of
the child window. You can do this by having your application call the SetBrushOrgEx function.
Your application can retrieve the current brush origin by calling the GetBrushOrgEx function.

When you no longer need the brush, call the DeleteObject function to delete it.

ICM: No color is done at brush creation. However, color management is performed when the
brush is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Brushes Overview, Brush Functions, CreateDIBPatternBrush, CreateDIBPatternBrushPt, CreatePatternBrush, Cre-
ateSolidBrush, DeleteObject, GetBrushOrgEx, SelectObject, SetBrushOrgEx, COLORREF, RGB

2.45 CreateIC

The CreateIC function creates an information context for the specified device. The information
context provides a fast way to get information about the device without creating a device context
(DC). However, GDI drawing functions cannot accept a handle to an information context.

CreateIC: procedure
(

lpszDriver :string;
lpszDevice :string;
lpszOutput :string;

var lpdvmInit :DEVMODE
);

stdcall;
returns("eax");
external("__imp__CreateICA@16");

Parameters

lpszDriver

[in] Pointer to a null-terminated character string that specifies the name of the device driver
(for example, Epson).

lpszDevice

[in] Pointer to a null-terminated character string that specifies the name of the specific output
device being used, as shown by the Print Manager (for example, Epson FX-80). It is not the
printer model name. The lpszDevice parameter must be used.

lpszOutput

This parameter is ignored for Win32-based applications, and should be set to NULL. It is pro-
Page 68

Win32 API Reference
vided only for compatibility with 16-bit Windows. For more information, see the Remarks
section.

lpdvmInit

[in] Pointer to a DEVMODE structure containing device-specific initialization data for the device
driver. The DocumentProperties function retrieves this structure filled in for a specified
device. The lpdvmInit parameter must be NULL if the device driver is to use the default ini-
tialization (if any) specified by the user.

Return Values

If the function succeeds, the return value is the handle to an information context.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

Applications written for 16-bit versions of Windows used the lpszOutput parameter to specify a
port name or to print to a file. Win32-based applications do not need to specify a port name.

When you no longer need the information DC, call the DeleteDC function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Device Contexts Overview, Device Context Functions, DeleteDC, DocumentProperties, DEVMODE, GetDevice-
Caps

2.46 CreateMetaFile

The CreateMetaFile function creates a device context for a Windows-format metafile.

Note This function is provided only for compatibility with earlier 16-bit versions of Windows.
Win32-based applications should use the CreateEnhMetaFile function.

CreateMetaFile: procedure
(

lpszFile :string
);

stdcall;
returns("eax");
external("__imp__CreateMetaFileA@4");

Parameters

lpszFile
Page 69

Volume 1
[in] Pointer to the file name for the Windows-format metafile to be created. If this parameter is
NULL, the Windows-format metafile is memory based and its contents are lost when it is
deleted by using the DeleteMetaFile function.

Return Values

If the function succeeds, the return value is a handle to the device context for the Windows-format
metafile.

If the function fails, the return value is NULL.

Remarks

Where text arguments must use Unicode characters, use the CreateMetaFile function as a
wide-character function. Where text arguments must use characters from the Windows character
set, use this function as an ANSI function.

CreateMetaFile is a Windows-format metafile function. This function supports only 16-bit Win-
dows-based applications, which are listed in Windows-Format Metafiles. It does not record or
play back the new Win32 graphics device interface (GDI) functions such as PolyBezier.

The device context created by this function can be used to record GDI output functions in a Win-
dows-format metafile. It cannot be used with GDI query functions such as GetTextColor. When
the device context is used with a GDI output function, the return value of that function becomes
TRUE if the function is recorded and FALSE otherwise. When an object is selected by using the
SelectObject function, only a copy of the object is recorded. The object still belongs to the appli-
cation.

To create a scalable Windows-format metafile, record the graphics output in the
MM_ANISOTROPIC mapping mode. The file cannot contain functions that modify the viewport
origin and extents, nor can it contain device-dependent functions such as the SelectClipRgn func-
tion. Once created, the Windows metafile can be scaled and rendered to any output device-format
by defining the viewport origin and extents of the picture before playing it.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Metafiles Overview, Metafile Functions, CloseMetaFile, CreateEnhMetaFile, DeleteMetaFile, GetTextColor, Poly-
Bezier, SelectClipRgn, SelectObject

2.47 CreatePalette

The CreatePalette function creates a logical palette.
CreatePalette: procedure
(

var lplgpl :LOGPALETTE
Page 70

Win32 API Reference
);
stdcall;
returns("eax");
external("__imp__CreatePalette@4");

Parameters

lplgpl

[in] Pointer to a LOGPALETTE structure that contains information about the colors in the logical pal-
ette.

Return Values

If the function succeeds, the return value is a handle to a logical palette.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

An application can determine whether a device supports palette operations by calling the GetDe-
viceCaps function and specifying the RASTERCAPS constant.

Once an application creates a logical palette, it can select that palette into a device context by call-
ing the SelectPalette function. A palette selected into a device context can be realized by calling
the RealizePalette function.

When you no longer need the palette, call the DeleteObject function to delete it.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Colors Overview, Color Functions, DeleteObject, GetDeviceCaps, LOGPALETTE, RealizePalette, SelectPalette

2.48 CreatePatternBrush

The CreatePatternBrush function creates a logical brush with the specified bitmap pattern. The
bitmap can be a DIB section bitmap, which is created by the CreateDIBSection function.

CreatePatternBrush: procedure
(

hbmp :dword
);

stdcall;
returns("eax");
external("__imp__CreatePatternBrush@4");
Page 71

Volume 1
Parameters

hbmp

[in] Handle to the bitmap to be used to create the logical brush.

Windows 95/98: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixels is not sup-
ported. If a larger bitmap is specified, only a portion of the bitmap is used.

Windows NT/ 2000: Brushes can be created from bitmaps or DIBs larger than 8 by 8 pixels.

Return Values

If the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

A pattern brush is a bitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreatePatternBrush, it can select that brush into
any device context by calling the SelectObject function.

You can delete a pattern brush without affecting the associated bitmap by using the DeleteObject

function. Therefore, you can then use this bitmap to create any number of pattern brushes.

A brush created by using a monochrome (1 bit per pixel) bitmap has the text and background col-
ors of the device context to which it is drawn. Pixels represented by a 0 bit are drawn with the cur-
rent text color; pixels represented by a 1 bit are drawn with the current background color.

ICM: No color is done at brush creation. However, color management is performed when the
brush is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Brushes Overview, Brush Functions, CreateBitmap, CreateBitmapIndirect, CreateCompatibleBitmap, CreateDIBPat-
ternBrush, CreateDIBPatternBrushPt, CreateDIBSection, CreateHatchBrush, DeleteObject, GetBrushOrgEx, Load-
Bitmap, SelectObject, SetBrushOrgEx

2.49 CreatePen

The CreatePen function creates a logical pen that has the specified style, width, and color. The
pen can subsequently be selected into a device context and used to draw lines and curves.

CreatePen: procedure
(

fnPenStyle :dword;
Page 72

Win32 API Reference
nWidth :dword;
crColor :COLORREF

);
stdcall;
returns("eax");
external("__imp__CreatePen@12");

Parameters

fnPenStyle

[in] Specifies the pen style. It can be any one of the following values.

nWidth

[in] Specifies the width of the pen, in logical units. If nWidth is zero, the pen is a single pixel
wide, regardless of the current transformation.

CreatePen returns a pen with the specified width bit with the PS_SOLID style if you specify
a width greater than one for the following styles: PS_DASH, PS_DOT, PS_DASHDOT,
PS_DASHDOTDOT.

crColor

[in] Specifies a color reference for the pen color. To generate a COLORREF structure, use the RGB

macro.

Return Values

If the function succeeds, the return value is a handle that identifies a logical pen.

Value Meaning

PS_SOLID The pen is solid.

PS_DASH The pen is dashed. This style is valid only when the pen width
is one or less in device units.

PS_DOT The pen is dotted. This style is valid only when the pen width
is one or less in device units.

PS_DASHDOT The pen has alternating dashes and dots. This style is valid
only when the pen width is one or less in device units.

PS_DASHDOTDOT The pen has alternating dashes and double dots. This style is
valid only when the pen width is one or less in device units.

PS_NULL The pen is invisible.

PS_INSIDEFRAME The pen is solid. When this pen is used in any GDI drawing
function that takes a bounding rectangle, the dimensions of the
figure are shrunk so that it fits entirely in the bounding rectan-
gle, taking into account the width of the pen. This applies only
to geometric pens.
Page 73

Volume 1
If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

After an application creates a logical pen, it can select that pen into a device context by calling the
SelectObject function. After a pen is selected into a device context, it can be used to draw lines
and curves.

If the value specified by the nWidth parameter is zero, a line drawn with the created pen always is
a single pixel wide regardless of the current transformation.

If the value specified by nWidth is greater than 1, the fnPenStyle parameter must be PS_NULL,
PS_SOLID, or PS_INSIDEFRAME.

If the value specified by nWidth is greater than 1 and fnPenStyle is PS_INSIDEFRAME, the line
associated with the pen is drawn inside the frame of all primitives except polygons and polylines.

If the value specified by nWidth is greater than 1, fnPenStyle is PS_INSIDEFRAME, and the color
specified by the crColor parameter does not match one of the entries in the logical palette, the sys-
tem draws lines by using a dithered color. Dithered colors are not available with solid pens.

When you no longer need the pen, call the DeleteObject function to delete it.

ICM: No color management is done at creation. However, color management is performed when
the pen is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Pens Overview, Pen Functions, CreatePenIndirect, COLORREF, DeleteObject, ExtCreatePen, GetObject, RGB,
SelectObject

2.50 CreatePenIndirect

The CreatePenIndirect function creates a logical cosmetic pen that has the style, width, and
color specified in a structure.

CreatePenIndirect: procedure
(

var lplgpn :LOGPEN
);

stdcall;
returns("eax");
external("__imp__CreatePenIndirect@4");
Page 74

Win32 API Reference
Parameters

lplgpn

[in] Pointer to a LOGPEN structure that specifies the pen's style, width, and color.

Return Values

If the function succeeds, the return value is a handle that identifies a logical cosmetic pen.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

After an application creates a logical pen, it can select that pen into a device context by calling the
SelectObject function. After a pen is selected into a device context, it can be used to draw lines
and curves.

