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17 PARAMETERS AND FUNCTIONS 

It is the aim of this chapter to show how we can extend our language and its compiler to allow for
value-returning functions in addition to regular procedures, and to support the use of parameters.
Once again, the syntactic and semantic extensions we shall make are kept as simple as possible, and
should be familiar to the reader from a study of other imperative languages. 

17.1 Syntax and semantics 

The subject of parameter passing is fairly extensive, as the reader may have realized. In the
development of programming languages several models of parameter passing have been proposed,
and the ones actually implemented vary semantically from language to language, while
syntactically often appearing deceptively similar. In most cases, declaration of a subprogram
segment is accompanied by the declaration of a list of formal parameters, which appear to have a
status within the subprogram rather like that of local variables. Invocation of the subprogram is
accompanied by a corresponding list of actual parameters (sometimes called arguments), and it is
invariably the case that the relationship between formal and actual parameters is achieved by
positional correspondence, rather than by lexical correspondence in the source text. Thus it would
be quite legal, if a little confusing to another reader, to declare 

                    PROCEDURE AnyName ( A , B )

and then to invoke it with a statement of the form 

                    AnyName ( B , A )

when the A in the procedure would be associated with the B in the calling routine, and the B in the
procedure would be associated with the A in the calling routine. It may be the lack of name
correspondence that is at the root of a great deal of confusion in parameter handling amongst
beginners. 

The correspondence of formal and actual parameters goes deeper than mere position in a parameter
list. Of the various ways in which it might be established, the two most widely used and familiar
parameter passing mechanisms are those known as call-by-reference and call-by-value. In
developing the case studies in this text we have, of course, made frequent use of both of methods;
we turn now to a discussion of how they are implemented. 

The semantics and the implementation of the two mechanisms are quite different: 

In call-by-reference an actual parameter usually takes the form of a VariableDesignator.
Within the subprogram, a reference to the formal parameter results, at run-time, in a direct
reference to the variable designated by the actual parameter, and any change to that formal
parameter results in an immediate change to the corresponding actual parameter. In a very
real sense, a formal parameter name may be regarded as an alias for the actual parameter
name. The alias lasts as long as the procedure is active, and may be transmitted to other
subprograms with parameters passed in the same way. Call-by-reference is usually
accomplished by passing the address associated with the actual parameter to the subprogram
for processing. 



In call-by-value, an actual parameter takes the form of an Expression. Formal parameters in a
subprogram (when declared in this way) are effectively variables local to that subprogram,
which start their lives initialized to the values of the corresponding actual parameter
expressions. However, any changes made to the values of the formal parameter variables are
confined to the subprogram, and cannot be transmitted back via the formal parameters to the
calling routine. Fairly obviously, it is the run-time value of the expression which is handed
over to the subprogram for processing, rather than an explicit address of a variable. 

Call-by-value is preferred for many applications - for example it is useful to be able to pass
expressions to procedures like WRITE without having to store their values in otherwise redundant
variables. However, if an array is passed by value, a complete copy of the array must be passed to
the subprogram. This is expensive, both in terms of space and time, and thus many programmers
pass all array parameters by reference, even if there is no need for the contents of the array to be
modified. In C++, arrays may only be passed as reference parameters, although C++ permits the use
of the qualifier const to prevent an array from being modified in a subprogram. Some languages
permit call-by-reference to take place with actual parameters that are expressions in the general
sense; in this case the value of the expression is stored in a temporary variable, and the address of
that variable is passed to the subprogram. 

In what follows we shall partially illustrate both methods, using syntax suggested by C. Simple
scalar parameters will be passed by value, and array parameters will be passed by reference in a
way that almost models the open array mechanism in Modula-2. 

We describe the introduction of function and parameter declarations to our language more formally
by the following EBNF. The productions are highly non-LL(1), and it should not take much
imagination to appreciate that there is now a large amount of context-sensitive information that a
practical parser will need to handle (through the usual device of the symbol table). Our productions
attempt to depict where such context-sensitivity occurs. 

    ProcDeclaration    =   ( "PROCEDURE" ProcIdentifier | "FUNCTION" FuncIdentifier )
                           [ FormalParameters ] ";"
                           Block  ";" .
    FormalParameters   =   "("  OneFormal  { ","  OneFormal }  ")" .
    OneFormal          =   ScalarFormal | ArrayFormal .
    ScalarFormal       =   ParIdentifier .
    ArrayFormal        =   ParIdentifier "[" "]" .

We extend the syntax for ProcedureCall to allow procedures to be invoked with parameters: 

    ProcedureCall      =   ProcIdentifier ActualParameters .
    ActualParameters   =   [ "(" OneActual { "," OneActual } ")" ] .
    OneActual          =   ValueParameter | ReferenceParameter .
    ValueParameter     =   Expression .
    ReferenceParameter =   Variable .

We also extend the definition of Factor to allow function references to be included in expressions
with the appropriate precedence: 

    Factor             =   Variable | ConstIdentifier | number
                          | "(" Expression ")"
                          | FuncIdentifier ActualParameters .

and we introduce the ReturnStatement in an obvious way: 

    ReturnStatement    =   "RETURN" [ Expression ] .

where the Expression is only needed within functions, which will be limited (as in traditional C and
Pascal) to returning scalar values only. Within a regular procedure the effect of a ReturnStatement



is simply to transfer control to the calling routine immediately; within a main program a
ReturnStatement simply terminates execution. 

A simple example of a Clang program that illustrates these extensions is as follows: 

   PROGRAM Debug;

     FUNCTION Last (List[], Limit);
       BEGIN
         RETURN List[Limit];
       END;

     PROCEDURE Analyze (Data[], N);
       VAR
         LocalData[2];
       BEGIN
         WRITE(Last(Data, N+2), Last(LocalData, 1));
       END;

     VAR
       GlobalData[3];

     BEGIN
       Analyze(GlobalData, 1);
     END.

The WRITE statement in procedure Analyze would print out the value of GlobalData[3] followed
by the value of LocalData[1]. GlobalData is passed to Analyze, which refers to it under the alias
of Data, and then passes it on to Last, which, in turn, refers to it under the alias of List. 

17.2 Symbol table support for context-sensitive features 

It is possible to write a simple context-free set of productions that do satisfy the LL(1) constraints,
and a Coco/R generated system will require this to be done. We have remarked earlier that it is not
possible to specify the requirement that the number of formal and actual parameters must match;
this will have to be done by context conditions. So too will the requirement that each actual
parameter is passed in a way compatible with the corresponding formal parameter - for example,
where a formal parameter is an open array we must not be allowed to pass a scalar variable
identifier or an expression as the actual parameter. As usual, a compiler must rely on information
stored in the symbol table to check these conditions, and we may indicate the support that must be
provided by considering the shell of a simple program: 

  PROGRAM Main;
    VAR G1;                   (* global *)

    PROCEDURE One (P1, P2);   (* two formal scalar parameters *)
      BEGIN                   (* body of One *)
      END;

    PROCEDURE Two;            (* no formal parameters *)
      BEGIN                   (* body of Two *)
      END;

    PROCEDURE Three (P1[]);   (* one formal open array parameter *)
      VAR L1, L2;             (* local to Three *)
      BEGIN                   (* body of Three *)
      END;

    BEGIN                     (* body of Main *)
    END.

