Compilers and Compiler Generators © P.D. Terry, 2000

17 PARAMETERSAND FUNCTIONS

It is the aim of this chapter to show how we can extend our language and its compiler to all
value-returning functions in addition to regular procedures, and to support the use of paramr
Once again, the syntactic and semantic extensions we shall make are kept as simple as pc
should be familiar to the reader from a study of other imperative languages.

17.1 Syntax and semantics

The subject of parameter passing is fairly extensive, as the reader may have realized. In th
development of programming languages several models of parameter passing have been
and the ones actually implemented vary semantically from language to language, while
syntactically often appearing deceptively similar. In most cases, declaration of a subprogral
segment is accompanied by the declaration of a ligirofial parameters, which appear to have
status within the subprogram rather like that of local variables. Invocation of the subprograr
accompanied by a corresponding lisacfual parameters (sometimes calledrguments), and it is
invariably the case that the relationship between formal and actual parameters is achieved
positional correspondence, rather than by lexical correspondence in the source text. Thus i
be quite legal, if a little confusing to another reader, to declare

PROCEDURE AnyNanme (A, B)
and then to invoke it with a statement of the form
AnyNarme (B, A)

when thea in the procedure would be associated with&lrethe calling routine, and tteein the
procedure would be associated with #ha the calling routine. It may be the lack of name
correspondence that is at the root of a great deal of confusion in parameter handling amon
beginners.

The correspondence of formal and actual parameters goes deeper than mere position in a
list. Of the various ways in which it might be established, the two most widely used and fan
parameter passing mechanisms are those knowatlasy-r efer ence andcall-by-value. In
developing the case studies in this text we have, of course, made frequent use of both of r
we turn now to a discussion of how they are implemented.

The semantics and the implementation of the two mechanisms are quite different:

® In call-by-reference an actual parameter usually takes the forasfableDesignator.

Within the subprogram, a reference to the formal parameter results, at run-time, inac
reference to the variable designated by the actual parameter, and any change to that
parameter results in an immediate change to the corresponding actual parameter. In ¢
real sense, a formal parameter name may be regardedléasdar the actual parameter
name. The alias lasts as long as the procedure is active, and may be transmitted to ot
subprograms with parameters passed in the same way. Call-by-reference is usually
accomplished by passing the address associated with the actual parameter to the suk
for processing.

® [n call-by-value, an actual parameter takes the form @&xanession. Formal parameters in
subprogram (when declared in this way) are effectively variables local to that subprog
which start their lives initialized to the values of the corresponding actual parameter
expressions. However, any changes made to the values of the formal parameter varie
confined to the subprogram, and cannot be transmitted back via the formal parameter
calling routine. Fairly obviously, it is the run-time value of the expression which is hani
over to the subprogram for processing, rather than an explicit address of a variable.

Call-by-value is preferred for many applications - for example it is useful to be able to pass
expressions to procedures |i® TE without having to store their values in otherwise redunda
variables. However, if an array is passed by value, a complete copy of the array must be ps
the subprogram. This is expensive, both in terms of space and time, and thus many progra
pass all array parameters by reference, even if there is no need for the contents of the arra
modified. In G+, arrays maynly be passed as reference parameters, althouglp&mits the us
of the qualifierconst to prevent an array from being modified in a subprogram. Some languz
permit call-by-reference to take place with actual parameters that are expressions in the ge
sense; in this case the value of the expression is stored in a temporary variable, and the ac
that variable is passed to the subprogram.

In what follows we shall partially illustrate both methods, using syntax suggested by C. Sim
scalar parameters will be passed by value, and array parameters will be passed by referen
way that almost models tlopen array mechanism in Modula-2.

We describe the introduction of function and parameter declarations to our language more
by the following EBNF. The productions are highly non-LL(1), and it should not take much
imagination to appreciate that there is now a large amount of context-sensitive information
practical parser will need to handle (through the usual device of the symbol table). Our proc
attempt to depict where such context-sensitivity occurs.

ProcDecl arati on = ("PROCEDURE" Procldentifier | "FUNCTION' Funcldentifier)
[Formal Paraneters] ";"
Bl ock A

For mal Par anet er s = "(" OneFormal { "," OneFormal } ")"

OneFor mal = Scal ar Formal | ArrayFormal .

Scal ar For mal = Parldentifier .

ArrayFor mal = Parldentifier "[" "]"

We extend the syntax fé&rocedureCall to allow procedures to be invoked with parameters:

ProcedureCal | = Procldentifier Actual Paraneters .

Act ual Par aneters = ["(" OneActual { "," OneActual } ")"] .
OneAct ual = Val ueParaneter | ReferenceParaneter .

Val uePar anet er = Expression .

Ref erenceParaneter = Variable .

We also extend the definition Bhctor to allow function references to be included in expressic
with the appropriate precedence:

Fact or = Variable | Constldentifier | nunber
| "(" Expression ")"
| Funcldentifier Actual Paraneters .

and we introduce thReturnStatement in an obvious way:
Ret ur nSt at enent = "RETURN' [Expression] .

where theExpression is only needed within functions, which will be limited (as in traditional C
Pascal) to returning scalar values only. Within a regular procedure the effdRétafsBtatement

is simply to transfer control to the calling routine immediately; within a main program a
ReturnSatement simply terminates execution.

A simple example of a Clang program that illustrates these extensions is as follows:

PROGRAM Debug;

FUNCTI ON Last (List[], Limt);
BEG N
RETURN List[Limt];
END;

PROCEDURE Anal yze (Data[], N);
VAR
Local Dat a[2] ;
BEG N
WRI TE(Last (Data, N+2), Last(Local Data, 1));
END;

VAR
d obal Dat a[3] ;

BEG N
Anal yze(d obal Data, 1);
END.

Thewrl TE statement in procedureal yze would print out the value @l obal Dat a[3] followed
by the value ofocal Dat a[1] . G obal Dat a iS passed t@nal yze, which refers to it under the ali
of Dat a, and then passes it onltast , which, in turn, refers to it under the aliag ot .

17.2 Symbol table support for context-sensitive features

It is possible to write a simple context-free set of productionsithsatisfy the LL(1) constraints
and a Coco/R generated system will require this to be done. We have remarked earlier tha
possible to specify the requirement that the number of formal and actual parameters must 1
this will have to be done by context conditions. So too will the requirement that each actual
parameter is passed in a way compatible with the corresponding formal parameter - for exe
where a formal parameter is an open array we must not be allowed to pass a scalar variabl
identifier or an expression as the actual parameter. As usual, a compiler must rely on inforr
stored in the symbol table to check these conditions, and we may indicate the support that
provided by considering the shell of a simple program:

PROGRAM Mai n;

VAR GL; (* global *)
PROCEDURE One (P1, P2); (* two fornal scalar paraneters *)
BEG N (* body of One *)
END;
PROCEDURE Two; (* no formal paraneters *)
BEG N (* body of Two *)
END;
PROCEDURE Three (P1[]); (* one fornal open array paraneter *)
VAR L1, LZ2; (* local to Three *)
BEG N (* body of Three *)
END;
BEG N (* body of Main *)
END.