When you no longer need the pen, call the DeleteObject function to delete it.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Pens Overview, Pen Functions, CreatePen, DeleteObject, ExtCreatePen, GetObject, LOGPEN, RGB, SelectObject

2.51 CreatePolyPolygonRgn

The CreatePolyPolygonRgn function creates a region consisting of a series of polygons. The
polygons can overlap.

CreatePolyPolygonRgn: procedure
(

var lppt :POINT;
var lpPolyCounts :dword;

nCount :dword;
fnPolyFillMode :dword

);
stdcall;
returns("eax");
external("__imp__CreatePolyPolygonRgn@16");

Parameters

lppt

[in] Pointer to an array of POINT structures that define the vertices of the polygons in logical units.
The polygons are specified consecutively. Each polygon is presumed closed and each vertex is
specified only once.
Page 75

Volume 1
lpPolyCounts

[in] Pointer to an array of integers, each of which specifies the number of points in one of the
polygons in the array pointed to by lppt.

nCount

[in] Specifies the total number of integers in the array pointed to by lpPolyCounts.

fnPolyFillMode

[in] Specifies the fill mode used to determine which pixels are in the region. This parameter
can be one of the following values.

For more information about these modes, see the SetPolyFillMode function.

Return Values

If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreatePolygonRgn, DeleteObject, POINT, SelectObject, SetPolyFillMode

2.52 CreatePolygonRgn

The CreatePolygonRgn function creates a polygonal region.
CreatePolygonRgn: procedure
(

var lppt :POINT;
cPoints :dword;
fnPolyFillMode :dword

);
stdcall;
returns("eax");
external("__imp__CreatePolygonRgn@12");

Value Meaning

ALTERNATE Selects alternate mode (fills area between odd-numbered and even-num-
bered polygon sides on each scan line).

WINDING Selects winding mode (fills any region with a nonzero winding value).
Page 76

Win32 API Reference
Parameters

lppt

[in] Pointer to an array of POINT structures that define the vertices of the polygon in logical units.
The polygon is presumed closed. Each vertex can be specified only once.

cPoints

[in] Specifies the number of points in the array.

fnPolyFillMode

[in] Specifies the fill mode used to determine which pixels are in the region. This parameter
can be one of the following values.

For more information about these modes, see the SetPolyFillMode function.

Return Values

If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreatePolyPolygonRgn, DeleteObject, POINT, SelectObject, SetPolyFillM-
ode

2.53 CreateRectRgn

The CreateRectRgn function creates a rectangular region.
CreateRectRgn: procedure
(

nLeftRect :dword;
nTopRect :dword;
nRightRect :dword;
nBottomRect :dword

);

Value Meaning

ALTERNATE Selects alternate mode (fills area between odd-numbered and even-num-
bered polygon sides on each scan line).

WINDING Selects winding mode (fills any region with a nonzero winding value).
Page 77

Volume 1
stdcall;
returns("eax");
external("__imp__CreateRectRgn@16");

Parameters

nLeftRect

[in] Specifies the x-coordinate of the upper-left corner of the region in logical units.

nTopRect

[in] Specifies the y-coordinate of the upper-left corner of the region in logical units.

nRightRect

[in] Specifies the x-coordinate of the lower-right corner of the region in logical units.

nBottomRect

[in] Specifies the y-coordinate of the lower-right corner of the region in logical units.

Return Values

If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

The region will be exclusive of the bottom and right edges.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreateRectRgnIndirect, CreateRoundRectRgn, DeleteObject, SelectObject

2.54 CreateRectRgnIndirect

The CreateRectRgnIndirect function creates a rectangular region.
CreateRectRgnIndirect: procedure
(

VAR lprc :rect
);

stdcall;
returns("eax");
external("__imp__CreateRectRgnIndirect@4");
Page 78

Win32 API Reference
Parameters

lprc

[in] Pointer to a RECT structure that contains the coordinates of the upper-left and lower-right cor-
ners of the rectangle that defines the region in logical units.

Return Values

If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

The region will be exclusive of the bottom and right edges.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreateRectRgn, CreateRoundRectRgn, DeleteObject, RECT, SelectObject

2.55 CreateRoundRectRgn

The CreateRoundRectRgn function creates a rectangular region with rounded corners.
CreateRoundRectRgn: procedure
(

nLeftRect :dword;
nTopRect :dword;
nRightRect :dword;
nBottomRect :dword;
nWidthEllipse :dword;
nHeightEllipse :dword

);
stdcall;
returns("eax");
external("__imp__CreateRoundRectRgn@24");

Parameters

nLeftRect

[in] Specifies the x-coordinate of the upper-left corner of the region in logical units.

nTopRect

[in] Specifies the y-coordinate of the upper-left corner of the region in logical units.

nRightRect
Page 79

Volume 1
[in] Specifies the x-coordinate of the lower-right corner of the region in logical units.

nBottomRect

[in] Specifies the y-coordinate of the lower-right corner of the region in logical units.

nWidthEllipse

[in] Specifies the width of the ellipse used to create the rounded corners in logical units.

nHeightEllipse

[in] Specifies the height of the ellipse used to create the rounded corners in logical units.

Return Values

If the function succeeds, the return value is the handle to the region.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreateRectRgn, CreateRectRgnIndirect, DeleteObject, SelectObject

2.56 CreateScalableFontResource

The CreateScalableFontResource function creates a font resource file for a scalable font.
CreateScalableFontResource: procedure
(

fdwHidden :dword;
lpszFontRes :string;
lpszFontFile :string;
lpszCurrentPath :string

);
stdcall;
returns("eax");
external("__imp__CreateScalableFontResourceA@16");

Parameters

fdwHidden

[in] Specifies whether the font is a read-only font. This parameter can be one of the following
values.

Value Meaning
Page 80

Win32 API Reference
lpszFontRes

[in] Pointer to a null-terminated string specifying the name of the font resource file to create.
If this parameter specifies an existing font resource file, the function fails.

lpszFontFile

[in] Pointer to a null-terminated string specifying the name of the scalable font file that this
function uses to create the font resource file.

lpszCurrentPath

[in] Pointer to a null-terminated string specifying the path to the scalable font file.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/ 2000: To get extended error information, call GetLastError. If lpszFontRes speci-
fies an existing font file, GetLastError returns ERROR_FILE_EXISTS

Remarks

The CreateScalableFontResource function is used by applications that install TrueType fonts.
An application uses the CreateScalableFontResource function to create a font resource file (typ-
ically with a .fot file name extension) and then uses the AddFontResource function to install the
font. The TrueType font file (typically with a .ttf file name extension) must be in the System sub-
directory of the Windows directory to be used by the AddFontResource function.

The CreateScalableFontResource function currently supports only TrueType-technology scal-
able fonts.

When the lpszFontFile parameter specifies only a file name and extension, the lpszCurrentPath
parameter must specify a path. When the lpszFontFile parameter specifies a full path, the
lpszCurrentPath parameter must be NULL or a pointer to NULL.

When only a file name and extension are specified in the lpszFontFile parameter and a path is
specified in the lpszCurrentPath parameter, the string in lpszFontFile is copied into the .fot file as
the .ttf file that belongs to this resource. When the AddFontResource function is called, the operat-
ing system assumes that the .ttf file has been copied into the System directory (or into the main
Windows directory in the case of a network installation). The .ttf file need not be in this directory
when the CreateScalableFontResource function is called, because the lpszCurrentPath parame-
ter contains the directory information. A resource created in this manner does not contain absolute
path information and can be used in any installation.

When a path is specified in the lpszFontFile parameter and NULL is specified in the lpszCurrent-
Path parameter, the string in lpszFontFile is copied into the .fot file. In this case, when the

0 The font has read-write permission.

1 The font has read-only permission and should be hidden from other applica-
tions in the system. When this flag is set, the font is not enumerated by the
EnumFonts or EnumFontFamilies function.
Page 81

Volume 1
AddFontResource function is called, the .ttf file must be at the location specified in the lpszFont-
File parameter when the CreateScalableFontResource function was called; the lpszCurrentPath
parameter is not needed. A resource created in this manner contains absolute references to paths
and drives and does not work if the .ttf file is moved to a different location.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also

Fonts and Text Overview, Font and Text Functions, AddFontResource, EnumFonts, EnumFont-
Families

2.57 CreateSolidBrush

The CreateSolidBrush function creates a logical brush that has the specified solid color.
CreateSolidBrush: procedure
(

crColor :COLORREF
);

stdcall;
returns("eax");
external("__imp__CreateSolidBrush@4");

Parameters

crColor

[in] Specifies the color of the brush. To create a COLORREF color value, use the RGB macro.

Return Values

If the function succeeds, the return value identifies a logical brush.

If the function fails, the return value is NULL.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

A solid brush is a bitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateSolidBrush, it can select that brush into any
device context by calling the SelectObject function.

To paint with a system color brush, an application should use GetSysColorBrush(nIndex) instead
of CreateSolidBrush(GetSysColor(nIndex)), because GetSysColorBrush returns a cached
brush instead of allocating a new one.
Page 82

Win32 API Reference
ICM: No color management is done at brush creation. However, color management is performed
when the brush is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Brushes Overview, Brush Functions, CreateDIBPatternBrush, CreateDIBPatternBrushPt, CreateHatchBrush, Create-
PatternBrush, DeleteObject, GetSysColorBrush, SelectObject, COLORREF, RGB

2.58 DPtoLP

The DPtoLP function converts device coordinates into logical coordinates. The conversion
depends on the mapping mode of the device context, the settings of the origins and extents for the
window and viewport, and the world transformation.

DPtoLP: procedure
(

hdc :dword;
var lpPoints :POINT;

nCount :dword
);

stdcall;
returns("eax");
external("__imp__DPtoLP@12");

Parameters

hdc

[in] Handle to the device context.

lpPoints

[in/out] Pointer to an array of POINT structures. The x- and y-coordinates contained in each
POINT structure will be transformed.

nCount

[in] Specifies the number of points in the array.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

The DPtoLP function fails if the device coordinates exceed 27 bits, or if the converted logical
Page 83

Volume 1
coordinates exceed 32 bits. In the case of such an overflow, the results for all the points are unde-
fined.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Coordinate Spaces and Transformations Overview, Coordinate Space and Transformation Functions, LPtoDP, POINT

2.59 DeleteColorSpace

The DeleteColorSpace function removes and destroys a specified color space.
DeleteColorSpace: procedure
(

hColorSpace :dword
);

stdcall;
returns("eax");
external("__imp__DeleteColorSpace@4");

hColorSpace

Specifies the handle to a color space to delete.