At the instant where the body of procedure Three is being parsed our symbol table might have a
structure like that in Figure 17.1. 



Although all three of the procedure identifiers One, Two and Three are in scope, procedures One

and Two will already have been compiled in a one-pass system. So as to retain information about
their formal parameters, internal links are set up from the symbol table nodes for the procedure
identifiers to the nodes set up for these parameters. To provide this support it is convenient to
extend the definition of the TABLE_entries structure: 

  enum TABLE_idclasses
  { TABLE_consts, TABLE_vars, TABLE_progs, TABLE_procs, TABLE_funcs };

  struct TABLE_nodes;
  typedef TABLE_nodes *TABLE_index;

  struct TABLE_entries {
    TABLE_alfa name;             // identifier
    int level;                   // static level
    TABLE_idclasses idclass;     // class
    union {
      struct {
        int value;
      } c;                       // constants
      struct {
        int size, offset;
        bool ref, scalar;
      } v;                       // variables
      struct {
        int params, paramsize;
        TABLE_index firstparam;
        CGEN_labels entrypoint;
      } p;                       // procedures, functions
    };
  };

Source for an implementation of the TABLE class can be found in Appendix B, and it may be helpful
to draw attention to the following features: 

Formal parameters are treated within the Block of a function or procedure in most cases as
though they were variables. So it will be convenient to enter them into the symbol table as
such. However, it now becomes necessary to tag the entry for each variable with the extra
field ref. This denotes whether the identifier denotes a true variable, or is merely an alias for
a variable that has been passed to a procedure by reference. Global and local variables and
scalar formals will all have this field defined to be false. 

Passing an array to a subprogram by reference is not simply a matter of passing the address of
the first element, even though the subprogram appears to handle open arrays. We shall also
need to supply the length of the array (unless we are content to omit array bound checking).
This suggests that the value of the size field for an array formal parameter can always be 2.
We observe that passing open arrays by value, as is possible in Modula-2, is likely to be
considerably more complicated. 



Formal parameter names, like local variable names, will be entered at a higher level than the
procedure or function name, so as to reserve them local status. 

For procedures and functions the params field is used to record the number of formal
parameters, and the firstparam field is used to point to the linked queue of entries for the
identifiers that denote the formal parameters. Details of the formal parameters, when needed
for context-sensitive checks, can be extracted by further member functions in the TABLE class.
As it happens, for our simplified system we need only to know whether an actual parameter
must be passed by value or by reference, so a simple Boolean function isrefparam is all that
is required. 

When a subprogram identifier is first encountered, the compiler will not immediately know
how many formal parameters will be associated with it. The table handler must make
provision for backpatching an entry, and so we need a revised interface to the enter routine,
as well as an update routine: 

       class TABLE {
         public:
           void enter(TABLE_entries &entry, TABLE_index &position);
           // Adds entry to symbol table, and returns its position

           void update(TABLE_entries &entry, TABLE_index position);
           // Updates entry at known position

           bool isrefparam(TABLE_entries &procentry, int n);
           // Returns true if nth parameter for procentry is passed by reference

           // rest as before
       };

The way in which the declaration of functions and parameters is accomplished may now be
understood with reference to the following extract from a Cocol specification: 

   ProcDeclaration
   =                          (. TABLE_entries entry; TABLE_index index; .)
      (   "PROCEDURE"         (. entry.idclass = TABLE_procs; .)
        | "FUNCTION"          (. entry.idclass = TABLE_funcs; .)
      ) Ident<entry.name>     (. entry.p.params = 0; entry.p.paramsize = 0;
                                 entry.p.firstparam = NULL;
                                 CGen->storelabel(entry.p.entrypoint);
                                 Table->enter(entry, index);
                                 Table->openscope(); .)
      [
      FormalParameters<entry> (. Table->update(entry, index); .)
      ] WEAK ";"
      Block<entry.level+1, entry.idclass, entry.p.paramsize + CGEN_headersize>
      ";" .

   FormalParameters<TABLE_entries &proc>
   =                          (. TABLE_index p; .)
      "(" OneFormal<proc, proc.p.firstparam>
          { WEAK "," OneFormal<proc, p> } ")" .

   OneFormal<TABLE_entries &proc, TABLE_index &index>
   =                          (. TABLE_entries formal;
                                 formal.idclass = TABLE_vars; formal.v.ref = false;
                                 formal.v.size = 1; formal.v.scalar = true;
                                 formal.v.offset = proc.p.paramsize
                                                   + CGEN_headersize + 1; .)
      Ident<formal.name>
      [ "[" "]"               (. formal.v.size = 2; formal.v.scalar = false;
                                 formal.v.ref = true; .)
      ]                       (. Table->enter(formal, index);
                                 proc.p.paramsize += formal.v.size;
                                 proc.p.params++; .) .

Address offsets have to be associated with formal parameters, as with other variables. These are
allocated as the parameters are declared. This topic is considered in more detail in the next section;
for the moment notice that parameter offsets start at CGEN_HeaderSize + 1. 



17.3 Actual parameters and stack frames 

There are several ways in which actual parameter values may be transmitted to a subprogram.
Typically they are pushed onto a stack as part of the activation sequence that is executed before
transferring control to the procedure or function which is to use them. Similarly, to allow a function
value to be returned, it is convenient to reserve a stack item for this just before the actual
parameters are set up, and for the function subprogram to access this reserved location using a
suitable offset. The actual parameters might be stored after the frame header - that is, within the
activation record - or they might be stored before the frame header. We shall discuss this latter
possibility no further here, but leave the details as an exercise for the curious reader (see Terry
(1986) or Brinch Hansen (1985)). 

If the actual parameters are to be stored within the activation record, the corresponding formal
parameter offsets are easily determined by the procedures specified by the Cocol grammar given
earlier. These also keep track of the total space that will be needed for all parameters, and the final
offset reached is then passed on to the parser for Block, which can continue to assign offsets for
local variables beyond this. 

To handle function returns it is simplest to have a slightly larger frame header than before. We
reserve the first location in a stack frame (that is, at an invariant offset of 1 from the base pointer
BP) for a function’s return value, thereby making code generation for the ReturnStatement
straightforward. This location is strictly not needed for regular procedures, but it makes for easier
code generation to keep all frame headers a constant size. We also need to reserve an element for
saving the old mark stack pointer at procedure activation so that it can be restored once a procedure
has been completed. We also need to reserve an element for saving the old mark stack pointer at
procedure activation so that it can be restored once a procedure has been completed. 

If we use the display model, the arrangement of the stack after a procedure has been activated and
called will typically be as shown in Figure 17.2. The frame header and actual parameters are set up
by the activation sequence, and storage for the local variables is reserved immediately after the
procedure obtains control. 

This may be made clearer by considering some examples. Figure 17.3 shows the layout in memory
for the array processing program given in section 17.1, at the instant where function Last has just
started execution. 