At the instant where the body of proceduneee is being parsed our symbol table might have .
structure like that in Figure 17.1.

gggpe—PFlrit—Pl PL =] L1 | L2 b—

Down (_+

—| Pt | P2 |
Sentinel

e — S I B IS
Flrst—>| 51 l—bl One l—bl Twi |—D|Three|—_b;

Do
+ |

First —>| Main I

Do
T

Figure 17.1 A symbal table structyre with links from procedure entries to
formal parameter entries

Although all three of the procedure identifiere, Two andThr ee are in scope, procedurese
andTwo will already have been compiled in a one-pass system. So as to retain information ¢
their formal parameters, internal links are set up from the symbol table nodes for the procet
identifiers to the nodes set up for these parameters. To provide this support it is convenient
extend the definition of theABLE_ent ri es structure:

enum TABLE_ i dcl asses
{ TABLE_consts, TABLE vars, TABLE_progs, TABLE_procs, TABLE_funcs };

struct TABLE nodes;
typedef TABLE nodes *TABLE_ i ndex;

struct TABLE entries {

TABLE_al f a nane; /1l identifier
int level; Il static |level
TABLE_i dcl asses i dcl ass; /1l class
uni on {
struct {
int val ue;
} ¢ /'l constants
struct {
int size, offset;
bool ref, scalar;
}ov; /] variabl es
struct {
int params, paransize;
TABLE i ndex firstparam
CGEN_| abel s entrypoint;

} P /'l procedures, functions
H

Source for an implementation of thasLE class can be found in Appendix B, and it may be he
to draw attention to the following features:

® Formal parameters are treated within Bhaeck of a function or procedure in most cases a
though they were variables. So it will be convenient to enter them into the symbol tabl
such. However, it now becomes necessary to tag the entry for each variable with the ¢
field ref . This denotes whether the identifier denotes a true variable, or is merely an a
a variable that has been passed to a procedure by reference. Global and local variabl
scalar formals will all have this field defined toflze se.

® Passing an array to a subprogranrdfgrence is not simply a matter of passing the addre:
the first element, even though the subprogram appears to handle open arrays. We sh
need to supply the length of the array (unless we are content to omit array bound che:
This suggests that the value of thee field for an array formal parameter can always be
We observe that passing open arraysdye, as is possible in Modula-2, is likely to be
considerably more complicated.

® Formal parameter names, like local variable names, will be entered at a higher level ti
procedure or function name, so as to reserve them local status.

® For procedures and functions e ans field is used to record the number of formal
parameters, and thér st par amfield is used to point to the linked queue of entries for th
identifiers that denote the formal parameters. Details of the formal parameters, when |
for context-sensitive checks, can be extracted by further member functiong asitEeclass
As it happens, for our simplified system we need only to know whether an actual para
must be passed by value or by reference, so a simple Boolean furetopar amis all that
is required.

® When a subprogram identifier is first encountered, the compiler will not immediately ki
how many formal parameters will be associated with it. The table handler must make
provision for backpatching an entry, and so we need a revised interfaceitodheoutine,
as well as anpdat e routine:

class TABLE {
public:
void enter (TABLE entries &entry, TABLE index &position);
/1 Adds entry to synbol table, and returns its position

voi d updat e(TABLE entries &entry, TABLE_index position);
/1 Updates entry at known position

bool isrefparan{TABLE entries &procentry, int n);
/'l Returns true if nth paraneter for procentry is passed by reference

/] rest as before

}s

The way in which the declaration of functions and parameters is accomplished may now be
understood with reference to the following extract from a Cocol specification:

ProcDecl arati on
= TABLE entries entry; TABLE_index index; .)
entry.idclass = TABLE procs; .)
entry.idclass = TABLE funcs; .)
entry.p.parans = 0; entry.p.paransi ze = 0;
entry.p.firstparam = NULL;

CGen->storel abel (entry. p.entrypoint);

Tabl e- >enter (entry, index);

Tabl e- >openscope(); .)

(" PROCEDURE"
| " FUNCTI ON"
) ldent<entry. name>

For nal Par anet er s<entry> (. Tabl e->update(entry, index); .)
] WEAK ";"
Bl ock<entry.level +1, entry.idclass, entry.p.paransize + CGEN_header si ze>

For mal Par amet er s<TABLE entri es &proc>
= (. TABLE_ index p; .)
"(" OneFornal <proc, proc.p.firstparaner
{ WEAK ", " OneFormal <proc, p>1} ")" .

OneFor mal <TABLE_entries &proc, TABLE_index & ndex>
= . TABLE entries formal;
formal .idclass = TABLE vars; fornal.v.ref = fal se;
formal.v.size = 1; formal.v.scalar = true;
formal.v.of fset = proc. p. paransi ze
+ CCGEN_headersize + 1; .)
| dent <f or nal . nane>

["[] (. formal.v.size = 2; formal.v.scalar = fal se;
formal.v.ref = true; .
] (. Table->enter(formal, index);

proc. p. paransi ze += formal . v. si ze;

proc. p. parans++; .) .
Address offsets have to be associated with formal parameters, as with other variables. The
allocated as the parameters are declared. This topic is considered in more detail in the nex
for the moment notice that parameter offsets stanteEN_Header Si ze + 1.

17.3 Actual parametersand stack frames

There are several ways in which actual parameter values may be transmitted to a subprogr
Typically they are pushed onto a stack as part of the activation sequence that is executed t
transferring control to the procedure or function which is to use them. Similarly, to allow a ft
value to be returned, it is convenient to reserve a stack item for this just before the actual
parameters are set up, and for the function subprogram to access this reserved location us
suitable offset. The actual parameters might be saitedthe frame header - that is, within the
activation record - or they might be stotasfiore the frame header. We shall discuss this latter
possibility no further here, but leave the details as an exercise for the curious reader (see T
(1986) or Brinch Hansen (1985)).

If the actual parameters are to be stored within the activation record, the corresponding fori
parameter offsets are easily determined by the procedures specified by the Cocol grammai
earlier. These also keep track of the total space that will be needed for all parameters, and
offset reached is then passed on to the pars& dok, which can continue to assign offsets for
local variables beyond this.

To handle function returns it is simplest to have a slightly larger frame header than before. '
reserve the first location in a stack frame (that is, at an invariant offset of 1 from the base pu
BP) for a function’s return value, thereby making code generation fdretiuenSatement
straightforward. This location is strictly not needed for regular procedures, but it makes for «
code generation to keep all frame headers a constant size. We also need to reserve an ele
saving the old mark stack pointer at procedure activation so that it can be restored once a |
has been completed. We also need to reserve an element for saving the old mark stack po
procedure activation so that it can be restored once a procedure has been completed.

If we use the display model, the arrangement of the stack after a procedure has been activi
called will typically be as shown in Figure 17.2. The frame header and actual parameters al
by the activation sequence, and storage for the local variables is reserved immediately afte
procedure obtains control.

+——————— Frame Headeyr —mM8M8M8M8M8M8M8M8M8m™+

Mok Local Hotual Hark Return Ounamic Displaw Return
Space Lariables Farams Copy Address Link Copy Ualue

1 BF-5 EF—4 BF-3 BF-2 BP-1 1
5P BF

Figure 17.2 Stack frame immediately after a procedure has been called

This may be made clearer by considering some examples. Figure 17.3 shows the layout in
for the array processing program given in section 17.1, at the instant where fuastidras just
started execution.

