Win32 APl Reference

Win32 API Reference for HLA

2 GDI32.lib

2.1 AbortDoc

The AbortDoc function stops the current print job and erases everything drawn since the last call
to the st ar t Doc function.

Abort Doc: procedure
(

)

hdc: dwor d

stdcal | ;
returns("eax");
external ("__inp__AbortDoc@");

Parameters
hdc
[in] Handle to the device context for the print job.
Return Values
If the function succeeds, the return value is greater than zero.
If the function fails, the return valueis SP_ERROR.
Windows NT/Windows 2000: To get extended error information, call Get Last Error.
Remarks

Applications should call the AbortDoc function to stop a print job if an error occurs, or to stop a
print job after the user cancels that job. To end a successful print job, an application should call
the EndDoc function.

If Print Manager was used to start the print job, calling AbortDoc erases the entire spool job, so
that the printer receives nothing. If Print Manager was not used to start the print job, the data may
already have been sent to the printer. In this case, the printer driver resets the printer (when possi-
ble) and ends the print job.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in gdi32.hhf.

Library: Use Gdi32.lib.

See Also
Printing and Print Spooler Overview, Printing and Print Spooler Functions, EndDoc, SetAbort-

Page 1

Volume 1

Proc, StartDoc

2.2 AbortPath

The AbortPath function closes and discards any paths in the specified device context.

Abort Pat h: procedure
(

)

hdc: dwor d

stdcal | ;
returns("eax");
external ("__inp__AbortPath@");

Parameters
hdc
[in] Handle to the device context from which a path will be discarded.
Return Values
If the function succeeds, the return value is nonzero.
If the function fails, the return valueis zero.
Windows NT/2000: To get extended error information, call GetL astError.
Remarks

If there is an open path bracket in the given device context, the path bracket is closed and the path
isdiscarded. If thereis aclosed path in the device context, the path is discarded.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

See Also
Paths Overview, Path Functions, BeginPath, EndPath

2.3 AddFontMemResourceEx

The AddFontM emResour ceEx function adds the font resource from a memory image to the sys-
tem.

AddFont MenmResour ceEx: procedure
(

var pbFont: var;

Page 2

Win32 APl Reference

cbFont: dword;
var pdv: var;
var pcFonts: dword

stdcal |l ;

returns("eax");

external (" __inp__AddFont MenmResour ceEx@e6");
Parameters
pbFont

[in] Pointer to afont resource.
cbFont

[in] Number of bytes in the font resource that is pointed to by pbFont.
pav

[in] Reserved. Must be 0.
pcFonts

[in] Pointer to avariable that specifies the number of fontsinstalled.
Return Values

If the function succeeds, the return value specifies the handle to the font added. This handle
uniquely identifies the fonts that were installed on the system. If the function fails, the return
valueis zero.

Remarks

This function allows an application to get afont that is embedded in a document or aWeb page. A
font that is added by AddFontM emResour ceEx is always private to the process that made the
call and is not enumerable.

A memory image can contain more than one font. When this function succeeds, pcFontsis a
pointer to a DWORD whose value is the number of fonts added to the system as aresult of this
call. For example, this number could be 2 for the vertical and horizontal faces of an Asian font.

When the function succeeds, the caller of thisfunction can free the memory pointed to by pbFont
because the system has made its own copy of the memory. To remove the fonts that wereinstalled,
call renmoveFont MenResour ceEx. However, when the process goes away, the system will unload the
fonts even if the process did not call RemoveFontM emResour ce.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Unsupported.

Header: Declared in gdi32.hhf.

Library: Use Gdi32.lib.

See Also
Fonts and Text Overview, Font and Text Functions, RemoveFontM emResourceEx, SendMessage, DESIGNVECTOR

Page 3

Volume 1

2.4 AddFontResource

The AddFontResour ce function adds the font resource from the specified file to the system font
table. The font can subsequently be used for text output by any Win32-based application.

To mark afont as private or no enumerable, use the AddrFont Resour ceEx function.

AddFont Resour ce: procedure

(
)

| pszFi | ename: string

stdcal |l ;

returns("eax");

external ("__inp__AddFont Resour ceA@");
Parameters
[pszFilename

[in] Pointer to a null-terminated character string that contains avalid font file name. This
parameter can specify any of the following files.

File extension Description

fon Font resource file.

fnt Raw bitmap font file.

Atf Raw TrueTypefile.

ttc Windows 95/98 East Asian and Windows NT: TrueType font col-
lection.

fot TrueType resource file.

.otf PostScript OpenType font.

.mmm multiple master Typel font resource file. It must be used with .pfm
and .pfbfiles.

pfb Type 1 font bitsfile. It isused with a.pfm file.

pfm Type 1 font metricsfile. It is used with a..pfb file.

Windows 2000: To add afont whose information comes from several resource files, have |psz-
FileName point to a string with the file names separated by a | --for example, abcxxxxx.pfm |
abexxxxx.pfb.

Return Values
If the function succeeds, the return value specifies the number of fonts added.
If the function fails, the return valueis zero.

Page 4

Win32 APl Reference

Remarks

Any application that adds or removes fonts from the system font table should notify other win-
dows of the change by sendingaWM_FONTCHANGE messageto all top-level windowsin the
operating system. The application should send this message by calling the SendM essage function
and setting the hwnd parameter to HWND_BROADCAST.

When an application no longer needs afont resource that it loaded by calling the AddFontRe-
sour ce function, it must remove that resource by calling the RemoveFontResour ce function.

This function installs the font only for the current session. When the system restarts, the font will
not be present. To have the font installed even after restarting the system, the font must belisted in
theregistry.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or |ater.

Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Fonts and Text Overview, Font and Text Functions, AddFontResourceEx, RemoveFontResource, SendM essage

25 AddFontResourceEx

The AddFontResour ceEx function adds the font resource from the specified file to the system.
Fonts added with the AddFontResour ceEx function can be marked as private and not enumera-
ble.

AddFont Resour ceEx: procedure
(

| pszFi | enane: string;
fl: dwor d;
var pdv: var
)
stdcall;
returns("eax");
external ("__inp__AddFont Resour ceExA@L2");
Parameters
|pszFilename

[in] Pointer to a null-terminated character string that contains a valid font file file name. This
parameter can specify any of the following files.

File extension Description

fon Font resourcefile.

Page 5

fnt
ttf
ttc

fot
.otf

.mmm

pfb
pfm

Volume 1

Raw bitmap font file.
Raw TrueTypefile.

Windows 95/98 East Asian and Windows NT: True Type font col-
lection.

TrueType resource file.
PostScript OpenType font.

multiple master Typel font resource file. It must be used with .pfm
and .pfbfiles.

Type 1 font bitsfile. It isused with a.pfm file.
Type 1 font metricsfile. It is used with a..pfb file.

To add afont whose information comes from several resource files, point |pszFileName to a string
with the file names separated by a | --for example, abcxxxxx.pfm | abexxxxx.pfb.

fl

[in] Specifies characteristics of the font to be added to the system. This parameter can be one
of the following values.

Value
FR_PRIVATE

FR_NOT_ENUM

pav

Meaning

Specifiesthat only the process that called the AddFontResour ceEx
function can use thisfont. When the font name matches a public font,
the private font will be chosen. When the process terminates, the sys-
tem will remove all fontsinstalled by the process with the AddFon-
tResour ceEx function.

Specifiesthat no process, including the process that called the
AddFontResour ceEx function, can enumerate this font.

[in] Reserved. It must be O.

Return Values

If the function succeeds, the return value specifies the number of fonts added.

If the function fails, the return valueis zero.

Remarks

This function allows a process to use fonts without allowing other processes access to the fonts.

When an application no longer needs afont resource it loaded by calling the AddFontRe-
sour ceEx function, it must remove the resource by calling the RenoveFont Resour ceEx function.

This function installs the font only for the current session. When the system restarts, the font will

Page 6

Win32 APl Reference

not be present. To have the font installed even after restarting the system, the font must belisted in
theregistry.

Requirements

Windows NT/2000: Requires Windows 2000 or |ater.

Windows 95/98: Unsupported.

Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

Unicode: Implemented as Unicode and ANSI versions on Windows 2000.

See Also
Fonts and Text Overview, Font and Text Functions, RemoveFontResourceEx, SendM essage

2.6 AngleArc

The AngleArc function draws aline segment and an arc. The line segment is drawn from the cur-
rent position to the beginning of the arc. The arc is drawn along the perimeter of acircle with the
given radius and center. The length of the arc is defined by the given start and sweep angles.

Angl eArc: procedure
(

hdc: dwor d;
X: dwor d;
y: dwor d;

dwRadi us: dwor d;
eSt art Angl e: dwor d;
eSweepAngl e: dwor d

stdcall;
returns("eax");
external ("__inp__Angl eArc@4");
Parameters
hdc
[in] Handle to a device context.
X
[in] Specifiesthe logical x-coordinate of the center of the circle.
Y
[in] Specifiesthe logical y-coordinate of the center of thecircle.
dwRadius
[in] Specifiesthe radius, inlogical units, of the circle. This value must be positive.
eSartAngle
[in] Specifiesthe start angle, in degrees, relative to the x-axis.
eSwveepAngle

Page 7

Volume 1

[in] Specifies the sweep angle, in degrees, relative to the starting angle.
Return Values
If the function succeeds, the return value is nonzero.
If the function fails, the return valueis zero.
Windows NT/2000: To get extended error information, call Get LastError.
Remarks
The AngleArc function moves the current position to the ending point of the arc.

The arc drawn by this function may appear to be elliptical, depending on the current transforma-
tion and mapping mode. Before drawing the arc, AngleAr c draws the line segment from the cur-
rent position to the beginning of the arc.

The arc isdrawn by constructing an imaginary circle around the specified center point with the
specified radius. The starting point of the arc is determined by measuring counterclockwise from
the x-axis of the circle by the number of degrees in the start angle. The ending point is similarly
located by measuring counterclockwise from the starting point by the number of degreesin the
sweep angle.

If the sweep angleis greater than 360 degrees, the arc is swept multiple times.
This function draws lines by using the current pen. The figure is not filled.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.

Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

See Also
Lines and Curves Overview, Line and Curve Functions, Arc, ArcTo, MoveToEx

2.7 AnimatePalette

The AnimatePalette function replaces entries in the specified logical palette.

Ani mat ePal ette: procedure

(

hpal : dwor d;
i Startl ndex: dwor d;
cEntries: dwor d;
var ppe: PALETTEENTRY
)
stdcal | ;
returns("eax");
external ("__inp__AnimatePal ette@6");

Page 8

Win32 APl Reference

Parameters
hpal
[in] Handle to the logical palette.
iSartlndex
[in] Specifiesthefirst logical palette entry to be replaced.
CEntries
[in] Specifies the number of entries to be replaced.
ppe

[in] Pointer to the first member in an array of PALETTEENTRY structures used to replace the current
entries.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call Get Last Error.
Remarks

An application can determine whether a device supports pal ette operations by calling the GetDe-
viceCaps function and specifying the RASTERCAPS constant.

The AnimatePalette function only changes entries with the PC_RESERVED flag set in the corre-
sponding palPalEntry member of the LOGPALETTE structure.

If the given palette is associated with the active window, the colorsin the palette are replaced
immediately.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

See Also
Colors Overview, Color Functions, CreatePal ette, GetDeviceCaps, LOGPALETTE, PALETTEENTRY

2.8 Arc

The Arc function draws an elliptical arc.

Arc: procedure

(

hdc: dwor d;
nLeft Rect : dwor d;
nTopRect: dwor d;
nRi ght Rect: dwor d;

Page 9

Volume 1

nBot t onRect : dwor d;

nXStart Arc: dwor d;

nYStart Arc: dwor d;

nXEndAr c: dwor d;

nYEndAr c: dwor d
)

stdcal |l ;

returns("eax");

external ("__inp__Arc@6");
Parameters
hdc
[in] Handle to the device context where drawing takes place.
nLeftRect

[in] Specifiesthe logical x-coordinate of the upper-left corner of the bounding rectangle.

Windows 95/98: The sum of nLeftRect plus nRightRect must be less than 32768.
nTopRect

[in] Specifiesthe logica y-coordinate of the upper-left corner of the bounding rectangle.

Windows 95/98: The sum of nTopRect plus nBottomRect must be less than 32768.
nRightRect

[in] Specifiesthe logical x-coordinate of the lower-right corner of the bounding rectangle.

Windows 95/98: The sum of nLeftRect plus nRightRect must be less than 32768.
nBottomRect

[in] Specifiesthe logical y-coordinate of the lower-right corner of the bounding rectangle.

Windows 95/98: The sum of nTopRect plus nBottomRect must be less than 32768.
nX3artArc

[in] Specifiesthe logical x-coordinate of the ending point of the radial line defining the start-
ing point of the arc.

nYSartArc

[in] Specifiesthe logical y-coordinate of the ending point of the radial line defining the start-
ing point of the arc.

nXEndArc

[in] Specifiesthelogical x-coordinate of the ending point of the radial line defining the ending
point of the arc.

nYEndArc

[in] Specifiesthelogical y-coordinate of the ending point of the radial line defining the ending
point of the arc.

Page 10

Win32 APl Reference

Return Values

If the arc isdrawn, the return value is nonzero.

If the arc is not drawn, the return value is zero.

Windows NT/2000: To get extended error information, call Get LastError.
Remarks

The points (nLeftRect, nTopRect) and (nRightRect, nBottomRect) specify the bounding rectangle.
An ellipse formed by the specified bounding rectangle defines the curve of the arc. The arc
extends in the current drawing direction from the point where it intersects the radial from the cen-
ter of the bounding rectangle to the (NXSartArc, nYSartArc) point. The arc ends where it inter-
sects the radial from the center of the bounding rectangle to the (NXEndArc, nYEndArc) point. If
the starting point and ending point are the same, a complete ellipse is drawn.

The arc isdrawn using the current pen; it is not filled.
The current position is neither used nor updated by Arc.
Windows 95/98: The drawing direction is always counterclockwise.

Windows NT/2000: Use the GetArcDirection and SetArcDirection functions to get and set the
current drawing direction for a device context. The default drawing direction is counterclockwise.

Windows 95/98: The sum of the coordinates of the bounding rectangle cannot exceed 32,767.
The sum of nLeftRect and nRightRect or nTopRect and nBottomRect parameters cannot exceed
32,767.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

See Also

Lines and Curves Overview, Line and Curve Functions, AngleArc, ArcTo, Chord, Ellipse, GetArcDirection, Pie,
SetArcDirection

2.9 ArcTo

The ArcTo function draws an elliptical arc.

ArcTo: procedure

(

hdc: dwor d;
nLeft Rect : dwor d;
nTopRect: dwor d;
nRi ght Rect: dwor d;
nBot t onRect : dwor d;
nXRadi al 1: dwor d;

Page 11

Volume 1

nYRadi al 1: dwor d;

nXRadi al 2: dwor d;

nYRadi al 2: dwor d
)

stdcal |l ;

returns("eax");

external ("__inp__ArcTo@6");
Parameters
hdc
[in] Handle to the device context where drawing takes place.
nLeftRect

[in] Specifiesthe logical x-coordinate of the upper-left corner of the bounding rectangle.
nTopRect

[in] Specifiesthe logica y-coordinate of the upper-left corner of the bounding rectangle.
nRightRect

[in] Specifiesthe logical x-coordinate of the lower-right corner of the bounding rectangle.
nBottomRect

[in] Specifiesthe logical y-coordinate of the lower-right corner of the bounding rectangle.
nXRadiall

[in] Specifiesthe logical x-coordinate of the endpoint of the radial defining the starting point
of thearc.

nYRadiall

[in] Specifiesthelogical y-coordinate of the endpoint of the radial defining the starting point
of thearc.

nXRadial2

[in] Specifiesthe logical x-coordinate of the endpoint of the radial defining the ending point
of thearc.

nYRadial2

[in] Specifiesthe logical y-coordinate of the endpoint of the radial defining the ending point
of thearc.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return valueis zero.

Windows NT/2000: To get extended error information, call Get Last Error.

Page 12

Win32 APl Reference

Remarks
ArcTo issimilar to the Arc function, except that the current position is updated.

The points (nLeftRect, nTopRect) and (nRightRect, nBottomRect) specify the bounding rectangle.
An ellipse formed by the specified bounding rectangle defines the curve of the arc. The arc
extends counterclockwise from the point where it intersects the radia line from the center of the
bounding rectangle to the (nXRadial 1, nYRadial 1) point. The arc ends where it intersects the
radial line from the center of the bounding rectangle to the (nXRadial2, nYRadial2) point. If the
starting point and ending point are the same, acomplete ellipse is drawn.

A lineisdrawn from the current position to the starting point of the arc. If no error occurs, the cur-
rent position is set to the ending point of the arc.

The arc isdrawn using the current pen; it is not filled.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.

Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

See Also
Lines and Curves Overview, Line and Curve Functions, AngleArc, Arc, SetArcDirection

2.10 BeginPath

The BeginPath function opens a path bracket in the specified device context.

Begi nPat h: procedure

(
)

hdc: dwor d

stdcall;
returns("eax");
external ("__inp__Begi nPath@");
Parameters
hdc
[in] Handle to the device context.
Return Values
If the function succeeds, the return value is nonzero.
If the function fails, the return valueis zero.
Windows NT/2000: To get extended error information, call Get Last Error.
Remarks
After apath bracket is open, an application can begin calling GDI drawing functions to define the

Page 13

Volume 1

pointsthat liein the path. An application can close an open path bracket by calling the Endpat h
function.
When an application calls BeginPath for a device context, any previous paths are discarded from

that device context. The following table shows which drawing functions can be used on the differ-
ent Windows operating systems.

Drawing function Operating system
AngleArc Windows NT/2000
Arc Windows NT/2000
ArcTo Windows NT/2000
Chord Windows NT/2000
CloseFigure Windows 95/98 and Windows NT/2000
Ellipse Windows NT/2000
ExtTextOut Windows 95/98 and Windows NT/2000
LineTo Windows 95/98 and Windows NT/2000
MoveToEx Windows 95/98 and Windows NT/2000
Pie Windows NT/2000
PolyBezier Windows 95/98 and Windows NT/2000
PolyBezierTo Windows 95/98 and Windows NT/2000
PolyDraw Windows NT/2000
Polygon Windows 95/98 and Windows NT/2000
Polyline Windows 95/98 and Windows NT/2000
PolylineTo Windows 95/98 and Windows NT/2000
PolyPolygon Windows 95/98 and Windows NT/2000
PolyPolyline Windows 95/98 and Windows NT/2000
Rectangle Windows NT/2000
RoundRect Windows NT/2000
TextOut Windows 95/98 and Windows NT/2000
Requirements

Page 14

Win32 APl Reference

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

See Also

Paths Overview, Path Functions, EndPath, FillPath, PathToRegion, SelectClipPath, StrokeAndFillPath, StrokePath,
WidenPath

2.11 BitBIt

The BitBIt function performs abit-block transfer of the color data corresponding to arectangle of
pixels from the specified source device context into a destination device context.

BitBlt: procedure
(

hdcDest : dwor d;
nXDest : dwor d;
nYDest : dwor d;
nW dt h : dwor d;
nHei ght : dwor d;
hdcSrc : dwor d;
nXSrc : dwor d;
nYSrc : dwor d;
dwRop : dwor d
)
stdcall;
returns("eax");
external ("__inp__BitBlt@6");
Parameters
hdcDest
[in] Handle to the destination device context.
nXDest

[in] Specifiesthe logical x-coordinate of the upper-left corner of the destination rectangle.
nYDest

[in] Specifiesthe logica y-coordinate of the upper-left corner of the destination rectangle.
nWdth

[in] Specifiesthe logica width of the source and destination rectangles.
nHeight

[in] Specifiesthe logica height of the source and the destination rectangles.
hdcSc

[in] Handle to the source device context.
nXSc

Page 15

Volume 1

[in] Specifiesthe logical x-coordinate of the upper-left corner of the source rectangle.
nYSc

[in] Specifiesthe logica y-coordinate of the upper-left corner of the source rectangle.
dwRop

[in] Specifies araster-operation code. These codes define how the color data for the source
rectangleis to be combined with the color data for the destination rectangle to achieve the
final color.

The following list shows some common raster operation codes.

Value Description

BLACKNESS Fills the destination rectangle using the color associated with
index 0in the physical palette. (Thiscolor isblack for the default
physical palette.)

CAPTUREBLT Windows 98, Windows 2000: Includes any windows that are
layered on top of your window in the resulting image. By
default, the image only contains your window.

DSTINVERT Inverts the destination rectangle.

MERGECOPY Merges the colors of the source rectangle with the brush cur-
rently selected in hdcDest, by using the Boolean AND operator.

MERGEPAINT Mergesthe colors of the inverted source rectangle with the colors
of the destination rectangle by using the Boolean OR operator.

NOMIRRORBITMAP Windows 98, Windows 2000: Prevents the bitmap from being
mirrored.

NOTSRCCOPY Copiesthe inverted source rectangle to the destination.

NOTSRCERASE Combines the colors of the source and destination rectangles by
using the Boolean OR operator and then inverts the resultant
color.

PATCOPY Copies the brush currently selected in hdcDest, into the destina-
tion bitmap.

PATINVERT Combines the colors of the brush currently selected in hdcDest,
with the colors of the destination rectangle by using the Boolean
XOR operator.

Page 16

Win32 APl Reference

PATPAINT Combines the colors of the brush currently selected in hdcDest,
with the colors of the inverted source rectangle by using the
Boolean OR operator. The result of this operation is combined
with the colors of the destination rectangle by using the Boolean

OR operator.

SRCAND Combines the colors of the source and destination rectangles by
using the Boolean AND operator.

SRCCOPY Copies the source rectangle directly to the destination rectangle.

SRCERASE Combines the inverted colors of the destination rectangle with
the colors of the source rectangle by using the Boolean AND
operator.

SRCINVERT Combines the colors of the source and destination rectangles by

using the Boolean X OR operator.

SRCPAINT Combines the colors of the source and destination rectangles by
using the Boolean OR operator.

WHITENESS Fills the destination rectangle using the color associated with
index 1in the physical palette. (This color iswhitefor the default
physical palette.)

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return valueis zero.

Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks

If arotation or shear transformation isin effect in the source device context, BitBlt returns an
error. If other transformations exist in the source device context (and a matching transformation is
not in effect in the destination device context), the rectangle in the destination device context is
stretched, compressed, or rotated, as necessary.

If the color formats of the source and destination device contexts do not match, the BitBIt func-
tion converts the source color format to match the destination format.

When an enhanced metafile is being recorded, an error occurs if the source device context identi-
fies an enhanced-metafile device context.

Not all devices support the BitBIt function. For more information, seethe RC_BITBLT raster
capability entry in the Get Devi cecaps function as well as the following functions. maskBi t, Pl g-
Bit, and StretchBlt.

BitBIt returns an error if the source and destination device contexts represent different devices.
ICM: No color management is performed when blits occur.

Page 17

Volume 1

Requirements

Windows NT/2000: Requires Windows NT 3.1 or |ater.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

See Also
Bitmaps Overview, Bitmap Functions

2.12 CancelDC

The CancelDC function cancels any pending operation on the specified device context (DC).