Return Values

If this function succeeds, the return value is TRUE.

If this function fails, the return value is FALSE.

Requirements

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in wingdi.h.
Import Library: Use gdi32.lib.

See Also
Basic Color Management Concepts, Functions

2.60 DeleteDC

The DeleteDC function deletes the specified device context (DC).
DeleteDC: procedure
(

Page 84

Win32 API Reference
hdc :dword
);

stdcall;
returns("eax");
external("__imp__DeleteDC@4");

Parameters

hdc

[in] Handle to the device context.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

An application must not delete a DC whose handle was obtained by calling the GetDC function.
Instead, it must call the ReleaseDC function to free the DC.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Device Contexts Overview, Device Context Functions, CreateDC, GetDC, ReleaseDC

2.61 DeleteEnhMetaFile

The DeleteEnhMetaFile function deletes an enhanced-format metafile or an enhanced-format
metafile handle.

DeleteMetaFile: procedure
(

hemf :dword
);

stdcall;
returns("eax");
external("__imp__DeleteMetaFile@4");

Parameters

hemf

[in] Handle to an enhanced metafile.

Return Values

If the function succeeds, the return value is nonzero.
Page 85

Volume 1
If the function fails, the return value is zero.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

If the hemf parameter identifies an enhanced metafile stored in memory, the DeleteEnhMetaFile
function deletes the metafile. If hemf identifies a metafile stored on a disk, the function deletes the
metafile handle but does not destroy the actual metafile. An application can retrieve the file by
calling the GetEnhMetaFile function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Metafiles Overview, Metafile Functions, CopyEnhMetaFile, CreateEnhMetaFile, GetEnhMetaFile

2.62 DeleteObject

The DeleteObject function deletes a logical pen, brush, font, bitmap, region, or palette, freeing all
system resources associated with the object. After the object is deleted, the specified handle is no
longer valid.

DeleteObject: procedure
(

hObject :dword
);

stdcall;
returns("eax");
external("__imp__DeleteObject@4");

Parameters

hObject

[in] Handle to a logical pen, brush, font, bitmap, region, or palette.

Return Values

If the function succeeds, the return value is nonzero.

If the specified handle is not valid or is currently selected into a DC, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

Do not delete a drawing object (pen or brush) while it is still selected into a DC.

When a pattern brush is deleted, the bitmap associated with the brush is not deleted. The bitmap
must be deleted independently.
Page 86

Win32 API Reference
Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Device Contexts Overview, Device Context Functions, SelectObject

2.63 DescribePixelFormat

The DescribePixelFormat function obtains information about the pixel format identified by iPix-
elFormat of the device associated with hdc. The function sets the members of the PIXELFORMATDE-

SCRIPTOR structure pointed to by ppfd with that pixel format data.
DescribePixelFormat: procedure
(

hdc :dword;
iPixelFormat :dword;
nBytes :dword;

var ppfd :PIXELFORMATDESCRIPTOR
);

stdcall;
returns("eax");
external("__imp__DescribePixelFormat@16");

Parameters

hdc

Specifies the device context.

iPixelFormat

Index that specifies the pixel format. The pixel formats that a device context supports are
identified by positive one-based integer indexes.

nBytes

The size, in bytes, of the structure pointed to by ppfd. The DescribePixelFormat function
stores no more than nBytes bytes of data to that structure. Set this value to sizeof(PIXEL-
FORMATDESCRIPTOR).

ppfd

Pointer to a PIXELFORMATDESCRIPTOR structure whose members the function sets
with pixel format data. The function stores the number of bytes copied to the structure in the
structure's nSize member. If, upon entry, ppfd is NULL, the function writes no data to the
structure. This is useful when you only want to obtain the maximum pixel format index of a
device context.
Page 87

Volume 1
Return Values

If the function succeeds, the return value is the maximum pixel format index of the device con-
text. In addition, the function sets the members of the PIXELFORMATDESCRIPTOR structure
pointed to by ppfd according to the specified pixel format.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The following code sample shows DescribePixelFormat usage:
PIXELFORMATDESCRIPTOR pfd;
HDC hdc;
int iPixelFormat;

iPixelFormat = 1;

// obtain detailed information about
// the device context's first pixel format
DescribePixelFormat(hdc, iPixelFormat,

sizeof(PIXELFORMATDESCRIPTOR), &pfd);

Requirements

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.
Header: Declared in wingdi.h.
Import Library: Use gdi32.lib.

See Also
OpenGL on Windows NT, Windows 2000, and Windows 95/98, Win32 Functions, ChoosePixelFormat, GetPixelFor-
mat, SetPixelFormat

2.64 DeviceCapabilities

The DeviceCapabilities function retrieves the capabilities of a printer device driver.

DWORD DeviceCapabilities(

LPCTSTR pDevice, // printer name

LPCTSTR pPort, // port name

WORD fwCapability, // device capability

LPTSTR pOutput, // output buffer

CONST DEVMODE *pDevMode // device data buffer

);

Parameters

pDevice

[in] Pointer to a null-terminated string that contains the name of the printer. Note that this is
the name of the printer, not of the printer driver.
Page 88

Win32 API Reference
pPort

[in] Pointer to a null-terminated string that contains the name of the port to which the device is
connected, such as LPT1.

fwCapability

[in] Specifies the capabilities to query. This parameter can be one of the following values.

Value Meaning

DC_BINADJUST Windows 95/98: Retrieves the page positioning for the paper
source specified in the DEVMODE structure pointed to by
pdevMode. The return value can be one of the following:

DCBA_FACEUPNONE
DCBA_FACEUPCENTER
DCBA_FACEUPLEFT
DCBA_FACEUPRIGHT
DCBA_FACEDOWNNONE
DCBA_FACEDOWNCENTER
DCBA_FACEDOWNLEFT
DCBA_FACEDOWNRIGHT

Windows NT/2000: Not supported.

DC_BINNAMES Retrieves the names of the printer's paper bins. The pOutput
buffer receives an array of string buffers. Each string buffer is 24
characters long and contains the name of a paper bin. The return
value indicates the number of entries in the array. The name
strings are null-terminated unless the name is 24 characters long.
If pOutput is NULL, the return value is the number of bin entries
required.

DC_BINS Retrieves a list of available paper bins. The pOutput buffer
receives an array of WORD values that indicate the available
paper sources for the printer. The return value indicates the num-
ber of entries in the array. For a list of the possible array values,
see the description of the dmDefaultSource member of the
DEVMODE structure. If pOutput is NULL, the return value
indicates the required number of entries in the array.

DC_COLLATE If the printer supports collating, the return value is 1; otherwise,
the return value is zero. The pOutput parameter is not used.

DC_COLORDEVICE Windows 2000: If the printer supports color printing, the return
value is 1; otherwise, the return value is zero. The pOutput
parameter is not used.
Page 89

Volume 1
DC_COPIES Returns the number of copies the device can print.

DC_DRIVER Returns the version number of the printer driver.

DC_DATATYPE_PRODU
CED

Windows 95/98: The return value is the number of datatypes
supported by the printer driver. If the function returns -1, the
driver recognizes only the"RAW" datatype. The names of the
supported datatypes are copied to an array. Use the names in the
DOCINFO structure when calling the StartDoc function to
specify the datatype.

Windows NT/2000: Not supported.

DC_DUPLEX If the printer supports duplex printing, the return value is 1; oth-
erwise, the return value is zero. The pOutput parameter is not
used.

DC_EMF_COMPLIANT Windows 95/98: Determines if a printer driver supports
enhanced metafiles (EMF). A return value of 1 means the driver
supports EMF. A return value of -1 means the driver does not
support EMF.

Windows NT/2000: Not supported.

DC_ENUMRESOLUTION
S

Retrieves a list of the resolutions supported by the printer. The
pOutput buffer receives an array of LONG values. For each sup-
ported resolution, the array contains a pair of LONG values that
specify the x and y dimensions of the resolution, in dots per inch.
The return value indicates the number of supported resolutions.
If pOutput is NULL, the return value indicates the number of
supported resolutions.

DC_EXTRA Returns the number of bytes required for the device-specific por-
tion of the DEVMODE structure for the printer driver.

DC_FIELDS Returns the dmFields member of the printer driver's DEV-
MODE structure. The dmFields member indicates which mem-
bers in the device-independent portion of the structure are
supported by the printer driver.

DC_FILEDEPENDENCIE
S

Retrieves the names of any additional files that need to be loaded
when a driver is installed. The pOutput buffer receives an array
of string buffers. Each string buffer is 64 characters long and
contains the name of a file. The return value indicates the num-
ber of entries in the array. The name strings are null-terminated
unless the name is 64 characters long. If pOutput is NULL, the
return value is the number of files.
Page 90

Win32 API Reference
DC_MANUFACTURER Windows 95/98: The return value is the identification number of
the printer manufacturer. This value is used with Image Color
Management (ICM).

Windows NT/2000: Not supported.

DC_MAXEXTENT Returns the maximum paper size that the dmPaperLength and
dmPaperWidth members of the printer driver's DEVMODE
structure can specify. The LOWORD of the return value con-
tains the maximum dmPaperWidth value, and the HIWORD
contains the maximum dmPaperLength value.

DC_MEDIAREADY Windows 2000: Retrieves the names of the paper forms that are
currently available for use. The pOutput buffer receives an array
of string buffers. Each string buffer is 64 characters long and
contains the name of a paper form. The return value indicates the
number of entries in the array. The name strings are null-termi-
nated unless the name is 64 characters long. If pOutput is NULL,
the return value is the number of paper forms.

DC_MINEXTENT Returns the minimum paper size that the dmPaperLength and
dmPaperWidth members of the printer driver's DEVMODE
structure can specify. The LOWORD of the return value con-
tains the minimum dmPaperWidth value, and the HIWORD
contains the minimum dmPaperLength value.

DC_MODEL Windows 95/98: The return value is the identification of the
printer model. This value is used with Image Color Management
(ICM).

Windows NT/2000: Not supported.

DC_ORIENTATION Returns the relationship between portrait and landscape orienta-
tions for a device, in terms of the number of degrees that portrait
orientation is rotated counterclockwise to produce landscape ori-
entation. The return value can be one of the following:

0

No landscape orientation.

90

Portrait is rotated 90 degresss to produce landscape.