Stack Displaw
Address Purpose Contents Contents Leuvel
+———— £E11 1
GlobalbatalB] —— 4965 2
Globalbatalll
Globalbatalz2] frame for Debug [lewvel 1)
—[— GlobalbDatal3]
Beturn Walue [unused 1

frame for Analwze [level 2]

o
w
a
w
E:
o
-
L)
o
oo
— i

Mark pointer CD%%
Hddresi of Datall]
Size of Data
Parameter M
Localbatalid]
Localbatalll
LocalDatalz]

on
-
LN N Ty B RN RN I POV RO Tl W B Ty PRt R PO FOL RO POV |

[address of GlobalDatalB@])
[size of GlobalData)

+—+— BF , MF

Eetu{n UElue
izsplaw Cop
Ounamic LLnE
Eeturn Address
Mark pointer CD%%
Address of List[B]
Size of List
Parameter Limit

frame for Last [lewvel 2]

oo Ononn ot D CoEVEENENENENEY EENE
bVl Lol N TR S0y R SR [U L Lo S T RO Ty Ln SR [Bl Lo

n - onen
= I

[address of GlobalDatalB@])
[Sglze of GlobalData)
—

g%-&-&-&-&-&-& Fo oo fOCCACT (CACANCN

Figure 17.2 Arrangement of stack frames after calling & procedure
followed by 3 function

Note that there are three values in the parameter area of the stack frana¢ foe. The first two
are the actual address of the first element of the array bound to the formal parametend the
actual size to be associated with this formal parameter. The third is the initial value assigne
formal parametex. WhenaAnal yze activates functionast it stacks the actual address of the ar
that was bound tobat a, as well as the actual size of this array, so as to akew to bind its
formal parameteri st to the formal paramet@at a, and hence, ultimately, to the same array (
is, to the global arra@ obal Dat a).

The second example shows a traditional, if hackneyed, approach to computing factorials:

PROGRAM Debug;

FUNCTI ON Factorial (M;
BEG N
IF M<= 1 THEN RETURN 1,
RETURN M * Factorial (M1);
END;

VAR N,

BEG N
READ(N) ;
WH LE N

BEG N

END.

> 0 DO
WRI TE(Factorial (N)); READ(N) END;

If this program were to be supplied with a data value ef 3, then the arrangement of stack
frames would be as depicted in Figure 17.4 immediately after the function has been called"
second time.

Stack Oi t
Address Furpose Contents Cnntents e |

511 . ¥ +——— G511 1

— El@ Uariable H 2 Elz2 2
=15l Eeturn Walue ¥ i
=15] Display CDDE N frame for Factorial (lewel 21
=150 Dunamic Lin El1
=15 Eeturn Address EY
=151 Mark pointer Copyw !
Eing Farameter M 3
=15] Address for product EB9 wiork sﬁace for Factorial
iz Multiplicand H i +——+— EF ,
Ea1 Beturn Ualue !
SilE Displaw CDDE Eln .

— 4949 Ounamic Lin Eil frame for Factorial (lewvel 21
492 Beturn Address 28
495 Marck pointer Copw Eln@
497 Farameter M 2 4+ 5F

Figure 17.4 Arrangement of stack frames after making a recursive call to
the Factorial function

Fact ori al can pick up its parametsrby using an offset af from BP, and can assign the value
be returned to the stack element whose offsetiem BP. (In practice the addressing might be
done viaDi spl ay[2], rather than viapP).

Note that this way of returning function values is entirely consistent with the use of the stac
expression evaluation. In practice, however, many compilers return the value of a scalar ful
a machine register.

17.4 Hypothetical stack machine support for parameter passing

Little has to be added to our stack machine to support parameter passing and function han
Leaving aBlock is slightly different: after completing a regular procedure we can cut the stac
so as to throw away the entire stack frame, but after completing a function procedure we m
the return value on the top of stack so that it will be available for incorporation into the expr
from which the call was instigated. This means thasti@rC r et instruction requires a second
operand. It also turns out to be useful to introdusekarc _nf n instruction that can be generatec
the end of each function block to detect those situations where the flow of control through &
function never reachesReturnSatement (this is very hard to detect at compile-time). Taking i
account the increased size of the frame header, the operational semantics of the affected il
become:

case STKMC cal : /] procedure entry
menj cpu. mp - 2] = display[nmenicpu.pcl]; /1 save display el enent
menf cpu.mp - 3] = cpu. bp; /'l save dynanmic |ink
menj cpu.mp - 4] = cpu.pc + 2; /] save return address
di spl ay[meni cpu. pc]] = cpu. np; /1 update display
cpu. bp = cpu. np; /'l reset base pointer
cpu.pc = nenfcpu.pc + 1]; /] enter procedure
br eak;

case STKMC ret: /'l procedure exit
di splay[nmenfcpu.pc] - 1] = nmenfcpu.bp - 2]; // restore display
cpu.nmp = nenicpu.bp - 5]; /1 restore mark pointer
cpu.sp = cpu.bp - menfcpu.pc + 1]; /1 discard stack frane
cpu.pc = menjcpu. bp - 4]; /1 get return address
cpu. bp = nenfcpu.bp - 3]; /'l reset base pointer
br eak;

case STKMC st :
if (inbounds(cpu.sp-STKMC headersi ze)) /'l check space avail able
{ menicpu.sp-5] = cpu.np; /1 save mark pointer

Cpu. np = cpu. sp; /1 set mark stack pointer
cpu.sp -= STKMC header si ze; /'l bunmp stack pointer

br eak;

case STKMC_nfn: /1 bad function (no return)
ps = badfun; break; /'l change status from running

17.5 Context sensitivity and LL (1) conflict resolution

We have already remarked that our language now contains several features that are
context-sensitive, and several that make an LL(1) description difficult. These are worth
summarizing:

St at enment
Assi gnnent
Pr ocedur eCal |

Assi gnment | ProcedureCall |
Variable ":=" Expression .
Procldentifier Actual Paraneters .

Both Assignment andProcedureCall start with andentifier. Parameters cause similar difficulties

Act ual Par aneters = ["(" OneActual { "," OneActual } ")"] .
OneAct ual = ValueParaneter | ReferenceParaneter .
Val uePar anet er = Expression .

Ref erenceParaneter = Variable .

OneActual is non-LL(1), a€xpression might start with amdentifier, andVariable certainly does.
An Expression ultimately contains at least of@ctor:

Fact or = Variable | Constldentifier | nunber
| "(" Expression ")"
| Funcldentifier Actual Paraneters .

and three alternatives Factor start with an identifier. A/ariable is problematic:
Vari abl e = Varldentifier ["[" Expression "]"] .

In the context of &eferenceParameter the optional index expression is not allowed, but in the
context of all otheFactors it must be present. Finally, even tReturnSatement becomes
context-sensitive:

Ret ur nSt at enent = "RETURN' [Expression] .

In the context of a functioBlock the Expression must be present, while in the context of a regt
procedure or main prograBlock it must be absent.

17.6 Semantic analysis and code gener ation

We now turn to a consideration of how the context-sensitive issues can be handled by our |
and code generated for programs that include parameter passing and value returning funct
convenient to consider hand-crafted and automatically generated compilers separately.