Cancel DC:. procedure
(

)

hdc: dword

stdcal |l ;
returns("eax");
external ("__inp__Cancel DC@");

Parameters
hdc
[in] Handle to the DC.
Return Values
If the function succeeds, the return value is nonzero.
If the function fails, the return valueis zero.
Windows NT/2000: To get extended error information, call Get LastError.
Remarks

The CancelDC function is used by multithreaded applications to cancel lengthy drawing opera-
tions. If thread A initiates alengthy drawing operation, thread B may cancel that operation by
calling this function.

If an operation is canceled, the affected thread returns an error and the result of its drawing opera-
tion isundefined. The results are also undefined if no drawing operation was in progress when the
function was called.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.

Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

Page 18

Win32 APl Reference

See Also
Device Contexts Overview, Device Context Functions, CreateThread, GetCurrentThread

2.13 CheckColorsinGamut

The Check Color slnGamut function determines whether a specified set of RGB triplesliesin the
output gamut of a specified device. The RGB triples are interpreted in the input logical color
space.

CheckCol orsl nGanut: procedure
(

hdc s dwor d;
var | pRGBTri pl es rvar;
var | pBuffer .var;
nCount s dword
)
stdcal |l ;
returns("eax");
external ("__inp__CheckCol or sl nGanmut @6");
hDC
Handle to the device context whose output gamut to be checked.
IpRGBTriples

Pointer to an array of RGB triples to check.
| pBuffer

Pointer to the buffer in which the results are to be placed. This buffer must be at least as large
as nCount bytes.

nCount
The number of elementsin the array of triples.
Return Values
If this function succeeds, the return value is a nonzero value.
If this function fails, the return valueis zero.
Remarks

The function places the test results in the buffer pointed to by |pBuffer. Each byte in the buffer
corresponds to an RGB triple, and has an unsigned value between CM_IN_GAMUT (= 0) and
CM_OUT_OF GAMUT (= 255). The value 0 denotes that the color isin gamut, while anonzero
value denotesthat it is out of gamut. For any integer n such that 0 < n < 255, aresult value of n +
1 indicates that the corresponding color is at least as far out of gamut as would be indicated by a
result value of n, as specified by the | CC Profile Format Specification. For more information on
the ICC Profile Format Specification, see the sourceslisted in Further Information.

Note that for this function to succeed, ICM must be enabled for the device context handle that is
passed in through the hDC parameter. ICM can be enabled for a device context handle by calling

Page 19

Volume 1

the set | cmvbde function.

Requirements

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in gdi32.hhf

Import Library: Use gdi32.lib.

See Also

Basic Color Management Concepts, Functions, SettCMMode

2.14 ChoosePixelFormat

The ChoosePixel For mat function attempts to match an appropriate pixel format supported by a
device context to agiven pixel format specification.
ChoosePi xel Format: procedure

(

hdc : dwor d;
var ppfd . Pl XELFORMATDESCRI PTOR
)
stdcal |l ;
returns("eax");
external (" __inp__ChoosePi xel For mat @");
Parameters

hdc

Specifies the device context that the function examines to determine the best match for the
pixel format descriptor pointed to by ppfd.

ppfd

Pointer to aPI XELFORMATDESCRI PTOR Structure that specifies the requested pixel format. In this con-
text, the members of the PIXELFORM ATDESCRIPTOR structure that ppfd pointsto are
used asfollows:

nSize
Specifiesthe size of the PIXEL FORMATDESCRIPTOR data structure. Set this member to
sizeof(PIXELFORMATDESCRIPTOR).

nVersion

Specifiesthe version number of the PIXEL FORMATDESCRIPTOR datastructure. Set this
member to 1.

dwFlags

A set of bit flags that specify properties of the pixel buffer. You can combine the following bit
flag constants by using bitwise-OR.

If any of the following flags are set, the ChoosePixel For mat function attempts to match pixel

Page 20

Win32 APl Reference

formats that also have that flag or flags set. Otherwise, ChoosePixel For mat ignores that flag
in the pixel formats:

PFD_DRAW_TO_WINDOW
PFD_DRAW_TO BITMAP
PFD_SUPPORT_GDI
PFD_SUPPORT_OPENGL

If any of the following flags are set, ChoosePixel For mat attempts to match pixel formats that
also havethat flag or flags set. Otherwise, it attempts to match pixel formats without that flag
Set:

PFD_DOUBLEBUFFER
PFD_STEREO

If the following flag is set, the function ignores the PFD_DOUBL EBUFFER flag in the pixel
formats:

PFD_DOUBLEBUFFER_DONTCARE
If the following flag is set, the function ignores the PFD_STEREO flag in the pixel formats:
PFD_STEREO_DONTCARE

iPixelType

Specifiesthe type of pixel format for the function to consider:

PFD_TYPE_RGBA
PFD_TYPE_COLORINDEX

cColorBits

Zero or greater.

cRedBits

Not used.

cRedShift

Not used.

cGreenBits

Not used.

cGreenShift

Not used.

cBlueBits

Not used.

cBlueShift

Not used.

cAlphaBits

Page 21

Zexo or greater.
cAlphaShift

Not used.
cAccumBits

Zexo or greater.
cAccumRedBits

Not used.
cAccumGreenBits

Not used.
cAccumBlueBits

Not used.
cAccumAlphaBits

Not used.
cDepthBits

Zexo or greater.
cSencilBits

Zero or greater.
cAuxBuffers

Zexo or greater.
iLayer Type

Specifies one of the following layer type values:

PFD_MAIN_PLANE
PFD_OVERLAY PLANE
PFD_UNDERLAY_PLANE

bReserved
Not used.
dwL ayer M ask
Not used.
dwVisibleM ask
Not used.
dwDamageM ask
Not used.
Return Values

Volume 1

If the function succeeds, the return value is a pixel format index (one-based) that is the closest

Page 22

Win32 APl Reference

match to the given pixel format descriptor.
If the function fails, the return value is zero. To get extended error information, call Get Last Error.
Remarks

You must ensure that the pixel format matched by the ChoosePixel For mat function satisfies your
requirements. For example, if you request a pixel format with a 24-bit RGB color buffer but the
device context offers only 8-bit RGB color buffers, the function returns a pixel format with an
8-bit RGB color buffer.

The following code sample shows how to use ChoosePixel For mat to match a specified pixel for-
mat:

Pl XELFORMATDESCRI PTOR pfd = {
si zeof (Pl XELFORMATDESCRI PTOR), // size of this pfd

1, /] version nunber
PFD_DRAW TO_W NDOW | /'l support w ndow
PFD_SUPPORT_OPENGL | /'l support OpenGL
PFD_DOUBLEBUFFER, /1 doubl e buffered
PFD_TYPE_RGBA, /1 RGBA type

24, /1 24-bit col or depth
o, o, 0, 0, 0, O, /1 color bits ignored
0, /1 no al pha buffer

0, /1 shift bit ignored
0, /! no accunul ati on buffer
0, 0, 0, O, /1l accum bits ignored
32, /] 32-bit z-buffer

0, /1 no stencil buffer

0, /1 no auxiliary buffer
PFD_MAI N_PLANE, /1l main | ayer

0, /'l reserved

0, 0, O /'l layer masks ignored
}s

HDC hdc;

int iPixel Format;
i Pi xel Format = ChoosePi xel For mat (hdc, &pfd);

Requirements

Windows NT/2000: Requires Windows NT 3.5 or later.

Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.
Header: Declared in gdi32.hhf

Import Library: Use gdi32.lib.

See Also

OpenGL on Windows NT, Windows 2000, and Windows 95/98, Win32 Functions, DescribePixel Format, GetPixel-
Format, SetPixel Format

2.15 Chord
The Chord function draws a chord (aregion bounded by the intersection of an ellipse and aline

segment, called a secant). The chord is outlined by using the current pen and filled by using the
current brush.

Page 23

Chord: procedure
(
hdc
nLeft Rect
nTopRect
nRi ght Rect
nBot t onRect
nXRadi al 1
nYRadi al 1
nXRadi al 2
nYRadi al 2

stdcal |l ;

returns("eax"
external ("__

Parameters
hdc

: dwor d;
: dwor d;
: dwor d;
: dwor d;
: dwor d;
: dwor d;
: dwor d;
: dwor d;
:dword

)
imp__Chord@s6");

[in] Handle to the device context in which the chord appears.

nLeftRect

[in] Specifiesthe x-

nTopRect

[in] Specifiesthey-

nRightRect

[in] Specifies the x-coordinate of the lower-right corner of the bounding rectangle.

nBottomRect

[in] Specifies the y-coordinate of the lower-right corner of the bounding rectangle.

nXRadiall

coordinate of the upper-left corner of the bounding rectangle.

coordinate of the upper-left corner of the bounding rectangle.

Volume 1

[in] Specifies the x-coordinate of the endpoint of the radial defining the beginning of the

chord.
nYRadial1

[in] Specifies the y-coordinate of the endpoint of the radial defining the beginning of the

chord.
nXRadial2

[in] Specifies the x-coordinate of the endpoint of the radial defining the end of the chord.

nYRadial2

[in] Specifies the y-coordinate of the endpoint of the radial defining the end of the chord.

Return Values

If the function succeeds, the return value is nonzero.

If the function fails, the return valueis zero.

Windows NT/ 2000: To get extended error information, call Get Last Error.

Page 24

Win32 APl Reference

Remarks

The curve of the chord is defined by an ellipse that fits the specified bounding rectangle. The
curve begins at the point where the ellipse intersects the first radial and extends counterclockwise
to the point where the ellipse intersects the second radial. The chord is closed by drawing aline
from the intersection of thefirst radial and the curveto the intersection of the second radial and
the curve.

If the starting point and ending point of the curve are the same, a complete ellipse is drawn.
The current position is neither used nor updated by Chord.

Windows 95/98: The sum of the coordinates of the bounding rectangle cannot exceed 32,767.
The sum of nLeftRect and nRightRect or nTopRect and nBottomRect parameters cannot exceed
32,767.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

See Also
Filled Shapes Overview, Filled Shape Functions, AngleArc, Arc, ArcTo, Pie

2.16 CloseEnhMetaFile

The CloseEnhM etaFile function closes an enhanced-metafile device context and returns a handle
that identifies an enhanced-format metafile.

Cl oseEnhMet aFi | e: procedure
(

)

hdc: dwor d

stdcall;
returns("eax");
external ("__inp__d oseEnhMetaFile@");

Parameters
hdc
[in] Handle to an enhanced-metafile device context.
Return Values
If the function succeeds, the return value is a handle to an enhanced metafile.
If the function fails, the return valueis NULL.
Windows NT/ 2000: To get extended error information, call Get Last Error.

Page 25

Volume 1

Remarks

An application can use the enhanced-metafile handle returned by the CloseEnhM etaFile function
to perform the following tasks:

» Display apicture stored in an enhanced metéfile
2 Create copies of the enhanced metefile
2 Enumerate, edit, or copy individual records in the enhanced metafile

2 Retrieve an optional description of the metafile contents from the enhanced-metafile
header

2 Retrieve acopy of the enhanced-metafile header

2 Retrieve abinary copy of the enhanced metafile

2 Enumerate the colorsin the optional palette

2 Convert an enhanced-format metafile into a Windows-format metafile

When the application no longer needs the enhanced metafile handle, it should release the handle
by calling the el et eEnhMet aFi | e function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

See Also

Metafiles Overview, Metafile Functions, CopyEnhM etaFile, CreateEnhM etaFile, DeleteEnhMetaile, EnumEn-
hMetaFile, GetEnhM etaFileBits, GetWinMetaFileBits, PlayEnhMetaFile

2.17 CloseFigure

The CloseFigure function closes an open figure in a path.

Cl oseFi gure: procedure

(
)

hdc: dwor d

stdcall;
returns("eax");
external ("__inp__d oseFigure@");
Parameters
hdc
[in] Handle to the device context in which the figure will be closed.
Return Values
If the function succeeds, the return value is nonzero.

Page 26

Win32 APl Reference

If the function fails, the return valueis zero.
Windows NT/2000: To get extended error information, call Get LastError.
Remarks

The CloseFigure function closes the figure by drawing aline from the current position to the first
point of the figure (usually, the point specified by the most recent call to the moveToEx function)
and then connects the lines by using the line join style. If afigureis closed by using the LineTo
function instead of CloseFigure, end caps are used to create the corner instead of ajoin.

The CloseFigure function should only be called if there is an open path bracket in the specified
device context.

A figurein apath is open unlessit is explicitly closed by using this function. (A figure can be
open even if the current point and the starting point of the figure are the same.)

After acall to CloseFigure, adding aline or curve to the path starts a new figure.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

See Also
Paths Overview, Path Functions, BeginPath, EndPath, ExtCreatePen, LineTo, MoveToEXx

2.18 CloseMetaFile

The CloseM etaFile function closes a metafile device context and returns a handle that identifies a
Windows-format metafile.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the cl oseEnhMet aFi | e function.

Cl oseMet aFil e: procedure

(

hdc: dwor d
)
stdcall;
returns("eax");
external ("__inp__d oseMetaFile@");
Parameters

hdc

[in] Handle to a metafile device context used to create a Windows-format metafile.
Return Values
If the function succeeds, the return value is a handle to a Windows-format metafile.

Page 27

Volume 1

If the function fails, the return valueis NULL.
Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks

A Windows-format metafile does not support the new curve, path, and transformation functions,
such as PolyBezier, BeginPath, and SetWor I[dTransform. Applications that use these new func-
tions and use metafiles to store pictures created by these functions should call the enhanced-for-
mat metafile functions.

To convert a Windows-format metafile into a new enhanced-format metafile, use the set w niet a-
Fi | eBi t s function.

When an application no longer needs the Windows-format metafile handle, it should delete the
handle by calling the pel et emet aFi | e function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or |ater.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in gdi32.hhf.

Library: Use Gdi32.lib.

See Also

Metafiles Overview, Metafile Functions, BeginPath, CloseEnhM etaFile, CopyMetaFile, CreateM etakile, Delete-
MetaFile, EnumMetaFile, GetM etaFileBitsEx, PlayMetaFile, PolyBezier, SetWinM etaFileBits, SetWorldTransform

2.19 ColorCorrectPalette

The Color CorrectPalette function corrects the entries of a palette using the ICM 2.0 parameters
in the specified device context.

Col orCorrectPal ette: procedure

(

hdc s dwor d;
hPal ette s dwor d;
dwFirst Entry s dwor d;

dwNumOf Entries :dword
stdcall;

returns("eax");
external ("__inp__ColorCorrectPal ette@6");

hDC

Specifies a device context whose ICM parametersto use.
hPalette

Specifies the handle to the palette to be color corrected.
dwFirstEntry

Specifiesthe first entry in the palette to be color corrected.

Page 28

Win32 APl Reference

dwNumOfEntries

Specifies the number of entriesto color correct.
Return Values
If this function succeeds, the return value is TRUE.
If this function fails, the return valueis FAL SE.

Requirements

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in gdi32.hhf

Import Library: Usegdi32.lib.

See Also
Basic Color Management Concepts, Functions

2.20 ColorMatchToTarget

The ColorMatchToTar get function enables you to preview colors as they would appear on the
target device.

Col or Mat chToTar get: procedure
(

hdc : dwor d;
hdcTar get : dwor d;
ui Action :dwor d
);
stdcall;
returns("eax");
external ("__inp__Col or Mat chToTarget @2");
hDC
Specifies the device context for previewing, generally the screen.
hdcTarget

Specifiesthe target device context, generally a printer.
uiAction
A congtant that can have one of the following values.

Constant Meaning

CS ENABLE Map the colors to the target device's color gamut.
This enables color proofing. All subsequent draw
commands to the DC will render colors as they
would appear on the target device.

Page 29

Volume 1

CS DISABLE Disable color proofing.

CS DELETE_TRANSFORM If color management is enabled for the target profile,
disable it and delete the concatenated transform.

Return Values

If this function succeeds, the return value is TRUE.
If this function fails, the return valueis FAL SE.
Remarks

ColorMatchToTarget can be used to proof the colors of a color output device on another color
output device. Setting the uiAction parameter to CS_ENABLE causes all subsequent drawing
commandsto the DC to render colors as they would appear on the target device. If uiAction is set
to CS_DISABLE, proofing isturned off. However, the current color transform is not deleted from
the DC. It isjust inactive.

When ColorMatchToTar get is called, the color transform for the target deviceis performed first,
and then the transform to the preview device is applied to the results of the first transform. Thisis
used primarily for checking gamut mapping conditions. Before using this function, you must
enable ICM for both device contexts.

This function cannot be cascaded. While color mapping to the target is enabled by setting
uiAction to CS_ENABLE, application changes to the color space or gamut mapping method are
ignored. Those changes then take effect when color mapping to the target is disabled.

Note A memory leak will not occur if an application does not delete a transform using
CS_DELETE_TRANSFORM. Thetransform will be deleted when either the device context (DC)
isclosed, or when the application color space is deleted. However if the transform is not going to
be used again, or if the application will not be performing any more color matching on the DC, it
should explicitly delete the transform to free the memory it occupies.

The uiAction parameter should only be set to CS_DELETE _TRANSFORM if color management
is enabled before the ColorM atchToTar get function is called.

Requirements

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 98.
Header: Declared in gdi32.hhf

Import Library: Use gdi32.lib.

See Also

Basic Color Management Concepts, Functions

2.21 CombineRgn

The CombineRgn function combines two regions and stores the result in athird region. The two
regions are combined according to the specified mode.

Page 30

Win32 APl Reference

Conbi neRgn: procedure
(

hr gnDest :dwor d;
hrgnSrcl : dwor d;
hrgnSrc2 : dwor d;
f nConmbi neMbde s dword
)
stdcal | ;
returns("eax");
external ("__inp__Conbi neRgn@s6");
Parameters
hrgnDest

[in] Handle to anew region with dimensions defined by combining two other regions. (This
region must exist before CombineRgn is called.)

hrgnScl

[in] Handle to the first of two regions to be combined.
hrgnSc2

[in] Handle to the second of two regions to be combined.
fnCombineMode

[in] Specifiesamode indicating how the two regionswill be combined. This parameter can be
one of the following values.

Value Description
RGN_AND Creates the intersection of the two combined regions.
RGN_COPY Creates a copy of the region identified by hrgnSrcl.

RGN_DIFF Combines the parts of hrgnSrcl that are not part of hrgnS-c2.
RGN_OR Creates the union of two combined regions.
RGN_XOR Creates the union of two combined regions except for any overlapping
areas.
Return Values

The return value specifies the type of the resulting region. It can be one of the following values.

Value Meaning
NULLREGION Theregion is empty.
SIMPLEREGION The region isasingle rectangle.
COMPLEXREGION The region is more than a single rectangle.

Page 31

Volume 1

ERROR No region is created.
Remarks

The three regions need not be distinct. For example, the hrgnS-cl parameter can equal the hrgnD-
est parameter.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in gdi32.hhf

Library: Use Gdi32.lib.

See Also

Regions Overview, Region Functions, CreateEllipticRgn, CreateEllipticRgnlndirect, CreatePolygonRgn, CreatePoly-
PolygonRgn, CreateRectRgn, CreateRectRgnindirect, CreateRoundRectRgn

2.22 CombineTransform

The CombineTransfor m function concatenates two world-space to page-space transformations.

Conbi neTransform procedure

(

| pxfornResul t s dwor d;
var | pxforml : XFORM
var | pxforn : XFORM

);
stdcall ;

returns("eax");
external (" __inp__Conbi neTransforma@z2");

Parameters
[pxformResult
[out] Pointer to an xForvistructure that receives the combined transformation.
[pxforml

[in] Pointer to an XFORM structure that specifies the first transformation.
[pxform2
[in] Pointer to an xForMstructure that specifies the second transformation.
Return Values
If the function succeeds, the return value is nonzero.
If the function fails, the return valueis zero.

Windows NT/ 2000: To get extended error information, call Get Last Error.

Page 32

Win32 APl Reference

Remarks

Applying the combined transformation has the same effect as applying the first transformation
and then applying the second transformation.

The three transformations need not be distinct. For example, |pxforml can point to the same
XFORM structure as | pxfor mResult.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Unsupported.

Header: Declared in gdi32.hhf.

Library: Use Gdi32.lib.

See Also

Coordinate Spaces and Transformations Overview, Coordinate Space and Transformation Functions, GetWorldTrans-
form, ModifyWorldTransform, SetWorldTransform, XFORM

2.23 CopyEnhMetaFile

The CopyEnhM etaFile function copies the contents of an enhanced-format metafile to a speci-
fiedfile.

CopyEnhMet aFi | e: procedure
(

henf Src : dwor d;
| pszFile :string
)
stdcall ;
returns("eax");
external ("__inp__CopyEnhMet aFi | eA@B");
Parameters
hemfSrc
[in] Handle to the enhanced metafile to be copied.
IpszFile

[in] Pointer to the name of the destination file. If this parameter is NULL, the source metéfile
is copied to memory.

Return Values

If the function succeeds, the return value is a handle to the copy of the enhanced metefile.
If the function fails, the return valueis NULL.

Windows NT/ 2000: To get extended error information, call Get Last Error.

Remarks

Where text arguments must use Unicode characters, use the CopyEnhM etaFile function as a
wide-character function. Where text arguments must use characters from the Windows character

Page 33

Volume 1

set, use thisfunction as an ANSI function.
Applications can use metafiles stored in memory for temporary operations.

When the application no longer needs the enhanced-metafile handle, it should delete the handle
by calling the el et eEnhMet aFi | e function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or |ater.

Header: Declared in Wingdi.h; include Windows.h.

Library: Use Gdi32.lib.

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also
Metafiles Overview, Metafile Functions, DeleteEnhM etaFile

2.24 CopyMetaFile

The CopyM etaFile function copies the content of a Windows-format metafile to the specified
file.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the copyEnhMet aFi | e function.

CopyMet aFi |l e: procedure
(

hnf Src : dwor d;
| pszFile :string
)
stdcall;
returns("eax");
external ("__inp__CopyMetaFil eA@");
Parameters

hmfSrc
[in] Handle to the source Windows-format metafile.
IpszFile

[in] Pointer to the name of the destination file. If this parameter is NULL, the source metéfile
is copied to memory.

Return Values

If the function succeeds, the return value is a handle to the copy of the Windows-format metafile.
If the function fails, the return valueis NULL.

Windows NT/ 2000: To get extended error information, call Get Last Error.

Page 34

Win32 APl Reference

Remarks

The CopyM etaFile function supports only 16-bit Windows-based applications. It does not record
or play back the new graphics device interface functions, such as PolyBezier.

Where text arguments must use Unicode characters, use this function as a wide-character func-
tion. Where text arguments must use characters from the Windows character set, use this function
asan ANSI function.

When the application no longer needs the Windows-format metafile handle, it should delete the
handle by calling the pel et emet aFi | e function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Metafiles Overview, Metafile Functions, DeleteM etaFile

2.25 CreateBitmap

The CreateBitmayp function creates a bitmap with the specified width, height, and color format
(color planes and bits-per-pixel).
CreateBitmap: procedure

(

nW dt h s dwor d;
nHei ght s dwor d;
cPl anes s dwor d;
cBi tsPer Pel :dword;
var | pvBits :dword
)
stdcall;
returns("eax");
external ("__inp__CreateBi tmap@0");
Parameters
nWdth

[in] Specifies the bitmap width, in pixels.
nHeight

[in] Specifies the bitmap height, in pixels.
cPlanes

[in] Specifies the number of color planes used by the device.
cBitsPerPel

Page 35

Volume 1

[in] Specifies the number of bits required to identify the color of asingle pixel.
IpvBits
[in] Pointer to an array of color data used to set the colorsin arectangle of pixels. Each scan

linein the rectangle must be word aligned (scan lines that are not word aligned must be pad-
ded with zeros). If this parameter isNULL, the contents of the new bitmap is undefined.