270

Portrait is rotated 270 degrees to produce landscape.
Page 91

Volume 1
DC_NUP Windows 2000: Retrieves an array of integers that indicate that
printer's ability to print multiple document pages per printed
page. The pOutput buffer receives an array of DWORD values.
Each value represents a supported number of document pages
per printed page. The return value indicates the number of entries
in the array. If pOutput is NULL, the return value indicates the
required number of entries in the array.

DC_PAPERNAMES Retrieves a list of supported paper names (for example, Letter or
Legal). The pOutput buffer receives an array of string buffers.
Each string buffer is 64 characters long and contains the name of
a paper form. The return value indicates the number of entries in
the array. The name strings are null-terminated unless the name
is 64 characters long. If pOutput is NULL, the return value is the
number of paper forms.

DC_PAPERS Retrieves a list of supported paper sizes. The pOutput buffer
receives an array of WORD values that indicate the available
paper sizes for the printer. The return value indicates the number
of entries in the array. For a list of the possible array values, see
the description of the dmPaperSize member of the DEVMODE
structure. If pOutput is NULL, the return value indicates the
required number of entries in the array.

DC_PAPERSIZE Retrieves the dimensions, in tenths of a millimeter, of each sup-
ported paper size. The pOutput buffer receives an array of
POINT structures. Each structure contains the width (x-dimen-
sion) and length (y-dimension) of a paper size as if the paper
were in the DMORIENT_PORTRAIT orientation. The return
value indicates the number of entries in the array.

DC_PERSONALITY Windows 2000: Retrieves a list of printer description languages
supported by the printer. The pOutput buffer receives an array of
string buffers. Each buffer is 32 characters long and contains the
name of a printer description language. The return value indi-
cates the number of entries in the array. The name strings are
null-terminated unless the name is 32 characters long. If pOutput
is NULL, the return value indicates the required number of array
entries.

DC_PRINTERMEM Windows 2000: The return value is the amount of available
printer memory, in kilobytes. The pOutput parameter is not used.
Page 92

Win32 API Reference
DC_PRINTRATE Windows 2000: The return value indicates the printer's print
rate. The value returned for DC_PRINTRATEUNIT indicates
the units of the DC_PRINTRATE value. The pOutput parameter
is not used.

DC_PRINTRATEPPM Windows 2000: The return value indicates the printer's print
rate, in pages per minute. The pOutput parameter is not used.

DC_PRINTRATEUNIT Windows 2000: The return value is one of the following values
that indicate the print rate units for the value returned for the
DC_PRINTRATE flag. The pOutput parameter is not used.

PRINTRATEUNIT_CPS

Characters per second.

PRINTRATEUNIT_IPM

Inches per minute.

PRINTRATEUNIT_LPM

Lines per minute.

PRINTRATEUNIT_PPM

Pages per minute.

DC_SIZE Returns the dmSize member of the printer driver's DEVMODE
structure.

DC_STAPLE Windows 2000: If the printer supports stapling, the return value
is a nonzero value; otherwise, the return value is zero. The pOut-
put parameter is not used.

DC_TRUETYPE Retrieves the abilities of the driver to use TrueType fonts. For
DC_TRUETYPE, the pOutput parameter should be NULL. The
return value can be one or more of the following:

DCTT_BITMAP

Device can print TrueType fonts as graphics.

DCTT_DOWNLOAD

Device can down-load TrueType fonts.

DCTT_DOWNLOAD_OUTLINE

Windows 95/98: Device can download outline TrueType
fonts.

DCTT_SUBDEV

Device can substitute device fonts for TrueType fonts.
Page 93

Volume 1
pOutput

[out] Pointer to an array. The format of the array depends on the setting of the fwCapability
parameter. If pOutput is NULL, DeviceCapabilities returns the number of bytes required for
the output data.

pDevMode

[in] Pointer to a DEVMODE structure. If this parameter is NULL, DeviceCapabilities retrieves
the current default initialization values for the specified printer driver. Otherwise, the function
retrieves the values contained in the structure to which pDevMode points.

Return Values

If the function succeeds, the return value depends on the setting of the fwCapability parame-
ter. A return value of zero generally indicates that, while the function completed successfully,
there was some type of failure, such as a capability that is not supported. For more details, see
the descriptions for the fwCapability values.

If the function fails, the return value is -1.

Windows NT/Windows 2000: To get extended error information, call GetLastError.

Remarks

For 16-bit programs, DeviceCapabilities was implemented in the printer driver. To get a
pointer to the function, call LoadLibrary and GetProcAddress. For 32-bit applications on
both Windows 95/98 and Windows NT, DeviceCapabilities is part of the Win32 API, so you
should not call LoadLibrary on the printer driver.

The DEVMODE structure pointed to by the pDevMode parameter may be obtained by calling
the DocumentProperties function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Winspool.lib.

See Also
Printing and Print Spooler Overview, Printing and Print Spooler Functions, DEVMODE, DOCINFO, DocumentProp-
erties, GetDeviceCaps, GetProcAddress, LoadLibrary, POINT, StartDoc

2.65 DrawEscape

The DrawEscape function provides drawing capabilities of the specified video display that are
not directly available through the graphics device interface (GDI).

DC_VERSION Returns the specification version to which the printer driver con-
forms.
Page 94

Win32 API Reference
DrawEscape: procedure
(

hdc :dword;
nEscape :dword;
cbInput :dword;
lpszInData :string

);
stdcall;
returns("eax");
external("__imp__DrawEscape@16");

Parameters

hdc

[in] Handle to the DC for the specified video display.

nEscape

[in] Specifies the escape function to be performed.

cbInput

[in] Specifies the number of bytes of data pointed to by the lpszInData parameter.

lpszInData

[in] Pointer to the input structure required for the specified escape.

Return Values

If the function is successful, the return value is greater than zero except for the QUERYESCSUP-
PORT draw escape, which checks for implementation only.

If the escape is not implemented, the return value is zero.

If an error occurred, the return value is less than zero .

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

When an application calls the DrawEscape function, the data identified by cbInput and lpszIn-
Data is passed directly to the specified display driver.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Device Contexts Overview, Device Context Functions
Page 95

Volume 1
2.66 Ellipse

The Ellipse function draws an ellipse. The center of the ellipse is the center of the specified
bounding rectangle. The ellipse is outlined by using the current pen and is filled by using the cur-
rent brush.

Ellipse: procedure
(

hdc :dword;
nLeftRect :dword;
nTopRect :dword;
nRightRect :dword;
nBottomRect :dword

);
stdcall;
returns("eax");
external("__imp__Ellipse@20");

Parameters

hdc

[in] Handle to the device context.

nLeftRect

[in] Specifies the x-coordinate of the upper-left corner of the bounding rectangle.

nTopRect

[in] Specifies the y-coordinate of the upper-left corner of the bounding rectangle.

nRightRect

[in] Specifies the x-coordinate of the lower-right corner of the bounding rectangle.

nBottomRect

[in] Specifies the y-coordinate of the lower-right corner of the bounding rectangle.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

The current position is neither used nor updated by Ellipse.

Windows 95/98: The sum of the coordinates of the bounding rectangle cannot exceed 32,767.
The sum of nLeftRect and nRightRect or nTopRect and nBottomRect parameters cannot exceed
32,767.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Page 96

Win32 API Reference
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Filled Shapes Overview, Filled Shape Functions, Arc, ArcTo

2.67 EndDoc

The EndDoc function ends a print job.
EndDoc: procedure
(

hdc :dword
);

stdcall;
returns("eax");
external("__imp__EndDoc@4");

Parameters

hdc

[in] Handle to the device context for the print job.

Return Values

If the function succeeds, the return value is greater than zero.

If the function fails, the return value is less than or equal to zero.

Windows NT/Windows 2000: To get extended error information, call GetLastError.

Remarks

Applications should call EndDoc immediately after finishing a print job.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Printing and Print Spooler Overview, Printing and Print Spooler Functions, StartDoc

2.68 EndPage

The EndPage function notifies the device that the application has finished writing to a page. This
function is typically used to direct the device driver to advance to a new page.

EndPage: procedure
Page 97

Volume 1
(
hdc :dword

);
stdcall;
returns("eax");
external("__imp__EndPage@4");

Parameters

hdc

[in] Handle to the device context for the print job.

Return Values

If the function succeeds, the return value is greater than zero.

If the function fails, the return value is less than or equal to zero.

Windows NT/Windows 2000: To get extended error information, call GetLastError.

Remarks

Use the ResetDC function to change the device mode, if necessary, after calling the EndPage func-
tion. Note that a call to ResetDC resets all device context attributes back to default values:

• Windows 3.x: EndPage resets the device context attributes back to default values. You
must re-select objects and set up the mapping mode again before printing the next page.

² Windows 95: EndPage does not reset the device context attributes. However, the next
StartPage call does reset the device context attributes to default values. At that time, you
must re-select objects and set up the mapping mode again before printing the next page.

² Windows NT/Windows 2000: Beginning with Windows NT Version 3.5, neither
EndPage or StartPage resets the device context attributes. Device context attributes
remain constant across subsequent pages. You do not need to re-select objects and set up
the mapping mode again before printing the next page; however, doing so will produce the
same results and reduce code differences between Windows 95 and Windows NT.

Windows 2000: When a page in a spooled file exceeds approximately 350 MB, it may fail to print
and not send an error message. For example, this can occur when printing large EMF files. The
page size limit depends on many factors including the amount of virtual memory available, the
amount of memory allocated by calling processes, and the amount of fragmentation in the process
heap.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Printing and Print Spooler Overview, Printing and Print Spooler Functions, ResetDC, StartPage
Page 98

Win32 API Reference
2.69 EndPath

The EndPath function closes a path bracket and selects the path defined by the bracket into the
specified device context.

EndPath: procedure
(

hdc :dword
);

stdcall;
returns("eax");
external("__imp__EndPath@4");

Parameters

hdc

[in] Handle to the device context into which the new path is selected.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError. GetLastError may
return one of the following error codes:

ERROR_CAN_NOT_COMPLETE
ERROR_INVALID_PARAMETER

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Paths Overview, Path Functions, BeginPath

2.70 EnumEnhMetaFile

The EnumEnhMetaFile function enumerates the records within an enhanced-format metafile by
retrieving each record and passing it to the specified callback function. The application-supplied
callback function processes each record as required. The enumeration continues until the last
record is processed or when the callback function returns zero.

