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16 SIMPLE BLOCK STRUCTURE 

Our simple language has so far not provided for the procedure concept in any way. It is the aim of
the next two chapters to show how Clang and its compiler can be extended to provide procedures
and functions, using a model based on those found in block-structured languages like Modula-2 and
Pascal, which allow the use of local variables, local procedures and recursion. This involves a much
deeper treatment of the concepts of storage allocation and management than we have needed
previously. 

As in the last two chapters, we shall develop our arguments by a process of slow refinement. On the
source diskette will be found Cocol grammars, hand-crafted parsers and code generators covering
each stage of this refinement, and the reader is encouraged to study this code in detail as he or she
reads the text. 

16.1 Parameterless procedures 

In this chapter we shall confine discussion to parameterless regular procedures (or void functions
in C++ terminology), and discuss parameters and value-returning functions in the following chapter.

16.1.1 Source handling, lexical analysis and error reporting 

The extensions to be discussed in this chapter require no changes to the source handler, scanner or
error reporter classes that were not pre-empted in the discussion in Chapter 14. 

16.1.2 Syntax 

Regular procedure declaration is inspired by the way it is done in Modula-2, described in EBNF by 

    Block             =   { ConstDeclarations | VarDeclarations | ProcDeclaration }
                          CompoundStatement .
    ProcDeclaration   =  "PROCEDURE" ProcIdentifier ";" Block ";" .

It might be thought that the same effect could be achieved with 

    ProcDeclaration   =  "PROCEDURE" ProcIdentifier ";" CompoundStatement ";" .

but the syntax first suggested allows for nested procedures, and for named constants and variables
to be declared local to procedures, in a manner familiar to all Modula-2 and Pascal programmers. 

The declaration of a procedure is most easily understood as a process whereby a
CompoundStatement is given a name. Quoting this name at later places in the program then implies
execution of that CompoundStatement. By analogy with most modern languages we should like to
extend our definition of Statement as follows: 

    Statement         =   [  CompoundStatement | Assignment | ProcedureCall
                            | IfStatement | WhileStatement
                            | WriteStatement | ReadStatement ] .
    ProcedureCall     =  ProcIdentifier .

However, this introduces a non-LL(1) feature into the grammar, for now we have two alternatives
for Statement (namely Assignment and ProcedureCall) that begin with lexically indistinguishable



symbols. There are various ways of handling this problem: 

A purely syntactic solution for this simple language is possible if we re-factor the grammar as

      Statement         =   [  CompoundStatement | AssignmentOrCall
                              | IfStatement | WhileStatement
                              | WriteStatement | ReadStatement ] .
      AssignmentOrCall  =  Designator [ ":=" Expression ] .

so that a ProcedureCall can be distinguished from an Assignment by simply looking at the
first symbol after the Designator. This is, of course, the approach that has to be followed
when using Coco/R. 

A simple solution would be to add the keyword CALL before a procedure identifier, as in
Fortran, but this rather detracts from readability of the source program. 

Probably because the semantics of procedure calls and of assignments are so different, the
solution usually adopted in a hand-crafted compiler is a static semantic one. To the list of
allowed classes of identifier we add one that distinguishes procedure names uniquely. When
the symbol starting a Statement is an identifier we can then determine from its symbol table
attributes whether an Assignment or ProcedureCall is to be parsed (assuming all identifiers to
have been declared before use, as we have been doing). 

16.1.3 The scope and extent of identifiers 

Allowing nested procedures - or even local variables on their own - introduces the concept of
scope, which should be familiar to readers used to block-structured languages, although it often
causes confusion to many beginners. In such languages, the "visibility" or "accessibility" of an
identifier declared in a Block is limited to that block, and to blocks themselves declared local to that
block, with the exception that when an identifier is redeclared in one or more nested blocks, the
innermost accessible declaration applies to each particular use of that identifier. 

Perhaps any confusion which arises in beginners’ minds is exacerbated by the fact that the rather
fine distinction between compile-time and run-time aspects of scope is not always made clear. At
compile-time, only those names that are currently "in scope" will be recognized when translating
statements and expressions. At run-time, each variable has an extent or lifetime. Other than the
"global variables" (declared within the main program in Modula-2 or Pascal, or outside of all
functions in C++), the only variables that "exist" at any one instant (that is, have storage allocated to
them, with associated values) are those that were declared local to the blocks that are "active" (that
is, are associated with procedures that have been called, but which have not yet returned). 

One consequence of this, which a few readers may have fallen foul of at some stage, is that
variables declared local to a procedure cannot be expected to retain their values between calls on
the procedure. This leads to a programming style where many variables are declared globally, when
they should, ideally, be "out of scope" to many of the procedures in the program. (Of course, the
use of modules (in languages like Modula-2) or classes (in C++) allows many of these to be hidden
safely away.) 

Exercises 

16.1 Extend the grammar for Topsy so as to support a program model more like that in C and C++,



in which routines may not be nested, although both global and local variables (and constants) may
be declared. 

16.1.4 Symbol table support for the scope rules

Scope rules like those suggested in the last section may be easily handled in a number of ways, all
of which rely on some sort of stack structure. The simplest approach is to build the entire symbol
table as a stack, pushing a node onto this stack each time an identifier is declared, and popping
several nodes off again whenever we complete parsing a Block, thereby ensuring that the names
declared local to that block then go out of scope. The stack structure also ensures that if two
identifiers with the same names are declared in nested blocks, the first to be found when searching
the table will be the most recently declared. The stack of identifier entries must be augmented in
some way to keep track of the divisions between procedures, either by introducing an extra variant
into the possibilities for the TABLE_entries structure, or by constructing an ancillary stack of
special purpose nodes. 