Return Values
If the function succeeds, the return value is a handle to a bitmap.
If the function fails, the return valueis NULL.

Windows NT/ 2000: To get extended error information, call Get Last Error. This can have the fol-
lowing value.

Value M eaning

ERROR_INVALID_BITMAP The calculated size of the bitmap is less than
zero.

Remarks

After abitmap is created, it can be selected into a device context by calling the sel ect j ect
function.

The CreateBitmap function can be used to create color bitmaps. However,for performance rea-
sons applications should use CreateBitmap to create monochrome bitmaps and ¢ eat eConpat i -
bl eBi t map t0 create color bitmaps. When a color bitmap returned from CreateBitmap is selected
into a device context, the system must ensure that the bitmap matches the format of the device
context it is being selected into. Since CreateCompatibleBitmap takes a device context, it
returns a bitmap that has the same format as the specified device context. Because of this, subse-
quent callsto SelectObject are faster than with a color bitmap returned from CreateBitmap.

If the bitmap is monochrome, zeros represent the foreground color and ones represent the back-
ground color for the destination device context.

If an application sets the nWWidth or nHeight parametersto zero, CreateBitmap returns the handle
to a 1-by-1 pixel, monochrome bitmap.

When you no longer need the bitmap, call the Del et etbj ect function to delete it.
Windows 95/98: The created bitmap cannot exceed 16MB in size.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Bitmaps Overview, Bitmap Functions, CreateBitmaplndirect, CreateCompatibleBitmap, CreateDIBitmap, DeleteOb-
ject, GetBitmapBits, SelectObject, SetBitmapBits

Page 36

Win32 APl Reference

2.26 CreateBitmapIndirect

The CreateBitmapl ndirect function creates a bitmap with the specified width, height, and color
format (color planes and bits-per-pixel).
CreateBitmapl ndirect: procedure

(

var | pbm : Bl TVAP
)
stdcal |l ;
returns("eax");
external ("__inp__CreateBitmaplndirect@");
Parameters

[pbm

[in] Pointer to a Bl TMAP structure that containsinformation about the bitmap. If an application sets
the bmWidth or bmHeight membersto zero, CreateBitmaplndirect returnsthe handleto a
1-by-1 pixel, monochrome bitmap.

Return Values
If the function succeeds, the return value is a handle to the bitmap.
If the function fails, the return valueis NULL.

Windows NT/ 2000: To get extended error information, call Get Last Error. This can have the fol-
lowing values.

Value M eaning
ERROR_INVALID_PARAMETER One or more of the input parameters was
invalid.
ERROR_NOT_ENOUGH_MEMORY The bitmap istoo big for memory to be alo-
cated.

Remarks

After abitmap is created, it can be selected into a device context by calling the sel ect j ect
function.

While the CreateBitmapl ndirect function can be used to create color bitmaps, for performance
reasons applications should use CreateBitmaplndirect to create monochrome bitmaps and cr e-
at eConpat i bl eBi t map t0 create color bitmaps. When acolor bitmap returned from CreateBitmap-
Indirect is selected into a device context, the system must ensure that the bitmap matches the
format of the device context it is being selected into. Since CreateCompatibleBitmap takesa
device context, it returns a bitmap that has the same format as the specified device context.
Because of this, subsequent calls to SelectObject are faster than with a color bitmap returned
from CreateBitmapl ndirect.

Page 37

Volume 1

If the bitmap is monochrome, zeros represent the foreground color and ones represent the back-
ground color for the destination device context.

When you no longer need the bitmap, call the Del et ebj ect function to delete it.
Windows 95/98: The created bitmap cannot exceed 16MB in size.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Bitmaps Overview, Bitmap Functions, BitBlt, BITMAP, CreateBitmap, CreateCompatibleBitmap, CreateDIBitmap,
DeleteObject, SelectObject

2.27 CreateBrushindirect

The CreateBrushindirect function creates alogical brush that has the specified style, color, and
pattern.
CreateBrushlndirect: procedure

(

var |Iplb : LOGBRUSH
);
stdcall;
returns("eax");
external ("__inp__CreateBrushlndirect@");
Parameters

Iplb

[in] Pointer to a LoaBRUSH structure that contains information about the brush.
Return Values

If the function succeeds, the return value identifies alogical brush.

If the function fails, the return valueis NULL.

Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks

A brush is abitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateBrushlndirect, it can select it into any
device context by calling the SelectObject function.

A brush created by using amonochrome bitmap (one color plane, one bit per pixel) isdrawn using
the current text and background colors. Pixels represented by a bit set to 0 are drawn with the cur-
rent text color; pixels represented by abit set to 1 are drawn with the current background color.

Page 38

Win32 APl Reference

When you no longer need the brush, call the pel et eabj ect function to deleteit.

ICM: No color isdone at brush creation. However, color management is performed when the
brush is selected into an ICM-enabled device context.

Windows 95/98: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixelsis not sup-
ported. If alarger bitmap is specified, only a portion of the bitmap is used.

Windows NT/ 2000: Brushes can be created from bitmaps or DIBs larger than 8 by 8 pixels.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Brushes Overview, Brush Functions, DeleteObject, GetBrushOrgEx, LOGBRUSH, SelectObject, SetBrushOrgEx

2.28 CreateColorSpace

The CreateColor Space function creates alogical color space.

Cr eat eCol or Space: procedure

(
)

var | pLogCol or Space : LOGCOLORSPACE

stdcall;

returns("eax");

external ("__inp__CreateCol or SpaceA@");
IpLogColor Space

Pointer to the LocooLoRSPACE data structure.

Return Values

If this function succeeds, the return value is a handle that identifies a color space.
If thisfunction fails, the return valueis NULL.

Remarks

When the color space is no longer needed, use DeleteColor Space to deleteit.

Requirements

Windows NT/2000: Requires Windows 2000.

Windows 95/98: Requires Windows 95 or |ater.

Header: Declared in wingdi.h.

Import Library: Use gdi32.lib.

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Page 39

Volume 1

See Also
Basic Color Management Concepts, Functions, Del eteCol orSpace

2.29 CreateCompatibleBitmap

The CreateCompatibleBitmap function creates a bitmap compatible with the device that is asso-
ciated with the specified device context.

Creat eConpati bl eBi t map: procedure

(
hdc : dwor d;

nWdth :dword;
nHei ght : dword

stdcal |l ;
returns("eax");
external ("__inp__CreateConpatibl eBi t mpap@2");

Parameters
hdc
[in] Handle to a device context.
nWidth
[in] Specifies the bitmap width, in pixels.
nHeight
[in] Specifies the bitmap height, in pixels.
Return Values
If the function succeeds, the return value is a handle to the bitmap.
If the function fails, the return valueis NULL.
Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks

The color format of the bitmap created by the CreateCompatibleBitmap function matches the
color format of the device identified by the hdc parameter. This bitmap can be selected into any
memory device context that is compatible with the original device.

Because memory device contexts allow both color and monochrome bitmaps, the format of the
bitmap returned by the CreateCompatibleBitmap function differs when the specified device
context is amemory device context. However, a compatible bitmap that was created for a non-
memory device context always possesses the same color format and uses the same color palette as
the specified device context.

Note: When a memory device context is created, it initially has a 1-by-1 monochrome bitmap
selected into it. If this memory device context is used in CreateCompatibleBitmap, the bitmap
that is created is a monochrome bitmap. To create a color bitmap, use the hDC that was used to

Page 40

Win32 APl Reference

create the memory device context, as shown in the following code:
HDC menDC = CreateConpati bl eDC (hDC);
HBI TMAP nmenBM = Creat eConpati bl eBitmap (hDC);
Sel ect Obj ect (nenDC, nmenBM);

If an application sets the nWidth or nHeight parameters to zero, CreateCompatibleBitmap
returns the handle to a 1-by-1 pixel, monochrome bitmap.

If aDIB section, which is abitmap created by the ¢ eat eDI BSect i on function, is selected into the
device context identified by the hdc parameter, CreateCompatibleBitmap createsa DIB section.

When you no longer need the bitmap, call the Del et ebj ect function to delete it.
Windows 95/98: The created bitmap cannot exceed 16MB in size.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Bitmaps Overview, Bitmap Functions, CreateDIB Section, DeleteObject, SelectObject

2.30 CreateCompatibleDC

The CreateCompatibleDC function creates a memory device context (DC) compatible with the
specified device.

Cr eat eConpati bl eDC. procedure
(

hdc : dword
)
stdcall;
returns("eax");
external ("__inp__CreateConpatibl eDC@");
Parameters

hdc

[in] Handle to an existing DC. If this handle isNULL, the function creates amemory DC
compatible with the application's current screen.

Return Values

If the function succeeds, the return value is the handle to a memory DC.

If the function fails, the return valueis NULL.

Windows NT/2000: To get extended error information, call Get Last Error.

Page 41

Volume 1

Remarks

A memory DC exists only in memory. When the memory DC is created, its display surfaceis
exactly one monochrome pixel wide and one monochrome pixel high. Before an application can
use amemory DC for drawing operations, it must select a bitmap of the correct width and height
into the DC. To select abitmap into a DC, use the & eat eConpat i bl eBi t map function, specifying
the height, width, and color organization required.

When amemory DC is created, all attributes are set to normal default values. The memory DC
can be used asanormal DC. You can set the attributes; obtain the current settings of its attributes;
and select pens, brushes, and regions.

The CreateCompatibleDC function can only be used with devices that support raster operations.
An application can determine whether a device supports these operations by calling the Get De-
vi ceCaps function.

When you no longer need the memory DC, call the pel et ebc function.

ICM: If the DC that is passed to this function is enabled for Independent Color M anagement
(ICM), the DC created by the function is ICM-enabled. The source and destination color spaces
are specified in the DC.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Device Contexts Overview, Device Context Functions, CreateCompatibleBitmap, DeleteDC, GetDeviceCaps

2.31 CreateDC

The CreateDC function creates a device context (DC) for a device using the specified name.

CreateDC. procedure
(
| pszDriver :string;
| pszDevice :string;
| pszQut put :string;
var | plnitData :DEVMODE

stdcall;

returns("eax");

external ("__inp__CreateDCA@S6");
Parameters
|pszDriver

Windows 95/98: In Win32-based applications, |pszDriver can be NULL, WINSPL 16 (a print
provider), or (to obtain adisplay DC) it can be either the null-terminated string DISPLAY or

Page 42

Win32 APl Reference

the device name of a specific display device. If IpszDevice specifies a particular device, you
must use NULL for |pszDriver.

Windows NT 4.0: Pointer to anull-terminated character string that specifies either DISPLAY
or the name of a print provider, which is usually WINSPOOL.

Windows NT/2000: Pointer to a null-terminated character string that specifies either DIS-
PLAY or the name of a specific display device or the name of aprint provider, which is usu-
ally WINSPOOL.

IpszDevice

[in] Pointer to a null-terminated character string that specifies the name of the specific output
device being used, as shown by the Print Manager (for example, Epson FX-80). It is not the
printer model name. The |pszDevice parameter must be used.

To obtain valid names for displays, call EnunDi spl ayDevi ces.

If IpszDriver is DISPLAY or the device name of a specific display device, then IpszDevice
must be NULL or that same device name. If IpszDeviceisNULL, then aDC is created for the
primary display device.

Windows NT 3.51 and 4.0: Thereisonly one (thus the primary) display device. Set |pszDe-
viceto NULL.

|pszOutput

This parameter isignored for Win32-based applications, and should be set to NULL. It is pro-
vided only for compatibility with 16-bit Windows. For more information, see the Remarks
section.

IpInitData

[in] Pointer to a bEvMODE structure containing device-specific initialization data for the device
driver. The bocunent Properti es function retrieves this structure filled in for a specified
device. The IpInitData parameter must be NULL if the device driver isto use the default ini-
tialization (if any) specified by the user.

If IpszDriver is DISPLAY, then IpInitData must be NULL. The display device's current DEV-
MODE is used.

Return Values
If the function succeeds, the return value is the handle to a DC for the specified device.

If the function fails, thereturn valueis NULL. The function will return NULL fora DEVM ODE
structure other than the current DEVM ODE.

Windows NT/2000: To get extended error information, call Get Last Error.
Remarks
Note that the handle to the DC can only be used by a single thread at any onetime.

For parameters IpszDriver and IpszDevice, call EnumDisplayDevices to obtain valid names for
displays.

Page 43

Volume 1

Applications written for 16-bit versions of Windows used the IpszOutput parameter to specify a
port name or to print to afile. Win32-based applications do not need to specify a port name.
Win32-based applications can print to afile by calling the st art boc function with a DOCINFO
structure whose |pszOutput member specifies the path of the output file name.

When you no longer need the DC, call the pel et eDc function.

ICM: Toenable|CM, set thedml CM M ethod member of the bevmope structure (pointed to by the
plnitData parameter) to the appropriate value.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Device Contexts Overview, Device Context Functions, Multiple Display Monitors, DeleteDC, DEVMODE, Enum-
DisplayDevices, DOCINFO, DocumentProperties, StartDoc

2.32 CreateDIBPatternBrush

The CreateDI BPatter nBrush function creates alogical brush that has the pattern specified by
the specified device-independent bitmap (DIB). The brush can subsequently be selected into any
device context that is associated with a device that supports raster operations.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the cr eat eDi BPat t er nBrushPt function.

CreateDl BPatt er nBrush: procedure

(
hgl bDI BPacked s dwor d;

f uCol or Spec :dword
)
stdcall;
returns("eax");
external ("__inp__CreateDl BPatternBrush@");
Parameters

hglbDIBPacked

[in] Handle to aglobal memory object containing a packed DIB, which consists of a Bl TvAPI NFO
structure immediately followed by an array of bytes defining the pixels of the bitmap.

Windows 95/98: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixelsis not sup-
ported. If alarger bitmap is specified, only a portion of the bitmap is used.

Windows NT/ 2000: Brushes can be created from bitmaps or DIBs larger than 8 by 8 pixels.
fuColor Spec
[in] Specifies whether the bmiColor s member of the BITMAPINFO structure isinitialized

Page 44

Win32 APl Reference

and, if so, whether this member contains explicit red, green, blue (RGB) values or indexes
into alogical palette. The fuColor Spec parameter must be one of the following values.

Value M eaning

DIB_PAL_COLORS A color tableis provided and consists of an array of 16-bit
indexesinto the logical palette of the device context into which
the brush is to be selected.

DIB_RGB_COLORS A color tableis provided and contains literal RGB values.
Return Values
If the function succeeds, the return value identifies alogical brush.
If the function fails, the return valueis NULL.
Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks

When an application selects atwo-color DIB pattern brush into a monochrome device context, the
system does not acknowledge the colors specified in the DIB; instead, it displays the pattern brush
using the current background and foreground colors of the device context. Pixels mapped to the
first color of the DIB (offset O in the DIB color table) are displayed using the foreground color;
pixels mapped to the second color (offset 1 in the color table) are displayed using the background
color.

When you no longer need the brush, call the Del et eanj ect function to deleteit.

ICM: No color isdone at brush creation. However, color management is performed when the
brush is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Brushes Overview, Brush Functions, BITMAPINFO, CreateDI|BPatternBrushPt, CreateHatchBrush, CreatePattern-
Brush, CreateSolidBrush, DeleteObject, SetBkColor, SetTextColor

2.33 CreateDIBPatternBrushPt

The CreateDI BPatter nBrushPt function creates a logical brush that has the pattern specified by
the device-independent bitmap (DIB).

Creat eDl BPatt er nBrushPt: procedure

(
var | pPackedDI B : var;

Page 45

Volume 1

i Usage :dword
)
stdcal |l ;
returns("eax");
external ("__inp__CreateD BPatternBrushPt @");
Parameters
IpPackedDIB

[in] Pointer to apacked DIB consisting of a sl TMAPI NFO structure immediately followed by an
array of bytes defining the pixels of the bitmap.

Windows 95/98: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixelsis not sup-
ported. If alarger bitmap is specified, only a portion of the bitmap is used.

Windows NT/ 2000: Brushes can be created from bitmaps or DIBs larger than 8 by 8 pixels.
iUsage

[in] Specifies whether the bmiColor s member of the BITMAPINFO structure contains a
valid color table and, if so, whether the entriesin this color table contain explicit red, green,
blue (RGB) values or palette indexes. The iUsage parameter must be one of the following val-
ues.

Value M eaning

DIB_PAL_COLORS A color tableis provided and consists of an array of 16-bit
indexesinto the logical palette of the device context into which
the brush is to be selected.

DIB_RGB_COLORS A color tableis provided and contains literal RGB values.
Return Values
If the function succeeds, the return value identifies alogical brush.
If the function fails, the return valueis NULL.
Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks
A brush is abitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateDI BPatter nBrushPt, it can select that
brush into any device context by calling the sel ect obj ect function.

When you no longer need the brush, call the pel et evj ect function to deleteit.

ICM: No color isdone at brush creation. However, color management is performed when the
brush is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.

Page 46

Win32 APl Reference

Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Brushes Overview, Brush Functions, BITMAPINFO, CreateDIBPatternBrush, CreateHatchBrush, CreatePattern-
Brush, CreateSolidBrush, DeleteObject, GetBrushOrgEXx, SelectObject, SetBrushOrgEx

2.34 CreateDIBSection

The CreateDI BSection function creates a DIB that applications can write to directly. The func-
tion gives you a pointer to the location of the bitmap's bit values. You can supply ahandleto a
file-mapping object that the function will use to create the bitmap, or you can let the system allo-
cate the memory for the bitmap.

Creat eDl BSecti on: procedure

(

hdc :dwor d;
var pbm . BI TMAPI NFG,
i Usage :dwor d;
var ppvBits Tvar;
hSection :dwor d;
dwor f set :dword
)
stdcal |l ;
returns("eax");
external ("__inp__CreateDl BSecti on@4");
Parameters
hdc

[in] Handle to adevice context. If the value of iUsageisDIB_PAL_COLORS, the function
uses this device context'slogical palette to initialize the DIB's colors.

pbmi

[in] Pointer to a Bl TMAPI NFO Structure that specifies various attributes of the DIB, including the bit-
map's dimensions and colors.

iUsage

[in] Specifies the type of data contained in the bmiColor s array member of the BITMAP-
INFO structure pointed to by pbmi (either logical palette indexes or literal RGB values). The
following values are defined.

Value M eaning
DIB_PAL_COLORS The bmiColors member isan array of 16-bit indexesinto the
logical palette of the device context specified by hdc.
DIB_RGB_COLORS The BITMAPINFO structure contains an array of literal RGB
values.

Page 47

Volume 1

ppvBits
[out] Pointer to avariable that recelves a pointer to the location of the DIB's bit values.
hSection

[in] Handle to afile-mapping object that the function will use to create the DIB. This parame-
ter can be NULL.

If hSectionis not NULL, it must be a handle to a file-mapping object created by calling the cr e-
at eFi | eMappi ng function with the PAGE_READWRITE or PAGE_WRITECOPY flag.
Read-only DIB sections are not supported. Handles created by other meanswill cause Create-
DIBSection to fail.

If hSectionis not NULL, the CreateDIBSection function locates the bitmap's bit values at offset
dwOffset in the file-mapping object referred to by hSection. An application can later retrieve
the hSection handle by calling the Get vj ect function with the Hei TMaP returned by CreateD-
| BSection.

If hSectionis NULL, the system allocates memory for the DIB. In this case, the CreateDI BSec-
tion function ignores the dwOffset parameter. An application cannot later obtain a handle to
this memory. The dshSection member of the bl Bsecti on structurefilled in by calling the
GetObject function will be NULL.

dwOffset

[in] Specifies the offset from the beginning of the file-mapping object referenced by hSection
where storage for the bitmap's bit valuesisto begin. Thisvalueisignored if hSection is
NULL. The bitmap's bit values are aligned on doubleword boundaries, so dwOffset must be a
multiple of the size of aDWORD.

Return Values

If the function succeeds, the return value is a handle to the newly created DIB, and * ppvBits
points to the bitmap's bit values.

If the function fails, the return valueis NULL, and * ppvBitsis NULL.

Windows NT/ 2000: To get extended error information, call Get Last Error. This can be the fol-
lowing value.

Value M eaning

ERROR_INVALID_PARAMETER One or more input parametersisinvalid.
Remarks

As noted above, if hSectionisNULL, the system allocates memory for the DIB. The system
closes the handle to that memory when you later delete the DIB by calling the pel et ebj ect func-
tion. If hSection isnot NULL, you must close the hSection memory handle yourself after calling
DeleteObject to delete the bitmap.

You cannot paste a dibsection from one application into another application.
Windows NT/ 2000: You need to guarantee that the GDI subsystem has completed any drawing

Page 48

Win32 APl Reference

to abitmap created by CreateDI BSection before you draw to the bitmap yourself. Access to the
bitmap must be synchronized. Do this by calling the adi FI ush function. This appliesto any use of
the pointer to the bitmap's bit values, including passing the pointer in calls to functions such as
SetDI Bits.

| CM:No color management is done.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.

Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Bitmaps Overview, Bitmap Functions, BITMAPINFO, CreateFileMapping, DeleteObject, DIBSECTION, GetDIB-
ColorTable, GetObject, GdiFlush, SetDIBits, SetDIBColorTable

2.35 CreateDIBitmap

The CreateDI Bitmap function creates a device-dependent bitmap (DDB) from aDIB and,
optionally, sets the bitmap bits.

CreateDl Bit map: procedure

(

hdc : dwor d;
var | pbm h : Bl TMAPI NFOHEADER,
fdw nit s dwor d;
var | pblnit Tvar;
var | pbmi 1 Bl TMAPI NFQ,
f uUsage :dword
)
stdcall;
returns("eax");
external ("__inp__CreateD Bi tmap@4");
Parameters
hdc

[in] Handle to a device context.
[pbmih

[in] Pointer to a bitmap information header structure, which may be one of those shown in the
following table.

Operating system Bitmap information header
Windows NT 3.51 and earlier Bl TMAPI NFOHEADER
Windows NT 4.0 and Windows 95 BI TMAPVAHEADER

Page 49

Volume 1

Windows 2000 and Windows 98 Bl TMAPV5HEADER

If fdwlnit is CBM _INIT, the function uses the bitmap information header structure to obtain the
desired width and height of the bitmap aswell as other information. Note that a positive value
for the height indicates a bottom-up DIB while a negative value for the height indicates a
top-down DIB. Calling CreateDIBitmap with fdwinit as CBM_INIT is equivalent to calling
the cr eat eConpat i bl eBi t map function to create a DDB in the format of the device and then
calling the set DI Bi t s function to trandate the DIB bits to the DDB.

fdwinit
[in] Specifies how the system initializes the bitmap bits. The following valuesis defined.

Value M eaning

CBM_INIT If thisflag is set, the system uses the data pointed to by the Ipbinit and |pbmi
parameters to initialize the bitmap's bits.