EnumEnhMetaFile: procedure
(

hdc :dword;
hemf :dword;
lpEnhMetaFunc :ENHMFENUMPROC;

var lpData :dword;
Page 99

Volume 1
var lpRect :RECT
);

stdcall;
returns("eax");
external("__imp__EnumEnhMetaFile@20");

Parameters

hdc

[in] Handle to a device context. This handle is passed to the callback function.

hemf

[in] Handle to an enhanced metafile.

lpEnhMetaFunc

[in] Pointer to the application-supplied callback function. For more information, see the EnhMeta-

FileProc function.

lpData

[in] Pointer to optional callback-function data.

lpRect

[in] Pointer to a RECT structure that specifies the coordinates of the picture's upper-left and
lower-right corners. The dimensions of this rectangle are specified in logical units.

Return Values

If the callback function successfully enumerates all the records in the enhanced metafile, the
return value is nonzero.

If the callback function does not successfully enumerate all the records in the enhanced metafile,
the return value is zero.

Remarks

Points along the edge of the rectangle pointed to by the lpRect parameter are included in the pic-
ture. If the hdc parameter is NULL, the system ignores lpRect.

If the callback function calls the PlayEnhMetaFileRecord function, hdc must identify a valid
device context. The system uses the device context's transformation and mapping mode to trans-
form the picture displayed by the PlayEnhMetaFileRecord function.

You can use the EnumEnhMetaFile function to embed one enhanced-metafile within another.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Metafiles Overview, Metafile Functions, EnhMetaFileProc, PlayEnhMetaFile, PlayEnhMetaFileRecord, RECT
Page 100

Win32 API Reference
2.71 EnumFontFamilies

The EnumFontFamilies function enumerates the fonts in a specified font family that are avail-
able on a specified device.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the EnumFontFamiliesEx function.

EnumFontFamilies: procedure
(

hdc :dword;
lpszFamily :string;
lpEnumFontFamProc :FONTENUMPROC;

var lParam :var
);

stdcall;
returns("eax");
external("__imp__EnumFontFamiliesA@16");

Parameters

hdc

[in] Handle to the device context.

lpszFamily

[in] Pointer to a null-terminated string that specifies the family name of the desired fonts. If
lpszFamily is NULL, EnumFontFamilies selects and enumerates one font of each available
type family.

lpEnumFontFamProc

[in] Point to the application defined–callback function. For information, see EnumFontFamProc.

lParam

[in] Pointer to application-supplied data. The data is passed to the callback function along
with the font information.

Return Values

The return value is the last value returned by the callback function. Its meaning is implementation
specific.

Remarks

For each font having the typeface name specified by the lpszFamily parameter, the EnumFont-
Families function retrieves information about that font and passes it to the function pointed to by
the lpEnumFontFamProc parameter. The application defined–callback function can process the
font information as desired. Enumeration continues until there are no more fonts or the callback
function returns zero.

The fonts for many East Asian languages have two typeface names: an English name and a local-
ized name. EnumFonts, EnumFontFamilies, and EnumFontFamiliesEx return the English typeface
name if the system locale does not match the language of the font.
Page 101

Volume 1
Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Fonts and Text Overview, Font and Text Functions, EnumFonts, EnumFontFamiliesEx, EnumFontFamProc

2.72 EnumFontFamiliesEx

The EnumFontFamiliesEx function enumerates all fonts in the system that match the font char-
acteristics specified by the LOGFONT structure. EnumFontFamiliesEx enumerates fonts based on
typeface name, character set, or both.

EnumFontFamiliesEx: procedure
(

hdc :dword;
var lpLogfont :LOGFONT;

lpEnumFontFamExProc :FONTENUMPROC;
var lParam :var;

dwFlags :dword
);

stdcall;
returns("eax");
external("__imp__EnumFontFamiliesExA@20");

Parameters

hdc

[in] Handle to the device context.

lpLogfont

[in] Pointer to a LOGFONT structure that contains information about the fonts to enumerate. The
function examines the following members.

Member Description

lfCharset If set to DEFAULT_CHARSET, the function enumerates all fonts in
all character sets. If set to a valid character set value, the function
enumerates only fonts in the specified character set.

lfFaceName If set to an empty string, the function enumerates one font in each
available typeface name. If set to a valid typeface name, the func-
tion enumerates all fonts with the specified name.

lfPitchAndFamily Must be set to zero for all language versions of the operating sys-
tem.
Page 102

Win32 API Reference
lpEnumFontFamExProc

[in] Pointer to the application defined–callback function. For more information, see the EnumFont-

FamExProc function.

lParam

[in] Specifies an application–defined value. The function passes this value to the callback
function along with font information.

dwFlags

This parameter is not used and must be zero.

Return Values

The return value is the last value returned by the callback function. This value depends on which
font families are available for the specified device.

Remarks

The EnumFontFamiliesEx function does not use tagged typeface names to identify character
sets. Instead, it always passes the correct typeface name and a separate character set value to the
callback function. The function enumerates fonts based on the the values of the lfCharset and
lfFacename members in the LOGFONT structure.

As with EnumFontFamilies, EnumFontFamiliesEx enumerates all font styles. Not all styles of
a font cover the same character sets. For example, Fontorama Bold might contain ANSI, Greek,
and Cyrillic characters, but Fontorama Italic might contain only ANSI characters. For this reason,
it's best not to assume that a specified font covers a specific character set, even if it is the ANSI
character set. The following table shows the results of various combinations of values for lfChar-
Set and lfFaceName.

The following code sample shows how these values are used.
//to enumerate all styles and charsets of all fonts:
lf.lfFaceName[0] = '\0';
lf.lfCharSet = DEFAULT_CHARSET;

//to enumerate all styles and character sets of the Arial font:
lstrcpy((LPSTR)&lf.lfFaceName, "Arial");
lf.lfCharSet = DEFAULT_CHARSET;

Values Meaning

lfCharSet = DEFAULT_CHARSET
lfFaceName = '\0'

Enumerates all fonts in all character sets.

lfCharSet = DEFAULT_CHARSET
lfFaceName = a specific font

Enumerates all character sets and styles in a
specific font.

lfCharSet =a specific character set
lfFaceName = '\0'

Enumerates all styles of all fonts in the specific
character set.

lfCharSet =a specific character set
lfFaceName = a specific font

Enumerates all styles of a font in a specific
character set.
Page 103

Volume 1
//to enumerate all styles of all fonts for the ANSI character set
lf.lfFaceName[0] = '\0';
lf.lfCharSet = ANSI_CHARSET;

//to enumerate all styles of Arial font that cover the ANSI charset
lstrcpy((LPSTR)&lf.lfFaceName, "Arial");
lf.lfCharSet = ANSI_CHARSET;

The callback functions for EnumFontFamilies and EnumFontFamiliesEx are very similar. The
main difference is that the ENUMLOGFONTEX structure includes a script field.

Note, based on the values of lfCharSet and lfFaceName, EnumFontFamiliesEx will enumerate
the same font as many times as there are distinct character sets in the font. This can create an
extensive list of fonts which can be burdensome to a user. For example, the Century Schoolbook
font can appear for the Baltic, Western, Greek, Turkish, and Cyrillic character sets. To avoid this,
an application should filter the list of fonts.

The fonts for many East Asian languages have two typeface names: an English name and a local-
ized name. EnumFonts, EnumFontFamilies, and EnumFontFamiliesEx return the English type-
face name if the system locale does not match the language of the font.

Requirements

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Fonts and Text Overview, Font and Text Functions, EnumFontFamExProc, EnumFonts, EnumFontFamilies, LOG-
FONT

2.73 EnumFonts

The EnumFonts function enumerates the fonts available on a specified device. For each font with
the specified typeface name, the EnumFonts function retrieves information about that font and
passes it to the application defined–callback function. This callback function can process the font
information as desired. Enumeration continues until there are no more fonts or the callback func-
tion returns zero.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the EnumFontFamiliesEx function.

EnumFonts: procedure
(

hdc :dword;
lpFaceName :string;
lpFontFunc :FONTENUMPROC;

var lParam :var
);

stdcall;
Page 104

Win32 API Reference
returns("eax");
external("__imp__EnumFontsA@16");

Parameters

hdc

[in] Handle to the device context.

lpFaceName

[in] Pointer to a null-terminated string that specifies the typeface name of the desired fonts. If
lpFaceName is NULL, EnumFonts randomly selects and enumerates one font of each avail-
able typeface.

lpFontFunc

[in] Pointer to the application defined–callback function. For more information, see Enum-

FontsProc.

lParam

[in] Pointer to any application-defined data. The data is passed to the callback function along
with the font information.

Return Values

The return value is the last value returned by the callback function. Its meaning is defined by the
application.

Remarks

Use EnumFontFamiliesEx instead of EnumFonts. The EnumFontFamiliesEx function differs
from the EnumFonts function in that it retrieves the style names associated with a TrueType font.
With EnumFontFamiliesEx, you can retrieve information about font styles that cannot be enumer-
ated using the EnumFonts function.

The fonts for many East Asian languages have two typeface names: an English name and a local-
ized name. EnumFonts, EnumFontFamilies, and EnumFontFamiliesEx return the English typeface
name if the system locale does not match the language of the font.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Fonts and Text Overview, Font and Text Functions, EnumFontFamilies, EnumFontFamiliesEx EnumFontsProc, Get-
DeviceCaps
Page 105

Volume 1
2.74 EnumICMProfiles

The EnumICMProfiles function enumerates the different output color profiles that the system
supports for a given device context.

EnumICMProfiles: procedure
(

hdc :dword;
lpEnumICMProfilesFunc :ICMENUMPROC;

var lParam :var
);

stdcall;
returns("eax");
external("__imp__EnumICMProfilesA@12");

hDC

Specifies the device context.

lpEnumICMProfilesFunc

Specifies the procedure instance address of a callback function defined by the application. (See
EnumICMProfilesProcCallback.)

lParam

Data supplied by the application that is passed to the callback function along with the color
profile information.

Return Values

This function returns zero if the application interrupted the enumeration. The return value is -1 if
there are no color profiles to enumerate. Otherwise, the return value is the last value returned by
the callback function.

Remarks

The EnumICMProfiles function returns a list of profiles that are associated with a device context
(DC), and whose settings match those of the DC. It is possible for a device context to contain
device profiles that are not associated with particular hardware devices, or device profiles that do
not match the settings of the DC. The sRGB profile is an example. The SetICMProfile function is
used to associate these types of profiles with a DC. The GetICMProfile function can be used to
retrieve a profile that is not enumerated by the EnumICMProfiles function.