The discussion will be clarified by considering the shell of a simple program: 

      PROGRAM Main;
        VAR G1;                   (* global *)

        PROCEDURE One;
          VAR L1, L2;             (* local to One *)
          BEGIN
            (* body of One *)
          END;

        BEGIN
          (* body of Main *)
        END.

For this program, either of the approaches suggested by Figure 16.1(a) or (b) would appear to be
suitable for constructing a symbol table. In these structures, an extra "sentinel" node has been
inserted at the bottom of the stack. This allows a search of the table to be implemented as simply as
possible, by inserting a copy of the identifier that is being sought into this node before the (linear)
search begins. 

As it happens, this sort of structure becomes rather more difficult to adapt when one extends the
language to allow procedures to handle parameters, and so we shall promote the idea of having a
stack of scope nodes, each of which contains a pointer to the scope node corresponding to an outer
scope, as well as a pointer to a structure of identifier nodes pertinent to its own scope. This latter
structure could be held as a stack, queue, tree, or even hash table. Figure 16.2 shows a situation
where queues have been used, each of which is terminated by a common sentinel node. 



Although it may not immediately be seen as necessary, it turns out that to handle the addressing
aspects needed for code generation we shall need to associate with each identifier the static level at
which it was declared. The revised public interface to the symbol table class requires declarations
like 

  enum TABLE_idclasses { TABLE_consts, TABLE_vars, TABLE_progs, TABLE_procs };

  struct TABLE_entries {
    TABLE_alfa name;             // identifier
    int level;                   // static level
    TABLE_idclasses idclass;     // class
    union {
      struct {
        int value;
      } c;                       // constants
      struct {
        int size, offset;
        bool scalar;
      } v;                       // variables
      struct {
        CGEN_labels entrypoint;
      } p;                       // procedures
    };
  };

  class TABLE {
    public:
      void openscope(void);
      // Opens new scope before parsing a block

      void closescope(void);
      // Closes scope after parsing a block

      // rest as before (see section 14.6.3)
  };

On the source diskette can be found implementations of this symbol table handler, while a version
extended to meet the requirements of Chapter 17 can be found in Appendix B. As usual, a few
comments on implementation techniques may be helpful to the reader: 

The symbol table handler manages the computation of level internally. 

An entry is passed by reference to the enter routine, so that, when required, the caller is
able to retrieve this value after an entry has been made. 

The outermost program block can be defined as level 1 (some authors take it as level 0, others
reserve this level for standard "pervasive" identifiers - like INTEGER, BOOLEAN, TRUE and
FALSE). 

It is possible to have more than one entry in the table with the same name, although not within
a single scope. The routine for adding an entry to the table checks that this constraint is



obeyed. However, a second occurrence of an identifier in a single scope will result in a further
entry in the table. 

The routine for searching the symbol table works its way through the various scope levels
from innermost to outermost, and is thus more complex than before. A call to search will,
however, always return with a value for entry which matches the name, even if this had not
been correctly declared previously. Such undeclared identifiers will seem to have an effective
idclass = TABLE_progs, which will always be semantically unacceptable when the
identifier is analysed further. 

Exercises 

16.2 Follow up the suggestion that the symbol table can be stored in a stack, using one or other of
the methods suggested in Figure 16.1. 

16.3 Rather than use a separate SCOPE_nodes structure, develop a version of the symbol table class
that simply introduces another variant into the existing TABLE_entries structure, that is, extend the
enumeration to 

enum TABLE_idclasses { TABLE_consts, TABLE_vars, TABLE_progs, TABLE_procs,
TABLE_scopes }; 

16.4 How, if at all, does the symbol table interface require modification if you wish to develop the
Topsy language to support void functions? 

16.5 In our implementation of the table class, scope nodes are deleted by the closescope routine.
Is it possible or advisable also to delete identifier nodes when identifiers go out of scope? 

16.6 Some compilers make use of the idea of a forest of binary search trees. Develop a table
handler to make use of this approach. How do you adapt the idea that a call to search will always
return a well-defined entry? 

For example, given source code like 

                    PROGRAM Silly;
                      VAR B, A, C;

                      PROCEDURE One;
                        VAR X, Y, Z;

                        PROCEDURE Two;
                          VAR Y, D;

the symbol table might look like that shown in Figure 16.3 immediately after declaring D. 



Further reading 

More sophisticated approach to symbol table construction are discussed in many texts on compiler
construction. A very readable treatment may be found in the book by Elder (1994), who also
discusses the problems of using a hash table approach for block-structured languages. 

16.1.5 Parsing declarations and procedure calls 

The extensions needed to the attributed grammar to describe the process of parsing procedure
declarations and calls can be understood with reference to the Cocol extract below, where, for
temporary clarity, we have omitted the actions needed for code generation, while retaining those
needed for constraint analysis: 

  PRODUCTIONS
    Clang
    =                         (. TABLE_entries entry; .)
       "PROGRAM"
       Ident<entry.name>      (. entry.idclass = TABLE_progs;
                                 Table->enter(entry); Table->openscope(); .)
       WEAK ";" Block "." .

    Block
    =  SYNC
       { ( ConstDeclarations | VarDeclarations | ProcDeclaration ) SYNC }
       CompoundStatement      (. Table->closescope(); .) .

    ProcDeclaration
    =                         (. TABLE_entries entry; .)
       "PROCEDURE"
       Ident<entry.name>      (. entry.idclass = TABLE_procs;
                                 Table->enter(entry); Table->openscope(); .)
       WEAK ";"  Block ";" .