17.6.1 Semantic analysis and code gener ation in a hand-crafted compiler

As it happens, each of the LL(1) conflicts and context-sensitive constraints is easily handle:
one writes a hand-crafted parser. Each time an identifier is recognized it is immediately che
against the symbol table, after which the appropriate path to follow becomes clear. We con
hypothetical stack machine interface once more, and in terms of simplified on-the-fly code
generation, making the assumption that the source will be free of syntactic errors. Full sour
is, of course, available on the source diskette.

Drawing a distinction between assignments and procedure calls has already been discusse
section 16.1.5, and is handled from within the parseB&tement. The parser foProcedureCall is
passed the symbol table entry apposite to the procedure being called, and makes use of th
calling on the parser to handle that part of the activation sequence that causes the actual p
to be stacked before the call is made:

voi d PARSER: : ProcedureCal | (TABLE entries entry)

/'l ProcedureCall = Procldentifier Actual Paraneters .

{ Getsyn();))
CGen- >mar kst ack() ; /1 code for activation
Act ual Paraneters(entry); /1l code to eval uate argunents
CGen->cal |l (entry.level, entry.p.entrypoint); /1 code to transfer control

}
A similar extension is needed to the routine that parsestar:

voi d PARSER: : Fact or (voi d)
/1 Factor = Variable | Constldentifier | Funcldentifier Actual Paraneters ..
/1 Variable = Designator .
{ TABLE_ entries entry;
switch (SYMsym

{ case SCAN identifier: /'l several cases arise...
Tabl e- >sear ch(SYM nane, entry); /1 look it up
switch (entry.idcl ass) /'l resolve LL(1) conflict
{ case TABLE_ consts:
Get Syn() ;
CGen->st ackconstant (entry. c. val ue); /1 code to | oad named constant
br eak;
case TABLE_ funcs:
Get Sym(); o
CGen- >mar kst ack() ; /1 code for activation
Act ual Par anmeters(entry); /1 code to evaluate argunents
CGen->cal |l (entry. |l evel,
entry. p.entrypoint); /'l code to transfer control
br eak;
case TABLE vars:
Desi gnator (entry); /1 code to | oad address
CGen- >der ef erence(); break; /1 code to |oad val ue
br eak;
/1 ... other cases

}
}

The parsers that handietual Parameters andOneActual are straightforward, and make use of
extended features in the symbol table handler to distinguish between reference and value
parameters:

voi d PARSER: : Act ual Par anet er s(TABLE entries procentry)

/1 Actual Paraneters = ["(" OneActual { "," OneActual } ")"]
{ int actual = O;
if (SYMsym == SCAN | paren) /'l check for any argunents

{ GetSym(); OneActual (procentry, actual);
whil e (SYM sym == SCAN_conmm)
{ GetSym(); OneActual (followers, procentry, actual); }
accept (SCAN_r paren) ;

if (actual != procentry.p. parans)
Report->error(209); /1l wrong nunmber of arguments
}
voi d PARSER: : OneActual (TABLE entries procentry, int &actual)
/1 OneActual = Arrayldentifier | Expression . (depends on context)
{ actual ++; /'l one nore argunent
if (Tabl e->isrefparanmprocentry, actual)) /'l check synbol table
Ref er encePar aneter () ;
el se

Expression();

The several situations where it is necessary to generate code that will push the run-time ad
variable or parameter onto the stack all depend ultimately an #e@addr ess routine in the cod:
generator interface. This has to be more complex than before, because in the situations wr
variable is really an alias for a parameter that has been passed by reference, the offset rec
the symbol table is really the offset where one will find yet another address. To push the trL
address onto the stack requires that we load the address of the offset, and then dereferenc
find the address that we really want. Hence the code generation interface takes the form

stackaddress(int level, int offset, bool byref);

which, for our stack machine will emitL®A | evel of f set instruction, followed by &AL
instruction ifbyr ef istrue. This has an immediate effect on the parser fdesagnator, which
now becomes:

voi d PARSER: : Desi gnhat or (TABLE entries entry)
/'l Designator = Varldentifier ["[" Expression "]1"] .
{ CGen->stackaddress(entry.level, entry.v.offset, entry.v.ref); // base address

Get Syn() ;

if (SYMsym == SCAN | bracket) /1 array reference
{ GetSyn();

Expression(); /1 code to eval uate index

if (entry.v.ref) /'l get size from hidden paraneter
CGen- >st ackaddress(entry. |l evel, entry.v.offset + 1, entry.v.ref);

el se /1 size known from synbol table

CGen->st ackconstant (entry. v. si ze);
CGen->subscript();
accept (SCAN_r br acket) ;
y }

The first call tost ackaddr ess is responsible for generating code to push the address of a sci
variable onto the stack, or the address of the first element of an array. If this array has beet
by reference it is necessary to dereference that address to find the true address of the first
of the array, and to determine the true size of the array by retrieving the next (hidden) actu
parameter. Another situation in which we wish to push such addresses onto the stack arise
we wish to pass a formal array parameter on to another routine as an actual parameter. In-
we have to push not only the address of the base of the array, but also a second hidden ar:
that specifies its size. This is handled by the parser that deals ReterenceParameter :

voi d PARSER: : Ref er encePar anet er (voi d)

/1 ReferenceParaneter = Arrayldentifier . (unsubscripted)
{ TABLE entries entry;
Tabl e- >sear ch(SYM nane, entry); /1 assert : SYMsym= identifier

CGen- >st ackaddress(entry.level, entry.v.offset, entry.v.ref); [/ base
/'l pass size as next paraneter

if (entry.v.ref) /1 get size fromformal paraneter
CGen- >st ackaddress(entry.level, entry.v.offset + 1, entry.v.ref);

el se /1 size known from synbol table
CGen- >st ackconstant (entry. v. si ze);

Get Sym() ; /'l should be comma or rparen

}

The variations on thReturnSatement are easily checked, since we have already made provis
for eachBlock to be aware of its category. Within a functioReturnStatement is really an
assignment statement, with a destination whose address is always at an offset of 1 from thi
the stack frame.

voi d PARSER: : Ret ur nSt at enent (voi d)
/] ReturnStatenent = "RETURN' [Expression]
{ Getsyn();
swi tch (bl ockcl ass)
{ case TABLE funcs:
CGen- >st ackaddr ess(bl ockl evel , 1, false); [/
Expression(fol l owers); CGen->assign(); /
CGen- >| eavefuncti on(bl ockl evel); break; /
case TABLE_procs:

accept RETURN
semanti cs depend on cont ext

~—
~—

address of return val ue
code to conpute and assign
code to exit function

~—

CGen- >| eavepr ocedur e(bl ockl evel); break; /1 direct exit from procedure
case TABLE progs:
CGen- >l eaveprogran(); break; /1 direct halt fromnmain program

}
}

As illustrative examples we give the code for the programs discussed previously:

0 PROGRAM Debug;

0 :

0 : FUNCTI ON Factorial (M;

2 BEG N

2 IF M<= 1 THEN RETURN 1;
20 : RETURN M * Factorial (M1);
43 : END;

44

44 VAR N,

44

44 BEG N

46 : READ(N) ;

50 : WH LE N > 0 DO

59 : BEG N WRI TE(Factorial (N)); READ(N) END;
75 : END.