Note that there are three values in the parameter area of the stack frame for Analyze. The first two
are the actual address of the first element of the array bound to the formal parameter Data, and the
actual size to be associated with this formal parameter. The third is the initial value assigned to
formal parameter N. When Analyze activates function Last it stacks the actual address of the array
that was bound to Data, as well as the actual size of this array, so as to allow Last to bind its
formal parameter List to the formal parameter Data, and hence, ultimately, to the same array (that
is, to the global array GlobalData). 

The second example shows a traditional, if hackneyed, approach to computing factorials: 

  PROGRAM Debug;

    FUNCTION Factorial (M);
      BEGIN
        IF M <= 1 THEN RETURN 1;
        RETURN M * Factorial(M-1);
      END;

    VAR N;

    BEGIN
      READ(N);
      WHILE N > 0 DO
        BEGIN WRITE(Factorial(N)); READ(N) END;
    END.

If this program were to be supplied with a data value of N = 3, then the arrangement of stack
frames would be as depicted in Figure 17.4 immediately after the function has been called for the
second time. 



Factorial can pick up its parameter M by using an offset of 5 from BP, and can assign the value to
be returned to the stack element whose offset is 1 from BP. (In practice the addressing might be
done via Display[2], rather than via BP). 

Note that this way of returning function values is entirely consistent with the use of the stack for
expression evaluation. In practice, however, many compilers return the value of a scalar function in
a machine register. 

17.4 Hypothetical stack machine support for parameter passing 

Little has to be added to our stack machine to support parameter passing and function handling.
Leaving a Block is slightly different: after completing a regular procedure we can cut the stack back
so as to throw away the entire stack frame, but after completing a function procedure we must leave
the return value on the top of stack so that it will be available for incorporation into the expression
from which the call was instigated. This means that the STKMC_ret instruction requires a second
operand. It also turns out to be useful to introduce a STKMC_nfn instruction that can be generated at
the end of each function block to detect those situations where the flow of control through a
function never reaches a ReturnStatement (this is very hard to detect at compile-time). Taking into
account the increased size of the frame header, the operational semantics of the affected instructions
become: 

  case STKMC_cal:                               // procedure entry
    mem[cpu.mp - 2] = display[mem[cpu.pc]];     // save display element
    mem[cpu.mp - 3] = cpu.bp;                   // save dynamic link
    mem[cpu.mp - 4] = cpu.pc + 2;               // save return address
    display[mem[cpu.pc]] = cpu.mp;              // update display
    cpu.bp = cpu.mp;                            // reset base pointer
    cpu.pc = mem[cpu.pc + 1];                   // enter procedure
    break;

  case STKMC_ret:                               // procedure exit
    display[mem[cpu.pc] - 1] = mem[cpu.bp - 2]; // restore display
    cpu.mp = mem[cpu.bp - 5];                   // restore mark pointer
    cpu.sp = cpu.bp - mem[cpu.pc + 1];          // discard stack frame
    cpu.pc = mem[cpu.bp - 4];                   // get return address
    cpu.bp = mem[cpu.bp - 3];                   // reset base pointer
    break;

  case STKMC_mst:
    if (inbounds(cpu.sp-STKMC_headersize))      // check space available
    { mem[cpu.sp-5] = cpu.mp;                   // save mark pointer
      cpu.mp = cpu.sp;                          // set mark stack pointer
      cpu.sp -= STKMC_headersize;               // bump stack pointer
    }
    break;

  case STKMC_nfn:                               // bad function (no return)
    ps = badfun; break;                         // change status from running

17.5 Context sensitivity and LL(1) conflict resolution 

We have already remarked that our language now contains several features that are
context-sensitive, and several that make an LL(1) description difficult. These are worth
summarizing: 

      Statement          =   Assignment | ProcedureCall | ...
      Assignment         =   Variable ":="  Expression .
      ProcedureCall      =   ProcIdentifier ActualParameters .



Both Assignment and ProcedureCall start with an identifier. Parameters cause similar difficulties: 

      ActualParameters   =   [ "(" OneActual { "," OneActual } ")" ] .
      OneActual          =   ValueParameter | ReferenceParameter .
      ValueParameter     =   Expression .
      ReferenceParameter =   Variable .

OneActual is non-LL(1), as Expression might start with an identifier, and Variable certainly does.
An Expression ultimately contains at least one Factor: 

      Factor             =    Variable | ConstIdentifier | number
                            | "(" Expression ")"
                            | FuncIdentifier ActualParameters .

and three alternatives in Factor start with an identifier. A Variable is problematic: 

      Variable           =   VarIdentifier [ "[" Expression "]" ] .

In the context of a ReferenceParameter the optional index expression is not allowed, but in the
context of all other Factors it must be present. Finally, even the ReturnStatement becomes
context-sensitive: 

      ReturnStatement    =   "RETURN" [ Expression ] .

In the context of a function Block the Expression must be present, while in the context of a regular
procedure or main program Block it must be absent. 

17.6 Semantic analysis and code generation 

We now turn to a consideration of how the context-sensitive issues can be handled by our parser,
and code generated for programs that include parameter passing and value returning functions. It is
convenient to consider hand-crafted and automatically generated compilers separately. 

17.6.1 Semantic analysis and code generation in a hand-crafted compiler 

As it happens, each of the LL(1) conflicts and context-sensitive constraints is easily handled when
one writes a hand-crafted parser. Each time an identifier is recognized it is immediately checked
against the symbol table, after which the appropriate path to follow becomes clear. We consider the
hypothetical stack machine interface once more, and in terms of simplified on-the-fly code
generation, making the assumption that the source will be free of syntactic errors. Full source code
is, of course, available on the source diskette. 

Drawing a distinction between assignments and procedure calls has already been discussed in
section 16.1.5, and is handled from within the parser for Statement. The parser for ProcedureCall is
passed the symbol table entry apposite to the procedure being called, and makes use of this in
calling on the parser to handle that part of the activation sequence that causes the actual parameters
to be stacked before the call is made: 

  void PARSER::ProcedureCall(TABLE_entries entry)
  // ProcedureCall = ProcIdentifier ActualParameters .
  { GetSym();
    CGen->markstack();                             // code for activation
    ActualParameters(entry);                       // code to evaluate arguments
    CGen->call(entry.level, entry.p.entrypoint);   // code to transfer control
  }

A similar extension is needed to the routine that parses a Factor: 



  void PARSER::Factor(void)
  // Factor = Variable | ConstIdentifier | FuncIdentifier ActualParameters ..
  // Variable = Designator .
  { TABLE_entries entry;
    switch (SYM.sym)
    { case SCAN_identifier:                        // several cases arise...
        Table->search(SYM.name, entry);            // look it up
        switch (entry.idclass)                     // resolve LL(1) conflict
        { case TABLE_consts:
            GetSym();
            CGen->stackconstant(entry.c.value);    // code to load named constant
            break;
          case TABLE_funcs:
            GetSym();
            CGen->markstack();                     // code for activation
            ActualParameters(entry);               // code to evaluate arguments
            CGen->call(entry.level,
                       entry.p.entrypoint);        // code to transfer control
            break;
          case TABLE_vars:
            Designator(entry);                     // code to load address
            CGen->dereference(); break;            // code to load value
        }
        break;
                                                   // ... other cases
    }
  }