    Statement
    =  SYNC [  CompoundStatement | AssignmentOrCall | IfStatement
              | WhileStatement | ReadStatement | WriteStatement ] .

    AssignmentOrCall
    =                         (. TABLE_entries entry; .)
       Designator<classset(TABLE_vars, TABLE_procs), entry>
       (                      (. if (entry.idclass != TABLE_vars) SemError(210); .)
          ":=" Expression SYNC
         |                    (. if (entry.idclass != TABLE_procs) SemError(210); .)
       ) .

The reader should note that: 

Variables declared local to a Block will be associated with a level one higher than the block
identifier itself. 

In a hand-crafted parser we can resolve the LL(1) conflict between the assignments and
procedure calls within the parser for Statement, on the lines of 



      void Statement(symset followers)
      { TABLE_entries entry; bool found;
        if (FirstStatement.memb(SYM.sym))             // allow for empty statements
        { switch (SYM.sym)
          { case SCAN_identifier:                     // must resolve LL(1) conflict
              Table->search(SYM.name, entry, found);  // look it up
              if (!found) Report->error(202);         // undeclared identifier
              if (entry.idclass == TABLE_procs) ProcedureCall(followers, entry);
              else Assignment(followers, entry);
              break;
            case SCAN_ifsym:                          // other statement forms
              IfStatement(followers); break;          // as needed
        }
        test(followers, EmptySet, 32);                // synchronize if necessary
      }

Exercises 

16.7 In Exercise 14.50 we suggested that undeclared identifiers might be entered into the symbol
table (and assumed to be variables) at the point where they were first encountered. Investigate
whether one can do better than this by examining the symbol which appears after the offending
identifier. 

16.8 In a hand-crafted parser, when calling Block from within ProcDeclaration the semicolon
symbol has to be added to Followers, as it becomes the legal follower of Block. Is it a good idea to
do this, since the semicolon (a widely used and abused token) will then be an element of all
Followers used in parsing parts of that block? If not, what does one do about it? 

16.2 Storage management 

If we wish procedures to be able to call one another recursively, we shall have to think carefully
about code generation and storage management. At run-time there may at some stage be several
instances of a recursive procedure in existence, pending completion. For each of these the
corresponding instances of any local variables must be distinct. This has a rather complicating
effect at compile-time, for a compiler can no longer associate a simple address with each variable as
it is declared (except, perhaps, for the global variables in the main program block). Other aspects of
code generation are not quite such a problem, although we must be on our guard always to generate
so-called re-entrant code, which executes without ever modifying itself. 

16.2.1 The stack frame concept 

Just as the stack concept turns out to be useful for dealing with the compile-time accessibility
aspects of scope in block-structured languages, so too do stack structures provide a solution for
dealing with the run-time aspects of extent or existence. Each time a procedure is called, it acquires
a region of free store for its local variables - an area which can later be freed when control returns
to the caller. On a stack machine this becomes almost trivially easy to arrange, although it may be
more obtuse on other architectures. Since procedure activations strictly obey a first-in-last-out
scheme, the areas needed for their local working store can be carved out of a single large stack.
Such areas are usually called activation records or stack frames, and do not themselves contain
any code. In each of them is usually stored some standard information. This includes the return
address through which control will eventually pass back to the calling procedure, as well as
information that can later be used to reclaim the frame storage when it is no longer required. This



housekeeping section of the frame is called the frame header or linkage area. Besides the storage
needed for the frame header, space must be also be allocated for local variables (and, possibly,
parameters, as we shall see in a later section). 

This may be made clearer by a simple example. Suppose we come up with the following variation
on code for satisfying the irresistible urge to read a list of numbers and write it down in reverse
order: 

        PROGRAM Backwards;
          VAR Terminator;

          PROCEDURE Start;
            VAR Local1, Local2;

            PROCEDURE Reverse;
              VAR Number;
              BEGIN
                Read(Number);
                IF Terminator <> Number THEN Start;  10: Write(Number)
              END;

            BEGIN (* Start *)
              Reverse;  20:
            END;

          BEGIN (* Backwards *)
            Terminator := 9;
            Start; 30:
          END (* Backwards *).

(Our language does not provide for labels; these have simply been added to make the descriptions
easier.) 

We note that a stack is also the obvious structure to use in a non-recursive solution to the problem,
so the example also highlights the connection between the use of stacks to implement recursive
ideas in non-recursive languages. 

If this program were to be given exciting data like 56 65 9, then its dynamic execution would
result in a stack frame history something like the following, where each line represents the relative
layout of the stack frames as the procedures are entered and left. 

                             Stack grows ---->
   start main program        Backwards
   call Start                Backwards   Start
   call Reverse              Backwards   Start   Reverse
   read 56 and recurse       Backwards   Start   Reverse   Start
      and again              Backwards   Start   Reverse   Start   Reverse
   read 65 and recurse       Backwards   Start   Reverse   Start   Reverse   Start
      and again              Backwards   Start   Reverse   Start   Reverse   Start   Reverse
   read 9, write 9, return   Backwards   Start   Reverse   Start   Reverse   Start
      and again              Backwards   Start   Reverse   Start   Reverse
   write 65 and return       Backwards   Start   Reverse   Start
      and again              Backwards   Start   Reverse
   write 56 and return       Backwards   Start
      and again              Backwards

At run-time the actual address of a variable somewhere in memory will have to be found by
subtracting an offset (which, fortunately, can be determined at compile-time) from the address of
the appropriate stack frame (a value which, naturally but unfortunately, cannot be predicted at
compile-time). The code generated at compile-time must contain enough information for the
run-time system to be able to find (or calculate) the base of the appropriate stack frame when it is
needed. This calls for considerable thought. 