Requirements

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in wingdi.h.
Import Library: Use gdi32.lib.
See Also
Basic Color Management Concepts, Functions, EnumICMProfilesProcCallback, SetICMProfile, GetICMProfile
Page 106

Win32 API Reference
2.75 EnumMetaFile

The EnumMetaFile function enumerates the records within a Windows-format metafile by
retrieving each record and passing it to the specified callback function. The application-supplied
callback function processes each record as required. The enumeration continues until the last
record is processed or when the callback function returns zero.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the EnumEnhMetaFile function.

EnumMetaFile: procedure
(

hdc :dword;
hmf :dword;
lpMetaFunc :MFENUMPROC;

var lParam :var
);

stdcall;
returns("eax");
external("__imp__EnumMetaFile@16");

Parameters

hdc

[in] Handle to a device context. This handle is passed to the callback function.

hmf

[in] Handle to a Windows-format metafile.

lpMetaFunc

[in] Pointer to an application-supplied callback function. For more information, see EnumMeta-

FileProc.

lParam

[in] Pointer to optional data.

Return Values

If the callback function successfully enumerates all the records in the Windows-format metafile,
the return value is nonzero.

If the callback function does not successfully enumerate all the records in the Windows-format
metafile, the return value is zero.

Remarks

A Windows-format metafile does not support the new curve, path, and transformation functions,
such as PolyBezier, BeginPath, and SetWorldTransform. Applications that use these new func-
tions and use metafiles to store pictures created by these functions should use the enhanced-for-
mat metafile functions.

To convert a Windows-format metafile into an enhanced-format metafile, use the SetWinMeta-

FileBits function.
Page 107

Volume 1
You can use the EnumMetaFile function to embed one Windows-format metafile within another.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Metafiles Overview, Metafile Functions, BeginPath, EnumEnhMetaFile, EnumMetaFileProc, PlayMetaFile,
PlayMetaFileRecord, PolyBezier, SetWinMetaFileBits, SetWorldTransform

2.76 EnumObjects

The EnumObjects function enumerates the pens or brushes available for the specified device
context (DC). This function calls the application-defined callback function once for each avail-
able object, supplying data describing that object. EnumObjects continues calling the callback
function until the callback function returns zero or until all of the objects have been enumerated.

EnumObjects: procedure
(

hdc :dword;
nObjectType :dword;
lpObjectFunc :GOBJENUMPROC;

var lParam :var
);

stdcall;
returns("eax");
external("__imp__EnumObjects@16");

Parameters

hdc

[in] Handle to the DC.

nObjectType

[in] Specifies the object type. This parameter can be OBJ_BRUSH or OBJ_PEN.

lpObjectFunc

[in] Pointer to the application-defined callback function. For more information about the callback
function, see the EnumObjectsProc function.

lParam

[in] Pointer to the application-defined data. The data is passed to the callback function along
with the object information.

Return Values

If the function succeeds, the return value is the last value returned by the callback function. Its
meaning is user-defined.
Page 108

Win32 API Reference
If there are too many objects to enumerate, the function returns –1. In this case, the callback func-
tion is not called.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Device Contexts Overview, Device Context Functions, EnumObjectsProc, GetObject

2.77 EqualRgn

The EqualRgn function checks the two specified regions to determine whether they are identical.
The function considers two regions identical if they are equal in size and shape.

EqualRgn: procedure
(

hSrcRgn1 :dword;
hSrcRgn2 :dword

);
stdcall;
returns("eax");
external("__imp__EqualRgn@8");

Parameters

hSrcRgn1

[in] Handle to a region.

hSrcRgn2

[in] Handle to a region.

Return Values

If the two regions are equal, the return value is nonzero.

If the two regions are not equal, the return value is zero. A return value of ERROR means at least
one of the region handles is invalid.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreateRectRgn, CreateRectRgnIndirect
Page 109

Volume 1
2.78 Escape

The Escape function enables applications to access capabilities of a particular device not directly
available through GDI. Escape calls made by an application are translated and sent to the driver.

Escape: procedure
(

hdc :dword;
nEscape :dword;
cbInput :dword;
lpvInData :string;

var lpvOutData :var
);

stdcall;
returns("eax");
external("__imp__Escape@20");

Parameters

hdc

[in] Handle to the device context.

nEscape

[in] Specifies the escape function to be performed. This parameter must be one of the predefined
escape values listed in the Remarks section. Use the ExtEscape function if your application
defines a private escape value.

cbInput

[in] Specifies the number of bytes of data pointed to by the lpvInData parameter.

lpvInData

[in] Pointer to the input structure required for the specified escape.

lpvOutData

[out] Pointer to the structure that receives output from this escape. This parameter should be
NULL if no data is returned.

Return Values

If the function succeeds, the return value is greater than zero, except with the QUERYESCSUP-
PORT printer escape, which checks for implementation only. If the escape is not implemented, the
return value is zero.

If the function fails, the return value is an error.

Windows NT/Windows 2000: To get extended error information, call GetLastError.

Errors

If the function fails, the return value is one of the following values.

Value Meaning
Page 110

Win32 API Reference
Remarks

Of the original printer escapes, only the following can be used by Win32-based applications.

The following printer escapes are obsolete. They are provided only for compatibility with 16-bit
versions of Windows.

SP_ERROR General error. If SP_ERROR is returned, Escape may set the
last error code to:

ERROR_INVALID_PARAMETER
ERROR_DISK_FULL
ERROR_NOT_ENOUGH_MEMORY
ERROR_PRINT_CANCELLED

SP_OUTOFDISK Not enough disk space is currently available for spooling, and
no more space will become available.

SP_OUTOFMEMORY Not enough memory is available for spooling.

SP_USERABORT The user terminated the job through Print Manager.

Escape Description

QUERYESCSUPPORT Determines whether a particular escape is implemented by the
device driver.

PASSTHROUGH Allows the application to send data directly to a printer.

Escape Description

ABORTDOC Stops the current print job and erases everything the applica-
tion has written to the device since the last ENDDOC escape.

In the Win32 API, this is superseded by AbortDoc.

ENDDOC Ends a print job started by the STARTDOC escape.

In the Win32 API, this is superseded by EndDoc.

GETPHYSPAGESIZE Retrieves the physical page size and copies it to the specified
location.

In the Win32 API, this is superseded by PHYSICALWIDTH
and PHYSICALHEIGHT in GetDeviceCaps.

GETPRINTINGOFFSET Retrieves the offset from the upper-left corner of the physical
page where the actual printing or drawing begins.

In the Win32 API, this is superseded by PHYSICALOFF-
SETX and PHYSICALOFFSETY in GetDeviceCaps.
Page 111

Volume 1
In addition, the Win32 API has StartPage which is used to prepare the printer driver to receive
data.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Printing and Print Spooler Overview, Printing and Print Spooler Functions, AbortDoc,DocumentProperties, EndDoc,
EndPage, ExtEscape, GetDeviceCaps, PrinterProperties SetAbortProc, StartDoc, StartPage, ResetDC

2.79 ExcludeClipRect

The ExcludeClipRect function creates a new clipping region that consists of the existing clipping
region minus the specified rectangle.

ExcludeClipRect: procedure
(

hdc :dword;

GETSCALINGFACTOR Retrieves the scaling factors for the x-axis and the y-axis of a
printer.

In the Win32 API, this is superseded by SCALINGFACTORX
and SCALINGFACTORY in GetDeviceCaps.

NEWFRAME Informs the printer that the application has finished writing to a
page.

In the Win32 API, this is superseded by EndPage which ends a
page. Unlike NEWFRAME, EndPage is always called after
printing a page.

NEXTBAND Informs the printer that the application has finished writing to a
band.

Band information is not used in Win32 applications.

SETABORTPROC Sets the Abort function for a print job.

In the Win32 API, this is superseded by SetAbortProc.

SETCOPYCOUNT Sets the number of copies.

In the Win32 API, this is superseded by DocumentProperties or
PrinterProperties.

STARTDOC Informs a printer driver that a new print job is starting.

In the Win32 API, this is superseded by StartDoc.
Page 112

Win32 API Reference
nLeftRect :dword;
nTopRect :dword;
nRightRect :dword;
nBottomRect :dword

);
stdcall;
returns("eax");
external("__imp__ExcludeClipRect@20");

Parameters

hdc

[in] Handle to the device context.

nLeftRect

[in] Specifies the logical x-coordinate of the upper-left corner of the rectangle.

nTopRect

[in] Specifies the logical y-coordinate of the upper-left corner of the rectangle.

nRightRect

[in] Specifies the logical x-coordinate of the lower-right corner of the rectangle.

nBottomRect

[in] Specifies the logical y-coordinate of the lower-right corner of the rectangle.

Return Values

The return value specifies the new clipping region's complexity; it can be one of the following
values.

Remarks

The lower and right edges of the specified rectangle are not excluded from the clipping region.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Clipping Overview, Clipping Functions, IntersectClipRect

Value Meaning

NULLREGION Region is empty.

SIMPLEREGION Region is a single rectangle.

COMPLEXREGION Region is more than one rectangle.

ERROR No region was created.
Page 113

Volume 1
2.80 ExtCreatePen

The ExtCreatePen function creates a logical cosmetic or geometric pen that has the specified
style, width, and brush attributes.

ExtCreatePen: procedure
(

dwPenStyle :dword;
dwWidth :dword;

var lplb :LOGBRUSH;
dwStyleCount :dword;

var lpStyle :dword
);

stdcall;
returns("eax");
external("__imp__ExtCreatePen@20");

Parameters

dwPenStyle

[in] Specifies a combination of type, style, end cap, and join attributes. The values from each
category are combined by using the bitwise OR operator (|).

The pen type can be one of the following values.

The pen style can be one of the following values.

Value Meaning

PS_GEOMETRIC The pen is geometric.

PS_COSMETIC The pen is cosmetic.

Value Meaning

PS_ALTERNATE Windows NT/2000: The pen sets every other pixel. (This
style is applicable only for cosmetic pens.)

PS_SOLID The pen is solid.

PS_DASH The pen is dashed.

Windows 95: This style is not supported for geometric
lines.

Windows 98: Not supported.

PS_DOT The pen is dotted.

Windows 95/98: This style is not supported for geo-
metric lines.
Page 114

Win32 API Reference
The end cap is only specified for geometric pens. The end cap can be one of the following values.