If thisflag is clear, the data pointed to by those parametersis not used.
If fdwinit is zero, the system does not initialize the bitmap's bits.
[pbinit

[in] Pointer to an array of bytes containing the initial bitmap data. The format of the data depends
on the biBitCount member of the BI TMAPI NFO structure to which the Ipbmi parameter points.

[pbmi

[in] Pointer to aBITM APINFO structure that describes the dimensions and color format of
the array pointed to by the Ipblnit parameter.

fuUsage

[in] Specifies whether the bmiColor s member of the BI TvapPI NFO Structure was initialized and, if
so, whether bmiColor s contains explicit red, green, blue (RGB) values or paletteindexes. The
fuUsage parameter must be one of the following values.

Value M eaning

DIB_PAL_COLORS A color tableis provided and consists of an array of 16-bit
indexesinto thelogical palette of the device context into which
the bitmap isto be selected.

DIB_RGB_COLORS A color tableis provided and contains literal RGB values.
Return Values
If the function succeeds, the return value is a handle to the bitmap.
If the function fails, the return valueis NULL.
Windows NT/ 2000: To get extended error information, call Get Last Error.

Page 50

Win32 APl Reference

Remarks
The DDB that is created will be whatever bit depth your reference DC is. To create a bitmap that
isof different bit depth, use o eat eDI BSect i on.

For adeviceto reach optimal bitmap-drawing speed, specify fdwlnit as CBM_INIT. Then, use the
same color depth DIB as the video mode. When the video is running 4- or 8-bpp, use
DIB_PAL_COLORS.

The CBM_CREATDIB flag for the fdwlnit parameter is no longer supported.
When you no longer need the bitmap, call the Del et ebj ect function to delete it.

ICM: No color management is performed. The contents of the resulting bitmap are not color
matched after the bitmap has been created.

Windows 95/98: The created bitmap cannot exceed 16MB in size.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Bitmaps Overview, Bitmap Functions, BITMAPINFOHEADER, BITMAPINFO, CreateCompatibleBitmap, Create-
DIBSection, DeleteObject, GetDeviceCaps, GetSystemPal etteEntries, SelectObject, SetDIBits

2.36 CreateDiscardableBitmap

The CreateDiscar dableBitmap function creates a discardable bitmap that is compatible with the
specified device. The bitmap has the same bits-per-pixel format and the same color palette as the
device. An application can select this bitmap as the current bitmap for a memory device that is
compatible with the specified device.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the cr eat eConpat i bl eBi t map function.

Cr eat eDi scardabl eBi t map: procedure
(

hdc : dwor d;

nWdth :dword;

nHei ght : dword

stdcall;

returns("eax");

external ("__inp__CreateDi scardabl eBi t map@z2");
Parameters

hdc

Page 51

Volume 1

[in] Handle to a device context.
nWdth
[in] Specifiesthe width, in pixels, of the bitmap.
nHeight
[in] Specifiesthe height, in pixels, of the bitmap.
Return Values
If the function succeeds, the return value is a handle to the bitmap.
If the function fails, the return valueis NULL.
Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks
When you no longer need the bitmap, call the Del et ebj ect function to delete it.
Windows 95/98: The created bitmap cannot exceed 16MB in size.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Bitmaps Overview, Bitmap Functions, CreateCompatibleBitmap, DeleteObject

2.37 CreateEllipticRgn

The CreateEllipticRgn function creates an elliptical region.

CreateEllipticRgn: procedure
(
nLeft Rect : dwor d;
nTopRect s dwor d;
nR ght Rect :dword;
nBot t omRect : dword

stdcall;

returns("eax");

external ("__inp__CreateEllipticRgn@s6");
Parameters
nLeftRect

[in] Specifies the x-coordinate in logical units, of the upper-left corner of the bounding rectan-
gleof the elipse.

nTopRect

Page 52

Win32 APl Reference

[in] Specifies the y-coordinatein logical units, of the upper-left corner of the bounding rectan-
gleof the ellipse.

nRightRect

[in] Specifies the x-coordinate in logical units, of the lower-right corner of the bounding rect-
angle of the ellipse.

nBottomRect

[in] Specifiesthe y-coordinate in logical units, of the lower-right corner of the bounding rect-
angle of the ellipse.

Return Values

If the function succeeds, the return value is the handle to the region.

If the function fails, the return valueis NULL.

Windows NT/2000: To get extended error information, call Get Last Error.
Remarks

A bounding rectangle defines the size, shape, and orientation of the region: The long sides of the
rectangle define the length of the ellipse's mgjor axis; the short sides define the length of the
ellipse's minor axis; and the center of the rectangle defines the intersection of the major and minor
axes.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreateEllipticRgnindirect, DeleteObject, Sel ectObject

2.38 CreateEllipticRgnIndirect

The CreateEllipticRgnIndirect function creates an elliptical region.

CreateEllipticRgnlndirect: procedure

(

var |prc 1 RECT
)
stdcall;
returns("eax");
external ("__inp__CreateEllipticRgnlndirect@");
Parameters

Iprc

Page 53

Volume 1

[in] Pointer to a RecT structure that contains the coordinates of the upper-left and lower-right cor-
ners of the bounding rectangle of the ellipse in logical units.

Return Values

If the function succeeds, the return value is the handle to the region.

If the function fails, the return valueis NULL.

Windows NT/2000: To get extended error information, call Get LastError.
Remarks

A bounding rectangle defines the size, shape, and orientation of the region: The long sides of the
rectangle define the length of the ellipse's mgjor axis; the short sides define the length of the
ellipse's minor axis; and the center of the rectangle defines the intersection of the major and minor
axes.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreateEllipticRgn, DeleteObject, RECT, SelectObject

2.39 CreateEnhMetaFile

The CreateEnhM etaFile function creates a device context for an enhanced-format metafile. This
device context can be used to store a device-independent picture.

Cr eat eEnhMet aFi |l e: procedure
(

hdcRef :dwor d;
| pFi | ename istring;
var | pRect : RECT;

| pDescri ption istring

stdcall;

returns("eax");

external ("__inp__CreateEnhMet aFi |l eA@L6");
Parameters

hdcRef
[in] Handle to areference device for the enhanced metafile.
IpFilename

[in] Pointer to the file name for the enhanced metafile to be created. If this parameter is NULL,
the enhanced metafile is memory based and its contents are lost when it is deleted by using the
Del et eEnhMet aFi | e function.

Page 54

Win32 APl Reference

IpRect

[in] Pointer to arecT structure that specifiesthe dimensions (in .01-millimeter units) of the picture
to be stored in the enhanced metafile.

IpDescription

[in] Pointer to astring that specifies the name of the application that created the picture, as
well asthe picture'stitle.

Return Values

If the function succeeds, the return value is a handle to the device context for the enhanced meta-
file.

If the function fails, the return valueis NULL.
Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks

Where text arguments must use Unicode characters, use the CreateEnhM etaFile function as a
wide-character function. Where text arguments must use characters from the Windows character
set, use this function as an ANSI function.

The system uses the reference device identified by the hdcRef parameter to record the resolution
and units of the device on which a picture originally appeared. If the hdcRef parameter isNULL,
it uses the current display device for reference.

The left and top members of the rRecT structure pointed to by the |pRect parameter must be less
than the right and bottom members, respectively. Points along the edges of the rectangle are
included in the picture. If IpRect is NULL, the graphics device interface (GDI) computes the
dimensions of the smallest rectangle that surrounds the picture drawn by the application. The
IpRect parameter should be provided where possible.

The string pointed to by the IpDescription parameter must contain a null character between the
application name and the picture name and must terminate with two null characters—for example,
"XYZ Graphics Editor\OBald Eagle\0\0", where \O represents the null character. If |pDescription
iISNULL, thereis no corresponding entry in the enhanced-metafile header.

Applications use the device context created by this function to store a graphics picture in an
enhanced metafile. The handle identifying this device context can be passed to any GDI function.

After an application stores a picture in an enhanced metafile, it can display the picture on any out-
put device by calling the Pl ayEnhMet aFi | e function. When displaying the picture, the system uses
the rectangle pointed to by the IpRect parameter and the resol ution datafrom the reference device
to position and scale the picture.

The device context returned by this function contains the same default attributes associated with
any new device context.

Applications must use the Get W nhet aFi | eBi ts function to convert an enhanced metafile to the
older Windows metafile format.

The file name for the enhanced metafile should use the .emf extension.

Page 55

Volume 1

Requirements

Windows NT/2000: Requires Windows NT 3.1 or |ater.

Windows 95/98: Requires Windows 95 or |ater.

Header: Declared in Wingdi.h; include Windows.h.

Library: Use Gdi32.lib.

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also

Metafiles Overview, Metafile Functions, CloseEnhM etaFile, Del eteEnhM etaFile, GetEnhM etalil eDescription,
GetEnhM etaFileHeader, GetWinMetaFileBits, PlayEnhMetaFile, RECT

2.40 CreateFont

The CreateFont function creates alogical font with the specified characteristics. The logical font
can subsequently be selected as the font for any device.
CreateFont: procedure

(

nHei ght s dwor d;
nW dt h :dwor d;
nEscapenent s dwor d;
nOrientation s dwor d;
f n\Wéi ght :dwor d;
fdmtalic s dwor d;
f dwUnderl i ne s dwor d;
fdwSt ri keQut s dwor d;
f dwChar Set :dwor d;
f dwQut put Preci sion :dword;
fdwd i pPreci sion s dwor d;
fdwQual ity s dwor d;
f dwPi t chAndFami | y s dwor d;
| pszFace :string
)
stdcal |l ;
returns("eax");
external ("__inp__CreateFont A@®6");
Parameters
nHeight

[in] Specifiesthe height, in logical units, of the font's character cell or character. The character
height value (also known as the em height) is the character cell height value minus the inter-
nal-leading value. The font mapper interprets the value specified in nHeight in the following
manner.

Value M eaning

Page 56

Win32 APl Reference

>0 The font mapper transforms this value into device units and matches it against
the cell height of the available fonts.

0 The font mapper uses a default height value when it searches for a match.

<0 The font mapper transforms this value into device units and matches its abso-

lute value against the character height of the available fonts.

For al height comparisons, the font mapper looks for the largest font that does not exceed the
requested size.

This mapping occurs when the font is used for the first time.

For the MM_TEXT mapping mode, you can use the following formulato specify a height for
afont with a specified point size:

nHei ght = - Ml Di v(Poi nt Si ze, Get Devi ceCaps(hDC, LOGPI XELSY), 72);
nWdth

[in] Specifies the average width, in logical units, of charactersin the requested font. If this
valueis zero, the font mapper chooses a closest match value. The closest match valueis deter-
mined by comparing the absolute values of the difference between the current device's aspect
ratio and the digitized aspect ratio of available fonts.

nEscapement

[in] Specifiesthe angle, in tenths of degrees, between the escapement vector and the x-axis of
the device. The escapement vector is parallel to the base line of arow of text.

Windows NT/ 2000: When the graphics mode is set to GM_ADVANCED, you can specify

the escapement angle of the string independently of the orientation angle of the string's char-
acters.

When the graphics mode is set to GM_COMPATIBLE, nEscapement specifies both the
escapement and orientation. You should set nEscapement and nOrientation to the same value.

Windows 95: The nEscapement parameter specifies both the escapement and orientation. You
should set nEscapement and nOrientation to the same value.

nOrientation

[in] Specifiesthe angle, in tenths of degrees, between each character's base line and the x-axis
of the device.

fnWeight

[in] Specifiesthe weight of the font in the range O through 1000. For example, 400 is normal
and 700 is bold. If thisvalue is zero, adefault weight is used.

The following values are defined for convenience.

Value Weight
FW_DONTCARE 0

Page 57

FW_THIN
FW_EXTRALIGHT
FW_ULTRALIGHT
FW_LIGHT
FW_NORMAL
FW_REGULAR
FW_MEDIUM
FW_SEMIBOLD
FW_DEMIBOLD
FW_BOLD
FW_EXTRABOLD
FW_ULTRABOLD
FW_HEAVY

FW_BLACK
fdwltalic

[in] Specifiesan italic font if set to TRUE.

fowUnderline

[in] Specifies an underlined font if set to TRUE.

fdwSrikeQOut

[in] Specifies astrikeout font if set to TRUE.

fdwChar Set

[in] Specifies the character set. The following values are predefined:

ANS|_CHARSET
BALTIC_CHARSET
CHINESEBIG5_CHARSET
DEFAULT CHARSET
EASTEUROPE _CHARSET
GB2312_ CHARSET
GREEK_CHARSET
HANGUL_CHARSET
MAC_CHARSET
OEM_CHARSET
RUSSIAN_CHARSET
SHIFTJS CHARSET

Page 58

100
200
200
300
400
400
500
600
600
700
800
800
900
900

Volume 1

Win32 APl Reference

SYMBOL_CHARSET
TURKISH_CHARSET

Windows NT/ 2000 or Middle-Eastern Windows 3.1 or later:

HEBREW_CHARSET
ARABIC_CHARSET

Windows NT/ 2000 or Thai Windows 3.1 or later:
THAI_CHARSET
The OEM_CHARSET value specifies a character set that is operating-system dependent.

Windows 95/98: You can use the DEFAULT _CHARSET value to allow the name and size of a
font to fully describe the logical font. If the specified font name does not exist, afont from any
character set can be substituted for the specified font, so you should use DEFAULT_CHARSET
gparingly to avoid unexpected results.

Windows NT/ 2000: DEFAULT_CHARSET is set to a value based on the current system locale.
For example, when the system localeis English (United States), it is set as ANSI_CHARSET.

Fonts with other character sets may exist in the operating system. If an application uses a font
with an unknown character set, it should not attempt to translate or interpret strings that are ren-
dered with that font.

To ensure consistent results when creating afont, do not specify OEM_CHARSET or
DEFAULT_CHARSET. If you specify atypeface name in the |pszFace parameter, make sure that
the fdwChar Set value matches the character set of the typeface specified in [pszFace.

fdwOutputPrecision

[in] Specifies the output precision. The output precision defines how closely the output must
match the requested font's height, width, character orientation, escapement, pitch, and font
type. It can be one of the following values.

Value M eaning
OUT_CHARACTER_PRECIS Not used.
OUT_DEFAULT_PRECIS Specifies the default font mapper behavior.

OUT_DEVICE_PRECIS Instructs the font mapper to choose a Device font when the
system contains multiple fonts with the same name.

OUT_OUTLINE_PRECIS Windows NT/ 2000: Thisvaueinstructsthe font mapper to
choose from TrueType and other outline-based fonts.

OUT_RASTER_PRECIS Instructs the font mapper to choose araster font when the
system contains multiple fonts with the same name.

OUT_STRING_PRECIS Thisvalueis not used by the font mapper, but it is returned
when raster fonts are enumerated.

Page 59

OUT_STROKE_PRECIS

OUT_TT_ONLY_PRECIS

OUT_TT_PRECIS

Volume 1

Windows NT/ 2000: Thisvaueisnot used by the font
mapper, but it is returned when TrueType, other outline-
based fonts, and vector fonts are enumerated.

Windows 95/98: Thisvalueisused to map vector fonts,
and is returned when TrueType or vector fonts are enu-
merated.

Instructs the font mapper to choose from only TrueType
fonts. If there are no TrueType fontsinstalled in the system,
the font mapper returns to default behavior.

Instructs the font mapper to choose a TrueType font when
the system contains multiple fonts with the same name.

Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, and
OUT_TT_PRECIS valuesto control how the font mapper chooses a font when the operating
system contains more than one font with a specified name. For example, if an operating sys-
tem contains a font named Symbol in raster and TrueType form, specifying
OUT_TT_PRECIS forces the font mapper to choose the TrueType version. Specifying
OUT_TT_ONLY_PRECIS forces the font mapper to choose a TrueType font, even if it must
substitute a TrueType font of another name.

fdwClipPrecision

[in] Specifiesthe clipping precision. The clipping precision defines how to clip characters that
are partially outside the clipping region. It can be one or more of the following values.

Value
CLIP_DEFAULT_PRECIS
CLIP_CHARACTER_PRECIS
CLIP_STROKE_PRECIS

CLIP_ MASK
CLIP_EMBEDDED

Page 60

M eaning
Specifies default clipping behavior.
Not used.

Not used by the font mapper, but is returned when raster,
vector, or TrueType fonts are enumerated.

Windows NT/ 2000: For compatibility, thisvalueis
always returned when enumerating fonts.

Not used.

You must specify this flag to use an embedded read-only
font.

CLIP LH_ANGLES

CLIP_TT_ALWAYS
fdwQuality

Win32 APl Reference

When this value is used, the rotation for all fonts depends
on whether the orientation of the coordinate system isleft-
handed or right-handed.

If not used, device fonts always rotate counterclock-
wise, but the rotation of other fontsis dependent on the
orientation of the coordinate system.

For more information about the orientation of coordi-
nate systems, see the description of the nOrientation
parameter

Not used.

[in] Specifies the output quality. The output quality defines how carefully GDI must attempt
to match the logical-font attributes to those of an actual physical font. It can be one of the fol-

lowing values.

Value
ANTIALIASED QUALITY

DEFAULT QUALITY
DRAFT_QUALITY

NONANTIALIASED_QUALI
TY

M eaning

Windows NT 4.0 and later: Font is antialiased, or
smoothed, if the font supports it and the size of the font is
not too small or too large.

Windows 95 with Plus! and later: In addition to the
comments for Windows NT, the display must greater
than 8-bit color, it must be a single plane device, it can-
not be a palette display, and it cannot be in amultiple
display monitor setup. In addition, you must select a
TrueType font into a screen DC prior tousing itin a
DIBSection, otherwise antialiasing does not happen.

Appearance of the font does not matter.

Appearance of the font islessimportant than when the
PROOF_QUALITY valueisused. For GDI raster fonts,
scaling is enabled, which means that more font sizes are
available, but the quality may be lower. Bold, italic, under-
line, and strikeout fonts are synthesized, if necessary.

Windows 95 with Plus!, Windows 98, Windows NT 4.0,
and Windows 2000: Font isnever antialiased, that is, font
smoothing is not done.

Page 61

PROOF_QUALITY

Volume 1

Character quality of the font is more important than exact
matching of thelogical-font attributes. For GDI raster fonts,
scaling is disabled and the font closest in size is chosen.
Although the chosen font size may not be mapped exactly
when PROOF_QUALITY isused, the quality of the font is
high and there is no distortion of appearance. Bold, italic,
underline, and strikeout fonts are synthesized, if necessary.

If neither ANTIALIASED QUALITY nor NONANTIALIASED QUALITY isselected, the font
isantialiased only if the user chooses "smooth screen fonts' in Control Panel.

fdwPitchAndFamily

[in] Specifies the pitch and family of the font. The two low-order bits specify the pitch of the
font and can be one of the following values:

. DEFAULT_PITCH
2 FIXED_PITCH
2 VARIABLE_PITCH

The four high-order bits specify the font family and can be one of the following values.

Value
FF_ DECORATIVE
FF DONTCARE
FF_ MODERN

FF_ROMAN

FF_SCRIPT

FF_SWISS

Description
Novelty fonts. Old English is an example.
Don't care or don't know.

Fonts with constant stroke width, with or without serifs.
Pica, Elite, and Courier New® are examples.

Fonts with variable stroke width and with serifs. M S® Serif
isan example.

Fonts designed to look like handwriting. Script and Cursive
are examples.

Fonts with variable stroke width and without serifs. MS
Sans Serif is an example.

An application can specify avalue for the fdwPitchAndFamily parameter by using the Boolean
OR operator to join a pitch constant with afamily constant.

Font families describe the look of afont in ageneral way. They areintended for specifying
fonts when the exact typeface requested is not available.

|pszFace

[in] Pointer to anull-terminated string that specifies the typeface name of the font. The length of
this string must not exceed 32 characters, including the null terminator. The Enunfont Fani | i es
function can be used to enumerate the typeface names of al currently available fonts. For

Page 62

Win32 APl Reference

more information, see the Remarks.

If IpszFace isNULL or empty string, GDI usesthe first font that matches the other specified
attributes.

Return Values

If the function succeeds, the return value is a handle to alogical font.

If the function fails, the return valueis NULL.

Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks

When you no longer need the font, call the DeleteObject function to deleteit.

To help protect the copyrights of vendors who provide fonts for Windows 95/98 and Windows
NT/Windows 2000, Win32-based applications should always report the exact name of a selected
font. Because available fonts can vary from system to system, do not assume that the selected font
is always the same as the requested font. For example, if you request a font named Pal atino, but
no such font is available on the system, the font mapper will substitute afont that has similar
attributes but a different name. Always report the name of the selected font to the user.

Windows 95/98 and Windows NT 4.0: The fonts for many East Asian languages have two type-
face names: an English name and a localized name. CreateFont, ¢ eat eFont I ndi rect and cre-

at eFont | ndi r ect Ex take the localized typeface name on a system local e that matches the
language, but they take the English typeface name on al other system locales. The best method is
to try one name and, on failure, try the other. Note that Enunfont's, Enunfont Fani | i es, and Enum
Font Fami | i esEx return the English typeface name if the system locale does not match the lan-
guage of the font.

Windows 2000: The font mapper for CreateFont, CreateFontl ndirect, and CreateFontIndi-
rectEx recognizes both the English and the localized typeface name, regardless of locale.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or |ater.

Header: Declared in Wingdi.h; include Windows.h.

Library: Use Gdi32.lib.

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also

Fonts and Text Overview, Font and Text Functions, CreateFontIndirect, CreateFontl ndirectEx, Del eteObject, Enum-
Fonts, EnumFontFamilies, EnumFontFamiliesEx, SelectObject, EnumFontFamilies

2.41 CreateFontindirect

The CreateFontl ndirect function creates alogical font that has the specified characteristics. The
font can subsequently be selected as the current font for any device context.

Page 63

Volume 1

CreateFontl ndirect: procedure

(
)

var | pl f: LOGFONT

stdcal |l ;

returns("eax");

external ("__inp__CreateFontlndirectA@");
Parameters

Iplf

[in] Pointer to a LogroNT structure that defines the characteristics of the logical font.
Return Values

If the function succeeds, the return value is ahandle to alogical font.

If the function fails, the return valueis NULL.

Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks

The CreateFontl ndirect function creates alogical font with the characteristics specified in the
LOGFONT structure. When this font is selected by using the sel ect j ect function, GDI's font
mapper attempts to match the logical font with an existing physical font. If it failsto find an exact
match, it provides an alternative whose characteristics match as many of the requested character-
istics as possible.

When you no longer need the font, call the pel et eavj ect function to deleteit.

Windows 95/98 and Windows NT 4.0: The fonts for many East Asian languages have two type-
face names. an English name and alocalized name. o eat eFont , CreateFontlndirect, and cre-

at eFont | ndi r ect Ex take the localized typeface name only on a system locale that matches the
language, while they take the English typeface name on all other system locales. The best method
isto try one name and, on failure, try the other. Note that EnunFont's, Enunfont Fani | i es, and
Enunfont Fani | i esEx return the English typeface name if the system locale does not match the lan-
guage of the font.

Windows 2000: The font mapper for CreateFont, CreateFontl ndirect, and CreateFontIndi-
rectEx recognizes both the English and the localized typeface name, regardliess of locale.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or later.