The run-time stack frames are conveniently maintained as a linked list. As a procedure is called, it
can set up (in its frame header) a pointer to the base of the stack frame of the procedure that called



it. This pointer is usually called the dynamic link. A pointer to the top of this linked structure - that
is, to the base of the most recently activated stack frame - is usually given special status, and is
called the base pointer. Many modern architectures provide a special machine register especially
suited for use in this role; we shall assume that our target machine has such a register (BP), and that
on procedure entry it will be set to the current value of the stack pointer SP, while on procedure exit
it will be reset to assume the value of the dynamic link emanating from the frame header. 

If a variable is local to the procedure currently being executed, its run-time address will then be
given by BP - Offset, where Offset can be predicted at compile-time. The run-time address of a
non-local variable must be obtained by subtracting its Offset from an address found by descending
a chain of stack frame links. The problem is to know how far to traverse this chain, and at first
seems easily solved, since at declaration time we have already made provision to associate a static
declaration level with each entry in the symbol table. When faced with the need to generate code to
address an identifier, we can surely generate code (at compile-time) which will use this information
to determine (at run-time) how far down the chain to go. This distance at first appears to be easily
predictable - nothing other than the difference in levels between the level we have reached in
compilation, and the level at which the identifier (to which we want to refer) was declared. 

This is nearly true, but in fact we cannot simply traverse the dynamic link chain by that number of
steps. This chain, as its name suggests, reflects the dynamic way in which procedures are called and
their frames stacked, while the level information in the symbol table is related to the static depth of
nesting of procedures as they were declared. Consider the case when the program above has just
read the second data number 65. At that stage the stack memory would have the appearance
depicted in Figure 16.4, where the following should be noted: 

The number (511) used as the highest address is simply for illustrative purposes. 

Since we are assuming that the stack pointer SP is decremented before an item is pushed onto
the stack, the base register BP will actually point to an address just above the current top stack
frame. Similarly, immediately after control has been transferred to a procedure the stack
pointer SP will actually point to the last local variable. 

The compiler would know (at compile-time) that Terminator was declared at static level 1, and
could have allocated it an offset address of 1 (relative to the base pointer that is used for the main
program). Similarly, when parsing the reference to Terminator within Reverse, the compiler
would be aware that it was currently compiling at a static level 3 - a level difference of 2. However,
generation of code for descending two steps along the dynamic link chain would result (at run-time)
in a memory access to a dynamic link masquerading as a "variable" at location 505, rather than to
the variable Terminator at location 510. 



16.2.2 The static link chain 

One way of handling the problem just raised is to provide a second chain for linking data segments,
one which will be maintained at run-time using only information that has been embedded in the
code generated at compile- time. This second chain is called the static link chain, and is set up
when a procedure is invoked. By now it should not take much imagination to see that calling a
procedure is not handled by simply executing a machine level JSR instruction, but rather by the
execution of a complex activation and calling sequence. 

Procedure activation is that part of the sequence that reserves storage for the frame header and
evaluates the actual parameters needed for the call. Parameter handling is to be discussed later, but
in anticipation we shall postulate that the calling routine initiates activation by executing code that 

saves the current stack pointer SP in a special register known as the mark stack pointer MP,
and then 

decrements SP so as to reserve storage for the frame header, before 

dealing with the arrangements for transferring any actual parameters. 

When a procedure is called, code is first executed that stores in the first three elements of its
activation record 

a static link - a pointer to the base of the stack frame for the most recently active instance of
the procedure within which its source code was nested; 

a dynamic link - a pointer to the base of the stack frame of the calling routine; 

a return address - the code address to which control must finally return in the calling routine; 

whereafter the BP register can be reset to value that was previously saved in MP, and control
transferred to the main body of the procedure code. 

This calling sequence can, in principle, be associated with either the caller or the called routine.
Since a routine is defined once, but possibly called from many places, it is usual to associate most
of the actions with the called routine. When this code is generated, it incorporates (a) the (known)
level difference between the static level from which the procedure is to be called and the static level
at which it was declared, and (b) the (known) starting address of the executable code. We
emphasize that the static link is only set up at run-time, when code is executed that follows the
extant static chain from the stack frame of the calling routine for as many steps as the level
difference between the calling and called routine dictates. 

Activating and calling procedures is one part of the story. We also need to make provision for
accessing variables. To achieve this, the compiler embeds address information into the generated
code. This takes the form of pairs of numbers indicating (a) the (known) level difference between
the static level from which the variable is being accessed and the static level where it was declared,
and (b) the (known) offset displacement that is to be subtracted from the base pointer of the
run-time stack frame. When this code is later executed, the level difference information is used to
traverse the static link chain when variable address computations are required. In sharp contrast, the
dynamic link chain is used, as suggested earlier, only to discard a stack frame at procedure exit. 



With this idea, and for the same program as before, the stack would take on the appearance shown
in Figure 16.5. 

16.2.3 Hypothetical machine support for the static link model 

We postulate some extensions to the instruction set of the hypothetical stack machine introduced in
section 4.4 so as to support the execution of programs that have simple procedures. We assume the
existence of another machine register, the 16-bit MP, that points to the frame header at the base of
the activation record of the procedure that is about to be called. 

One instruction is redefined, and three more are introduced: 

ADR  L  A   Push a run-time address onto the stack, for a variable stored at an offset A within the stack
            frame that is L steps down the static link chain that begins at the current base register BP.