The join is only specified for geometric pens. The join can be one of the following values.

Windows 95/98: The PS_ENDCAP_ROUND, PS_ENDCAP_SQUARE, PS_ENDCAP_FLAT,
PS_JOIN_BEVEL, PS_JOIN_MITER, and PS_JOIN_ROUND styles are supported only for
geometric pens when used to draw paths.

dwWidth

[in] Specifies the width of the pen. If the dwPenStyle parameter is PS_GEOMETRIC, the

PS_DASHDOT The pen has alternating dashes and dots.

Windows 95: This style is not supported for geometric
lines.

Windows 98: Not supported.

PS_DASHDOTDOT The pen has alternating dashes and double dots.

Windows 95: This style is not supported for geometric
lines.

Windows 98: Not supported.

PS_NULL The pen is invisible.

PS_USERSTYLE Windows NT/2000: The pen uses a styling array supplied
by the user.

PS_INSIDEFRAME The pen is solid. When this pen is used in any GDI draw-
ing function that takes a bounding rectangle, the dimen-
sions of the figure are shrunk so that it fits entirely in the
bounding rectangle, taking into account the width of the
pen. This applies only to geometric pens.

Value Meaning

PS_ENDCAP_ROUND End caps are round.

PS_ENDCAP_SQUARE End caps are square.

PS_ENDCAP_FLAT End caps are flat.

Value Meaning

PS_JOIN_BEVEL Joins are beveled.

PS_JOIN_MITER Joins are mitered when they are within the current limit set
by the SetMiterLimit function. If it exceeds this limit, the
join is beveled.

PS_JOIN_ROUND Joins are round.
Page 115

Volume 1
width is given in logical units. If dwPenStyle is PS_COSMETIC, the width must be set to 1.

lplb

[in] Pointer to a LOGBRUSH structure. If dwPenStyle is PS_COSMETIC, the lbColor member spec-
ifies the color of the pen and the lbStyle member must be set to BS_SOLID. If dwPenStyle is
PS_GEOMETRIC, all members must be used to specify the brush attributes of the pen.

dwStyleCount

[in] Specifies the length, in DWORD units, of the lpStyle array. This value must be zero if
dwPenStyle is not PS_USERSTYLE.

lpStyle

[in] Pointer to an array. The first value specifies the length of the first dash in a user-defined
style, the second value specifies the length of the first space, and so on. This pointer must be
NULL if dwPenStyle is not PS_USERSTYLE.

Return Values

If the function succeeds, the return value is a handle that identifies a logical pen.

If the function fails, the return value is zero.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

A geometric pen can have any width and can have any of the attributes of a brush, such as dithers
and patterns. A cosmetic pen can only be a single pixel wide and must be a solid color, but cos-
metic pens are generally faster than geometric pens.

The width of a geometric pen is always specified in world units. The width of a cosmetic pen is
always 1.

End caps and joins are only specified for geometric pens.

After an application creates a logical pen, it can select that pen into a device context by calling the
SelectObject function. After a pen is selected into a device context, it can be used to draw lines
and curves.

If dwPenStyle is PS_COSMETIC and PS_USERSTYLE, the entries in the lpStyle array specify
lengths of dashes and spaces in style units. A style unit is defined by the device where the pen is
used to draw a line.

If dwPenStyle is PS_GEOMETRIC and PS_USERSTYLE, the entries in the lpStyle array specify
lengths of dashes and spaces in logical units.

If dwPenStyle is PS_ALTERNATE, the style unit is ignored and every other pixel is set.

If the lbStyle member of the LOGBRUSH structure pointed to by lplb is BS_PATTERN, the bitmap
pointed to by the lbHatch member of that structure cannot be a DIB section. A DIB section is a
bitmap created by CreateDIBSection. If that bitmap is a DIB section, the ExtCreatePen function
fails.

When an application no longer requires a specified pen, it should call the DeleteObject function
Page 116

Win32 API Reference
to delete the pen.

ICM: No color management is done at pen creation. However, color management is performed
when the pen is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Pens Overview, Pen Functions, CreateDIBSection, CreatePen, CreatePenIndirect, DeleteObject, GetObject, LOG-
BRUSH, SelectObject, SetMiterLimit

2.81 ExtCreateRegion

The ExtCreateRegion function creates a region from the specified region and transformation
data.

ExtCreateRegion: procedure
(

var lpXform :XFORM;
nCount :dword;

var lpRgnData :RGNDATA
);

stdcall;
returns("eax");
external("__imp__ExtCreateRegion@12");

Parameters

lpXform

[in] Pointer to an XFORM structure that defines the transformation to be performed on the region. If
this pointer is NULL, the identity transformation is used.

nCount

[in] Specifies the number of bytes pointed to by lpRgnData.

lpRgnData

[in] Pointer to a RGNDATA structure that contains the region data in logical units.

Return Values

If the function succeeds, the return value is the value of the region.

If the function fails, the return value is NULL.

Windows NT/2000: To get extended error information, call GetLastError.

Remarks

An application can retrieve data for a region by calling the GetRegionData function.
Page 117

Volume 1
Windows 95/98: Regions are no longer limited to the 64K heap.

Windows 95/98: World transforms that involve either shearing or rotations are not supported.
ExtCreateRegion fails if the transformation matrix is anything other than a scaling or translation
of the region.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, GetRegionData, RGNDATA, XFORM

2.82 ExtEscape

The ExtEscape function enables applications to access capabilities of a particular device that are
not available through GDI.

ExtEscape: procedure
(

hdc :dword;
nEscape :dword;
cbInput :dword;
lpszInData :string;
cbOutput :dword;
lpszOutData :string

);
stdcall;
returns("eax");
external("__imp__ExtEscape@24");

Parameters

hdc

[in] Handle to the device context.

nEscape

[in] Specifies the escape function to be performed. It can be one of the following or it can be
an application-defined escape function.

Value Meaning

CHECKJPEGFORMAT Windows 2000: Checks whether the printer
supports a JPEG image.

CHECKPNGFORMAT Windows 2000: Checks whether the printer
supports a PNG image.
Page 118

Win32 API Reference
cbInput

[in] Specifies the number of bytes of data pointed to by the lpszInData parameter.

lpszInData

[in] Pointer to the input structure required for the specified escape.

cbOutput

[in] Specifies the number of bytes of data pointed to by the lpszOutData parameter.

lpszOutData

[out] Pointer to the structure that receives output from this escape. This parameter must not be
NULL if ExtEscape is called as a query function. If no data is to be returned in this structure,
set cbOutput to 0.

Return Values

The return value specifies the outcome of the function. It is greater than zero if the function is suc-
cessful, except for the QUERYESCSUPPORT printer escape, which checks for implementation
only. The return value is zero if the escape is not implemented. A return value less than zero indi-
cates an error.

Windows NT/Windows 2000: To get extended error information, call GetLastError.

DRAWPATTERNRECT Draws a white, gray-scale, or black rectangle.

GET_PS_FEATURESETTING Windows 2000: Gets information on a specified
feature setting for a PostScript driver.

PASSTHROUGH Allows the application to send data directly to a
printer. Supported in compatibility mode and
GDI-centric mode.

POSTSCRIPT_DATA Allows the application to send data directly to a
printer. Supported only in compatibility mode.

POSTSCRIPT_IDENTIFY Windows 2000: Sets a PostScript driver to
GDI-centric or PostScript-centric mode.

POSTSCRIPT_INJECTION Windows 2000: Inserts a block of raw data in a
PostScript job stream.

POSTSCRIPT_PASSTHROUGH Windows 2000: Sends data directly to a Post-
Script printer driver. Supported in compatibility
mode and PS-centric mode.

QUERYESCSUPPORT Determines whether a particular escape is
implemented by the device driver.

SPCLPASSTHROUGH2 Windows 2000: Allows applications to include
private procedures and other resources at the
document level-save context.
Page 119

Volume 1
Remarks

Use this function to pass a driver-defined escape value to a device.

Use the Escape function to pass one of the system-defined escape values to a device, unless the
escape is one of the defined escapes in nEscape. ExtEscape might not work properly with the
system-defined escapes. In particular, escapes in which lpszInData is a pointer to a structure that
contains a member that is a pointer will fail.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Printing and Print Spooler Overview, Printing and Print Spooler Functions, Escape, GetDeviceCaps

2.83 ExtFloodFill

The ExtFloodFill function fills an area of the display surface with the current brush.
ExtFloodFill: procedure
(

hdc :dword;
nXStart :dword;
nYStart :dword;
crColor :dword;
fuFillType :dword

);
stdcall;
returns("eax");
external("__imp__ExtFloodFill@20");

Parameters

hdc

[in] Handle to a device context.

nXStart

[in] Specifies the logical x-coordinate of the point where filling is to start.

nYStart

[in] Specifies the logical y-coordinate of the point where filling is to start.

crColor

[in] Specifies the color of the boundary or of the area to be filled. The interpretation of crColor
depends on the value of the fuFillType parameter. To create a COLORREF color value, use the RGB

macro.

fuFillType
Page 120

Win32 API Reference
[in] Specifies the type of fill operation to be performed. This parameter must be one of the fol-
lowing values.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero.

Windows NT/ 2000: To get extended error information, call GetLastError.

Remarks

The following are some of the reasons this function might fail:

• The filling could not be completed.

² The specified point has the boundary color specified by the crColor parameter (if
FLOODFILLBORDER was requested).

² The specified point does not have the color specified by crColor (if FLOODFILLSUR-
FACE was requested).

² The point is outside the clipping region—that is, it is not visible on the device.

If the fuFillType parameter is FLOODFILLBORDER, the system assumes that the area to be
filled is completely bounded by the color specified by the crColor parameter. The function begins
filling at the point specified by the nXStart and nYStart parameters and continues in all directions
until it reaches the boundary.

If fuFillType is FLOODFILLSURFACE, the system assumes that the area to be filled is a single
color. The function begins to fill the area at the point specified by nXStart and nYStart and contin-
ues in all directions, filling all adjacent regions containing the color specified by crColor.

Only memory device contexts and devices that support raster-display operations support the Ext-

FloodFill function. To determine whether a device supports this technology, use the GetDevice-

Caps function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.

Value Meaning

FLOODFILLBORDER The fill area is bounded by the color specified by the
crColor parameter. This style is identical to the filling per-
formed by the FloodFill function.