The parsers that handle ActualParameters and OneActual are straightforward, and make use of the
extended features in the symbol table handler to distinguish between reference and value
parameters: 

  void PARSER::ActualParameters(TABLE_entries procentry)
  // ActualParameters = [ "(" OneActual { "," OneActual } ")" ] .
  { int actual = 0;
    if (SYM.sym == SCAN_lparen)                    // check for any arguments
    { GetSym(); OneActual(procentry, actual);
      while (SYM.sym == SCAN_comma)
      { GetSym(); OneActual(followers, procentry, actual); }
      accept(SCAN_rparen);
    }
    if (actual != procentry.p.params)
      Report->error(209);                          // wrong number of arguments
  }

  void PARSER::OneActual(TABLE_entries procentry, int &actual)
  // OneActual = ArrayIdentifier | Expression .  (depends on context)
  { actual++;                                      // one more argument
    if (Table->isrefparam(procentry, actual))      // check symbol table
      ReferenceParameter();
    else
      Expression();
  }

The several situations where it is necessary to generate code that will push the run-time address of a
variable or parameter onto the stack all depend ultimately on the stackaddress routine in the code
generator interface. This has to be more complex than before, because in the situations where a
variable is really an alias for a parameter that has been passed by reference, the offset recorded in
the symbol table is really the offset where one will find yet another address. To push the true
address onto the stack requires that we load the address of the offset, and then dereference this to
find the address that we really want. Hence the code generation interface takes the form 

      stackaddress(int level, int offset, bool byref);

which, for our stack machine will emit a LDA level offset instruction, followed by a VAL
instruction if byref is true. This has an immediate effect on the parser for a Designator, which
now becomes: 

  void PARSER::Designator(TABLE_entries entry)
  // Designator = VarIdentifier [ "[" Expression "]" ] .
  { CGen->stackaddress(entry.level, entry.v.offset, entry.v.ref); // base address
    GetSym();



    if (SYM.sym == SCAN_lbracket)                  // array reference
    { GetSym();
      Expression();                                // code to evaluate index
      if (entry.v.ref)                             // get size from hidden parameter
        CGen->stackaddress(entry.level, entry.v.offset + 1, entry.v.ref);
      else                                         // size known from symbol table
        CGen->stackconstant(entry.v.size);
      CGen->subscript();
      accept(SCAN_rbracket);
    }
  }

The first call to stackaddress is responsible for generating code to push the address of a scalar
variable onto the stack, or the address of the first element of an array. If this array has been passed
by reference it is necessary to dereference that address to find the true address of the first element
of the array, and to determine the true size of the array by retrieving the next (hidden) actual
parameter. Another situation in which we wish to push such addresses onto the stack arises when
we wish to pass a formal array parameter on to another routine as an actual parameter. In this case
we have to push not only the address of the base of the array, but also a second hidden argument
that specifies its size. This is handled by the parser that deals with a ReferenceParameter: 

  void PARSER::ReferenceParameter(void)
  // ReferenceParameter = ArrayIdentifier .  (unsubscripted)
  { TABLE_entries entry;
    Table->search(SYM.name, entry);                // assert : SYM.sym = identifier
    CGen->stackaddress(entry.level, entry.v.offset, entry.v.ref);  // base
                                                   // pass size as next parameter
    if (entry.v.ref)                               // get size from formal parameter
      CGen->stackaddress(entry.level, entry.v.offset + 1, entry.v.ref);
    else                                           // size known from symbol table
      CGen->stackconstant(entry.v.size);
    GetSym();                                      // should be comma or rparen
  }

The variations on the ReturnStatement are easily checked, since we have already made provision
for each Block to be aware of its category. Within a function a ReturnStatement is really an
assignment statement, with a destination whose address is always at an offset of 1 from the base of
the stack frame. 

  void PARSER::ReturnStatement(void)
  // ReturnStatement = "RETURN" [ Expression ] .
  { GetSym();                                      // accept RETURN
    switch (blockclass)                            // semantics depend on context
    { case TABLE_funcs:
        CGen->stackaddress(blocklevel, 1, false);  // address of return value
        Expression(followers); CGen->assign();     // code to compute and assign
        CGen->leavefunction(blocklevel); break;    // code to exit function
      case TABLE_procs:
        CGen->leaveprocedure(blocklevel); break;   // direct exit from procedure
      case TABLE_progs:
        CGen->leaveprogram(); break;               // direct halt from main program
    }
  }

As illustrative examples we give the code for the programs discussed previously: 

    0 : PROGRAM Debug;
    0 :
    0 :   FUNCTION Factorial (M);
    2 :     BEGIN
    2 :       IF M <= 1 THEN RETURN 1;
   20 :       RETURN M * Factorial(M-1);
   43 :     END;
   44 :
   44 :   VAR N;
   44 :
   44 :   BEGIN
   46 :     READ(N);
   50 :     WHILE N > 0 DO
   59 :       BEGIN WRITE(Factorial(N)); READ(N) END;
   75 :   END.

   0 BRN   44  Jump to start of program       40 RET 2  1    Exit function



   2 ADR 2 -5  BEGIN Factorial                43 NFN       END Factorial
   5 VAL         Value of M                   44 DSP    1  BEGIN main program
   6 LIT    1                                 46 ADR 1 -1      Address of N
   8 LEQ         M <= 1 ?                     49 INN         READ(N)
   9 BZE   20    IF M <= 1 THEN               50 ADR 1 -1      Address of N
  11 ADR 2 -1      Address of return val      53 VAL           Value of N
  14 LIT    1      Value of 1                 54 LIT    0    WHILE N > 0 DO
  16 STO           Store as return value      56 GTR
  17 RET 2  1      Exit function              57 BZE   75
  20 ADR 2 -1    Address of return value      59 MST           Mark stack
  23 ADR 2 -5    Address of M                 60 ADR 1 -1      Address of N
  26 VAL         Value of M                   63 VAL           Value of N (argument)
  27 MST         Mark stack                   64 CAL 1  2      Call Factorial
  28 ADR 2 -5    Address of M                 67 PRN           WRITE(result)
  31 VAL         Value of M                   68 NLN
  32 LIT    1                                 69 ADR 1 -1
  34 SUB         Value of M-1 (argument)      72 INN           READ(N)
  35 CAL 1  2    Recursive call               73 BRN   50    END
  38 MUL         Value M*Factorial(M-1)       75 HLT       END
  39 STO         Store as return value

    0 : PROGRAM Debug;
    2 :
    2 :   FUNCTION Last (List[], Limit);
    2 :     BEGIN
    2 :       RETURN List[Limit];
   23 :     END;
   24 :
   24 :   PROCEDURE Analyze (Data[], N);
   24 :     VAR
   26 :       LocalData[2];
   26 :     BEGIN
   26 :       Write(Last(Data, N+2), Last(LocalData, 1));
   59 :     END;
   62 :
   62 :   VAR
   62 :     GlobalData[3];
   62 :
   62 :   BEGIN
   64 :     Analyze(GlobalData, 1);
   75 :   END.