MST         Prepare to activate a procedure, saving stack pointer SP in MP, and then reserving
            storage for frame header.

CAL  L  A   Call and enter a procedure whose code commences at address A, and which was declared
            at a static difference L from the procedure making the call.

RET         Return from procedure, resetting SP, BP and PC.

The extensions to the interpreter of section 4.4 show the detailed operational semantics of these
instructions: 

   case STKMC_adr:                        // push run time address
     cpu.sp--;                            // decrement stack pointer
     if (inbounds(cpu.sp))
     { mem[cpu.sp] = base(mem[cpu.pc])    // chain down static links
                     + mem[cpu.pc + 1];   // and then add offset
       cpu.pc += 2; }                     // bump program count
     break;
   case STKMC_mst:                        // procedure activation
     cpu.mp = cpu.sp;                     // set mark stack pointer
     cpu.sp -= STKMC_headersize;          // bump stack pointer
     inbounds(cpu.sp);                    // check space available
     break;
   case STKMC_cal:                        // procedure entry
     mem[cpu.mp - 1] = base(mem[cpu.pc]); // set up static link
     mem[cpu.mp - 2] = cpu.bp;            // save dynamic link
     mem[cpu.mp - 3] = cpu.pc + 2;        // save return address
     cpu.bp = cpu.mp;                     // reset base pointer
     cpu.pc = mem[cpu.pc + 1];            // jump to start of procedure
     break;
   case STKMC_ret:                        // procedure exit
     cpu.sp = cpu.bp;                     // discard stack frame



     cpu.pc = mem[cpu.bp - 3];            // get return address
     cpu.bp = mem[cpu.bp - 2];            // reset base pointer
     break;

The routines for calling a procedure and computing the run-time address of a variable make use of
the small auxiliary routine base: 

  int STKMC::base(int l)
  // Returns base of l-th stack frame down the static link chain
  { int current = cpu.bp;                 // start from base pointer
    while (l > 0) { current = mem[current - 1]; l--; }
    return (current);
  }

16.2.4 Code generation for the static link model 

The discussion in the last sections will be made clearer if we examine the refinements to the
compiler in more detail. 

The routines for parsing the main program and for parsing nested procedures make appropriate
entries into the symbol table, and then call upon Block to handle the rest of the source code for the
routine. 

  Clang
  =                           (. TABLE_entries entry; .)
     "PROGRAM"
     Ident<entry.name>        (. entry.idclass = TABLE_progs;
                                 Table->enter(entry); Table->openscope(); .)
     WEAK ";"
     Block<entry.level+1, TABLE_progs, 0>
     "." .

  ProcDeclaration
  =                           (. TABLE_entries entry; .)
     "PROCEDURE"
     Ident<entry.name>        (. entry.idclass = TABLE_procs;
                                 CGen->storelabel(entry.p.entrypoint);
                                 Table->enter(entry); Table->openscope(); .)
     WEAK ";"
     Block<entry.level+1, entry.idclass, CGEN_headersize>
     ";" .

We note that: 

The address of the first instruction in any procedure will be stored in the symbol table in the
entrypoint field of the entry for the procedure name, and retrieved from there whenever the
procedure is to be called. 

The parser for a Block is passed a parameter denoting its static level, a parameter denoting its
class, and a parameter denoting the offset to be assigned to its first local variable. Offset
addresses for variables in the stack frame for a procedure start at 4 (allowing for the size of
the frame header), as opposed to 1 (for the main program). 

Parsing a Block involves several extensions over what was needed when there was only a single
main program, and can be understood with reference to the attributed production: 

  Block<int blklevel, TABLE_idclasses blkclass, int initialframesize>
  =                           (. int framesize = initialframesize;
                                 CGEN_labels entrypoint;
                                 CGen->jump(entrypoint, CGen->undefined); .)
     SYNC
     { (   ConstDeclarations
         | VarDeclarations<framesize>
         | ProcDeclaration
       ) SYNC }               (. blockclass = blkclass; blocklevel = blklevel;
                                 // global for efficiency
                                 CGen->backpatch(entrypoint);



                                 CGen->openstackframe(framesize - initialframesize); .)
     CompoundStatement        (. switch (blockclass)
                                 { case TABLE_progs :
                                     CGen->leaveprogram(); break;
                                   case TABLE_procs :
                                     CGen->leaveprocedure(); break;
                                 }
                                 Table->closescope(); .) .

in which the following points are worthy of comment: 

Since blocks can be nested, the compiler cannot predict, when a procedure name is declared,
exactly when the code for that procedure will be defined, still less where it will be located in
memory. To save a great deal of trouble such as might arise from apparent forward
references, we can arrange that the code for each procedure starts with an instruction which
may have to branch (over the code for any nested blocks) to the actual code for the procedure
body. This initial forward branch is generated by a call to the code generating routine jump,
and is backpatched when we finally come to generate the code for the procedure body. With a
little thought we can see that a simple optimization will allow for the elimination of the
forward jump in the common situation where a procedure has no further procedure nested
within it. Of course, calls to procedures within which other procedures are nested will
immediately result in the execution of a further branch instruction, but the loss in efficiency
will usually be very small. 

The call to the openstackframe routine takes into account the fact that storage will have been
allocated for the frame header when a procedure is activated just before it is called. 

The formal parameters blkclass and blklevel are copied into global variables in the parser
to cut down on the number of attributes needed for every other production, and thus improve
on parsing efficiency. This rather nasty approach is not needed in Modula-2 and Pascal
hand-crafted parsers, where the various routines of the parser can themselves be nested. 