Header: Declared in Wingdi.h; include Windows.h.

Library: Use Gdi32.lib.

Unicode: Implemented as Unicode and ANS| versions on Windows NT/2000.

See Also

Fonts and Text Overview, Font and Text Functions, CreateFont, CreateFontlndirectEx, DeleteObject, EnumFonts,
EnumFontFamilies, EnumFontFamiliesEx, LOGFONT, SelectObject

Page 64

Win32 APl Reference

2.42 CreateFontIindirectEx

The CreateFontl ndirectEx function specifies alogical font that has the characteristics in the
specified structure. The font can subsequently be selected as the current font for any device con-
text.

Creat eFont I ndirect Ex: procedure

(
)

var penum f ex : ENUMLOGFONTEXDV

stdcal |l ;

returns("eax");

external ("__inp__CreateFontl|ndirect ExA@");
Parameters
penumlfex

[in] Pointer to an ENUM.OGFONTEXDV Structure that defines the characteristics of a multiple master
font.

Note, this function ignores the elfDesignVector member in ENUML OGFONTEXDV.
Return Values

If the function succeeds, the return value is the handle to the new ENUML OGFONTEXDV
structure.

If the function fails, the return valueis zero.
Remarks

The CreateFontIndirectEx function creates alogical font with the characteristics specified in the
ENUMLOGFONTEXDV structure. When this font is selected by using the sel ect aj ect func-
tion, GDI's font mapper attemptsto match thelogical font with an existing physical font. If it fails
to find an exact match, it provides an alternative whose characteristics match as many of the
requested characteristics as possible.

When you no longer need the font, call the Del et ecvj ect function to deleteiit.

Windows 95/98 and Windows NT 4.0: The fonts for many East Asian languages have two type-
face names. an English name and alocalized name. o eat eFont, Creat eFont I ndi rect , and Cre-
ateFontindirectEx take the localized typeface name only on a system locale that matches the
language, while they take the English typeface name on al other system locales. The best method
isto try one name and, on failure, try the other. Note that Enunfont s, Enunfont Fani | i es, and
Enunfont Fani | i esEx return the English typeface name if the system locale does not match the lan-
guage of the font.

Windows 2000: The font mapper for CreateFont, CreateFontlndirect, and CreateFontl ndi-
rectEx recognizes both the English and the localized typeface name, regardless of locale.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Windows 95/98: Unsupported.

Page 65

Volume 1

Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Fonts and Text Overview, Font and Text Functions, CreateFont, CreateFontl ndirect, EnumFonts, EnumFontFamilies,
EnumFontFamiliesEx, ENUMLOGFONTEXDV

2.43 CreateHalftonePalette

The CreateHalftonePalette function creates a halftone palette for the specified device context
(DO).
CreateHal ft onePal ette: procedure

(
hdc : dword

stdcal |l ;
returns("eax");

external ("__inp__CreateHal ftonePal ette@");
Parameters
hdc
[in] Handle to the device context.
Return Values

If the function succeeds, the return value isahandle to alogica halftone palette.
If the function fails, the return valueis zero.

Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks

An application should create a halftone pal ette when the stretching mode of a device context is set
to HALFTONE. The logical halftone palette returned by CreateHalftonePalette should then be
selected and realized into the device context before the StretchBlt or StretchDI Bits function is
called.

When you no longer need the palette, call the DeleteObject function to delete it.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Colors Overview, Color Functions, DeleteObject, RealizePal ette, SelectPa ette, SetStretchBItM ode, StretchDIBits,

Page 66

Win32 APl Reference

StretchBlt

2.44 CreateHatchBrush

The CreateHatchBrush function creates alogical brush that has the specified hatch pattern and
color.
Cr eat eHat chBrush: procedure

(

fnStyle : dwor d;
clrref . COLORREF
)
stdcal |l ;
returns("eax");
external ("__inp__CreateHatchBrush@");
Parameters

fnQyle
[in] Specifies the hatch style of the brush. This parameter can be one of the following values.

Value M eaning
HS BDIAGONAL 45-degree upward left-to-right hatch
HS CROSS Horizontal and vertical crosshatch
HS DIAGCROSS 45-degree crosshatch
HS FDIAGONAL 45-degree downward left-to-right hatch
HS HORIZONTAL Horizontal hatch
HS VERTICAL Vertical hatch

clrref

[in] Specifies the foreground color of the brush that is used for the hatches. To create a coL oRREF
color value, use the rReB macro.

Return Values

If the function succeeds, the return value identifies alogical brush.

If the function fails, the return valueis NULL.

Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks

A brush isabitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateHatchBrush, it can select that brush into
any device context by calling the SelectObject function.

Page 67

Volume 1

If an application uses a hatch brush to fill the backgrounds of both a parent and a child window
with matching color, it may be necessary to set the brush origin before painting the background of
the child window. You can do this by having your application call the set Br ushor gex function.
Your application can retrieve the current brush origin by calling the Get Brushar gex function.

When you no longer need the brush, call the pel et eabj ect function to deleteit.

ICM: No color isdone at brush creation. However, color management is performed when the
brush is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Brushes Overview, Brush Functions, CreateDIBPatternBrush, CreateDIBPatternBrushPt, CreatePatternBrush, Cre-
ateSolidBrush, DeleteObject, GetBrushOrgEXx, SelectObject, SetBrushOrgex, COL ORREF, RGB

2.45 CreatelC

The Createl C function creates an information context for the specified device. Theinformation

context provides a fast way to get information about the device without creating a device context

(DC). However, GDI drawing functions cannot accept a handle to an information context.
Createl C. procedure

(
| pszDriver :string;
| pszDevice :string;
| pszQut put :string;
var | pdvm nit : DEVMODE

stdcall;
returns("eax");
external ("__inp__Createl CA@6");

Parameters
IpszDriver

[in] Pointer to a null-terminated character string that specifies the name of the device driver
(for example, Epson).

IpszDevice

[in] Pointer to a null-terminated character string that specifies the name of the specific output
device being used, as shown by the Print Manager (for example, Epson FX-80). It is not the
printer model name. The |pszDevice parameter must be used.

|pszOutput
This parameter isignored for Win32-based applications, and should be set to NULL. It is pro-

Page 68

Win32 APl Reference

vided only for compatibility with 16-bit Windows. For more information, see the Remarks
section.

[pavmi nit

[in] Pointer to a bevMoDE structure containing device-specific initialization data for the device
driver. The bocunent Properti es function retrieves this structure filled in for a specified
device. The [pdvminit parameter must be NULL if the device driver isto use the default ini-
tialization (if any) specified by the user.

Return Values

If the function succeeds, the return value is the handle to an information context.

If the function fails, the return valueis NULL.

Windows NT/2000: To get extended error information, call Get LastError.

Remarks

Applications written for 16-bit versions of Windows used the |pszOutput parameter to specify a
port name or to print to afile. Win32-based applications do not need to specify a port name.

When you no longer need the information DC, call the pel et ebc function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Device Contexts Overview, Device Context Functions, DeleteDC, DocumentProperties, DEVMODE, GetDevice-
Caps

2.46 CreateMetaFile

The CreateM etaFile function creates a device context for a Windows-format metafile.

Note This function is provided only for compatibility with earlier 16-bit versions of Windows.
Win32-based applications should use the cr eat eEnhMet aFi | e function.

CreateMet aFil e: procedure

(

| pszFile 1string
)
stdcall;
returns("eax");
external ("__inp__CreateMetaFil eAd");
Parameters

IpszFile

Page 69

Volume 1

[in] Pointer to the file name for the Windows-format metafile to be created. If this parameter is
NULL, the Windows-format metafile is memory based and its contents are lost when it is
deleted by using the Del et emet aFi | e function.

Return Values

If the function succeeds, thereturn valueis ahandl e to the device context for the Windows-format
metafile.

If the function fails, the return valueisNULL.
Remarks

Where text arguments must use Unicode characters, use the CreateM etaFile function asa
wide-character function. Where text arguments must use characters from the Windows character
set, use this function as an ANSI function.

CreateM etaFile is a Windows-format metafile function. This function supports only 16-bit Win-
dows-based applications, which are listed in Windows-Format Metafiles. It does not record or
play back the new Win32 graphics device interface (GDI) functions such as Pol yBezi er.

The device context created by this function can be used to record GDI output functionsin a Win-
dows-format metafile. It cannot be used with GDI query functions such as GetTextColor. When
the device context is used with a GDI output function, the return value of that function becomes
TRUE if the function is recorded and FAL SE otherwise. When an object is selected by using the
Sel ect vj ect function, only acopy of the object is recorded. The object still belongs to the appli-
cation.

To create a scalable Windows-format metafile, record the graphics output in the
MM_ANISOTROPIC mapping mode. Thefile cannot contain functions that modify the viewport
origin and extents, nor can it contain device-dependent functions such as the sel ect a i prgn func-
tion. Once created, the Windows metafile can be scaled and rendered to any output device-format
by defining the viewport origin and extents of the picture before playing it.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Metafiles Overview, Metafile Functions, CloseM etaFile, CreateEnhM etaFile, DeleteM etaFile, GetTextColor, Poly-
Bezier, SelectClipRgn, SelectObject

247 CreatePalette

The CreatePalette function creates alogical palette.

CreatePal ette: procedure

(
var | pl gpl :LOGPALETTE

Page 70

Win32 APl Reference

stdcal |l ;

returns("eax");

external ("__inp__CreatePalette@");
Parameters

Iplgpl
[in] Pointer to a LoGPALETTE structure that contains information about the colors in the logical pal-
ette.

Return Values

If the function succeeds, the return value isahandle to alogical palette.

If the function fails, the return valueis NULL.

Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks

An application can determine whether a device supports pal ette operations by calling the GetDe-
viceCaps function and specifying the RASTERCAPS constant.

Once an application creates alogical palette, it can select that palette into a device context by call-
ing the SelectPalette function. A palette selected into a device context can be realized by calling
the RealizePalette function.

When you no longer need the palette, call the DeleteObject function to delete it.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Colors Overview, Color Functions, DeleteObject, GetDeviceCaps, LOGPALETTE, RealizePd ette, SelectPalette

2.48 CreatePatternBrush

The CreatePatter nBrush function creates alogical brush with the specified bitmap pattern. The
bitmap can be a DIB section bitmap, which is created by the CreateDI BSection function.

CreatePatternBrush: procedure

(

hbrmp : dwor d
)
stdcall;
returns("eax");
external ("__inp__CreatePatternBrush@");

Page 71

Volume 1

Parameters
hbmp
[in] Handle to the bitmap to be used to create the logical brush.

Windows 95/98: Creating brushes from bitmaps or DIBs larger than 8 by 8 pixelsis not sup-
ported. If alarger bitmap is specified, only a portion of the bitmap is used.

Windows NT/ 2000: Brushes can be created from bitmaps or DIBs larger than 8 by 8 pixels.
Return Values
If the function succeeds, the return value identifies alogical brush.
If the function fails, the return valueis NULL.
Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks
A pattern brush is a bitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreatePatternBrush, it can select that brush into
any device context by calling the SelectObject function.

You can delete a pattern brush without affecting the associated bitmap by using the pel et ebj ect
function. Therefore, you can then use this bitmap to create any number of pattern brushes.

A brush created by using a monochrome (1 bit per pixel) bitmap has the text and background col-
ors of the device context to which it is drawn. Pixels represented by a 0 bit are drawn with the cur-
rent text color; pixels represented by a 1 bit are drawn with the current background color.

ICM: No color isdone at brush creation. However, color management is performed when the
brush is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or |ater.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Brushes Overview, Brush Functions, CreateBitmap, CreateBitmaplndirect, CreateCompatibleBitmap, CreateD|BPat-
ternBrush, CreateDIBPatternBrushPt, CreateDIB Section, CreateHatchBrush, DeleteObject, GetBrushOrgEX, L oad-
Bitmap, SelectObject, SetBrushOrgEx

2.49 CreatePen

The CreatePen function creates alogical pen that has the specified style, width, and color. The
pen can subsequently be selected into a device context and used to draw lines and curves.

Cr eat ePen: procedure

(
fnPenStyl e :dword;

Page 72

nW dt h
cr Col or

stdcal |l ;

returns("eax"

Win32 APl Reference

external ("__inp__CreatePen@2");

Parameters
fnPenSyle

[in] Specifies the pen style. It can be any one of the following values.

Value
PS SOLID
PS DASH

PS DOT

PS DASHDOT

PS DASHDOTDOT

PS NULL
PS INSIDEFRAME

nWadth

M eaning
The penissolid.

The pen isdashed. This styleisvalid only when the pen width
isone or lessin device units.

The pen isdotted. This style isvalid only when the pen width
isoneor lessin device units.

The pen has aternating dashes and dots. This styleisvalid
only when the pen width is one or lessin device units.

The pen has aternating dashes and double dots. This styleis
valid only when the pen width is one or less in device units.

The penisinvisible.

The penissolid. When this pen isused in any GDI drawing
function that takes abounding rectangle, the dimensions of the
figure are shrunk so that it fits entirely in the bounding rectan-
gle, taking into account the width of the pen. This applies only
to geometric pens.

[in] Specifies the width of the pen, inlogical units. If NWidth is zero, the pen is asingle pixel
wide, regardless of the current transformation.

CreatePen returns a pen with the specified width bit with the PS_SOLID style if you specify
awidth greater than one for the following styles: PS DASH, PS DOT, PS DASHDOT,

PS DASHDOTDOT.

crColor

[in] Specifies acolor reference for the pen color. To generate a coL ORREF structure, use the rRes

macro.
Return Values

If the function succeeds, the return value is ahandle that identifies alogical pen.

Page 73

Volume 1

If the function fails, the return valueis NULL.
Windows NT/2000: To get extended error information, call Get LastError.
Remarks

After an application creates alogical pen, it can select that pen into a device context by calling the
Sel ect Obj ect function. After a pen is selected into a device context, it can be used to draw lines
and curves.

If the value specified by the nWidth parameter is zero, aline drawn with the created pen alwaysis
asingle pixel wide regardless of the current transformation.

If the value specified by nWidth is greater than 1, the fnPenSyle parameter must be PS_NULL,
PS SOLID, or PS_ INSIDEFRAME.

If the value specified by nWidth is greater than 1 and fnPen3yle is PS_INSIDEFRAME, theline
associated with the pen is drawn inside the frame of al primitives except polygons and polylines.

If the value specified by nWidth isgreater than 1, fnPenSyleis PS_INSIDEFRAME, and the color
specified by the crColor parameter does not match one of the entriesin the logical palette, the sys-
tem draws lines by using a dithered color. Dithered colors are not available with solid pens.

When you no longer need the pen, call the Del et etbj ect function to delete it.

ICM: No color management is done at creation. However, color management is performed when
the pen is selected into an | CM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Pens Overview, Pen Functions, CreatePenindirect, COLORREF, DeleteObject, ExtCreatePen, GetObject, RGB,
SelectObject

250 CreatePenindirect

The CreatePenindirect function creates alogical cosmetic pen that has the style, width, and
color specified in a structure.

CreatePenlndirect: procedure

(
)

var | pl gpn :LOGPEN

stdcall;
returns("eax");
external ("__inp__CreatePenlndirect@");

Page 74

Win32 APl Reference

Parameters

Iplgpn

[in] Pointer to a LocrEN structure that specifies the pen's style, width, and color.

Return Values

If the function succeeds, the return value is a handle that identifies alogical cosmetic pen.
If the function fails, the return valueis NULL.

Windows NT/2000: To get extended error information, call Get LastError.

Remarks

After an application creates alogical pen, it can select that pen into a device context by calling the
Sel ect Obj ect function. After a pen is selected into a device context, it can be used to draw lines
and curves.

When you no longer need the pen, call the Del et etbj ect function to delete it.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Pens Overview, Pen Functions, CreatePen, DeleteObject, ExtCreatePen, GetObject, LOGPEN, RGB, SelectObject

2.51 CreatePolyPolygonRgn

The CreatePolyPolygonRgn function creates aregion consisting of a series of polygons. The
polygons can overlap.

Cr eat ePol yPol ygonRgn: procedure
(

var | ppt : PO NT;
var | pPol yCount s s dwor d;
nCount s dwor d;

fnPol yFi | | Mode :dword

stdcall;

returns("eax");

external ("__inp__CreatePol yPol ygonRgn@e6");
Parameters

Ippt

[in] Pointer to an array of pa NT structures that define the vertices of the polygonsin logical units.
The polygons are specified consecutively. Each polygon is presumed closed and each vertex is
specified only once.

Page 75

Volume 1

IpPolyCounts

[in] Pointer to an array of integers, each of which specifies the number of pointsin one of the
polygonsin the array pointed to by Ippt.

nCount
[in] Specifies the total number of integersin the array pointed to by |pPolyCounts.
fnPolyFillMode

[in] Specifies the fill mode used to determine which pixels are in the region. This parameter
can be one of the following values.

Value M eaning

ALTERNATE Selects aternate mode (fills area between odd-numbered and even-num-
bered polygon sides on each scan line).
WINDING Selects winding mode (fills any region with anonzero winding value).
For more information about these modes, see the Sset Pol yFi | | Mbde function.
Return Values
If the function succeeds, the return value is the handle to the region.
If the function fails, the return valueis zero.
Windows NT/2000: To get extended error information, call Get LastError.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreatePolygonRgn, DeleteObject, POINT, SelectObject, SetPolyFillMode

2.52 CreatePolygonRgn

The CreatePolygonRgn function creates a polygonal region.

Cr eat ePol ygonRgn: procedure
(
var | ppt : PO NT;
cPoints :dwor d;
fnPol yFi |l | Mode :dword

stdcall;
returns("eax");
external ("__inp__CreatePol ygonRgn@z2");

Page 76

Win32 APl Reference

Parameters

[ppt
[in] Pointer to an array of pol NT structures that define the vertices of the polygon in logical units.
The polygon is presumed closed. Each vertex can be specified only once.

cPoints
[in] Specifies the number of pointsin the array.
fnPolyFillMode

[in] Specifiesthe fill mode used to determine which pixels are in the region. This parameter
can be one of the following values.

Value Meaning

ALTERNATE Selects aternate mode (fills area between odd-numbered and even-num-
bered polygon sides on each scan line).
WINDING Selects winding mode (fills any region with anonzero winding value).
For more information about these modes, see the set Pol yFi | | Mbde function.
Return Values
If the function succeeds, the return value is the handle to the region.
If the function fails, the return valueis NULL.
Windows NT/2000: To get extended error information, call Get LastError.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Regions Overview, Region Functions, CreatePolyPolygonRgn, DeleteObject, POINT, SelectObject, SetPolyFillM-
ode

2.53 CreateRectRgn

The CreateRectRgn function creates a rectangular region.

Creat eRect Rgn: procedure
(
nLeft Rect : dwor d;
nTopRect : dwor d;
nRi ght Rect :dword;
nBot t omRect : dword

Page 77

Volume 1

stdcal |l ;

returns("eax");

external ("__inp__CreateRect Rgn@es");
Parameters
nLeftRect

[in] Specifies the x-coordinate of the upper-left corner of the region inlogical units.
nTopRect

[in] Specifies the y-coordinate of the upper-left corner of the region in logical units.
nRightRect

[in] Specifies the x-coordinate of the lower-right corner of the region in logical units.
nBottomRect

[in] Specifies the y-coordinate of the lower-right corner of the region in logical units.
Return Values
If the function succeeds, the return value is the handle to the region.
If the function fails, the return valueis NULL.
Windows NT/2000: To get extended error information, call Get LastError.
Remarks
The region will be exclusive of the bottom and right edges.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreateRectRgnlndirect, CreateRoundRectRgn, DeleteObject, Sel ectObject

2.54 CreateRectRgnindirect

The CreateRectRgnlI ndirect function creates a rectangular region.

CreateRect Rgnl ndirect: procedure

(

VAR | prc ‘rect
);
stdcall;
returns("eax");
external ("__inp__CreateRectRgnlndirect@");

Page 78

Win32 APl Reference

Parameters
Iprc

[in] Pointer to a RecT structure that contains the coordinates of the upper-left and lower-right cor-
ners of the rectangle that defines the region in logical units.

Return Values

If the function succeeds, the return value is the handle to the region.

If the function fails, the return valueis NULL.

Windows NT/2000: To get extended error information, call Get Last Error.
Remarks

The region will be exclusive of the bottom and right edges.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreateRectRgn, CreateRoundRectRgn, DeleteObject, RECT, SelectObject

2.55 CreateRoundRectRgn

The CreateRoundRectRgn function creates a rectangular region with rounded corners.

Cr eat eRoundRect Rgn: procedure
(

nLeft Rect s dwor d;
nTopRect : dwor d;
nRi ght Rect s dwor d;
nBot t onRect s dwor d;

nW dt hEl | i pse s dwor d;
nHei ght El | i pse :dword

stdcall;

returns("eax");

external ("__inp__CreateRoundRect Rgh@4");
Parameters
nLeftRect

[in] Specifies the x-coordinate of the upper-left corner of the region inlogical units.
nTopRect

[in] Specifies the y-coordinate of the upper-left corner of the region inlogical units.
nRightRect

Page 79

Volume 1

[in] Specifies the x-coordinate of the lower-right corner of the region in logical units.
nBottomRect

[in] Specifies the y-coordinate of the lower-right corner of the region in logical units.
nWdthEllipse

[in] Specifies the width of the ellipse used to create the rounded cornersin logical units.
nHeightEllipse

[in] Specifies the height of the ellipse used to create the rounded cornersin logical units.
Return Values
If the function succeeds, the return value is the handle to the region.
If the function fails, the return valueis NULL.
Windows NT/2000: To get extended error information, call Get LastError.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, CreateRectRgn, CreateRectRgnindirect, Del eteObject, Sel ectObject

2.56 CreateScalableFontResource

The CreateScal ableFontResour ce function creates a font resource file for a scalable font.

Cr eat eScal abl eFont Resour ce: procedure

(

f dwH dden s dwor d;
| pszFont Res istring;
| pszFontFil e istring;

| pszCurrent Path :string

stdcall;

returns("eax");

external ("__inp__CreateScal abl eFont Resour ceA@6");
Parameters
fdwHidden

[in] Specifieswhether the font is aread-only font. This parameter can be one of the following
values.

Value M eaning

Page 80

Win32 APl Reference

0 The font has read-write permission.

1 The font has read-only permission and should be hidden from other applica-
tionsin the system. When thisflag is set, the font is not enumerated by the
EnunFont s OF EnunfFont Fani | i es function.

|pszFontRes

[in] Pointer to a null-terminated string specifying the name of the font resource file to crezte.
If this parameter specifies an existing font resource file, the function fails.

|[pszFontFile

[in] Pointer to a null-terminated string specifying the name of the scalable font file that this
function uses to create the font resource file.

|pszCurrentPath
[in] Pointer to a null-terminated string specifying the path to the scalable font file.
Return Values
If the function succeeds, the return value is nonzero.
If the function fails, the return valueis zero.

Windows NT/ 2000: To get extended error information, call Get Last Error. If [pszFontRes speci-
fiesan existing font file, GetL astError returns ERROR_FILE_EXISTS

Remarks

The CreateScalableFontResour ce function is used by applications that install TrueType fonts.
An application uses the CreateScal ableFontResour ce function to create afont resourcefile (typ-
ically with a.fot file name extension) and then uses the AddFont Resour ce function to install the
font. The TrueType font file (typically with a ttf file name extension) must be in the System sub-
directory of the Windows directory to be used by the AddFontResour ce function.