   0 BRN   62  Jump to start of program        38 VAL         Value of N
   2 ADR 2 -1      Address of return value     39 LIT    2
   5 ADR 2 -5                                  41 ADD         Value of N+2 (argument)
   8 VAL           Address of List[0]          42 CAL 1  2    Last(Data, N+2)
   9 ADR 2 -7      Address of Limit            45 PRN         Write result
  12 VAL           Value of Limit              46 MST         Mark Stack
  13 ADR 2 -6                                  47 ADR 2 -8    Address of LocalData[0]
  16 VAL           Size of List                50 LIT    3    Size of LocalData
  17 IND           Subscript                   52 LIT    1    Value 1 (parameter)
  18 VAL           Value of List[Limit]        54 CAL 1  2    Last(LocalData, 1)
  19 STO         Store as return value         57 PRN         Write result
  20 RET 2  1    and exit function             58 NLN         WriteLn
  23 NFN       END Last                        59 RET 2  0  END Analyze
  24 DSP    3  BEGIN Analyze                   62 DSP    4  BEGIN Debug
  26 MST           Mark Stack                  64 MST         Mark stack
  27 ADR 2 -5      First argument is           65 ADR 1 -1    Address of GlobalData[0]
  30 VAL           Address of Data[0]          68 LIT    4    Size of GlobalData
  31 ADR 2 -6      Hidden argument is          70 LIT    1    Value 1 (argument)
  34 VAL           Size of Data                72 CAL 1 24    Analyze(GlobalData, 1)
  35 ADR 2 -7      Compute last argument       75 HLT       END

17.6.2 Semantic analysis and code generation in a Coco/R generated compiler 

If we wish to write an LL(1) grammar as input for Coco/R, things become somewhat more
complex. We are obliged to write our productions as 

      Statement          =   AssignmentOrCall | ...
      AssignmentOrCall   =   Designator ( ":=" Expression | ActualParameters ) .
      ActualParameters   =   [ "(" OneActual { "," OneActual } ")" ] .
      OneActual          =   Expression .
      Factor             =      Designator ActualParameters | number
                             | "(" Expression ")" .
      Designator         =   identifier [ "[" Expression "]" ] .
      ReturnStatement    =   "RETURN" [ Expression ] .

This implies that Designator and Expression have to be attributed rather cleverly to allow all the



conflicts to be resolved. This can be done in several ways. We have chosen to illustrate a method
where the routines responsible for parsing these productions are passed a Boolean parameter
stipulating whether they are being called in a context that requires that the appearance of an array
name must be followed by a subscript (this is always the case except where an actual parameter is
syntactically an expression, but must semantically be an unsubscripted array name). On its own this
system is still inadequate for constraint analysis, and we must also provide some method for
checking whether an expression used as an actual reference parameter is comprised only of an
unsubscripted array name. 

At the same time we may take the opportunity to discuss the use of an AST as an intermediate
representation of the semantic structure of a program, by extending the treatment found in section
15.3.2. The various node classes introduced in that section are extended and enhanced to support
the idea of a node to represent a procedure or function call, linked to a set of nodes each of which
represents an actual parameter, and each of which, in turn, is linked to the tree structure that
represents the expression associated with that actual parameter. The sort of structures we set up are
exemplified in Figure 17.5, which depicts an AST corresponding to the procedure call in the
program outlined below 

    PROGRAM Debug;

      FUNCTION F (X);
        BEGIN END;              (* body of F *)

      PROCEDURE P (U, V[], W);
        BEGIN END;              (* body of P *)

      VAR
        X, Y, A[7];
      BEGIN
        P(F(X+5), A, Y)
      END.

Our base NODE class is extended slightly from the one introduced earlier, and now incorporates a
member for linking nodes together when they are elements of argument lists: 

  struct NODE {
    int value;                     // value to be associated with this node
    bool defined;                  // true if value predictable at compile time
    bool refnode;                  // true if node corresponds to a ref parameter
    NODE()                         { defined = false; refnode = false; }
    virtual void emit1(void)    = 0;
    virtual void emit2(void)    = 0;
    virtual void link(AST next) = 0;
  };



Similarly, the VARNODE class has members to record the static level, and whether the corresponding
variable is a variable in its own right, or is simply an alias for an array passed by reference: 

  struct VARNODE : public NODE {
    bool ref;                      // direct or indirectly accessed
    int level;                     // static level of declaration
    int offset;                    // offset of variable assigned by compiler
    VARNODE() {;}                  // default constructor
    VARNODE(bool R, int L, int O) { ref = R; level = L; offset = O; }
    virtual void emit1(void);      // generate code to retrieve value of variable
    virtual void emit2(void);      // generate code to retrieve address of variable
    virtual void link(AST next)    {;}
  };

Procedure and function calls give rise to instances of a PROCNODE class. Such nodes need to record
the static level and entry point of the routine, and have further links to the nodes that are set up to
represent the queue of actual parameters or arguments. It is convenient to introduce two such
pointers so as to simplify the link member function that is responsible for building this queue. 

  struct PROCNODE : public NODE {
    int level, entrypoint;         // static level, address of first instruction
    AST firstparam, lastparam;     // pointers to argument list
    PROCNODE(int L, int E)
      { level = L; entrypoint = E; firstparam = NULL; lastparam = NULL; }
    virtual void emit1(void);      // generate code for procedure/function call
    virtual void emit2(void)       {;}
    virtual void link(AST next);   // link next actual parameter
  };

The actual arguments give rise to nodes of a new PARAMNODE class. As can be seen from Figure
17.5, these require pointer members: one to allow the argument to be linked to another argument,
and one to point to the expression tree for the argument itself: 

  struct PARAMNODE : public NODE {
    AST par, next;                 // pointers to argument and to next argument
    PARAMNODE(AST P)               { par = P; next = NULL; }
    virtual void emit1(void);      // push actual parameter onto stack
    virtual void emit2(void)       {;}
    virtual void link(AST param)   { next = param; }
  };

Actual parameters are syntactically expressions, but we need a further REFNODE class to handle the
passing of arrays as actual parameters: 

  struct REFNODE : public VARNODE {
    AST size;                      // real size of array argument
    REFNODE(bool R, int L, int O, AST S)
      { ref = R; level = L; offset = O; size = S; refnode = true; }
    virtual void emit1(void);      // generate code to push array address, size
    virtual void emit2(void)       {;}
    virtual void link(AST next)    {;}
  };

Tree building operations may be understood by referring to the attributes with which a Cocol
specification would be decorated: 

  AssignmentOrCall
  =                           (. TABLE_entries entry; AST des, exp;.)
     Designator<des, classset(TABLE_vars, TABLE_procs), entry, true>
     (   /* assignment */     (. if (entry.idclass != TABLE_vars) SemError(210); .)
         ":=" Expression<exp, true>
         SYNC                 (. CGen->assign(des, exp); .)
       | /* procedure call */ (. if (entry.idclass < TABLE_procs)
                                 { SemError(210); return; }
                                 CGen->markstack(des, entry.level,
                                                 entry.p.entrypoint); .)
         ActualParameters<des, entry>
                              (. CGen->call(des); .)
     ) .