0 BRN 44 Junp to start of program 40 RET 2 1 Exit function

[uy
R OO UIN

14
16
17
20
23
26
27
28
31
32
34
35
38
39

12
13
16
17
18
19
20
23
24
26
27
30
31
34
35

N

=

N

=

[y

75

-1

-1
50

ADR 2 -5 BEGQ N Factori al 43 NFN
VAL Val ue of M 44 DSP
LIT 1 46 ADR
LEQ M<=17? 49 I NN
BZE 20 IF M<= 1 THEN 50 ADR
ADR 2 -1 Address of return val 53 VAL
LIT 1 Val ue of 1 54 LIT
STO Store as return val ue 56 GIR
RET 2 1 Exit function 57 BZE
ADR 2 -1 Address of return val ue 59 MST
ADR 2 -5 Address of M 60 ADR
VAL Val ue of M 63 VAL
MST Mar k st ack 64 CAL
ADR 2 -5 Address of M 67 PRN
VAL Val ue of M 68 NLN
LIT 1 69 ADR
SuB Val ue of M1 (argunent) 72 1 NN
CAL 1 2 Recursive call 73 BRN
MJL Val ue MrFactorial (M1) 75 HLT
STO Store as return val ue
PROGRAM Debug;
FUNCTI ON Last (List[], Limt);
BEG N
RETURN List[Limt];
END;
PROCEDURE Anal yze (Data[], N);
VAR
Local Dat a[2] ;
BEG N
Wite(Last(Data, N+2), Last(Local Data, 1));
END;
VAR
d obal Dat a[3] ;
BEG N
Anal yze(d obal Data, 1);
END.
BRN 62 Junp to start of program 38 VAL
ADR 2 -1 Address of return val ue 39 LIT
ADR 2 -5 41 ADD
VAL Address of List[0] 42 CAL
ADR 2 -7 Address of Limt 45 PRN
VAL Val ue of Limt 46 MST
ADR 2 -6 47 ADR
VAL Si ze of List 50 LIT
I ND Subscri pt 52 LIT
VAL Val ue of List[Limt] 54 CAL
STO Store as return val ue 57 PRN
RET 2 1 and exit function 58 NLN
NFN END Last 59 RET
DSP 3 BEG N Anal yze 62 DSP
MST Mar k St ack 64 MST
ADR 2 -5 First argument is 65 ADR
VAL Addr ess of Datal0] 68 LIT
ADR 2 -6 Hi dden argunent is 70 LIT
VAL Size of Data 72 CAL
ADR 2 -7 Conput e | ast argunent 75 HLT

N~ W oo

rO

S

END Factori al
BEG N nmi n program
Address of N
READ(N)
Address of N
Val ue of N
VWH LE N > 0 DO

Mark stack

Address of N

Val ue of N (argunent)
Cal | Factorial

WRI TE(resul t)

READX(N)
END

END

Val ue of N

Val ue of N+2 (argunent)
Last (Data, N+2)
Wite result
Mar k St ack
Addr ess of Local Dat a[0]
Si ze of Local Data
Val ue 1 (paraneter)
Last (Local Data, 1)
Wite result
Witeln
END Anal yze
BEG N Debug
Mar k st ack
Addr ess of d obal Dat a[0]
Si ze of d obal Data
Val ue 1 (argunent)
Anal yze(d obal Data, 1)
END

17.6.2 Semantic analysis and code generation in a Coco/R generated compiler

If we wish to write an LL(1) grammar as input for Coco/R, things become somewhat more
complex. We are obliged to write our productions as

St at ement
Assi gnment O Cal |
Act ual Paranmeters

OneAct ual Expression .

Fact or Desi gnat or Actual Paraneters |
| "(" Expression ")" .

Desi gnat or = identifier ["[" Expression "]"

Ret ur nSt at emrent = "RETURN' [Expression]

AssignmentOr Cal ||
Desi gnator (":="
["(" OneActual

Expression |
{ "," OneActual

Act ual Paraneters)
T
nurber

]

This implies thaDesignator andExpression have to be attributed rather cleverly to allow all the

conflicts to be resolved. This can be done in several ways. We have chosen to illustrate a r
where the routines responsible for parsing these productions are passed a Boolean param
stipulating whether they are being called in a context that requires that the appearance of a
name must be followed by a subscript (this is always the case except where an actual para
syntactically an expression, but must semantically be an unsubscripted array name). On its
system is still inadequate for constraint analysis, and we must also provide some method f
checking whether an expression used as an actual reference parameter is comprised only
unsubscripted array name.

At the same time we may take the opportunity to discuss the use of an AST as an intermed
representation of the semantic structure of a program, by extending the treatment found in
15.3.2. The various node classes introduced in that section are extended and enhanced to
the idea of a node to represent a procedure or function call, linked to a set of nodes each o
represents an actual parameter, and each of which, in turn, is linked to the tree structure th
represents the expression associated with that actual parameter. The sort of structures we
exemplified in Figure 17.5, which depicts an AST corresponding to the procedure call in the
program outlined below

PROGRAM Debug;

FUNCTI ON F (X);
BEG N END; (* body of F *)

PROCEDURE P (U, V[], W;
BEG N END; (* body of P *)

VAR

P(F(X+5), A Y)
END.

FROCHODOE
entry P
lastparam
firstparan

FARAMHODE
neqdt
par

FROCHODE FARAMMHOOE
-:I'nt{_'y F next
astparam par
firstparan
i REFHODOE F’FIHFIH?EIDE
nex
FARAMHOOE offset ALE] par
next slze — E
par ——
COMSTHODE LJARHODE
= EINOFPHODE value & offset Y
op _+
left
right
LJARHODE COMSTHODE
offzet ¥ value &

Figure 17.5 AST structures for the statement PIFIE+E), A, Y)

Our baseNoDE class is extended slightly from the one introduced earlier, and now incorporat
member for linking nodes together when they are elements of argument lists:

struct NODE {

int val ue; /1 value to be associated with this node

bool defi ned; /1 true if value predictable at conpile tine
bool refnode; /1 true if node corresponds to a ref paraneter
NODE() { defined = false; refnode = false; }

virtual void emt1(void)
virtual void emt2(void)
virtual void link(AST next)

[T
eee

Similarly, thevARNCDE class has members to record the static level, and whether the corresg
variable is a variable in its own right, or is simply an alias for an array passed by reference:

struct VARNCDE : public NODE {

bool ref; /Il direct or indirectly accessed

int |evel; /1 static level of declaration

int offset; /1 offset of variable assigned by conpiler
I

VARNCDE() {;} default constructor

VARNODE(bool R, int L, int O { ref = R level = L; offset = G

virtual void emtl(void); /'l generate code to retrieve value of variable
virtual void emt2(void); /1 generate code to retrieve address of variable
virtual void |ink(AST next) {:}

H
Procedure and function calls give rise to instancesPabaNODE class. Such nodes need to recc
the static level and entry point of the routine, and have further links to the nodes that are se

represent the queue of actual parameters or arguments. It is convenient to introduce two st
pointers so as to simplify the nk member function that is responsible for building this queue.

struct PROCNODE : public NODE {
int |level, entrypoint; /Il static level, address of first instruction
AST firstparam | astparam /] pointers to argunment |ist
PROCNODE(int L, int E)
{ level =L; entrypoint = E; firstparam = NULL; | astparam = NULL;

virtual void emtl(void); /'l generate code for procedure/function call
virtual void emt2(void) ;
virtual void |ink(AST next); /1 1ink next actual paraneter