After the CompoundStatement has been parsed, code is generated either to halt the program
(in the case of a program block), or to effect a procedure return (by calling on
leaveprocedure to emit a RET instruction). 

Code for parsing assignments and procedure calls is generated after the LL(1) conflict has been
resolved by the call to Designator: 

  AssignmentOrCall
  =                           (. TABLE_entries entry; .)
     Designator<classset(TABLE_vars, TABLE_procs), entry>
     (   /* assignment */     (. if (entry.idclass != TABLE_vars) SemError(210); .)
         ":=" Expression SYNC (. CGen->assign(); .)
       | /* procedure call */ (. if (entry.idclass == TABLE_procs)
                                 { CGen->markstack();
                                   CGen->call(blocklevel - entry.level, entry.p.entrypoint);
                                 }
                                 else SemError(210); .)
     ) .

This makes use of two routines, markstack and call that are responsible for generating code for
initiating the activation and calling sequences (for our interpretive system these routines simply
emit the MST and CAL instructions). The routine for processing a Designator is much as before, save
that it must call upon an extended version of the stackaddress code generation routine to emit the
new form of the ADR instruction: 

  Designator<classset allowed, TABLE_entries &entry>
  =                           (. TABLE_alfa name;
                                 bool found; .)
     Ident<name>              (. Table->search(name, entry, found);



                                 if (!found) SemError(202);
                                 if (!allowed.memb(entry.idclass)) SemError(206);
                                 if (entry.idclass != TABLE_vars) return;
                                 CGen->stackaddress(blocklevel - entry.level,
                                                    entry.v.offset); .)
     (   "["                  (. if (entry.v.scalar) SemError(204); .)
         Expression           (. /* determine size for bounds check */
                                 CGen->stackconstant(entry.v.size);
                                 CGen->subscript(); .)
         "]"
       |                      (. if (!entry.v.scalar) SemError(205); .)
     ) .

We observe that an improved code generator could be written to make use of a tree representation
for expressions and conditions, similar to the one discussed in section 15.3.2. A detailed Cocol
grammar and hand-crafted parsers using this can be found on the source diskette; it suffices to note
that virtually no changes have to be made to those parts of the grammar that we have discussed in
this section, other than for those responsible for assignment statements. 

16.2.5 The use of a "Display" 

Another widely used method for handling variable addressing involves the use of a so-called
display. Since at most one instance of a procedure can be active at one time, only the latest instance
of each local variable can be accessible. The tedious business of following a static chain for each
variable access at execution time can be eliminated by storing the base pointers for the most
recently activated stack frames at each level - the addresses we would otherwise have found after
following the static chain - in a small set of dedicated registers. These conceptually form the
elements of an array indexed by static level values. Run-time addressing is then performed by
subtracting the predicted stack frame offset from the appropriate entry in this array. 

When code for a procedure call is required, the interface takes into account the (known) absolute
level at which the called procedure was declared, and also the (known) starting address of the
executable code. The code to be executed is, however, rather different from that used by the static
link method. When a procedure is called it still needs to store the dynamic link, and the return
address (in its frame header). In place of setting up the start of the static link chain, the calling
sequence updates the display. This turns out to be very easy, as only one element is involved, which
can be predicted at compile-time to be the one that corresponds to a static level one higher than that
at which the name of the called procedure was declared. (Recall that a ProcIdentifier is attributed
with the level of the Block in which it is declared, and not with the level of the Block which defines
its local variables and code.) 

Similarly, when we leave a procedure, we must not only reset the program counter and base pointer,
we may also need to restore a single element of the display. This is strictly only necessary if we
have called the procedure from one declared statically at a higher level, but it is simplest to update
one element on all returns. 

Consequently, when a procedure is called, we arrange for it to store in its frame header: 

a display copy - a copy of the current value of the display element for the level one higher
than the level of the called routine. This will allow the display to be reset later if necessary. 

a dynamic link - a pointer to the base of the stack frame of the calling routine. 

a return address - the code address to which control must finally return in the calling routine. 

When a procedure relinquishes control, the base pointer is reset from the dynamic link, the program



counter is reset from the return address, and one element of the display is restored from the display
copy. The element in question is that for a level one higher than the level at which the name of the
called routine was declared, that is, the level at which the block for the routine was compiled, and
this level information must be incorporated in the code generated to handle a procedure exit. 

Information pertinent to variable addresses is still passed to the code generator by the analyser as
pairs of numbers, the first giving the (known) level at which the identifier was declared (an absolute
level, not the difference between two levels), and the second giving the (known) offset from the
run-time base of the stack frame. This involves only minor changes to the code generation interface
so far developed. 

This should be clarified by tracing the sequence of procedure calls for the same program as before.
When only the main program is active, the situation is as depicted in Figure 16.6(a). 

After Start is activated and called, the situation changes to that depicted in Figure 16.6(b). 

After Reverse is called for the first time it changes again to that depicted in Figure 16.6(c). 

After the next (recursive) call to Start the changes become rather more significant, as the display
copy is now relevant for the first time (Figure 16.6(d)). 



After the next (recursive) call to Reverse we get the situation in Figure 16.6(e). 

When the recursion unwinds, Reverse relinquishes control, the stack frame in 495-492 is
discarded, and Display[3] is reset to 505. When Reverse relinquishes control yet again, the frame
in 504-501 is discarded and there is actually no need to alter Display[3], as it is no longer needed.
Similarly, after leaving Start and discarding the frame in 509-505 there is no need to alter
Display[2]. However, it is easiest simply to reset the display every time control returns from a
procedure. 