  Designator<AST &D, classset allowed, TABLE_entries &entry, bool entire>



  =                           (. TABLE_alfa name; AST index, size;
                                 bool found;
                                 D = CGen->emptyast(); .)
     Ident<name>              (. Table->search(name, entry, found);
                                 if (!found) SemError(202);
                                 if (!allowed.memb(entry.idclass)) SemError(206);
                                 if (entry.idclass != TABLE_vars) return;
                                 CGen->stackaddress(D, entry.level,
                                                    entry.v.offset, entry.v.ref); .)
     (   "["                  (. if (entry.v.scalar) SemError(204); .)
         Expression<index, true>
                              (. if (!entry.v.scalar)
                                 /* determine size for bounds check */
                                 { if (entry.v.ref)
                                     CGen->stackaddress(size, entry.level,
                                                        entry.v.offset + 1, false);
                                   else
                                     CGen->stackconstant(size, entry.v.size);
                                   CGen->subscript(D, entry.v.ref, entry.level,
                                                   entry.v.offset, size, index);
                                 } .)
         "]"
       |                      (. if (!entry.v.scalar)
                                 { if (entire) SemError(205);
                                   if (entry.v.ref)
                                     CGen->stackaddress(size, entry.level,
                                                        entry.v.offset + 1, false);
                                   else
                                     CGen->stackconstant(size, entry.v.size);
                                   CGen->stackreference(D, entry.v.ref, entry.level,
                                                        entry.v.offset, size);
                                 } .)
     ) .

  ActualParameters<AST &p, TABLE_entries proc>
  =                           (. int actual = 0; .)
     [  "("                   (. actual++; .)
        OneActual<p, (*Table).isrefparam(proc, actual)>
        { WEAK ","            (. actual++; .)
        OneActual<p, (*Table).isrefparam(proc, actual)> } ")"
     ]                        (. if (actual != proc.p.params) SemError(209); .) .

  OneActual<AST &p, bool byref>
  =                           (. AST par; .)
     Expression<par, !byref>  (. if (byref && !CGen->isrefast(par)) SemError(214);
                                 CGen->linkparameter(p, par); .) .

  ReturnStatement
  =                           (. AST dest, exp; .)
     "RETURN"
     (                        (. if (blockclass != TABLE_funcs) SemError(219);
                                 CGen->stackaddress(dest, blocklevel, 1, false); .)
         Expression<exp, true>
                              (. CGen->assign(dest, exp);
                                 CGen->leavefunction(blocklevel); .)
       | /* empty */          (. switch (blockclass)
                                 { case TABLE_procs :
                                     CGen->leaveprocedure(blocklevel); break;
                                   case TABLE_progs :
                                     CGen->leaveprogram(); break;
                                   case TABLE_funcs :
                                     SemError(220); break;
                                 } .)
     ) .

  Expression<AST &E, bool entire>
  =                           (. AST T; CGEN_operators op;
                                 E = CGen->emptyast(); .)
     (   "+" Term<E, true>
       | "-" Term<E, true>    (. CGen->negateinteger(E); .)
       | Term<E, entire>
     )
     { AddOp<op> Term<T, true>(. CGen->binaryintegerop(op, E, T); .)
     } .

  Term<AST &T, bool entire>
  =                           (. AST F; CGEN_operators op; .)
     Factor<T, entire>
     { (  MulOp<op>
        | /* missing op */    (. SynError(92); op = CGEN_opmul; .)
       ) Factor<F, true>      (. CGen->binaryintegerop(op, T, F); .)



     } .

  Factor<AST &F, bool entire>
  =                           (. TABLE_entries entry;
                                 int value;
                                 F = CGen->emptyast(); .)
       Designator<F, classset(TABLE_consts, TABLE_vars, TABLE_funcs), entry, entire>
                              (. switch (entry.idclass)
                                 { case TABLE_consts :
                                     CGen->stackconstant(F, entry.c.value); return;
                                   case TABLE_procs :
                                   case TABLE_funcs :
                                     CGen->markstack(F, entry.level,
                                                     entry.p.entrypoint); break;
                                   case TABLE_vars :
                                   case TABLE_progs :
                                     return;
                                  } .)
       ActualParameters<F, entry>
     | Number<value>          (. CGen->stackconstant(F, value); .)
     | "(" Expression<F, true> ")" .

The reader should compare this with the simpler attributed grammar presented in section 15.3.2,
and take note of the following points: 

All productions that have to deal with identifiers call upon Designator. So far as code
generation is concerned, this production is responsible for creating nodes that represent the
addresses of variables. Where other identifiers are recognized, execution of a return

bypasses code generation, and leaves the routine after retrieving the symbol table entry for
that identifier. 

Designator must now permit the appearance of an unsubscripted array name, creating an
instance of a REFNODE in this case. Note the use of the entire parameter passed to
Designator, Expression, Term and Factor to enable checking of the context in which the
subscript may be omitted. 

Parsing of OneActual is simply effected by a call to Expression. After this parsing is
completed, a check must be carried out to see whether a reference parameter does, in fact,
consist only of an unsubscripted array name. Notice that OneActual also incorporates a call to
a new code generating routine that will link the node just created for the actual parameter to
the parameter list emanating from the node for the procedure itself, a node that was created by
the markstack routine. 

Productions like AssignmentOrCall and Factor follow the call to Designator with tests on the
class of the identifier that has been recognized, and use this information to drive the parse
further (in Factor) or to check constraints (in AssignmentOrCall). 

As before, once a AST structure has been built, it can be traversed and the corresponding code
generated by virtue of each node "knowing" how to generate its own code. It will suffice to
demonstrate two examples. To generate code for a procedure call for our hypothetical stack
machine we define the emit1 member function to be 

  void PROCNODE::emit1(void)
  // generate procedure/function activation and call
  { CGen->emit(int(STKMC_mst));
    if (firstparam) { firstparam->emit1(); delete firstparam; }
    CGen->emit(int(STKMC_cal));
    CGen->emit(level);
    CGen->emit(entrypoint);
  }

which, naturally, calls on the emit1 member of its first parameter to initiate the stacking of the
actual parameters as part of the activation sequence. This member, in turn, calls on the emit1



member of its successor to handle subsequent arguments: 

  void PARAMNODE::emit1(void)
  // push actual parameter onto stack during activation
  { if (par) { par->emit1(); delete par; }     // push this argument
    if (next) { next->emit1(); delete next; }  // follow link to next argument
  }

Source code for the complete implementation of the code generator class can be found in Appendix
C and also on the source diskette, along with implementations for hand-crafted compilers that make
use of tree structures, and implementations that make use of the traditional variant records or unions
to handle the inhomogeneity of the tree nodes. 

Exercises 

17.1 Some authors suggest that value-returning function subprograms are not really necessary; one
can simply use procedures with call-by-reference parameter passing instead. On the other hand, in
C++ all subprograms are potentially functions. Examine the relative merits of providing both in a
language, from the compiler writer’s and the user’s viewpoints. 

17.2 Extend Topsy and its compiler to allow functions and procedures to have parameters. Can you
do this in such a way a function can be called either as an operand in an expression, or as a
stand-alone statement, as in C++? 