}

The actual arguments give rise to nodes of aPERAMNODE class. As can be seen from Figure
17.5, these require pointer members: one to allow the argument to be linked to another arg
and one to point to the expression tree for the argument itself:

struct PARAMNCDE : public NODE {

AST par, next; /] pointers to argunent and to next argunent
PARAMNODE(AST P) { par = P; next = NULL;
virtual void emtl(void); /1 push actual paraneter onto stack

virtual void emt2(void) 0}
virtual void |ink(AST param { next = param }

H
Actual parameters are syntactically expressions, but we need a fthiepeE class to handle the
passing of arrays as actual parameters:

struct REFNODE : public VARNCDE {

AST si ze; /1 real size of array argunent
REFNODE(bool R, int L, int O AST S)
{ ref =R level =L; offset = O size = S; refnode = true;
virtual void em tl(void); /'l generate code to push array address, size
virtual void emt2(void) {;}
virtual void link(AST next) {;}

b

Tree building operations may be understood by referring to the attributes with which a Cocc
specification would be decorated:

Assi gnnent O Cal |
= (. TABLE entries entry; AST des, exp;.)
Desi gnhat or <des, cl assset (TABLE vars, TABLE procs), entry, true>
(/* assignnment */ (. if (entry.idclass != TABLE vars) SenError(210); .)
":=" EXpression<exp, true>
SYNC (. CGen->assign(des, exp); .)
| /* procedure call */ (. if (entry.idclass < TABLE_ procs)
{ SenError(210); return; }
CGen- >mar kst ack(des, entry.|evel,
entry.p.entrypoint); .)
Act ual Par anet er s<des, entry>
CGen->cal | (des); .)

Desi gnat or <AST &D, cl assset allowed, TABLE entries &entry, bool entire>

= (. TABLE_ al fa nane; AST index, size;
bool found;
D = CGen->enptyast(); .)
| dent <name> (. Tabl e->search(name, entry, found);
if (!found) SenError(202);
if (lallowed. menb(entry.idclass)) Sentrror(206);
if (entry.idclass != TABLE vars) return;
CGen- >st ackaddress(D, entry.|evel,
entry.v.offset, entry.v.ref); .)
. if (entry.v.scalar) Sentrror(204); .)
Expr essi on<i ndex, true>
if ('entry.v.scalar)
/* determ ne size for bounds check */
{ if (entry.v.ref)
CGen- >st ackaddr ess(si ze, entry.|evel,
entry.v.offset + 1, false);
el se
CGen- >st ackconst ant (si ze, entry.v.size);
CGen->subscript(D, entry.v.ref, entry.|level,
entry.v.of fset, size, index);
P

| (. if ('entry.v.scalar)
{ if (entire) SenError(205);
if (entry.v.ref)
CGen- >st ackaddr ess(si ze, entry.|level,
entry.v.offset + 1, false);
el se
CGen- >st ackconst ant (si ze, entry.v.size);
CGen- >st ackreference(D, entry.v.ref, entry.level,
entry.v.offset, size);
P

Act ual Par anet er s<AST &p, TABLE_ entries proc>

= (. int actual =0; .)
[(" . actual ++;

OneAct ual <p, (*Table).isrefparan(proc, actual)>

{ VEAK ", " actual ++; .

OneAct ual <p, (*Table).isrefparan(proc, actual)> 1} ")"

] (. if (actual !'= proc.p.parans) Senkrror(209); .)

—

OneAct ual <AST &p, bool byref>
= (. AST par; .)
Expression<par, !byref> (. if (byref && !CGen->isrefast(par)) SenError(214);
CGen- >l i nkpar aneter (p, par);

Ret ur nSt at ement
= (. AST dest, exp; .)
" RETURN'
((. if (blockclass != TABLE funcs) SenError(219);
CGen- >st ackaddr ess(dest, bl ocklevel, 1, false); .)
Expr essi on<exp, true>
CGen- >assi gn(dest, exp);
CGen- >| eavefuncti on(bl ockl evel); .)
| /* enpty */ (. switch (bl ockcl ass)
{ case TABLE procs :
CGen- >| eavepr ocedur e(bl ockl evel); break;
case TABLE_progs :
CGen- >| eaveprogran(); break;
case TABLE_funcs :
SenError (220); break;

)

Expr essi on<AST &E, bool entire>
= (. AST T; CGEN_ operators op;
E = CGen->enptyast(); .)
("+" TernxE, true>
"-" TernxE, true> (. CGen->negateinteger(E); .)
| TernxE, entire>

)
{ AddQp<op> TernxT, true>(. CGen->binaryintegerop(op, E, T); .)
1.

Ter nkAST &T, bool entire>
= (. AST F; CGEN operators op; .)
Factor<T, entire>
{ (. Ml Q<op>
/* mssing op */ (. SynError(92); op = CGEN_ opmul; .)
) Factor<F, true> (. CGen->bi naryi ntegerop(op, T, F); .)

} .

Fact or <AST &F, bool entire>
= (. TABLE entries entry;
int val ue;
F = CGen->enptyast(); .)
Desi gnat or <F, cl assset (TABLE consts, TABLE vars, TABLE funcs), entry, entire>
(. switch (entry.idclass)
{ case TABLE consts :
CGen->stackconstant (F, entry.c.value); return;
case TABLE_procs :
case TABLE funcs :
CGen->mar kst ack(F, entry.level,
entry. p.entrypoint); break;
case TABLE vars :
case TABLE_progs :
return;
P
Act ual Par anmet er s<F, entry>
| Nunber <val ue> (. CGen->stackconstant(F, value); .)
| "(" Expression<F, true> ")"

The reader should compare this with the simpler attributed grammar presented in section 1
and take note of the following points:

® All productions that have to deal with identifiers call ufesignator. So far as code
generation is concerned, this production is responsible for creating nodes that represe
addresses of variables. Where other identifiers are recognized, executian of @
bypasses code generation, and leaves the routine after retrieving the symbol table en
that identifier.

® Designator must now permit the appearance of an unsubscripted array hame, creating
instance of ®EFNCDE in this case. Note the use of the i r e parameter passed to
Designator, Expression, Term andFactor to enable checking of the context in which the
subscript may be omitted.

® Parsing ofOneActual is simply effected by a call txpression. After this parsing is
completed, a check must be carried out to see whether a reference parameter does, i
consist only of an unsubscripted array name. NoticeQheActual also incorporates a call
a new code generating routine that will link the node just created for the actual param:
the parameter list emanating from the node for the procedure itself, a node that was c
themar kst ack routine.

® Productions likeAssignmentOrCall andFactor follow the call toDesignator with tests on th
class of the identifier that has been recognized, and use this information to drive the p
further (inFactor) or to check constraints (issignmentOrCall).