16.2.6 Hypothetical machine support for the display model 

Besides the mark stack register MP, our machine is assumed to have a set of display registers, which
we can model in an interpreter as a small array, display. Conceptually this is indexed from 1,
which calls for care in a C++ implementation where arrays are indexed from 0. The MST instruction
provides support for procedure activation as before, but the ADR, CAL and RET instructions are subtly
different: 

ADR  L  A   Push a run-time address onto the stack for a variable that was declared at static level
            L and predicted to be stored at an offset A from the base of a stack frame.

CAL  L  A   Call and enter a procedure whose ProcIdentifier was declared at static level L, and
            whose code commences at address A.

RET  L      Return from a procedure whose Block was compiled at level L.

The extensions to the interpreter of section 4.4 show the detailed operational semantics of these
instructions: 



   case STKMC_adr:                               // push run time address
     cpu.sp--;                                   // decrement stack pointer
     if (inbounds(cpu.sp))
     { mem[cpu.sp] = display[mem[cpu.pc] - 1]    // extract display element
                     + mem[cpu.pc + 1];          // and then add offset
       cpu.pc += 2; }                            // bump program count
     break;
   case STKMC_cal:                               // procedure entry
     mem[cpu.mp - 1] = display[mem[cpu.pc]];     // save display element
     mem[cpu.mp - 2] = cpu.bp;                   // save dynamic link
     mem[cpu.mp - 3] = cpu.pc + 2;               // save return address
     display[mem[cpu.pc]] = cpu.mp;              // update display
     cpu.bp = cpu.mp;                            // reset base pointer
     cpu.pc = mem[cpu.pc + 1];                   // enter procedure
     break;
   case STKMC_ret:                               // procedure exit
     display[mem[cpu.pc] - 1] = mem[cpu.bp - 1]; // restore display
     cpu.sp = cpu.bp;                            // discard stack frame
     cpu.pc = mem[cpu.bp - 3];                   // get return address
     cpu.bp = mem[cpu.bp - 2];                   // reset base pointer
     break;

16.2.7 Code generation for the display model 

The attributed productions in a Cocol description of our compiler are very similar to those used in a
static link model. The production for Block takes into account the new form of the RET instruction,
and also checks that the limit on the depth of nesting imposed by a finite display will not be
exceeded: 

  Block<int blklevel, TABLE_idclasses blkclass, int initialframesize>
  =                           (. int framesize = initialframesize;
                                 CGEN_labels entrypoint;
                                 CGen->jump(entrypoint, CGen->undefined);
                                 if (blklevel > CGEN_levmax) SemError(213); .)
     SYNC
     { (   ConstDeclarations
         | VarDeclarations<framesize>
         | ProcDeclaration
       ) SYNC }               (. blockclass = blkclass; blocklevel = blklevel;
                                 CGen->backpatch(entrypoint);
                                 CGen->openstackframe(framesize
                                                      - initialframesize); .)
     CompoundStatement        (. switch (blockclass)
                                 { case TABLE_progs :
                                     CGen->leaveprogram(); break;
                                   case TABLE_procs :
                                     CGen->leaveprocedure(blocklevel); break;
                                 }
                                 Table->closescope(); .) .

The productions for AssignmentOrCall and for Designator require trivial alteration to allow for the
fact that the code generator is passed absolute static levels, and not level differences: 

  AssignmentOrCall
  =                           (. TABLE_entries entry; .)
     Designator<classset(TABLE_vars, TABLE_procs), entry>
     (  /* assignment */      (. if (entry.idclass != TABLE_vars) SemError(210); .)
        ":=" Expression SYNC  (. CGen->assign(); .)
      | /* procedure call */  (. if (entry.idclass == TABLE_procs)
                                 { CGen->markstack();
                                   CGen->call(entry.level, entry.p.entrypoint);
                                 }
                                 else SemError(210); .)
     ) .

  Designator<classset allowed, TABLE_entries &entry>
  =                           (. TABLE_alfa name;
                                 bool found; .)
     Ident<name>              (. Table->search(name, entry, found);
                                 if (!found) SemError(202);
                                 if (!allowed.memb(entry.idclass)) SemError(206);
                                 if (entry.idclass != TABLE_vars) return;
                                 CGen->stackaddress(entry.level, entry.v.offset); .)
     (   "["                  (. if (entry.v.scalar) SemError(204); .)
         Expression           (. /* determine size for bounds check */
                                 CGen->stackconstant(entry.v.size);



                                 CGen->subscript(); .)
         "]"
       |                      (. if (!entry.v.scalar) SemError(205); .)
     ) .

It may be of interest to show the code generated for the program given earlier. The correct Clang
source 

            PROGRAM Debug;
              VAR Terminator;

              PROCEDURE Start;
                VAR Local1, Local2;

                PROCEDURE Reverse;
                  VAR Number;
                  BEGIN
                    READ(Number);
                    IF Terminator <> Number THEN Start;
                    WRITE(Number)
                  END;

                BEGIN
                  Reverse
                END;

              BEGIN
                Terminator := 9;
                Start
              END.

produces the following stack machine code, where for comparison we have shown both models: 