The CreateScalableFontResour ce function currently supports only TrueType-technology scal-
able fonts.

When the |pszFontFile parameter specifies only afile name and extension, the IpszCurrentPath
parameter must specify a path. When the |pszFontFile parameter specifies afull path, the
IpszCurrentPath parameter must be NULL or a pointer to NULL.

When only afile name and extension are specified in the IpszFontFile parameter and apath is
specified in the |pszCurrentPath parameter, the string in [pszFontFileis copied into the .fot file as
the .ttf file that belongs to this resource. When the AddFont Resour ce function is called, the operat-
ing system assumes that the .ttf file has been copied into the System directory (or into the main
Windows directory in the case of a network installation). The .ttf file need not bein this directory
when the CreateScal ableFontResour ce function is called, because the |pszCurrentPath parame-
ter contains the directory information. A resource created in this manner does not contain absolute
path information and can be used in any installation.

When a path is specified in the |pszFontFile parameter and NULL is specified in the |pszCurrent-
Path parameter, the string in IpszFontFile is copied into the .fot file. In this case, when the

Page 81

Volume 1

AddFont Resour ce function is called, the .ttf file must be at the location specified in the |pszFont-
File parameter when the CreateScal ableFontResour ce function was called; the |pszCurrentPath
parameter is not needed. A resource created in this manner contains absol ute references to paths
and drives and does not work if the .ttf file is moved to a different location.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or |ater.

Header: Declared in Wingdi.h; include Windows.h.

Library: Use Gdi32.lib.

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also

Fonts and Text Overview, Font and Text Functions, AddFontResource, EnumFonts, EnumFont-
Families

257 CreateSolidBrush

The CreateSolidBrush function creates alogical brush that has the specified solid color.

CreateSol i dBrush: procedure

(

cr Col or : COLORREF
)
stdcall;
returns("eax");
external ("__inp__CreateSolidBrush@");
Parameters

crColor

[in] Specifies the color of the brush. To create a coLorRREF color value, use the ReB macro.
Return Values

If the function succeeds, the return value identifies alogical brush.

If the function fails, the return valueis NULL.

Windows NT/ 2000: To get extended error information, call Get Last Error.

Remarks

A solid brush is a bitmap that the system uses to paint the interiors of filled shapes.

After an application creates a brush by calling CreateSolidBr ush, it can select that brush into any
device context by calling the sel ect aj ect function.

To paint with a system color brush, an application should use Get SysCol or Br ush(nlndex) instead
of CreateSolidBrush(GetSysColor (nlndex)), because GetSysColor Brush returns a cached
brush instead of allocating a new one.

Page 82

Win32 APl Reference

ICM: No color management is done at brush creation. However, color management is performed
when the brush is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Brushes Overview, Brush Functions, CreateDIBPatternBrush, CreateDIBPatternBrushPt, CreateHatchBrush, Create-
PatternBrush, DeleteObject, GetSysColorBrush, SelectObject, COLORREF, RGB

2.58 DPtoLP

The DPtoL P function converts device coordinates into logical coordinates. The conversion
depends on the mapping mode of the device context, the settings of the origins and extents for the
window and viewport, and the world transformation.

DPt oLP: procedure
(

hdc :dwor d;
var | pPoints : PO NT;
nCount s dword
)
stdcall;
returns("eax");
external ("__inp__DPtolLP@z2");
Parameters
hdc

[in] Handle to the device context.
IpPoints

[infout] Pointer to an array of pa Nt structures. The x- and y-coordinates contained in each
POINT structure will be transformed.

nCount
[in] Specifies the number of pointsin the array.
Return Values
If the function succeeds, the return value is nonzero.
If the function fails, the return valueis zero.
Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks
The DPtoL P function failsif the device coordinates exceed 27 bits, or if the converted logical

Page 83

Volume 1

coordinates exceed 32 bits. In the case of such an overflow, theresults for al the points are unde-
fined.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Coordinate Spaces and Transformations Overview, Coordinate Space and Transformation Functions, LPtoDP, POINT

2.59 DeleteColorSpace

The DeleteColor Space function removes and destroys a specified color space.
Del et eCol or Space: procedure

(
)

hCol or Space : dword

stdcal | ;
returns("eax");
external ("__inp__Del eteCol or Space@");
hColor Space
Specifies the handle to a color space to delete.
Return Values

If this function succeeds, the return valueis TRUE.
If thisfunction fails, the return valueis FALSE.

Requirements

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in wingdi.h.

Import Library: Use gdi32.lib.

See Also
Basic Color Management Concepts, Functions

2.60 DeleteDC
The DeleteDC function deletes the specified device context (DC).

Del et eDC: procedure
(

Page 84

Win32 APl Reference
hdc : dword

stdcal |l ;
returns("eax");
external ("__inp__Del eteDC@");

Parameters
hdc
[in] Handle to the device context.
Return Values
If the function succeeds, the return value is nonzero.
If the function fails, the return valueis zero.
Windows NT/2000: To get extended error information, call Get LastError.
Remarks

An application must not delete a DC whose handle was obtained by calling the cet bc function.
Instead, it must call the Rel easeDc function to free the DC.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Device Contexts Overview, Device Context Functions, CreateDC, GetDC, ReleaseDC

2.61 DeleteEnhMetaFile

The DeleteEnhM etaFile function del etes an enhanced-format metafile or an enhanced-format
metafile handle.

Del et eMet aFi |l e: procedure
(

henf : dword
)
stdcall;
returns("eax");
external ("__inp__DeleteMetaFile@");
Parameters
hemf
[in] Handle to an enhanced metafile.
Return Values

If the function succeeds, the return value is nonzero.

Page 85

Volume 1

If the function fails, the return valueis zero.
Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks

If the hemf parameter identifies an enhanced metafile stored in memory, the DeleteEnhM etaFile
function deletesthe metafile. If hemf identifies a metafile stored on a disk, the function deletes the
metafile handle but does not destroy the actual metafile. An application can retrieve the file by
calling the Get Enhmet aFi | e function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Metafiles Overview, Metafile Functions, CopyEnhM etaFile, CreateEnhM etaFile, GetEnhMetaFile

2.62 DeleteObject

The DeleteObj ect function deletesalogical pen, brush, font, bitmap, region, or palette, freeing all
system resources associated with the object. After the object is deleted, the specified handleis no
longer valid.

Del et eQbj ect: procedure
(

)

hObj ect : dword

stdcall ;
returns("eax");
external ("__inp__DeleteChject@");
Parameters
hObject
[in] Handle to alogical pen, brush, font, bitmap, region, or palette.
Return Values

If the function succeeds, the return value is nonzero.

If the specified handle is not valid or is currently selected into a DC, the return value is zero.
Windows NT/2000: To get extended error information, call Get Last Error.

Remarks

Do not delete adrawing object (pen or brush) whileit is still selected into aDC.

When a pattern brush is deleted, the bitmap associated with the brush is not deleted. The bitmap
must be deleted independently.

Page 86

Win32 APl Reference

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Device Contexts Overview, Device Context Functions, SelectObject

2.63 DescribePixelFormat

The DescribePixel For mat function obtains information about the pixel format identified by iPix-
elFormat of the device associated with hdc. The function sets the members of the i XEL FORVATDE-
SCRI PTCR structure pointed to by ppfd with that pixel format data.

Descri bePi xel Format : procedure

(

hdc s dwor d;
i Pi xel For mat s dwor d;
nByt es s dwor d;
var ppfd : PI XELFORMATDESCRI PTOR
)
stdcall;
returns("eax");
external ("__inp__DescribePi xel For mat @6");
Parameters
hdc

Specifies the device context.
iPixel Format

Index that specifies the pixel format. The pixel formats that a device context supports are
identified by positive one-based integer indexes.

nBytes

The size, in bytes, of the structure pointed to by ppfd. The DescribePixelFor mat function
stores no more than nBytes bytes of data to that structure. Set this value to sizeof (Pl XEL -
FORMATDESCRIPTOR).

ppfd

Pointer to a PIXELFORMATDESCRIPTOR structure whose members the function sets
with pixel format data. The function stores the number of bytes copied to the structure in the
structure's nSize member. If, upon entry, ppfd is NULL, the function writes no data to the
structure. Thisis useful when you only want to obtain the maximum pixel format index of a
device context.

Page 87

Volume 1

Return Values

If the function succeeds, the return value is the maximum pixel format index of the device con-
text. In addition, the function sets the members of the PIXELFORMATDESCRIPTOR structure
pointed to by ppfd according to the specified pixel format.

If the function fails, the return value is zero. To get extended error information, call Get Last Error.
Remarks

The following code sample shows DescribePixel For mat usage:

Pl XELFORMATDESCRI PTOR pfd;
HDC hdc;
int i Pixel Format;

i Pixel Format = 1;

/] obtain detailed information about
/'l the device context's first pixel format
Descri bePi xel Format (hdc, i Pi xel For mat,

si zeof (Pl XELFORMATDESCRI PTOR), &pfd);

Requirements

Windows NT/2000: Requires Windows NT 3.5 or later.

Windows 95/98: Requires Windows 95 or later. Available as a redistributable for Windows 95.
Header: Declared in wingdi.h.

Import Library: Use gdi32.lib.

See Also

OpenGL on Windows NT, Windows 2000, and Windows 95/98, Win32 Functions, ChoosePixelFormat, GetPixel For-
mat, SetPixel Format

2.64 DeviceCapabilities

The DeviceCapabilities function retrieves the capabilities of a printer device driver.
DWORD Devi ceCapabilities(

LPCTSTR pbDevi ce, [l printer nane
LPCTSTR pPort, /'l port name

WORD fwCapability, /1 device capability
LPTSTR pCQut put, /1 output buffer

CONST DEVMODE *pDevMbde // device data buffer
)
Parameters
pDevice

[in] Pointer to a null-terminated string that contains the name of the printer. Note that thisis
the name of the printer, not of the printer driver.

Page 88

pPort

Win32 APl Reference

[in] Pointer to anull-terminated string that contains the name of the port to which the deviceis

connected, such as LPT1.

fwCapability

[in] Specifies the capabilitiesto query. This parameter can be one of the following values.

Value
DC_BINADJUST

DC_BINNAMES

DC BINS

DC_COLLATE

DC_COLORDEVICE

Meaning

Windows 95/98: Retrieves the page positioning for the paper
source specified in the DEVM ODE structure pointed to by
pdevMode. The return value can be one of the following:

DCBA_FACEUPNONE
DCBA_FACEUPCENTER
DCBA_FACEUPLEFT
DCBA_FACEUPRIGHT
DCBA_FACEDOWNNONE
DCBA_FACEDOWNCENTER
DCBA_FACEDOWNLEFT
DCBA_FACEDOWNRIGHT

Windows NT/2000: Not supported.

Retrieves the names of the printer's paper bins. The pOutput
buffer receivesan array of string buffers. Each string buffer is 24
characters long and contains the name of a paper bin. The return
value indicates the number of entriesin the array. The name
strings are null-terminated unless the name is 24 characters long.
If pOutput is NULL, thereturn valueis the number of bin entries
required.

Retrieves alist of available paper bins. The pOutput buffer
receives an array of WORD values that indicate the available
paper sources for the printer. The return value indicates the num-
ber of entriesin the array. For alist of the possible array values,
see the description of the dmDefaultSour ce member of the
DEVM ODE structure. If pOutput is NULL, the return value
indicates the required number of entriesin the array.

If the printer supports collating, the return valueis 1; otherwise,
thereturn value is zero. The pOutput parameter is not used.

Windows 2000: If the printer supports color printing, the return
valueis 1; otherwise, the return value is zero. The pOutput
parameter is not used.

Page 89

Volume 1

DC_COPIES Returns the number of copies the device can print.
DC _DRIVER Returns the version number of the printer driver.

DC_DATATYPE_PRODU Windows 95/98: The return value is the number of datatypes

CED supported by the printer driver. If the function returns -1, the
driver recognizes only the"RAW" datatype. The names of the
supported datatypes are copied to an array. Use the namesin the
DOCINEFEOQ structure when calling the Star tDoc function to
specify the datatype.

Windows NT/2000: Not supported.

DC_DUPLEX If the printer supports duplex printing, the return value is 1; oth-
erwise, the return value is zero. The pOutput parameter is not
used.

DC_EMF_COMPLIANT Windows 95/98: Determinesif a printer driver supports
enhanced metafiles (EMF). A return value of 1 meansthe driver
supports EMF. A return value of -1 means the driver does not
support EMF.

Windows NT/2000: Not supported.

DC_ENUMRESOLUTION Retrievesalist of the resolutions supported by the printer. The

S pOutput buffer receives an array of L ONG values. For each sup-
ported resolution, the array contains apair of LONG values that
specify the x and y dimensions of the resolution, in dots per inch.
The return value indicates the number of supported resolutions.
If pOutput is NULL, the return value indicates the number of
supported resolutions.

DC_EXTRA Returns the number of bytes required for the device-specific por-
tion of the DEVM ODE structure for the printer driver.

DC FIELDS Returns the dmFields member of the printer driver's DEV-
M ODE structure. The dmFields member indicates which mem-
bers in the device-independent portion of the structure are
supported by the printer driver.

DC_FILEDEPENDENCIE Retrievesthe names of any additional files that need to be loaded

S when adriver isinstalled. The pOutput buffer receives an array
of string buffers. Each string buffer is 64 characters long and
contains the name of afile. The return value indicates the num-
ber of entriesin the array. The name strings are null-terminated
unless the name is 64 characters long. If pOutput is NULL, the
return value is the number of files.

Page 90

DC_MANUFACTURER

DC_MAXEXTENT

DC_MEDIAREADY

DC_MINEXTENT

DC_MODEL

DC_ORIENTATION

Win32 APl Reference

Windows 95/98: The return valueisthe identification number of
the printer manufacturer. This value is used with Image Color
Management (ICM).

Windows NT/2000: Not supported.

Returns the maximum paper size that the dmPaper L ength and
dmPaper Width members of the printer driver's DEVM ODE
structure can specify. The LOWORD of the return value con-
tains the maximum dmPaper Width value, and the HIWORD
contains the maximum dmPaper L ength value.

Windows 2000: Retrieves the names of the paper forms that are
currently available for use. The pOutput buffer receives an array
of string buffers. Each string buffer is 64 characters long and
contains the name of a paper form. The return value indicates the
number of entriesin the array. The name strings are null-termi-
nated unless the nameis 64 characters long. If pOutput isSNULL,
the return value is the number of paper forms.

Returns the minimum paper size that the dmPaper L ength and
dmPaper Width members of the printer driver's DEVM ODE
structure can specify. The LOWORD of the return value con-
tains the minimum dmPaper Width value, and the HIWORD
contains the minimum dmPaper L ength value.

Windows 95/98: The return value is theidentification of the
printer model. Thisvalue is used with Image Color M anagement
(ICM).

Windows NT/2000: Not supported.

Returns the relationship between portrait and landscape orienta-

tionsfor adevice, in terms of the number of degreesthat portrait
orientation is rotated counterclockwise to produce landscape ori-
entation. The return value can be one of the following:

0

No landscape orientation.
90

Portrait is rotated 90 degresss to produce landscape.
270

Portrait is rotated 270 degrees to produce landscape.

Page 91

DC_NUP

DC_PAPERNAMES

DC_PAPERS

DC_PAPERSIZE

DC_PERSONALITY

DC_PRINTERMEM

Page 92

Volume 1

Windows 2000: Retrieves an array of integers that indicate that
printer's ability to print multiple document pages per printed
page. The pOutput buffer receives an array of DWORD values.
Each value represents a supported number of document pages
per printed page. The return valueindicates the number of entries
inthe array. If pOutput is NULL, the return value indicates the
required number of entriesin the array.

Retrieves alist of supported paper names (for example, Letter or
Legal). The pOutput buffer receives an array of string buffers.
Each string buffer is 64 characterslong and contains the name of
apaper form. The return value indicates the number of entriesin
the array. The name strings are null-terminated unless the name
is 64 characterslong. If pOutput iSNULL, the return value isthe
number of paper forms.

Retrieves alist of supported paper sizes. The pOutput buffer
receives an array of WORD values that indicate the available
paper sizes for the printer. The return value indicates the number
of entriesin the array. For alist of the possible array values, see
the description of the dmPaper Size member of the DEVM ODE
structure. If pOutput is NULL, the return value indicates the
required number of entriesin the array.

Retrieves the dimensions, in tenths of amillimeter, of each sup-
ported paper size. The pOutput buffer receives an array of
POINT structures. Each structure contains the width (x-dimen-
sion) and length (y-dimension) of a paper size asif the paper
werein the DMORIENT_PORTRAIT orientation. The return
value indicates the number of entriesin the array.

Windows 2000: Retrieves alist of printer description languages
supported by the printer. The pOutput buffer receives an array of
string buffers. Each buffer is 32 characterslong and contains the
name of a printer description language. The return value indi-
cates the number of entriesin the array. The name strings are
null-terminated unless the nameis 32 characterslong. If pOutput
isNULL, the return value indicates the required number of array
entries.

Windows 2000: The return valueis the amount of available
printer memory, in kilobytes. The pOutput parameter is not used.

DC_PRINTRATE

DC_PRINTRATEPPM

DC_PRINTRATEUNIT

DC_SIZE

DC_STAPLE

DC_TRUETYPE

Win32 APl Reference

Windows 2000: The return value indicates the printer's print
rate. The value returned for DC_PRINTRATEUNIT indicates
the units of the DC_PRINTRATE value. The pOutput parameter
is not used.

Windows 2000: The return value indicates the printer's print
rate, in pages per minute. The pOutput parameter is not used.

Windows 2000: The return valueis one of the following values
that indicate the print rate units for the value returned for the
DC_PRINTRATE flag. The pOutput parameter is not used.

PRINTRATEUNIT_CPS
Characters per second.
PRINTRATEUNIT _IPM
Inches per minute.
PRINTRATEUNIT _LPM
Lines per minute.
PRINTRATEUNIT_PPM
Pages per minute.

Returns the dmSize member of the printer driver's DEVM ODE
structure.

Windows 2000: If the printer supports stapling, the return value
isanonzero value; otherwise, the return value is zero. The pOut-
put parameter is not used.

Retrieves the abilities of the driver to use TrueType fonts. For
DC_TRUETY PE, the pOutput parameter should be NULL. The
return value can be one or more of the following:

DCTT_BITMAP

Device can print TrueType fonts as graphics.
DCTT_DOWNLOAD

Device can down-load TrueType fonts.
DCTT_DOWNLOAD_OUTLINE

Windows 95/98: Device can download outline TrueType
fonts.

DCTT_SUBDEV
Device can substitute device fonts for TrueType fonts.

Page 93

Volume 1

DC_VERSION Returns the specification version to which the printer driver con-
forms.

pOutput
[out] Pointer to an array. The format of the array depends on the setting of the fwCapability

parameter. If pOutput isNULL, DeviceCapabilities returns the number of bytes required for
the output data.

pDevMode

[in] Pointer to aDEVM ODE structure. If this parameter isNULL, DeviceCapabilities retrieves
the current default initialization values for the specified printer driver. Otherwise, the function
retrieves the values contained in the structure to which pDevMode points.

Return Values

If the function succeeds, the return value depends on the setting of the fwCapability parame-
ter. A return value of zero generally indicates that, while the function completed successfully,
there was some type of failure, such as a capability that is not supported. For more details, see
the descriptions for the fwCapability values.

If the function fails, the return valueis-1.
Windows NT/Windows 2000: To get extended error information, call GetL astError.
Remarks

For 16-bit programs, DeviceCapabilities was implemented in the printer driver. To get a
pointer to the function, call LoadLibrary and GetProcAddress. For 32-bit applications on
both Windows 95/98 and Windows NT, DeviceCapabilitiesis part of the Win32 API, so you
should not call LoadLibrary on the printer driver.

The DEVMODE structure pointed to by the pDevMode parameter may be obtained by calling
the DocumentProperties function.

Requirements
Windows NT/2000: Requires Windows NT 3.1 or |ater.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Winspool.lib.

See Also

Printing and Print Spooler Overview, Printing and Print Spooler Functions, DEVMODE, DOCINFO, DocumentProp-
erties, GetDeviceCaps, GetProcAddress, LoadLibrary, POINT, StartDoc

2.65 DrawEscape

The DrawEscape function provides drawing capabilities of the specified video display that are
not directly available through the graphics device interface (GDI).

Page 94

Win32 APl Reference

Dr awEscape: procedure
(

hdc : dwor d;
nEscape : dwor d;
cbl nput : dwor d;

I pszlnData :string

stdcal |l ;

returns("eax");

external ("__inp__DrawEscape@6");
Parameters

hdc
[in] Handle to the DC for the specified video display.
nEscape
[in] Specifies the escape function to be performed.
cblnput
[in] Specifies the number of bytes of data pointed to by the |pszlnData parameter.
IpszinData
[in] Pointer to the input structure required for the specified escape.
Return Values

If the function is successful, the return value is greater than zero except for the QUERY ESCSUP-
PORT draw escape, which checks for implementation only.

If the escape is not implemented, the return value is zero.

If an error occurred, the return value isless than zero .

Windows NT/2000: To get extended error information, call Get LastError.

Remarks

When an application calls the DrawEscape function, the data identified by cbinput and Ipsz n-
Data is passed directly to the specified display driver.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Device Contexts Overview, Device Context Functions

Page 95

Volume 1

2.66 Ellipse

The Ellipse function draws an ellipse. The center of the ellipse is the center of the specified
bounding rectangle. The ellipse is outlined by using the current pen and isfilled by using the cur-
rent brush.

Elli pse: procedure

(

hdc : dwor d;
nLeft Rect : dwor d;
nTopRect :dwor d;

nRi ght Rect : dword;
nBot t omRect : dword

stdcal |l ;
returns("eax");
external ("__inp__Ellipse@0");

Parameters
hdc

[in] Handle to the device context.
nLeftRect

[in] Specifies the x-coordinate of the upper-left corner of the bounding rectangle.
nTopRect

[in] Specifies the y-coordinate of the upper-left corner of the bounding rectangle.
nRightRect

[in] Specifies the x-coordinate of the lower-right corner of the bounding rectangle.
nBottomRect

[in] Specifies the y-coordinate of the lower-right corner of the bounding rectangle.
Return Values
If the function succeeds, the return value is nonzero.
If the function fails, the return valueis zero.
Windows NT/ 2000: To get extended error information, call GetL astError.
Remarks
The current position is neither used nor updated by Ellipse.

Windows 95/98: The sum of the coordinates of the bounding rectangle cannot exceed 32,767.
The sum of nLeftRect and nRightRect or nTopRect and nBottomRect parameters cannot exceed
32,767.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

Page 96

Win32 APl Reference

Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Filled Shapes Overview, Filled Shape Functions, Arc, ArcTo

2.67 EndDoc

The EndDoc function ends a print job.