As before, once a AST structure has been built, it can be traversed and the corresponding
generated by virtue of each node "knowing" how to generate its own code. It will suffice to
demonstrate two examples. To generate code for a procedure call for our hypothetical stac
machine we define theni t 1 member function to be

voi d PROCNCDE: : emi t 1(voi d)
/] generate procedure/function activation and call
{ CGen->emt(int(STKMC nst));
if (firstparan) { firstparam>enmt1(); delete firstparam }
CGen->em t (i nt (STKMC cal));
CGen->em t (Il evel);
CGen->em t (entrypoint);
}

which, naturally, calls on thari t 1 member of its first parameter to initiate the stacking of the
actual parameters as part of the activation sequence. This member, in turn, caliswonithe

member of its successor to handle subsequent arguments:

voi d PARAMNCDE: : emi t 1(voi d)
/1 push actual paraneter onto stack during activation
{ if (par) { par->enitl(); delete par; } /1 push this argunent
if (next) { next->emtl(); delete next; } // followlink to next argunent

Source code for the complete implementation of the code generator class can be found in /
C and also on the source diskette, along with implementations for hand-crafted compilers tl
use of tree structures, and implementations that make use of the traditional variant records
to handle the inhomogeneity of the tree nodes.

Exercises

17.1 Some authors suggest that value-returning function subprograms are not really neces
can simply use procedures with call-by-reference parameter passing instead. On the other
C++ all subprograms are potentially functions. Examine the relative merits of providing both
language, from the compiler writer’s and the user’s viewpoints.

17.2 Extend Topsy and its compiler to allow functions and procedures to have parameters.
do this in such a way a function can be called either as an operand in an expression, or as
stand-alone statement, as in+C

17.3 The usual explanation of call-by-value leaves one with the impression that this mode ¢
passing is very safe, in that changes within a subprogram can be confined to that subprogr
However, if the value of a pointer variable is passed by value this is not quite the whole sto
does not provide call-by- reference, because the same effect can be obtained by writing co

void swap (int *x, int *y)

{int z; z =*x; *x =*y;, *y = z; }
Extend Topsy to provide explicit operators for computing an address, and dereferencing an
(as exemplified bygvari abl e and*vari abl e in C), and use these features to provide a refere
passing mechanism for scalar variables. Is it possible to make these operations secure (the
that they cannot be abused)? Are any difficulties caused by overloading the asterisk to mee
multiplication in one context and dereferencing an address in another context?

17.4 The array passing mechanisms we have devised effectively provide the equivalent of
Modula-2’s "open" array mechanism for arrays passed by reference. Extend Clang and its
implementation to provide the equivalent of Hne&H function to complete the analogy.

17.5 Implement parameter passing in Clang in another way - use the Pascal/Modula conve
preceding formal parameters by the keywesH if the call-by-reference mechanism is to be us
Pay particular attention to the problems of array parameters.

17.6 In Modula-2 and Pascal, the keywuare is used to denote call-by-reference, but no keyw
is used for the (default) call-by-value. Why does this come in for criticism? Is thevaredgood
choice?

17.7 How do you cater for forward declaration of functions and procedures when you have
formal parameters into account (see Exercise 16.17)?

17.8 (Longer) If you extend Clang or Topsy to introduce a Boolean type as well as an integ
(see Exercise 14.30), how do you solve the host of interesting problems that arise when yo
introduce Boolean functions and Boolean parameters?

17.9 Follow up the suggestion that parameters can be evaluated before the frame header i
allocated, and are then accessed through positive offsets from the baseBegister

17.10 Exercise 15.16 suggested the possibility of peephole optimization for replacing the ct
code sequence for loading an address and then dereferencing this, assuming the existence
powerful STKMC psh operation. How would this be implemented when procedures, functions
arrays and parameters are involved?

17.11 In previous exercises we have suggested that undeclared identifiers could be entere:
symbol table at the point of first declaration, so as to help with suppressing further spurious
What is the best way of doing this if we might have undeclared variables, arrays, functions,
procedures?

17.12 (Harder) Many languages allow formal parameters to be of a procedure type, so that
procedures or functions may be passed as actual parameters to other rottiadlews the same
effect to be achieved by declaring formal parameters as pointers to functions. Can you exte
or Topsy to support this feature? Be careful, for the problem might be more difficult than it |
except for some special simple cases.

17.13 Introduce a few standard functions and procedures into your languages, sueBstine
andcHr of Modula-2. Although it is easier to define these names to be reserved keywords,
introduce them as pervasive (predeclared) identifiers, thus allowing them to be redeclared :
user’s whim.

17.14 It might be thought that the constraint analysis on actual parameters in the Cocol gra
could be simplified so as to depend only onethie r e parameter passed to the various parsing
routines, without the need for a check to be carried out aftexmession had been parsed. Why
this check needed?

17.15 If you study the interpreter that we have been developing, you should be struck by th
that this does a great deal of checking that the stack pointer stays within bounds. This chec
strictly necessary, although unlikely to fail if the memory is large enough. It would probably
to check only for opcodes that push a value or address onto the stack. Even this would sev
degrade the efficiency of the interpreter. Suggest how the compiler and run-time system co
modified so that at compile-time a prediction is made of the extra depth needed by the run-
stack by each procedure. This will enable the run-time system to do a single check that this
will not be exceeded, as the procedure or program begins execution. (A system on these lii
suggested by Brinch Hansen (1985)).

17.16 Explore the possibility of providing a fairly sophisticated post-mortem dump in the ext
interpreter. For example, provide a trace of the subprogram calls up to the point where an ¢
detected, and give the values of the local variables in each stack frame. To be really user-fi
the run-time system will need to refer to the user names for such entities. How would this a
whole implementation of the symbol table?

17.17 Now that you have a better understanding of how recursion is implemented, study th
compiler you are writing with new interest. It uses recursion a great deal. How deeply do yc

suppose this recursion goes when the compiler executes? Is recursive descent "efficient” fc
aspects of the compiling process? Do you suppose a compiler would ever run out of space
to allocate new stack frames for itself when it was compiling large programs?

Further reading

As already mentioned, most texts on recursive descent compilers for block-structured langt
treat the material of the last few sections in fair detail, discussing one or other approach to
frame allocation and management. You might like to consult the texts by Fischer and LeBle
(1988, 1991), Watson (1989), Elder (1994) or Wirth (1996). The special problem of procedt
parameters is discussed in the texts by Aho, Sethi and Uliman (1986) and Fischer and LeB
(1988, 1991). Gough and Mohay (1988) discuss the related problem of procedure variables
found in Modula-2.

17.7 Language design issues

In this section we wish to explore a few of the many language design issues that arise whe
introduces the procedure and function concepts.

17.7.1 Scoperules

Although the scope rules we have discussed probably seem sensible enough, it may be of
record that the scope rules in Pascal originally came in for extensive criticism, as they were
incompletely formulated, and led to misconceptions and misinterpretation, especially when
by one-pass systems. Most of the examples cited in the literature have to do with the proble
associated with types, but we can give an example more in keeping with our own language
illustrate a typical difficulty. Suppose a compiler were to be presented with the following:

PROGRAM (One;

PROCEDURE Two (* first declared here *);
BEG N
VRI TE(’ First Two')
END (* Two *);

PROCEDURE Thr eg;

PROCEDURE Four ;
BEG N
Two
END (* Four *);

PROCEDURE Two (* then redeclared here *);
BEG N
WRI TE(' Second Two’)
END (* Two *);

BEG N
Four; Two
END (* Three *);

BEG N
Thr ee
END (* One *).
At the instant where procedureur is being parsed, and where the caltwo is encountered, the
first procedurewo (in the symbol table at level 1) seems to be in scope, and code will presu

be generated for a call to this. However, perhaps the second protedst®uld be the one that
in scope for procedureur ; one interpretation of the scope rules would require code to be
generated for a call to this. In a one-pass system this would be a little tricky, as this second
procedurerwo would not yet have been encountered by the compiler - but note that it would
been by the time the callskour andTwo were made from procedurer ee.