    Static link       Display 

    0 BRN     39        0 BRN     41   jump to start of main program 
    2 BRN     32        2 BRN     33   jump to start of Start 
    4 DSP      1        4 DSP      1   start of code for Reverse (declared at level 3) 
    6 ADR  0  -4        6 ADR  3  -4   address of Number (declared at level 3) 
    9 INN               9 INN          read (Number) 
   10 ADR  2  -1       10 ADR  1  -1   address of Terminator is two levels down 
   13 VAL              13 VAL          dereference - value of Terminator on stack 
   14 ADR  0  -4       14 ADR  3  -4   address of Number is on this level 
   17 VAL              17 VAL          dereference - value of Number now on stack 
   18 NEQ              18 NEQ          compare for inequality 
   19 BZE     25       19 BZE     25
   21 MST              21 MST          prepare to activate Start 
   22 CAL  2   2       22 CAL  1   2   recursive call to Start 
   25 ADR  0  -4       25 ADR  3  -4   address of Number 
   28 VAL              28 VAL
   29 PRN              29 PRN          write(Number) 
   30 NLN              30 NLN
   31 RET              31 RET      3   exit Reverse 
   32 DSP      2       33 DSP      2   start of code for Start (declared at level 2) 
   34 MST              35 MST          prepare to activate Reverse 
   35 CAL  0   4       36 CAL  2   4   call on Reverse, which is declared at this level 
   38 RET              39 RET      2   exit Start 
   39 DSP      1       41 DSP      1   start of code for main program (level now 1) 
   41 ADR  0  -1       43 ADR  1  -1   address of Terminator on stack 
   44 LIT      9       46 LIT      9   push constant 9 onto stack 
   46 STO              48 STO          Terminator := 9
   47 MST              49 MST          prepare to activate Start 
   48 CAL  0   2       50 CAL  1   2   call Start, which is declared at this level 
   51 HLT              53 HLT          stop execution 

16.2.8 Relative merits of the static link and display models 

The display method is potentially more efficient at run-time than the static link method. In some
real machines special purpose fast CPU registers may be used to store the display, leading to even
greater efficiency. It suffers from the drawback that it seems necessary to place an arbitrary limit on
the depth to which procedures may be statically nested. The limit on the size of the display is the
same as the maximum static depth of nesting allowed by the compiler at compile-time. Murphy’s
Law will ensure that this depth will be inadequate for the program you were going to write to
ensure you a niche in the Halls of Fame! Ingenious methods can be found to overcome these



problems, but we leave investigation of these to the exercises that follow. 

Exercises 

16.9 Since Topsy allows only a non-nested program structure for routines like that found in C and
C++, its run-time support system need not be nearly as complex as the one described in this section,
although use will still need to be made of the stack frame concept. Discuss the implementation of
void functions in Topsy in some detail, paying particular attention to the information that would be
needed in the frame header of each routine, and extend your Topsy compiler and the hypothetical
machine interpreter to allow you to handle multi-function programs. 

16.10 Follow up the suggestion that the display does not have to be restored after every return from
a procedure. When should the compiler generate code to handle this operation, and what form
should the code take? Are the savings worth worrying about? (The Pascal-S system takes this
approach (Wirth, 1981; Rees and Robson, 1987).) 

16.11 If you use the display method, is there any real need to use the base register BP as well? 

16.12 If one studies block-structured programs, one finds that many of the references to variables in
a block are either to the local variables of that block, or to the global variables of the main program
block. Study the source code for the Modula-2 and Pascal implementation of the hand-crafted
parsers and satisfy yourself of the truth of this. If this is indeed so, perhaps special forms of
addressing should be used for these variables, so as to avoid the inefficient use of the static link
search or display reference at run-time. Explore this idea for the simple compiler-interpreter system
we are developing. 

16.13 In our emulated machine the computation of every run-time address by invoking a function
call to traverse the static link chain might prove to be excessively slow if the idea were extended to
a native- code generator. Since references to "intermediate" variables are likely to be less frequent
than references to "local" or "global" variables, some compilers (for example, Turbo Pascal)
generate code that unrolls the loop implicit in the base function for such accesses - that is, they
generate an explicit sequence of N assignments, rather than a loop that is performed N times -
thereby sacrificing a marginal amount of space to obtain speed. Explore the implications and
implementation of this idea. 

16.14 One possible approach to the problem of running out of display elements is to store as large a
display as will be needed in the frame header for the procedure itself. Explore the implementation
of this idea, and comment on its advantages and disadvantages. 

16.15 Are there any dangers lurking behind the peephole optimization suggested earlier for
eliminating redundant branch instructions? Consider carefully the code that needs to be generated
for an IF ... THEN ... ELSE statement. 

16.16 Can you think of a way of avoiding the unconditional branch instructions with which nearly
every enveloping procedure starts, without using all the machinery of a separate forward reference
table? 

16.17 Single-pass compilers have difficulty in handling some combinations of mutually recursive
procedures. It is not always possible to nest such procedures in such a way that they are always



"declared" before they are "invoked" in the source code - indeed, in C++ it is not possible to nest
procedures (functions) at all. The solution usually adopted is to support the forward declaration of
procedures. In Pascal, and in some Modula-2 compilers this is done by substituting the keyword
FORWARD for the body of the procedure when it is first declared. In C++ the same effect is achieved
through the use of function prototypes. 

Extend the Clang and Topsy compilers as so far developed so as to allow mutually recursive
routines to be declared and elaborated properly. Bear in mind that all procedures declared FORWARD

must later be defined in full, and at the same level as that where the forward declaration was
originally made. 

16.18 The poor old GOTO statement is not only hated by protagonists of structured programming. It
is also surprisingly awkward to compile. If you wish to add it to Clang, why should you prevent
users from jumping into procedure or function blocks, and if you let them jump out of them, what
special action must be taken to maintain the integrity of the stack frame structures? 

Further reading 

Most texts on compiling block-structured languages give a treatment of the material discussed here,
but this will make more sense after the reader has studied the next chapter. 

The problems with handling the GOTO statement are discussed in the books by Aho, Sethi and
Ullman (1986) and Fischer and LeBlanc (1988, 1991). 