17.3 The usual explanation of call-by-value leaves one with the impression that this mode of
passing is very safe, in that changes within a subprogram can be confined to that subprogram.
However, if the value of a pointer variable is passed by value this is not quite the whole story. C
does not provide call-by- reference, because the same effect can be obtained by writing code like 

                void swap (int *x, int *y)
                { int z; z = *x; *x = *y; *y = z; }

Extend Topsy to provide explicit operators for computing an address, and dereferencing an address
(as exemplified by &variable and *variable in C), and use these features to provide a reference
passing mechanism for scalar variables. Is it possible to make these operations secure (that is, so
that they cannot be abused)? Are any difficulties caused by overloading the asterisk to mean
multiplication in one context and dereferencing an address in another context? 

17.4 The array passing mechanisms we have devised effectively provide the equivalent of
Modula-2’s "open" array mechanism for arrays passed by reference. Extend Clang and its
implementation to provide the equivalent of the HIGH function to complete the analogy. 

17.5 Implement parameter passing in Clang in another way - use the Pascal/Modula convention of
preceding formal parameters by the keyword VAR if the call-by-reference mechanism is to be used.
Pay particular attention to the problems of array parameters. 

17.6 In Modula-2 and Pascal, the keyword VAR is used to denote call-by-reference, but no keyword
is used for the (default) call-by-value. Why does this come in for criticism? Is the word VAR a good
choice? 

17.7 How do you cater for forward declaration of functions and procedures when you have to take
formal parameters into account (see Exercise 16.17)? 



17.8 (Longer) If you extend Clang or Topsy to introduce a Boolean type as well as an integer one
(see Exercise 14.30), how do you solve the host of interesting problems that arise when you wish to
introduce Boolean functions and Boolean parameters? 

17.9 Follow up the suggestion that parameters can be evaluated before the frame header is
allocated, and are then accessed through positive offsets from the base register BP. 

17.10 Exercise 15.16 suggested the possibility of peephole optimization for replacing the common
code sequence for loading an address and then dereferencing this, assuming the existence of a more
powerful STKMC_psh operation. How would this be implemented when procedures, functions,
arrays and parameters are involved? 

17.11 In previous exercises we have suggested that undeclared identifiers could be entered into the
symbol table at the point of first declaration, so as to help with suppressing further spurious errors.
What is the best way of doing this if we might have undeclared variables, arrays, functions, or
procedures? 

17.12 (Harder) Many languages allow formal parameters to be of a procedure type, so that
procedures or functions may be passed as actual parameters to other routines. C++ allows the same
effect to be achieved by declaring formal parameters as pointers to functions. Can you extend Clang
or Topsy to support this feature? Be careful, for the problem might be more difficult than it looks,
except for some special simple cases. 

17.13 Introduce a few standard functions and procedures into your languages, such as the ABS, ODD
and CHR of Modula-2. Although it is easier to define these names to be reserved keywords,
introduce them as pervasive (predeclared) identifiers, thus allowing them to be redeclared at the
user’s whim. 

17.14 It might be thought that the constraint analysis on actual parameters in the Cocol grammar
could be simplified so as to depend only on the entire parameter passed to the various parsing
routines, without the need for a check to be carried out after an Expression had been parsed. Why is
this check needed? 

17.15 If you study the interpreter that we have been developing, you should be struck by the fact
that this does a great deal of checking that the stack pointer stays within bounds. This check is
strictly necessary, although unlikely to fail if the memory is large enough. It would probably suffice
to check only for opcodes that push a value or address onto the stack. Even this would severely
degrade the efficiency of the interpreter. Suggest how the compiler and run-time system could be
modified so that at compile-time a prediction is made of the extra depth needed by the run-time
stack by each procedure. This will enable the run-time system to do a single check that this limit
will not be exceeded, as the procedure or program begins execution. (A system on these lines is
suggested by Brinch Hansen (1985)). 

17.16 Explore the possibility of providing a fairly sophisticated post-mortem dump in the extended
interpreter. For example, provide a trace of the subprogram calls up to the point where an error was
detected, and give the values of the local variables in each stack frame. To be really user-friendly
the run-time system will need to refer to the user names for such entities. How would this alter the
whole implementation of the symbol table? 

17.17 Now that you have a better understanding of how recursion is implemented, study the
compiler you are writing with new interest. It uses recursion a great deal. How deeply do you



suppose this recursion goes when the compiler executes? Is recursive descent "efficient" for all
aspects of the compiling process? Do you suppose a compiler would ever run out of space in which
to allocate new stack frames for itself when it was compiling large programs? 

Further reading 

As already mentioned, most texts on recursive descent compilers for block-structured languages
treat the material of the last few sections in fair detail, discussing one or other approach to stack
frame allocation and management. You might like to consult the texts by Fischer and LeBlanc
(1988, 1991), Watson (1989), Elder (1994) or Wirth (1996). The special problem of procedural
parameters is discussed in the texts by Aho, Sethi and Ullman (1986) and Fischer and LeBlanc
(1988, 1991). Gough and Mohay (1988) discuss the related problem of procedure variables as
found in Modula-2. 

17.7 Language design issues 

In this section we wish to explore a few of the many language design issues that arise when one
introduces the procedure and function concepts. 

17.7.1 Scope rules 

Although the scope rules we have discussed probably seem sensible enough, it may be of interest to
record that the scope rules in Pascal originally came in for extensive criticism, as they were
incompletely formulated, and led to misconceptions and misinterpretation, especially when handled
by one-pass systems. Most of the examples cited in the literature have to do with the problems
associated with types, but we can give an example more in keeping with our own language to
illustrate a typical difficulty. Suppose a compiler were to be presented with the following: 

  PROGRAM One;

    PROCEDURE Two (* first declared here *);
      BEGIN
        WRITE(’First Two’)
      END (* Two *);

    PROCEDURE Three;

      PROCEDURE Four;
        BEGIN
          Two
        END (* Four *);

      PROCEDURE Two (* then redeclared here *);
        BEGIN
          WRITE(’Second Two’)
        END (* Two *);

      BEGIN
        Four; Two
      END (* Three *);

    BEGIN
      Three
    END (* One *).

At the instant where procedure Four is being parsed, and where the call to Two is encountered, the
first procedure Two (in the symbol table at level 1) seems to be in scope, and code will presumably



be generated for a call to this. However, perhaps the second procedure Two should be the one that is
in scope for procedure Four; one interpretation of the scope rules would require code to be
generated for a call to this. In a one-pass system this would be a little tricky, as this second
procedure Two would not yet have been encountered by the compiler - but note that it would have
been by the time the calls to Four and Two were made from procedure Three. 

This problem can be resolved to the satisfaction of a compiler writer if the scope rules are
formulated so that the scope of an identifier extends from the point of its declaration to the end of
the block in which it is declared, and not over the whole block in which it is declared. This makes
for easy one-pass compilation, but it is doubtful whether this solution would please a programmer
who writes code such as the above, and falls foul of the rules without the compiler reporting the
fact. 