EndDoc: procedure
(

)

hdc : dword

stdcal | ;
returns("eax");
external ("__inp__EndDoc@");

Parameters
hdc
[in] Handle to the device context for the print job.
Return Values
If the function succeeds, the return value is greater than zero.
If the function fails, the return valueis less than or equal to zero.
Windows NT/Windows 2000: To get extended error information, call Get Last Error.
Remarks
Applications should call EndDoc immediately after finishing a print job.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Printing and Print Spooler Overview, Printing and Print Spooler Functions, StartDoc

2.68 EndPage
The EndPage function notifies the device that the application has finished writing to apage. This

function istypically used to direct the device driver to advance to a new page.

EndPage: procedure

Page 97

Volume 1

hdc : dword

stdcal | ;
returns("eax");
external ("__inp__ EndPage@");

Parameters
hdc
[in] Handle to the device context for the print job.
Return Values
If the function succeeds, the return value is greater than zero.
If the function fails, the return valueis less than or equal to zero.
Windows NT/Windows 2000: To get extended error information, call Get Last Error.
Remarks

Use the Reset Dc function to change the device mode, if necessary, after calling the EndPage func-
tion. Note that acall to ResetDC resets all device context attributes back to default values:

» Windows 3.x: EndPage resets the device context attributes back to default values. You
must re-select objects and set up the mapping mode again before printing the next page.

2 Windows 95: EndPage does not reset the device context attributes. However, the next
st art Page Call does reset the device context attributes to default values. At that time, you
must re-select objects and set up the mapping mode again before printing the next page.

2 Windows NT/Windows 2000: Beginning with Windows NT Version 3.5, neither
EndPage or StartPage resets the device context attributes. Device context attributes
remain constant across subsequent pages. You do not need to re-select objects and set up
the mapping mode again before printing the next page; however, doing so will produce the
same results and reduce code differences between Windows 95 and Windows NT.

Windows 2000: When a page in aspooled file exceeds approximately 350 MB, it may fail to print
and not send an error message. For example, this can occur when printing large EMF files. The
page size limit depends on many factorsincluding the amount of virtual memory available, the
amount of memory allocated by calling processes, and the amount of fragmentation in the process
heap.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or |ater.

Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Printing and Print Spooler Overview, Printing and Print Spooler Functions, ResetDC, StartPage

Page 98

Win32 APl Reference

2.69 EndPath

The EndPath function closes a path bracket and selects the path defined by the bracket into the
specified device context.

EndPat h: procedure
(

)

hdc : dword

stdcal | ;
returns("eax");
external ("__inp__EndPath@");

Parameters
hdc
[in] Handle to the device context into which the new path is selected.
Return Values
If the function succeeds, the return value is nonzero.
If the function fails, the return valueis zero.

Windows NT/2000: To get extended error information, call Get Last Error. GetLastError may
return one of the following error codes:

ERROR_CAN_NOT_COMPLETE
ERROR_INVALID PARAMETER

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Paths Overview, Path Functions, BeginPath

2.70 EnumEnhMetaFile

The EnumEnhM etaFile function enumerates the records within an enhanced-format metafile by
retrieving each record and passing it to the specified callback function. The application-supplied
callback function processes each record as required. The enumeration continues until the last
record is processed or when the callback function returns zero.

EnumEnhMet aFi | e: procedure
(

hdc s dwor d;

henf :dwor d;

| pPEnhMet aFunc : ENHMFENUVPROC,
var | pDat a :dword

Page 99

Volume 1

var | pRect : RECT
)
stdcal |l ;
returns("eax");
external ("__inp__EnumEnhMet aFil e@0");
Parameters

hdc

[in] Handle to adevice context. This handle is passed to the callback function.
hemf

[in] Handle to an enhanced metafile.
IpEnhMetaFunc

[in] Pointer to the application-supplied callback function. For more information, see the Enhnet a-
Fi | eProc function.

IpData
[in] Pointer to optional callback-function data.
IpRect

[in] Pointer to a RecT structure that specifies the coordinates of the picture's upper-left and
lower-right corners. The dimensions of this rectangle are specified in logical units.

Return Values

If the callback function successfully enumerates all the records in the enhanced metafile, the
return value is nonzero.

If the callback function does not successfully enumerate all the records in the enhanced metafile,
the return value is zero.

Remarks

Points along the edge of the rectangle pointed to by the IpRect parameter are included in the pic-
ture. If the hdc parameter is NULL, the system ignores |pRect.

If the callback function calls the PlayEnhM etaFileRecord function, hdc must identify avalid
device context. The system uses the device context's transformation and mapping mode to trans-
form the picture displayed by the i ayEnhMet aFi | eRecor d function.

You can use the EnumEnhM etaFile function to embed one enhanced-metafile within another.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or later.

Header: Declared in Wingdi.h; include Windows.h.

Library: Use Gdi32.lib.

See Also

Metafiles Overview, Metafile Functions, EnhM etaFileProc, PlayEnhMetaFile, PlayEnhM etaFileRecord, RECT

Page 100

Win32 APl Reference

271 EnumFontFamilies

The EnumFontFamilies function enumerates the fonts in a specified font family that are avail-
able on a specified device.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the EnunFont Fani | i esEx function.
EnumFont Fami | i es: procedure

(

hdc s dwor d;
| pszFam |y 1string;
| pEnuntont FanmPr oc : FONTENUMPROC;
var | Param Tvar
)
stdcal | ;
returns("eax");
external ("__inp__EnunfFont Fani | i esA@L6");
Parameters
hdc

[in] Handle to the device context.
[pszFamily

[in] Pointer to anull-terminated string that specifies the family name of the desired fonts. If
IpszFamily is NULL, EnumFontFamilies selects and enumerates one font of each available
type family.

[pEnumFontFamProc
[in] Point to the application defined—callback function. For information, see Enunfont Fanfr oc.
[Param

[in] Pointer to application-supplied data. The datais passed to the callback function along
with the font information.

Return Values

Thereturn value isthe last value returned by the callback function. Its meaning is implementation
specific.

Remarks

For each font having the typeface name specified by the |pszFamily parameter, the EnumFont-
Families function retrieves information about that font and passes it to the function pointed to by
the IpEnumFontFamProc parameter. The application defined—callback function can process the

font information as desired. Enumeration continues until there are no more fonts or the callback
function returns zero.

The fonts for many East Asian languages have two typeface names. an English name and alocal-
ized name. EnunFont s, EnumFontFamilies, and Enunfont Fani | i esEx return the English typeface
name if the system locale does not match the language of the font.

Page 101

Volume 1

Requirements

Windows NT/2000: Requires Windows NT 3.1 or |ater.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Fonts and Text Overview, Font and Text Functions, EnumFonts, EnumFontFamiliesEx, EnumFontFamProc

2.72 EnumFontFamiliesEx

The EnumFontFamiliesEx function enumerates all fonts in the system that match the font char-
acteristics specified by the LoaronT structure. EnumFontFamiliesEx enumerates fonts based on
typeface name, character set, or both.

EnunfFont Fami | i esEx: procedure

(

hdc s dwor d;
var | pLogfont : LOGFONT;
| pEnunfont FamExPr oc : FONTENUMPRCC;
var | Param .var;
dwFl ags :dword
);
stdcall;
returns("eax");
external ("__inp__EnunfFont Fam | i esExXA@O0");
Parameters

hdc
[in] Handle to the device context.
[pLogfont

[in] Pointer to a LogroNT structure that contains information about the fonts to enumerate. The
function examines the following members.

Member Description

[fChar set If set to DEFAULT_CHARSET, the function enumerates all fontsin
all character sets. If set to avalid character set value, the function
enumerates only fonts in the specified character set.

I[fFaceName If set to an empty string, the function enumerates one font in each
available typeface name. If set to avalid typeface name, the func-
tion enumerates all fonts with the specified name.

IfPitchAndFamily Must be set to zero for all language versions of the operating sys-
tem.

Page 102

Win32 APl Reference

[pEnumFontFamExProc

[in] Pointer to the application defined—callback function. For more information, see the Enunfont -
FanExPr oc function.

|Param

[in] Specifies an application—defined value. The function passes this value to the callback
function along with font information.

dwFlags
This parameter is not used and must be zero.
Return Values

The return value is the last value returned by the callback function. This value depends on which
font families are available for the specified device.

Remarks

The EnumFontFamiliesEx function does not use tagged typeface names to identify character
sets. Instead, it always passes the correct typeface name and a separate character set value to the
callback function. The function enumerates fonts based on the the values of the IfChar set and
IfFacename members in the LogFONT structure.

Aswith EnumFontFamilies, EnumFontFamiliesEx enumerates all font styles. Not all styles of
afont cover the same character sets. For example, Fontorama Bold might contain ANSI, Greek,
and Cyrillic characters, but Fontorama Italic might contain only ANSI characters. For this reason,
it's best not to assume that a specified font covers a specific character set, evenif it isthe ANSI
character set. The following table shows the results of various combinations of valuesfor IfChar -
Set and IfFaceName.

Values M eaning
[fChar Set = DEFAULT_CHARSET Enumerates al fontsin all character sets.
IfFaceName ="\0'
IfChar Set = DEFAULT_CHARSET Enumerates al character sets and stylesin a
IfFaceName = a specific font specific font.
[fChar Set =a specific character set Enumerates all styles of all fontsin the specific
I[fFaceName ="\0' character set.
IfChar Set =a specific character set Enumerates al styles of afont in a specific
IfFaceName = a specific font character set.

The following code sample shows how these values are used.
//to enunerate all styles and charsets of all fonts:

I f.lfFaceName[0] = "\0';

| f.1fCharSet = DEFAULT_ CHARSET;

//to enunerate all styles and character sets of the Arial font:

Istrcpy((LPSTR) &l f.|fFaceNane, "Arial");
| f.1fCharSet = DEFAULT_ CHARSET;

Page 103

Volume 1

//to enunerate all styles of all fonts for the ANSI character set
I f.lfFaceName[0] = "\0';
I f.1fCharSet = ANSI _CHARSET;

//to enunerate all styles of Arial font that cover the ANSI charset

Istrcpy((LPSTR) &l f.|fFaceNane, "Arial");

I f.1fCharSet = ANSI _CHARSET;

The callback functions for EnumFontFamilies and EnumFontFamiliesEx are very similar. The
main differenceis that the ENUMLOGFONTEX structure includes a script field.

Note, based on the values of IfChar Set and IfFaceName, EnumFontFamiliesEx will enumerate
the same font as many times as there are distinct character setsin the font. This can create an
extensive list of fonts which can be burdensome to a user. For example, the Century Schoolbook
font can appear for the Baltic, Western, Greek, Turkish, and Cyrillic character sets. To avoid this,
an application should filter the list of fonts.

The fonts for many East Asian languages have two typeface names: an English name and a local-
ized name. Enunfonts, Enunfont Fani | i es, and EnumFontFamiliesEx return the English type-
face name if the system local e does not match the language of the font.

Requirements

Windows NT/2000: Requires Windows NT 4.0 or |ater.

Windows 95/98: Requires Windows 95 or |ater.

Header: Declared in Wingdi.h; include Windows.h.

Library: Use Gdi32.lib.

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also

Fonts and Text Overview, Font and Text Functions, EnumFontFamExProc, EnumFonts, EnumFontFamilies, LOG-
FONT

2.73 EnumFonts

The EnumFonts function enumerates the fonts available on a specified device. For each font with
the specified typeface name, the EnumFonts function retrieves information about that font and
passes it to the application defined—callback function. This callback function can process the font
information as desired. Enumeration continues until there are no more fonts or the callback func-
tion returns zero.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the Enunfont Fanmi | i esEx function.

EnunFonts: procedure

(
hdc :dwor d;

| pFaceNane :string;
| pFont Func : FONTENUMPROC;,
var | Param Tvar

stdcall;

Page 104

Win32 APl Reference

returns("eax");
external ("__inp__EnunfFont sA@6");

Parameters
hdc

[in] Handle to the device context.
IpFaceName

[in] Pointer to a null-terminated string that specifiesthe typeface name of the desired fonts. If
IpFaceName isNULL, EnumFonts randomly selects and enumerates one font of each avail-
able typeface.

[pFontFunc

[in] Pointer to the application defined—callback function. For more information, see Enum
Font sProc.

|Param

[in] Pointer to any application-defined data. The data is passed to the callback function along
with the font information.

Return Values

The return value isthe last value returned by the callback function. Its meaning is defined by the
application.

Remarks

Use EnumFontFamiliesEx instead of EnumFonts. The EnumFontFamiliesEx function differs
from the EnumFontsfunction in that it retrieves the style names associated with a TrueType font.
With Enunfont Fani | i esEx, you can retrieve information about font styles that cannot be enumer-
ated using the EnumFonts function.

The fonts for many East Asian languages have two typeface names: an English name and a local-
ized name. EnumFonts, Enunfont Fani | i es, and EnunfFont Fani | i esEx return the English typeface
name if the system locale does not match the language of the font.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.

Windows 95/98: Requires Windows 95 or |ater.

Header: Declared in Wingdi.h; include Windows.h.

Library: Use Gdi32.lib.

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

See Also

Fonts and Text Overview, Font and Text Functions, EnumFontFamilies, EnumFontFamiliesEx EnumFontsProc, Get-
DeviceCaps

Page 105

Volume 1

2.74 EnumICMProfiles

The Enuml CM Profiles function enumerates the different output color profiles that the system
supports for a given device context.

Enum CVProfil es: procedure
(

hdc : dwor d;
| pEnum CVPr of i | esFunc : I CMENUMPRCC;
var | Param rvar
)
stdcal | ;
returns("eax");
external ("__inp__Enum CWVProfil esA@?2");

hDC
Specifies the device context.
[pEnuml CMProfilesFunc

Specifies the procedure instance address of a callback function defined by the application. (See
Enumi CMProf i | esProcCal | back.)

IParam

Data supplied by the application that is passed to the callback function along with the color
profile information.

Return Values

This function returns zero if the application interrupted the enumeration. Thereturn valueis-1 if
there are no color profiles to enumerate. Otherwise, the return value is the last value returned by
the callback function.

Remarks

The Enuml CM Profilesfunction returnsalist of profilesthat are associated with a device context
(DC), and whose settings match those of the DC. It is possible for a device context to contain
device profilesthat are not associated with particular hardware devices, or device profilesthat do
not match the settings of the DC. The SRGB profileis an example. The set | cvProfi | e function is
used to associate these types of profileswith aDC. The cet | cvprof i | e function can be used to
retrieve a profile that is not enumerated by the EnumI CM Pr ofiles function.

Requirements

Windows NT/2000: Requires Windows 2000.

Windows 95/98: Requires Windows 95 or |ater.

Header: Declared in wingdi.h.

Import Library: Use gdi32.lib.

See Also

Basic Color Management Concepts, Functions, Enuml CM ProfilesProcCallback, SetlCM Profile, Getl CMProfile

Page 106

Win32 APl Reference

2.75 EnumMetaFile

The EnumM etaFile function enumerates the records within a Windows-format metafile by
retrieving each record and passing it to the specified callback function. The application-supplied
callback function processes each record as required. The enumeration continues until the last
record is processed or when the callback function returns zero.

Note This function is provided only for compatibility with 16-bit versions of Windows.
Win32-based applications should use the EnunEnhmet aFi | e function.

Enum\et aFi |l e: procedure
(

hdc : dwor d;
hnf : dwor d;
| pMet aFunc : MFENUMPROC,
var | Param svar
)
stdcal | ;
returns("eax");
external ("__inp__EnumvetaFi |l e@6");
Parameters
hdc

[in] Handle to adevice context. This handleis passed to the callback function.
hmf

[in] Handle to a Windows-format metafile.
IpMetaFunc

[in] Pointer to an application-supplied callback function. For more information, see Enumet a-
Fi l eProc.

[Param
[in] Pointer to optional data.
Return Values

If the callback function successfully enumerates all the records in the Windows-format metafile,
the return value is nonzero.

If the callback function does not successfully enumerate all the records in the Windows-format
metafile, the return value is zero.

Remarks

A Windows-format metafile does not support the new curve, path, and transformation functions,
such as Pol yBezi er, Begi nPat h, and Set Wr | dTr ansf or m Applications that use these new func-
tions and use metafiles to store pictures created by these functions should use the enhanced-for-
mat metafile functions.

To convert a Windows-format metafile into an enhanced-format metafile, use the set W nmet a-
Fi | eBi t s function.

Page 107

Volume 1

You can use the EnumM etaFile function to embed one Windows-format metafile within another.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Metafiles Overview, Metafile Functions, BeginPath, EnumEnhM etaFile, EnumM etaFileProc, PlayMetaFile,
PlayMetaFileRecord, PolyBezier, SetWinMetaFileBits, SetWorldTransform

2.76 EnumObjects

The EnumObj ects function enumerates the pens or brushes available for the specified device

context (DC). This function calls the application-defined callback function once for each avail-

able object, supplying data describing that object. EnumObj ects continues calling the callback

function until the callback function returns zero or until all of the objects have been enumerated.
EnunmObj ects: procedure

(

hdc :dwor d;
nQbj ect Type s dwor d;
| pObj ect Func : GOBJENUMPROCG;
var | Param svar
);
stdcall ;
returns("eax");
external (" __inp__EnunObj ects@e6");
Parameters
hdc
[in] Handle to the DC.
nObjectType

[in] Specifies the object type. This parameter can be OBJ BRUSH or OBJ_PEN.
|pObjectFunc

[in] Pointer to the application-defined callback function. For more information about the callback
function, see the Enuntbj ect sProc function.

IParam

[in] Pointer to the application-defined data. The datais passed to the callback function along
with the object information.

Return Values

If the function succeeds, the return value is the last value returned by the callback function. Its
meaning is user-defined.

Page 108

Win32 APl Reference

If there are too many objects to enumerate, the function returns—1. In this case, the callback func-
tion isnot called.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Device Contexts Overview, Device Context Functions, EnumObjectsProc, GetObject

2.77 EqualRgn

The EqualRgn function checks the two specified regions to determine whether they are identical.
The function considers two regionsidentical if they are equal in size and shape.

Equal Rgn: procedure
(

hSrcRgnl : dwor d;
hSr cRgn2 :dwor d
)
stdcal |l ;
returns("eax");
external ("__inmp__Equal Rgn@");
Parameters
hSrcRgnl
[in] Handle to aregion.
hSrcRgn2
[in] Handle to aregion.
Return Values

If the two regions are equal, the return value is nonzero.

If the two regions are not equal, the return value is zero. A return value of ERROR means at |east
one of the region handlesisinvalid.

Reguirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

Header: Declared in Wingdi.h; include Windows.h.

Library: Use Gdi32.lib.

See Also

Regions Overview, Region Functions, CreateRectRgn, CreateRectRgnindirect

Page 109

Volume 1

2.78 Escape

The Escape function enables applications to access capabilities of a particular device not directly
available through GDI. Escape calls made by an application are translated and sent to the driver.
Escape: procedure

(

hdc s dwor d;
nEscape s dwor d;
cbl nput s dwor d;
| pvl nDat a istring;
var | pvQut Dat a Tvar
);
stdcal | ;
returns("eax");
external ("__inp__Escape@0");
Parameters

hdc
[in] Handle to the device context.
nEscape

[in] Specifies the escape function to be performed. This parameter must be one of the predefined
escape values listed in the Remarks section. Use the Ext Escape function if your application
defines a private escape value.

cblnput

[in] Specifies the number of bytes of data pointed to by the [pvinData parameter.
[pvinData

[in] Pointer to the input structure required for the specified escape.
[pvOutData

[out] Pointer to the structure that receives output from this escape. This parameter should be
NULL if no datais returned.

Return Values

If the function succeeds, the return value is greater than zero, except with the QUERY ESCSUP-
PORT printer escape, which checks for implementation only. If the escape is not implemented, the
return valueis zero.

If the function fails, the return value is an error.
Windows NT/Windows 2000: To get extended error information, call Get Last Error.
Errors

If the function fails, the return value is one of the following values.

Value M eaning

Page 110

Win32 APl Reference

SP_ERROR General error. If SP_ERROR isreturned, Escape may set the
last error code to:

ERROR_INVALID PARAMETER
ERROR_DISK_FULL

ERROR NOT_ENOUGH_MEMORY
ERROR_PRINT_CANCELLED

SP_OUTOFDISK Not enough disk space is currently available for spooling, and
no more space will become available.
SP_OUTOFMEMORY Not enough memory is available for spooling.
SP_USERABORT The user terminated the job through Print Manager.
Remarks

Of the original printer escapes, only the following can be used by Win32-based applications.

Escape Description
QUERY ESCSUPPORT Determines whether a particular escape isimplemented by the
device driver.
PASSTHROUGH Allows the application to send data directly to a printer.

The following printer escapes are obsolete. They are provided only for compatibility with 16-bit
versions of Windows.

Escape Description

ABORTDOC Stops the current print job and erases everything the applica-
tion has written to the device since the last ENDDOC escape.

In the Win32 AP, thisis superseded by Abor t Doc.

ENDDOC Ends a print job started by the STARTDOC escape.
In the Win32 API, thisis superseded by Endboc.

GETPHY SPAGESIZE Retrieves the physical page size and copies it to the specified
location.

In the Win32 AP, thisis superseded by PHY SICALWIDTH
and PHY SICALHEIGHT in Get Devi ceCaps.

GETPRINTINGOFFSET Retrieves the offset from the upper-left corner of the physical
page where the actua printing or drawing begins.

In the Win32 AP, thisis superseded by PHY SICALOFF-
SETX and PHY SICALOFFSETY in Get Devi ceCaps.

Page 111

Volume 1

GETSCALINGFACTOR Retrieves the scaling factors for the x-axis and the y-axis of a
printer.

In the Win32 AP, thisis superseded by SCALINGFACTORX
and SCALINGFACTORY in Get Devi ceCaps.

NEWFRAME Informsthe printer that the application has finished writing to a
page.

In the Win32 AP, thisis superseded by EndPage which ends a
page. Unlike NEWFRAME, EndPage is always called after

printing a page.
NEXTBAND Informsthe printer that the application has finished writing to a
band.

Band information is not used in Win32 applications.

SETABORTPROC Sets the Abort function for a print job.
In the Win32 API, thisis superseded by set Abor t Proc.

SETCOPY COUNT Sets the number of copies.
Inthe Win32 API, thisis superseded by bDocurent Properti es Of

PrinterProperties.

STARTDOC Informs a printer driver that anew print job is starting.

In the Win32 API, thisis superseded by st ar t Doc.

In addition, the Win32 API has st art Page Which is used to prepare the printer driver to receive
data.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Printing and Print Spooler Overview, Printing and Print Spooler Functions, AbortDoc,DocumentProperties, EndDoc,
EndPage, ExtEscape, GetDeviceCaps, PrinterProperties SetAbortProc, StartDoc, StartPage, ResetDC

2.79 ExcludeClipRect

The ExcludeClipRect function creates anew clipping region that consists of the existing clipping
region minus the specified rectangle.

Excl uded i pRect: procedure

(
hdc s dwor d;

Page 112

Win32 APl Reference

nLef t Rect : dwor d;
nTopRect : dwor d;
nRi ght Rect : dwor d;
nBott omRect : dword

stdcal |l ;
returns("eax");
external (" __inp__ExcludeC i pRect @0");

Parameters
hdc

[in] Handle to the device context.
nLeftRect

[in] Specifiesthe logical x-coordinate of the upper-left corner of the rectangle.
nTopRect

[in] Specifiesthe logica y-coordinate of the upper-left corner of the rectangle.
nRightRect

[in] Specifiesthe logical x-coordinate of the lower-right corner of the rectangle.
nBottomRect

[in] Specifiesthe logica y-coordinate of the lower-right corner of the rectangle.
Return Values

The return value specifies the new clipping region's complexity; it can be one of the following
values.