This problem can be resolved to the satisfaction of a compiler writer if the scope rules are
formulated so that the scope of an identifier extends from the point of its declaration to the «
the block in which it is declared, and not over the whole block in which it is declared. This n
for easy one-pass compilation, but it is doubtful whether this solution would please a progre
who writes code such as the above, and falls foul of the rules without the compiler reporting
fact.

An ingenious way for a single-pass compiler to check that the scope of an identifier extend:
the whole of the block in which it has been declared was suggested by Sale (1979). The be
algorithm requires that every block be numbered sequentially as it compiled (notice that the
numbers do not represent nesting levels). Each identifier node inserted into the symbol tab
extra numeric attribute. This is originally defined to be the unique number of the block maki
insertion, but each time that the identifieréferenced thereafter, this attribute is reset to the
number of the block making the reference. Each time an identifieclered, and needs to be
entered into the table, a search is made of all the identifiers that are in scope to see if a duj
identifier entry can be found that is already attributed with a number equal to or greater thau
the block making the declaration. If this search succeeds, it implies that the scope rules are
be violated. This simple scheme has to be modified, of course, if the language allows for le
forward declarations and function prototypes.

17.7.2 Function return mechanisms

Although the use of an explidrReturnStatement will seem natural to a programmer familiar witr
Modula-2 or G+, it is not the only device that has been explored by language designers. In
for example, the value to be returned must be defined by means of what appears to be an

assignment to a variable that has the same name as the function. Taken in conjunction witl
that in Pascal a parameterless function call also looks like a variable access, this presents

small difficulties to a compiler writer, as a study of the following example will reveal

PROGRAM Debug;
VAR B, G

FUNCTI ON One (W;
VAR X, Y,

FUNCTI ON Two (2);
FUNCTI ON Thr ee;

BEG N
Two := B + X (* should this be allowed ? *)
Three := Three; (* syntactically correct, although usel ess *)
END;
BEG N
Two := B + Two(4); (* nust be allowed *)
Two := B + X (* nmust be allowed *)
Two : = Three; (* nmust be allowed *)
Three : = 4; (* Three is in scope, but cannot be used like this *)
END;
BEG N
Two : = X; (* Two is in scope, but cannot be used like this *)

B +
X = Two(Y); (* must be allowed *)

BEG N
One(B)
END.
Small wonder that in his later language designs Wirth adopted the exglicitn statement. Of
course, even this does not find favour with some structured language purists, who preach t
routine should have exactly one entry point and exactly one exit point.

Exercises

17.18 Submit a program similar to the example in section 17.7.1 to any compilers you may
using, and detect which interpretation they place on the code.

17.19 Implement the Sale algorithm in your extended Clang compiler. Can the same sort of
conflicts arise in €+, and if so, can you find a way to ensure that the scope of an identifier e
over the whole of the block in which it is declared, rather than just from the point of declara
onwards?

17.20 The following program highlights some further problems with interpreting the scope r
languages when function return values are defined by assignment statements.

PROGRAM Si | I y;
FUNCTI ON F;

FUNCTION F (F) (* nested, and sane paraneter name as function *);
BEG N
F:=1
END (* inner F *);

BEG N (* outer F *)
F:=2
END (* outer F *);

BEG N
VRl TE(F)
END (* Silly *).

What would cause problems in one-pass (or any) compilation, and what could a compiler w
about solving these?

17.21 Notwithstanding our comments on the difficulties of using an assignment statement t
specify the value to be returned from a function, develop a version of the Clang compiler th
incorporates this idea.

17.22 In Modula-2, a procedure declaration requires the name of the procedure to be quote
after the terminatingND. Of what practical benefit is this?

17.23 In classic Pascal the ordering of the components in a program or procedure block is"
restrictive. It may be summarized in EBNF on the lines of

Block = [ConstDeclarations]
[TypeDecl arations]
[VarDecl arations]
{ ProcDeclaration }

ConpoundsSt at enent .

In Modula-2, however, this ordering is highly permissive:

Block = { ConstDeclarations | TypeDeclarations | VarDeclarations | ProcDeclaration }

ConpoundsSt at enent .
Oberon (Wirth, 1988b) introduced an interesting restriction:

Block = { ConstDeclarations | TypeDeclarations | VarDeclarations }
{ ProcDecl aration }
ConpoundsSt at enent .

Umbriel (Terry, 1995) imposes a different restriction:

Block = { ConstDeclarations | TypeDeclarations | ProcDeclaration }
{ VarDecl arations }
ConmpoundSt at ement .

Although allowing declarations to appear in any order makes for the simplest grammar, lan
that insist on a specific order presumably do so for good reasons. Can you think what these
be?

17.24 How would you write a Cocol grammar or a hand-crafted parser to insist on a particu
declaration order, and yet recover satisfactorily if declarations were presented in any order’

17.25 Originally, in Pascal a function could only return a scalar value, and not, for example.
ARRAY, RECORD or SET. Why do you suppose this annoying restriction was introduced? Is the
easy (legal) way around the problem?

17.26 Several language designers decry function subprograms for the reason that most lar
not prevent a programmer from writing functions that rese effects. The program below
illustrates several esoteric side-effects. Given that one really wishes to prevent these, to wt
can a compiler detect them?

PROGRAM Debug;
VAR
A B[12];

PROCEDURE P1 (X[1);
BEG N

X[3] :=1 (* Xis passed by reference *)
END;
PROCEDURE P2;
BEG N
A :=1 (* nodifies global variable *)
END;
PROCEDURE P3;
BEG N
P2 (* indirect attack on a global variable *)
END;
PROCEDURE P4;
VAR C,
FUNCTION F (Y[1);
BEG N
A:=3 (* side-effect *);
cC:=4 * side-effect *);
READ(A) * side-effect *)
Y[4] :=4 (* side-effect *)
P1(B) (* side-effect *)
P2 (* side-effect *)
P3 (* side-effect *)
P4 (* side-effect *)
RETURN 51
END;
BEG N
A = F(B);
END;

BEG N

P4
END.

17.27 If you introduce BOR loop into Clang (see Exercise 14.46), how could you prevent a
malevolent program from altering the value of the loop control variable within the loop? Sor
attempts are easily detected, but those involving procedure calls are a little trickier, as stud

following might reveal:

PROGRAM Thr eat en;

VAR i ;
PROCEDURE Nasty (VAR X);
BEG N
x := 10
END;

PROCEDURE Nasti er;
BEG N

i =10
END;
BEG N
FORi := 0 TO 10 DO
FORi := 0 TO5 DO (* Corrupt
BEG N
READ(i) (* Corrupt
i 1= 6 (* Corrupt
Nasty(i) (* Corrupt
Nasti er (* Corrupt
END
END.

using as inner control variable *)

reading a new val ue *);

direct assignment *);

passing i by reference *);

calling a procedure having i in scope *)

Further reading

Criticisms of well established languages like Pascal, Modula-2 and C are worth following u
reader is directed to the classic papers by Welsh, Sneeringer and Hoare (1977) (reprinted i
(1981)), Kernighan (1981), Cailliau (1982), Cornelius (1988), Mody (1991), and Sakkinen (:
for evidence that language design is something that does not always please users.