An ingenious way for a single-pass compiler to check that the scope of an identifier extends over
the whole of the block in which it has been declared was suggested by Sale (1979). The basic
algorithm requires that every block be numbered sequentially as it compiled (notice that these
numbers do not represent nesting levels). Each identifier node inserted into the symbol table has an
extra numeric attribute. This is originally defined to be the unique number of the block making the
insertion, but each time that the identifier is referenced thereafter, this attribute is reset to the
number of the block making the reference. Each time an identifier is declared, and needs to be
entered into the table, a search is made of all the identifiers that are in scope to see if a duplicate
identifier entry can be found that is already attributed with a number equal to or greater than that of
the block making the declaration. If this search succeeds, it implies that the scope rules are about to
be violated. This simple scheme has to be modified, of course, if the language allows for legitimate
forward declarations and function prototypes. 

17.7.2 Function return mechanisms 

Although the use of an explicit ReturnStatement will seem natural to a programmer familiar with
Modula-2 or C++, it is not the only device that has been explored by language designers. In Pascal,
for example, the value to be returned must be defined by means of what appears to be an
assignment to a variable that has the same name as the function. Taken in conjunction with the fact
that in Pascal a parameterless function call also looks like a variable access, this presents numerous
small difficulties to a compiler writer, as a study of the following example will reveal 

  PROGRAM Debug;
    VAR B, C;

    FUNCTION One (W);
      VAR X, Y;

      FUNCTION Two (Z);

        FUNCTION Three;
          BEGIN
            Two := B + X;    (* should this be allowed ? *)
            Three := Three;  (* syntactically correct, although useless *)
          END;

        BEGIN
          Two := B + Two(4); (* must be allowed *)
          Two := B + X;      (* must be allowed *)
          Two := Three;      (* must be allowed *)
          Three := 4;        (* Three is in scope, but cannot be used like this *)
        END;

      BEGIN
        Two := B + X;        (* Two is in scope, but cannot be used like this *)
        X := Two(Y);         (* must be allowed *)
      END;



    BEGIN
      One(B)
    END.

Small wonder that in his later language designs Wirth adopted the explicit return statement. Of
course, even this does not find favour with some structured language purists, who preach that each
routine should have exactly one entry point and exactly one exit point. 

Exercises

17.18 Submit a program similar to the example in section 17.7.1 to any compilers you may be
using, and detect which interpretation they place on the code. 

17.19 Implement the Sale algorithm in your extended Clang compiler. Can the same sort of scope
conflicts arise in C++, and if so, can you find a way to ensure that the scope of an identifier extends
over the whole of the block in which it is declared, rather than just from the point of declaration
onwards? 

17.20 The following program highlights some further problems with interpreting the scope rules of
languages when function return values are defined by assignment statements. 

             PROGRAM Silly;

               FUNCTION F;

                 FUNCTION F (F) (* nested, and same parameter name as function *);
                   BEGIN
                     F := 1
                   END (* inner F *);

                 BEGIN (* outer F *)
                   F := 2
                 END (* outer F *);

               BEGIN
                 WRITE(F)
               END (* Silly *).

What would cause problems in one-pass (or any) compilation, and what could a compiler writer do
about solving these? 

17.21 Notwithstanding our comments on the difficulties of using an assignment statement to
specify the value to be returned from a function, develop a version of the Clang compiler that
incorporates this idea. 

17.22 In Modula-2, a procedure declaration requires the name of the procedure to be quoted again
after the terminating END. Of what practical benefit is this? 

17.23 In classic Pascal the ordering of the components in a program or procedure block is very
restrictive. It may be summarized in EBNF on the lines of 

        Block  =  [ ConstDeclarations ]
                  [ TypeDeclarations ]
                  [ VarDeclarations ]
                  { ProcDeclaration }
                  CompoundStatement .

In Modula-2, however, this ordering is highly permissive: 

        Block  =  { ConstDeclarations | TypeDeclarations | VarDeclarations | ProcDeclaration }



                  CompoundStatement .

Oberon (Wirth, 1988b) introduced an interesting restriction: 

        Block  =  { ConstDeclarations | TypeDeclarations | VarDeclarations }
                  { ProcDeclaration }
                  CompoundStatement .

Umbriel (Terry, 1995) imposes a different restriction: 

        Block  =  { ConstDeclarations | TypeDeclarations | ProcDeclaration }
                  { VarDeclarations }
                  CompoundStatement .

Although allowing declarations to appear in any order makes for the simplest grammar, languages
that insist on a specific order presumably do so for good reasons. Can you think what these might
be? 

17.24 How would you write a Cocol grammar or a hand-crafted parser to insist on a particular
declaration order, and yet recover satisfactorily if declarations were presented in any order? 

17.25 Originally, in Pascal a function could only return a scalar value, and not, for example, an
ARRAY, RECORD or SET. Why do you suppose this annoying restriction was introduced? Is there any
easy (legal) way around the problem? 

17.26 Several language designers decry function subprograms for the reason that most languages do
not prevent a programmer from writing functions that have side-effects. The program below
illustrates several esoteric side-effects. Given that one really wishes to prevent these, to what extent
can a compiler detect them? 

         PROGRAM Debug;
           VAR
             A, B[12];

           PROCEDURE P1 (X[]);
             BEGIN
               X[3] := 1 (* X is passed by reference *)
             END;

           PROCEDURE P2;
             BEGIN
               A := 1 (* modifies global variable *)
             END;

           PROCEDURE P3;
             BEGIN
               P2 (* indirect attack on a global variable *)
             END;

           PROCEDURE P4;
             VAR C;

             FUNCTION F (Y[]);
               BEGIN
                 A := 3     (* side-effect *);
                 C := 4     (* side-effect *);
                 READ(A)    (* side-effect *);
                 Y[4] := 4  (* side-effect *);
                 P1(B)      (* side-effect *);
                 P2         (* side-effect *);
                 P3         (* side-effect *);
                 P4         (* side-effect *);
                 RETURN 51
               END;

             BEGIN
               A := F(B);
             END;

           BEGIN



             P4
           END.

17.27 If you introduce a FOR loop into Clang (see Exercise 14.46), how could you prevent a
malevolent program from altering the value of the loop control variable within the loop? Some
attempts are easily detected, but those involving procedure calls are a little trickier, as study of the
following might reveal: 

         PROGRAM Threaten;
           VAR i;

           PROCEDURE Nasty (VAR x);
             BEGIN
               x := 10
             END;

           PROCEDURE Nastier;
             BEGIN
               i := 10
             END;

           BEGIN
             FOR i := 0 TO 10 DO
               FOR i := 0 TO 5 DO (* Corrupt by using as inner control variable *)
                 BEGIN
                   READ(i)        (* Corrupt by reading a new value *);
                   i := 6         (* Corrupt by direct assignment *);
                   Nasty(i)       (* Corrupt by passing i by reference *);
                   Nastier        (* Corrupt by calling a procedure having i in scope *)
                 END
           END.

Further reading 

Criticisms of well established languages like Pascal, Modula-2 and C are worth following up. The
reader is directed to the classic papers by Welsh, Sneeringer and Hoare (1977) (reprinted in Barron
(1981)), Kernighan (1981), Cailliau (1982), Cornelius (1988), Mody (1991), and Sakkinen (1992)
for evidence that language design is something that does not always please users. 