FLOODFILLSURFACE The fill area is defined by the color that is specified by
crColor. Filling continues outward in all directions as long
as the color is encountered. This style is useful for filling
areas with multicolored boundaries.
Page 121

Volume 1
Library: Use Gdi32.lib.

See Also
Bitmaps Overview, Bitmap Functions, FloodFill, GetDeviceCaps, COLORREF, RGB

2.84 ExtSelectClipRgn

The ExtSelectClipRgn function combines the specified region with the current clipping region
using the specified mode.

ExtSelectClipRgn: procedure
(

hdc :dword;
hrgn :dword;
fnMode :dword

);
stdcall;
returns("eax");
external("__imp__ExtSelectClipRgn@12");

Parameters

hdc

[in] Handle to the device context.

hrgn

[in] Handle to the region to be selected. This handle can only be NULL when the
RGN_COPY mode is specified.

fnMode

[in] Specifies the operation to be performed. It must be one of the following values.

Value Meaning

RGN_AND The new clipping region combines the overlapping areas of the cur-
rent clipping region and the region identified by hrgn.

RGN_COPY The new clipping region is a copy of the region identified by hrgn.
This is identical to SelectClipRgn. If the region identified by hrgn is
NULL, the new clipping region is the default clipping region (the
default clipping region is a null region).

RGN_DIFF The new clipping region combines the areas of the current clipping
region with those areas excluded from the region identified by hrgn.

RGN_OR The new clipping region combines the current clipping region and the
region identified by hrgn.
Page 122

Win32 API Reference
Return Values

The return value specifies the new clipping region's complexity; it can be one of the following
values.

Remarks

If an error occurs when this function is called, the previous clipping region for the specified
device context is not affected.

The ExtSelectClipRgn function assumes that the coordinates for the specified region are speci-
fied in device units.

Only a copy of the region identified by the hrgn parameter is used. The region itself can be reused
after this call or it can be deleted.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Clipping Overview, Clipping Functions, SelectClipRgn

2.85 ExtTextOut

The ExtTextOut function draws text using the currently selected font, background color, and text
color. You can optionally provide dimensions to be used for clipping, opaquing, or both.

ExtTextOut: procedure
(

hdc :dword;
x :dword;
y :dword;
fuOptions :dword;

var lprc :RECT;
lpString :string;
cbCount :dword;

RGN_XOR The new clipping region combines the current clipping region and the
region identified by hrgn but excludes any overlapping areas.

Value Meaning

NULLREGION Region is empty.

SIMPLEREGION Region is a single rectangle.

COMPLEXREGION Region is more than one rectangle.

ERROR An error occurred.
Page 123

Volume 1
var lpDx :var
);

stdcall;
returns("eax");
external("__imp__ExtTextOutA@32");

Parameters

hdc

[in] Handle to the device context.

X

[in] Specifies the logical x-coordinate of the reference point used to position the string.

Y

[in] Specifies the logical y-coordinate of the reference point used to position the string.

fuOptions

[in] Specifies how to use the application-defined rectangle. This parameter can be one or more
of the following values.

Value Meaning

ETO_CLIPPED The text will be clipped to the rectangle.

ETO_GLYPH_INDEX The lpString array refers to an array returned from GetCharac-
terPlacement and should be parsed directly by GDI as no further
language-specific processing is required. Glyph indexing only
applies to TrueType fonts, but the flag can be used for bitmap and
vector fonts to indicate that no further language processing is nec-
essary and GDI should process the string directly. Note that all
glyph indexes are 16-bit values even though the string is assumed
to be an array of 8-bit values for raster fonts.

For ExtTextOutW, the glyph indexes are saved to a metafile.
However, to display the correct characters the metafile must
be played back using the same font. For ExtTextOutA, the
glyph indexes are not saved.

ETO_NUMERICSLATIN To display numbers, use European digits.

ETO_NUMERICSLOCA
L

To display numbers, use digits appropriate to the locale.

ETO_OPAQUE The current background color should be used to fill the rectangle.
Page 124

Win32 API Reference
The ETO_GLYPH_INDEX and ETO_RTLREADING values cannot be used together. Because
ETO_GLYPH_INDEX implies that all language processing has been completed, the function
ignores the ETO_RTLREADING flag if also specified.

lprc

[in] Pointer to an optional RECT structure that specifies the dimensions of a rectangle that is used
for clipping, opaquing, or both.

lpString

[in] Pointer to a string that specifies the text to be drawn. The string does not need to be
zero-terminated, since cbCount specifies the length of the string.

cbCount

[in] Specifies the length of the string. For the ANSI function it is a BYTE count and for the
Unicode function it is a WORD count. Note that for the ANSI function, characters in SBCS
code pages take one byte each, while most characters in DBCS code pages take two bytes; for
the Unicode function, most currently defined Unicode characters (those in the Basic Multilin-
gual Plane (BMP)) are one WORD while Unicode surrogates are two WORDs.

Windows 95/98: This value may not exceed 8192.

lpDx

[in] Pointer to an optional array of values that indicate the distance between origins of adja-
cent character cells. For example, lpDx[i] logical units separate the origins of character cell i
and character cell i + 1.

Return Values

If the string is drawn, the return value is nonzero. However, if the ANSI version of ExtTextOut is
called with ETO_GLYPH_INDEX, the function returns TRUE even though the function does
nothing.

If the function fails, the return value is zero.

Windows NT/ 2000: To get extended error information, call GetLastError.

ETO_PDY When this is set, the array pointed to by lpDx contains pairs of
values. The first value of each pair is, as usual, the distance
between origins of adjacent character cells, but the second value
is the displacement along the vertical direction of the font.

ETO_RTLREADING Middle-Eastern Windows: If this value is specified and a
Hebrew or Arabic font is selected into the device context, the
string is output using right-to-left reading order. If this value is
not specified, the string is output in left-to-right order. The same
effect can be achieved by setting the TA_RTLREADING value in
SetTextAlign. This value is preserved for backward compatabil-
ity.
Page 125

Volume 1
Remarks

Although not true in general, Windows 95/98 supports the Unicode version of this function as
well as the ANSI version.

The current text-alignment settings for the specified device context determine how the reference
point is used to position the text. The text-alignment settings are retrieved by calling the GetTex-

tAlign function. The text-alignment settings are altered by calling the SetTextAlign function.

If the lpDx parameter is NULL, the ExtTextOut function uses the default spacing between char-
acters. The character-cell origins and the contents of the array pointed to by the lpDx parameter
are specified in logical units. A character-cell origin is defined as the upper-left corner of the char-
acter cell.

By default, the current position is not used or updated by this function. However, an application
can call the SetTextAlign function with the fMode parameter set to TA_UPDATECP to permit the
system to use and update the current position each time the application calls ExtTextOut for a
specified device context. When this flag is set, the system ignores the X and Y parameters on sub-
sequent ExtTextOut calls.

For the ANSI version of ExtTextOut, the lpDx array has the same number of INT values as there
are bytes in lpString. For DBCS characters, you can apportion the dx in the lpDx entries between
the lead byte and the trail byte, as long as the sum of the two bytes adds up to the desired dx. For
DBCS characters with the Unicode version of ExtTextOut, each Unicode glyph gets a single pdx
entry.

Note, the alpDx values from GetTextExtentExPoint are not the same as the lpDx values for Ext-
TextOut. To use the alpDx values in lpDx, you must first process them.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Fonts and Text Overview, Font and Text Functions, GetTextAlign, RECT, SetBkColor, SelectObject, SetTextAlign,
SetTextColor
Page 126

	Win32 API Reference for HLA
	2 GDI32.lib
	2.1 AbortDoc
	2.2 AbortPath
	2.3 AddFontMemResourceEx
	2.4 AddFontResource
	2.5 AddFontResourceEx
	2.6 AngleArc
	2.7 AnimatePalette
	2.8 Arc
	2.9 ArcTo
	2.10 BeginPath
	2.11 BitBlt
	2.12 CancelDC
	2.13 CheckColorsInGamut
	2.14 ChoosePixelFormat
	2.15 Chord
	2.16 CloseEnhMetaFile
	2.17 CloseFigure
	2.18 CloseMetaFile
	2.19 ColorCorrectPalette
	2.20 ColorMatchToTarget
	2.21 CombineRgn
	2.22 CombineTransform
	2.23 CopyEnhMetaFile
	2.24 CopyMetaFile
	2.25 CreateBitmap
	2.26 CreateBitmapIndirect
	2.27 CreateBrushIndirect
	2.28 CreateColorSpace
	2.29 CreateCompatibleBitmap
	2.30 CreateCompatibleDC
	2.31 CreateDC
	2.32 CreateDIBPatternBrush
	2.33 CreateDIBPatternBrushPt
	2.34 CreateDIBSection
	2.35 CreateDIBitmap
	2.36 CreateDiscardableBitmap
	2.37 CreateEllipticRgn
	2.38 CreateEllipticRgnIndirect
	2.39 CreateEnhMetaFile
	2.40 CreateFont
	2.41 CreateFontIndirect
	2.42 CreateFontIndirectEx
	2.43 CreateHalftonePalette
	2.44 CreateHatchBrush
	2.45 CreateIC
	2.46 CreateMetaFile
	2.47 CreatePalette
	2.48 CreatePatternBrush
	2.49 CreatePen
	2.50 CreatePenIndirect
	2.51 CreatePolyPolygonRgn
	2.52 CreatePolygonRgn
	2.53 CreateRectRgn
	2.54 CreateRectRgnIndirect
	2.55 CreateRoundRectRgn
	2.56 CreateScalableFontResource
	2.57 CreateSolidBrush
	2.58 DPtoLP
	2.59 DeleteColorSpace
	2.60 DeleteDC
	2.61 DeleteEnhMetaFile
	2.62 DeleteObject
	2.63 DescribePixelFormat
	2.64 DeviceCapabilities
	2.65 DrawEscape
	2.66 Ellipse
	2.67 EndDoc
	2.68 EndPage
	2.69 EndPath
	2.70 EnumEnhMetaFile
	2.71 EnumFontFamilies
	2.72 EnumFontFamiliesEx
	2.73 EnumFonts
	2.74 EnumICMProfiles
	2.75 EnumMetaFile
	2.76 EnumObjects
	2.77 EqualRgn
	2.78 Escape
	2.79 ExcludeClipRect
	2.80 ExtCreatePen
	2.81 ExtCreateRegion
	2.82 ExtEscape
	2.83 ExtFloodFill
	2.84 ExtSelectClipRgn
	2.85 ExtTextOut