Value M eaning
NULLREGION Region isempty.
SIMPLEREGION Region isasingle rectangle.
COMPLEXREGION Region is more than one rectangle.
ERROR No region was created.
Remarks

The lower and right edges of the specified rectangle are not excluded from the clipping region.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Clipping Overview, Clipping Functions, IntersectClipRect

Page 113

Volume 1

2.80 ExtCreatePen

The ExtCreatePen function creates alogical cosmetic or geometric pen that has the specified
style, width, and brush attributes.

Ext Creat ePen: procedure

(

dwPenStyl e s dwor d;
dww dt h s dwor d;
var |plb . LOGBRUSH;
dwst yl eCount s dwor d;
var | pStyle :dword
)
stdcal |l ;
returns("eax");
external ("__inp__ExtCreatePen@0");
Parameters
dwPen3yle

[in] Specifies acombination of type, style, end cap, and join attributes. The values from each
category are combined by using the bitwise OR operator ().

The pen type can be one of the following values.

Value M eaning
PS GEOMETRIC The pen is geometric.
PS COSMETIC The pen is cosmetic.

The pen style can be one of the following values.

Value M eaning

PS ALTERNATE Windows NT/2000: The pen sets every other pixel. (This
style is applicable only for cosmetic pens.)

PS SOLID The penissolid.

PS DASH The pen is dashed.

Windows 95: This styleis not supported for geometric
lines.

Windows 98: Not supported.
PS DOT The pen is dotted.

Windows 95/98: This style is not supported for geo-
metric lines.

Page 114

Win32 APl Reference

PS DASHDOT The pen has aternating dashes and dots.

Windows 95: This styleis not supported for geometric
lines.

Windows 98: Not supported.

PS DASHDOTDOT The pen has aternating dashes and double dots.
Windows 95: This styleis not supported for geometric
lines.
Windows 98: Not supported.

PS NULL The penisinvisible.

PS USERSTYLE Windows NT/2000: The pen uses astyling array supplied
by the user.

PS INSIDEFRAME The penis solid. When this pen isused in any GDI draw-
ing function that takes a bounding rectangle, the dimen-
sions of the figure are shrunk so that it fits entirely in the
bounding rectangle, taking into account the width of the
pen. This applies only to geometric pens.

The end cap is only specified for geometric pens. The end cap can be one of the following values.

Value M eaning
PS ENDCAP_ROUND End caps are round.
PS ENDCAP_SQUARE End caps are square.
PS ENDCAP _FLAT End caps are flat.

Thejoinisonly specified for geometric pens. Thejoin can be one of the following values.

Value M eaning

PS JOIN_BEVEL Joins are beveled.

PS JOIN_MITER Joins are mitered when they are within the current limit set
by the set M ter Li ni t function. If it exceeds thislimit, the
joinisbeveled.

PS JOIN_ROUND Joins are round.

Windows 95/98: The PS ENDCAP_ROUND, PS ENDCAP_SQUARE, PS ENDCAP_FLAT,
PS JOIN_BEVEL, PS JOIN_MITER, and PS_JOIN_ROUND styles are supported only for
geometric pens when used to draw paths.

dwWidth
[in] Specifies the width of the pen. If the dwPenSyle parameter isPS_GEOMETRIC, the

Page 115

Volume 1

widthisgivenin logical units. If dwPenSyleis PS_ COSMETIC, the width must be set to 1.
Iplb

[in] Pointer to a LocBRuUsH structure. If dwPenSyleis PS_COSMETIC, the IbColor member spec-
ifies the color of the pen and the IbStyle member must be set to BS_SOLID. If dwPenSyleis
PS GEOMETRIC, al members must be used to specify the brush attributes of the pen.

dwSyleCount

[in] Specifiesthe length, in DWORD units, of the IpSyle array. This value must be zero if
dwPen3yleisnot PS USERSTYLE.

IpSyle
[in] Pointer to an array. The first value specifies the length of the first dash in a user-defined
style, the second value specifies the length of the first space, and so on. This pointer must be
NULL if dwPenSyleisnot PS USERSTYLE.

Return Values

If the function succeeds, the return value is a handle that identifies alogical pen.
If the function fails, the return valueis zero.

Windows NT/2000: To get extended error information, call Get LastError.
Remarks

A geometric pen can have any width and can have any of the attributes of a brush, such as dithers
and patterns. A cosmetic pen can only be a single pixel wide and must be a solid color, but cos-
metic pens are generally faster than geometric pens.

The width of a geometric pen is always specified in world units. The width of a cosmetic penis
always 1.

End caps and joins are only specified for geometric pens.

After an application creates alogical pen, it can select that pen into a device context by calling the
Sel ect vj ect function. After a pen is selected into a device context, it can be used to draw lines
and curves.

If dwPenSyleisPS_COSMETIC and PS_ USERSTYLE, the entriesin the |pSyle array specify
lengths of dashes and spaces in style units. A style unit is defined by the device where the penis
used to draw aline.

If dwPenSyleisPS GEOMETRIC and PS_USERSTYLE, the entriesin the [pStyle array specify
lengths of dashes and spacesin logical units.

If dwPenSyleis PS_ALTERNATE, the style unit isignored and every other pixel is set.

If the IbStyle member of the LoesRruUsH structure pointed to by Iplb isBS _PATTERN, the bitmap
pointed to by the IbHatch member of that structure cannot be a DIB section. A DIB sectionisa
bitmap created by creat eDI Bsect i on. If that bitmap is a DIB section, the ExtCreatePen function
fails.

When an application no longer requires a specified pen, it should call the pel et etbj ect function

Page 116

Win32 APl Reference

to delete the pen.

ICM: No color management is done at pen creation. However, color management is performed
when the pen is selected into an ICM-enabled device context.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Pens Overview, Pen Functions, CreateDIBSection, CreatePen, CreatePenindirect, Del eteObject, GetObject, L OG-
BRUSH, SelectObject, SetMiterLimit

2.81 ExtCreateRegion

The ExtCreateRegion function creates a region from the specified region and transformation
data

Ext Cr eat eRegi on: procedure
(
var | pXform : XFORM
nCount : dwor d;
var | pRgnDat a . RGNDATA

stdcall;

returns("eax");

external ("__inp__ExtCreat eRegi on@2");
Parameters

[pXform

[in] Pointer to an xForm structure that defines the transformation to be performed on the region. If
this pointer isNULL, the identity transformation is used.

nCount
[in] Specifies the number of bytes pointed to by |pRgnData.
IpRgnData
[in] Pointer to a RGDATA structure that contains the region datain logical units.
Return Values
If the function succeeds, the return value is the value of the region.
If the function fails, the return valueis NULL.
Windows NT/2000: To get extended error information, call Get LastError.
Remarks
An application can retrieve data for aregion by calling the GetRegionData function.

Page 117

Volume 1

Windows 95/98: Regions are no longer limited to the 64K heap.

Windows 95/98: World transforms that involve either shearing or rotations are not supported.
ExtCreateRegion failsif the transformation matrix is anything other than a scaling or trandation
of theregion.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Regions Overview, Region Functions, GetRegionData, RGNDATA, XFORM

2.82 ExtEscape

The ExtEscape function enables applications to access capabilities of aparticular device that are
not available through GDI.

Ext Escape: procedure

(

hdc :dwor d;
nEscape :dwor d;
cbl nput s dwor d;
| pszlnData :string;
cbCut put s dwor d;
| pszQut Data :string
)
stdcall ;
returns("eax");
external ("__inp__ExtEscape@4");
Parameters
hdc
[in] Handle to the device context.
nEscape

[in] Specifies the escape function to be performed. It can be one of the following or it can be
an application-defined escape function.

Value M eaning
CHECKJPEGFORMAT Windows 2000: Checks whether the printer
supports a JPEG image.
CHECKPNGFORMAT Windows 2000: Checks whether the printer

supports a PNG image.

Page 118

Win32 APl Reference

DRAWPATTERNRECT Draws awhite, gray-scale, or black rectangle.

GET_PS FEATURESETTING Windows 2000: Getsinformation on aspecified
feature setting for a PostScript driver.

PASSTHROUGH Allowsthe application to send data directly to a
printer. Supported in compatibility mode and
GDI-centric mode.

POSTSCRIPT_DATA Allows the application to send data directly to a
printer. Supported only in compatibility mode.
POSTSCRIPT_IDENTIFY Windows 2000: Sets a PostScript driver to
GDI-centric or PostScript-centric mode.
POSTSCRIPT_INJECTION Windows 2000: Inserts ablock of raw datain a
PostScript job stream.
POSTSCRIPT_PASSTHROUGH Windows 2000: Sends data directly to a Post-

Script printer driver. Supported in compatibility
mode and PS-centric mode.

QUERYESCSUPPORT Determines whether a particular escapeis
implemented by the device driver.

SPCLPASSTHROUGH2 Windows 2000: Allows applications to include
private procedures and other resources at the
document level-save context.

cblnput

[in] Specifies the number of bytes of data pointed to by the IpszlnData parameter.
IpszinData

[in] Pointer to the input structure required for the specified escape.
cbOutput

[in] Specifies the number of bytes of data pointed to by the |pszOutData parameter.
IpszOutData

[out] Pointer to the structure that receives output from this escape. This parameter must not be
NULL if ExtEscapeiscalled asaquery function. If no dataisto be returned in this structure,
set cbOutput to O.

Return Values

The return value specifies the outcome of the function. It is greater than zero if the function is suc-
cessful, except for the QUERY ESCSUPPORT printer escape, which checks for implementation
only. The return value is zero if the escape is not implemented. A return value less than zero indi-
cates an error.

Windows NT/Windows 2000: To get extended error information, call Get Last Error.

Page 119

Volume 1

Remarks
Use this function to pass a driver-defined escape value to a device.

Use the Escape function to pass one of the system-defined escape values to a device, unless the
escape is one of the defined escapes in nEscape. ExtEscape might not work properly with the
system-defined escapes. In particular, escapes in which IpszinData is a pointer to a structure that
contains a member that is a pointer will fail.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Printing and Print Spooler Overview, Printing and Print Spooler Functions, Escape, GetDeviceCaps

2.83 ExtFloodFill

The ExtFloodFill function fills an area of the display surface with the current brush.

Ext Fl oodFil | : procedure
(
hdc : dwor d;
nXSt art : dwor d;
nYSt art s dwor d;
cr Col or : dwor d;

fuFill Type :dword

stdcall;
returns("eax");
external ("__inp__ExtFloodFill @0");

Parameters
hdc

[in] Handle to a device context.
nXSart

[in] Specifiesthe logical x-coordinate of the point where filling isto start.
nY3art

[in] Specifiesthe logica y-coordinate of the point wherefilling isto start.
crColor

[in] Specifies the color of the boundary or of the areato befilled. The interpretation of crColor
depends on the value of the fuFill Type parameter. To create a coLorREF color value, use the RGB
macro.

fuFill Type

Page 120

Win32 APl Reference

[in] Specifiesthetype of fill operation to be performed. This parameter must be one of the fol-

lowing values.
Value M eaning

FLOODFILLBORDER Thefill areais bounded by the color specified by the
crColor parameter. This styleisidentical to thefilling per-
formed by the Fi oodFi 11 function.

FLOODFILLSURFACE Thefill areais defined by the color that is specified by
crColor. Filling continues outward in al directions as long
asthe color isencountered. This styleis useful for filling
areas with multicolored boundaries.

Return Values

If the function succeeds, the return value is nonzero.
If the function fails, the return valueis zero.
Windows NT/ 2000: To get extended error information, call Get Last Error.
Remarks
The following are some of the reasons this function might fail:
» Thefilling could not be completed.

2 The specified point has the boundary color specified by the crColor parameter (if
FLOODFILLBORDER was requested).

2 The specified point does not have the color specified by crColor (if FLOODFILLSUR-
FACE was requested).

2 The point is outside the clipping region—that is, it is not visible on the device.

If the fuFill Type parameter is FLOODFILLBORDER, the system assumes that the area to be
filled is completely bounded by the color specified by the crColor parameter. The function begins
filling at the point specified by the nNXSart and nYSart parameters and continues in all directions
until it reaches the boundary.

If fuFillType is FLOODFILLSURFACE, the system assumes that the areato befilled isasingle
color. The function beginsto fill the area at the point specified by nXSart and nySart and contin-
uesin al directions, filling all adjacent regions containing the color specified by crColor.

Only memory device contexts and devices that support raster-display operations support the ext -
Fl oodFi I I function. To determine whether a device supports this technology, use the Get Devi ce-
caps function.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Header: Declared in Wingdi.h; include Windows.h.

Page 121

Volume 1

Library: Use Gdi32.lib.

See Also
Bitmaps Overview, Bitmap Functions, FloodFill, GetDeviceCaps, COL ORREF, RGB

2.84 ExtSelectClipRgn

The ExtSelectClipRgn function combines the specified region with the current clipping region
using the specified mode.

Ext Sel ect O i pRgn: procedure
(

hdc : dwor d;
hrgn : dwor d;
fnMode :dword
);
stdcal |l ;
returns("eax");
external ("__inp__ExtSelectdipRgn@2");
Parameters

hdc
[in] Handle to the device context.
hrgn

[in] Handle to the region to be selected. This handle can only be NULL when the
RGN_COPY mode is specified.

fnMode
[in] Specifies the operation to be performed. It must be one of the following values.

Value Meaning

RGN_AND The new clipping region combines the overlapping areas of the cur-
rent clipping region and the region identified by hrgn.

RGN_COPY The new clipping region is a copy of the region identified by hrgn.
Thisisidentical to sel ect d i prgn. If theregion identified by hrgnis
NULL, the new clipping region is the default clipping region (the
default clipping region isanull region).

RGN_DIFF The new clipping region combines the areas of the current clipping
region with those areas excluded from the region identified by hrgn.

RGN_OR The new clipping region combinesthe current clipping region and the
region identified by hrgn.

Page 122

Win32 APl Reference

RGN_XOR The new clipping region combines the current clipping region and the
region identified by hrgn but excludes any overlapping areas.

Return Values

The return value specifies the new clipping region's complexity; it can be one of the following
values.

Value M eaning
NULLREGION Region isempty.
SIMPLEREGION Region isasingle rectangle.
COMPLEXREGION Region is more than one rectangle.
ERROR An error occurred.
Remarks

If an error occurs when this function is called, the previous clipping region for the specified
device context is not affected.

The ExtSelectClipRgn function assumes that the coordinates for the specified region are speci-
fied in device units.

Only acopy of the region identified by the hrgn parameter is used. Theregion itself can bereused
after this call or it can be deleted.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also
Clipping Overview, Clipping Functions, SelectClipRgn

2.85 ExtTextOut

The ExtTextOut function draws text using the currently selected font, background color, and text
color. You can optionally provide dimensions to be used for clipping, opaquing, or both.

Ext Text Qut: procedure
(

hdc s dwor d;

X s dwor d;

y s dwor d;

fuOptions s dwor d;
var |prc . RECT;

| pString tstring;

cbCount s dwor d;

Page 123

Volume 1

var | pDx Tvar
);
stdcal |l ;
returns("eax");
external (" __inp__Ext Text Qut A@2");
Parameters
hdc
[in] Handle to the device context.
X

[in] Specifiesthe logical x-coordinate of the reference point used to position the string.

[in] Specifiesthe logica y-coordinate of the reference point used to position the string.
fuOptions

[in] Specifies how to use the application-defined rectangle. This parameter can be one or more
of the following values.

Value Meaning
ETO_CLIPPED The text will be clipped to the rectangle.

ETO_GLYPH_INDEX The IpSring array refers to an array returned from GetChar ac-
ter Placement and should be parsed directly by GDI as no further
language-specific processing is required. Glyph indexing only
appliesto TrueType fonts, but the flag can be used for bitmap and
vector fontsto indicate that no further language processing is nec-
essary and GDI should process the string directly. Note that all
glyph indexes are 16-bit values even though the string is assumed
to be an array of 8-bit values for raster fonts.

For ExtTextOutW, the glyph indexes are saved to a metafile.
However, to display the correct characters the metafile must
be played back using the same font. For ExtTextOutA, the
glyph indexes are not saved.

ETO_NUMERICSLATIN To display numbers, use European digits.

ETO NUMERICSLOCA Todisplay numbers, use digits appropriate to the locale.
L

ETO_OPAQUE The current background color should be used to fill the rectangle.

Page 124

Win32 APl Reference

ETO_PDY When thisis set, the array pointed to by IpDx contains pairs of
values. Thefirst value of each pair is, as usual, the distance
between origins of adjacent character cells, but the second value
is the displacement along the vertical direction of the font.

ETO_RTLREADING Middle-Eastern Windows: If thisvalueis specified and a
Hebrew or Arabic font is selected into the device context, the
string is output using right-to-left reading order. If thisvalueis
not specified, the string is output in left-to-right order. The same
effect can be achieved by setting the TA_RTLREADING vauein
SetTextAlign. Thisvaueis preserved for backward compatabil-
ity.

The ETO_GLYPH_INDEX and ETO_RTLREADING values cannot be used together. Because
ETO_GLYPH_INDEX impliesthat al language processing has been completed, the function
ignoresthe ETO_RTLREADING flag if aso specified.

Iprc

[in] Pointer to an optional RecT structure that specifies the dimensions of a rectangle that is used
for clipping, opaguing, or both.

[pSring

[in] Pointer to astring that specifiesthe text to be drawn. The string does not need to be
zero-terminated, since cbhCount specifies the length of the string.

cbCount

[in] Specifies the length of the string. For the ANSI function it isaBY TE count and for the
Unicode function itisa WORD count. Note that for the ANSI function, charactersin SBCS
code pages take one byte each, while most charactersin DBCS code pages take two bytes; for
the Unicode function, most currently defined Unicode characters (those in the Basic Multilin-
gual Plane (BMP)) are one WORD while Unicode surrogates are two WORDs.

Windows 95/98: This value may not exceed 8192.
IpDx

[in] Pointer to an optional array of values that indicate the distance between origins of adja-
cent character cells. For example, IpDx[i] logical units separate the origins of character cell i
and character cell i + 1.

Return Values

If the string is drawn, the return value isnonzero. However, if the ANSI version of ExtTextOut is
called with ETO_GLY PH_INDEX, the function returns TRUE even though the function does
nothing.

If the function fails, the return value is zero.
Windows NT/ 2000: To get extended error information, call Get Last Error.

Page 125

Volume 1

Remarks

Although not true in general, Windows 95/98 supports the Unicode version of this function as
well asthe ANSI version.

The current text-alignment settings for the specified device context determine how the reference
point is used to position the text. The text-alignment settings are retrieved by calling the Get Tex-
t Ali gn function. The text-alignment settings are altered by calling the set Text Al i gn function.

If the IpDx parameter is NULL, the ExtTextOut function uses the default spacing between char-
acters. The character-cell origins and the contents of the array pointed to by the |pDx parameter
are specified inlogical units. A character-cell origin is defined as the upper-left corner of the char-
acter cell.

By default, the current position is not used or updated by this function. However, an application
can call the SetTextAlign function with the fMode parameter set to TA_UPDATECP to permit the
system to use and update the current position each time the application calls ExtTextOut for a
specified device context. When thisflag is set, the system ignores the X and Y parameters on sub-
sequent ExtTextOut calls.

For the ANSI version of ExtTextOut, the IpDx array has the same number of INT values as there
are bytesin IpSring. For DBCS characters, you can apportion the dx in the IpDx entries between

the lead byte and the trail byte, aslong as the sum of the two bytes adds up to the desired dx. For

DBCS characters with the Unicode version of ExtTextOut, each Unicode glyph gets asingle pdx
entry.

Note, the alpDx values from Get TextExtentExPoint are not the same asthe |pDx values for Ext-
TextOut. To use the alpDx values in |pDx, you must first process them.

Requirements

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or |ater.
Header: Declared in Wingdi.h; include Windows.h.
Library: Use Gdi32.lib.

See Also

Fonts and Text Overview, Font and Text Functions, GetTextAlign, RECT, SetBkColor, SelectObject, SetTextAlign,
SetTextColor

Page 126

	Win32 API Reference for HLA
	2 GDI32.lib
	2.1 AbortDoc
	2.2 AbortPath
	2.3 AddFontMemResourceEx
	2.4 AddFontResource
	2.5 AddFontResourceEx
	2.6 AngleArc
	2.7 AnimatePalette
	2.8 Arc
	2.9 ArcTo
	2.10 BeginPath
	2.11 BitBlt
	2.12 CancelDC
	2.13 CheckColorsInGamut
	2.14 ChoosePixelFormat
	2.15 Chord
	2.16 CloseEnhMetaFile
	2.17 CloseFigure
	2.18 CloseMetaFile
	2.19 ColorCorrectPalette
	2.20 ColorMatchToTarget
	2.21 CombineRgn
	2.22 CombineTransform
	2.23 CopyEnhMetaFile
	2.24 CopyMetaFile
	2.25 CreateBitmap
	2.26 CreateBitmapIndirect
	2.27 CreateBrushIndirect
	2.28 CreateColorSpace
	2.29 CreateCompatibleBitmap
	2.30 CreateCompatibleDC
	2.31 CreateDC
	2.32 CreateDIBPatternBrush
	2.33 CreateDIBPatternBrushPt
	2.34 CreateDIBSection
	2.35 CreateDIBitmap
	2.36 CreateDiscardableBitmap
	2.37 CreateEllipticRgn
	2.38 CreateEllipticRgnIndirect
	2.39 CreateEnhMetaFile
	2.40 CreateFont
	2.41 CreateFontIndirect
	2.42 CreateFontIndirectEx
	2.43 CreateHalftonePalette
	2.44 CreateHatchBrush
	2.45 CreateIC
	2.46 CreateMetaFile
	2.47 CreatePalette
	2.48 CreatePatternBrush
	2.49 CreatePen
	2.50 CreatePenIndirect
	2.51 CreatePolyPolygonRgn
	2.52 CreatePolygonRgn
	2.53 CreateRectRgn
	2.54 CreateRectRgnIndirect
	2.55 CreateRoundRectRgn
	2.56 CreateScalableFontResource
	2.57 CreateSolidBrush
	2.58 DPtoLP
	2.59 DeleteColorSpace
	2.60 DeleteDC
	2.61 DeleteEnhMetaFile
	2.62 DeleteObject
	2.63 DescribePixelFormat
	2.64 DeviceCapabilities
	2.65 DrawEscape
	2.66 Ellipse
	2.67 EndDoc
	2.68 EndPage
	2.69 EndPath
	2.70 EnumEnhMetaFile
	2.71 EnumFontFamilies
	2.72 EnumFontFamiliesEx
	2.73 EnumFonts
	2.74 EnumICMProfiles
	2.75 EnumMetaFile
	2.76 EnumObjects
	2.77 EqualRgn
	2.78 Escape
	2.79 ExcludeClipRect
	2.80 ExtCreatePen
	2.81 ExtCreateRegion
	2.82 ExtEscape
	2.83 ExtFloodFill
	2.84 ExtSelectClipRgn
	2.85 ExtTextOut

