Compilers and Compiler Generators © P.D. Terry, 2000

14 A SSIMPLE COMPILER - THE FRONT END

At this point it may be of interest to consider the construction of a compiler for a simple
programming language, specifically that of section 8.7. In a text of this nature it is impossib
discuss a full-blown compiler, and the value of our treatment may arguably be reduced by t
that in dealing with toy languages and toy compilers we shall be evading some of the real it
that a compiler writer has to face. However, we hope the reader will find the ensuing discus
interest, and that it will serve as a useful preparation for the study of much larger compilers
technique we shall follow is one of slow refinement, supplementing the discussion with nun
asides on the issues that would be raised in compiling larger languages. Clearly, we could
develop a completely hand-crafted compiler, or simply to use a tool like Coco/R. We shall c
both approaches. Even when a compiler is constructed by hand, having an attributed gram
describe it is very worthwhile.

On the source diskette can be found a great deal of code, illustrating different stages of
development of our system. Although some of this code is listed in appendices, its volume
precludes printing all of it. Some of it has deliberately been written in a way that allows for ¢
modification when attempting the exercises, and is thus not really of "production quality". F
example, in order to allow components such as the symbol table handler and code generat
used either with hand-crafted or with Coco/R generated systems, some compromises in de
been necessary.

Nevertheless, the reader is urged to study the code along with the text, and to attempt at le
of the many exercises based on it. A particularly worthwhile project is to construct a similar
compiler, based on a language whose syntax resemblaatber more than it does Pascal, anc
whose development, like that o#€ will be marked by the steady assimilation of extra feature
This language we shall name "Topsy", after the little girl in Harriet Beecher Stowe’s story w
knew little of her genealogy except a suspicion that she had "grow’d". A simple Topsy prog
was illustrated in Exercise 8.25, where the reader was invited to create an initial syntactic
specification in Cocol.

14.1 Overall compiler structure

In Chapter 2 we commented that a compiler is often developed as a sequence of phases, ¢
syntactic analysis is only one. Although a recursive descent parser is easily written by appl'
ideas of earlier chapters, it should be clear that consideration will have to be given to the
relationship of this to the other phases. We can think of a compiler with a recursive descent
at its core as having the structure depicted in Figure 14.1.

——* Source and Error Listing
—* Object Code File

Source —* File Handler Foutines

I

‘ Error Report |

Generator

Lexical Table Code
Scanner Handlex Generator

I] I

Combined FParser and Constraint Analwzer

Figure 14.1 PRelationship between the main components of a simple compiler

We emphasize that phases need not be sequential, as passes would be. In a recursive des
compiler the phases of syntax analysis, semantic analysis and code generation are very off
interleaved, especially if the source language is designed in such a way as to permit one-pi
compilation. Nevertheless, it is useful to think of developing modular components to handle
various phases, with clear simple interfaces between them.

In our Modula-2 implementations, the various components of our diagram have been imple
as separate modules, wh@&El NI TI ON MODULE components export only those facilities that tf
clients need be aware of. The corresponding iBplementations use classes to achieve the si
sort of abstraction and protection.

In principle, the main routine of our compiler must resemble something like the following

void main(int argc, char *argv[])
{ char SourceNane[256], ListName[256];

/'l handl e command |ine paraneters
strcpy(SourceNane, argv[1]);

if (argc > 2) strcpy(ListNanme, argv[2]);

el se appendext ensi on(SourceNane, ".l|st", ListName);

/1 instantiate conpiler conponents

SRCE *Source new SRCE(Sour ceNane, ListNanme, "Conpiler Version 1", true);
REPORT * Report new REPORT(Sour ce) ;

SCAN *Scanner new SCAN(Sour ce, Report);

CGEN *CGen new CGEN(Report);

TABLE *Tabl e new TABLE(Report);

PARSER * Par ser new PARSER(CGen, Scanner, Table, Report);

/] start conpilation
Par ser - >parse();

}

where we notice that instances of the various classes are constructed dynamically, and tha
constructors establish links between them that correspond to those shown in Figure 14.1.

In practice our compilers do not look exactly like this. For example, Coco/R generates only
scanner, a parser, a rudimentary error report generator and a driver routine. The scanner a
source handling section of the file handler are combined into one module, and the routines
producing the error listing are generated along with the main driver module +FheGion of
Coco/R makes use of a standard class hierarchy involving parser, scanner and error report
and establishes links between the various instances of these classes as they are construct
gives the flexibility of having multiple instances of parsers or scanners within one system (r
our case studies will not exploit this power).

14.2 Sour ce handling

Among the file handling routines is to be found one that has the task of transmitting the soL
character by character, to the scanner or lexical analyser (which assembles it into symbols
subsequent parsing by the syntax analyser). Ideally this source handler should have to sca
program text only once, from start to finish, and in a one-pass compiler this should always |
possible.

14.2.1 A hand-crafted sour ce handler

The interface needed between source handler and lexical analyser is straightforward, and ¢
supplied by a routine that simply extracts the next character from the source each time it is
It is convenient to package this with the routines that assume responsibility for producing a
listing, and, where necessary, producing an error message listing, because all these requir
will be input/output device dependent. It is useful to add some extra functionality, and so th
interface to our source handling class is defined by

class SRCE {
public:
FILE *I st; /Il listing file
char ch; /1 latest character read

voi d nextch(void);
/1 Returns ch as the next character on this source line, reading a new
/1 line where necessary. ch is returned as NUL if src is exhausted.

bool endline(void);
/1l Returns true when end of current line has been reached

void listingon(void);
/'l Requests source to be listed as it is read

voi d listingoff(void);
/1 Requests source not to be listed as it is read

void reporterror(int errorcode);
/1 Points out error identified by errorcode with suitabl e nessage

virtual void startnewline() {;}
/1l Called at start of each line

int getline(void);
/1l Returns current |ine nunber

SRCE(char *sourcenane, char *listname, char *version, bool |istwanted);
/1 Opens src and Ist files using given nanes.

/!l Resets internal state in readiness for starting to scan.

/1 Notes whether listwanted. Displays version information on Ist file.

~SRCE() ;
/1l Closes src and Ist files

H
Some aspects of this interface deserve further comment:

® \We have not shown the private members of the class, but of course there are several

® Thestartnew i ne routine has been declared virtual so that a simple class can be deri
from this one to allow for the addition of extra material at the start of each new line on
listing - for example, line numbers or object code addresses. In Modula-2, Pascal or C
same sort of functionality may be obtained by manipulating a procedure variable or fu
pointer.

® |deally, both source and listing files should remain private. This source handler declar

listing file public only so that we can add trace or debugging information while the syst
being developed.

® The class constructor and destructor assume responsibility for opening and closing th
whose names are passed as arguments.

The implementation of this class is fairly straightforward, and has much in common with the
similar class used for the assemblers of Chapter 6. The code appears in Appendix B, and t
following implementation features are worthy of brief comment:

® The source is scanned and reflected a whole line at a time, as this makes subsequent
reporting much easier.

® The handler effectively inserts an extra blank at the end of each line. This decouples t
of the system from the vagaries of whatever method the host operating system uses t
represent line ends in text files. It also ensures that no symbol may extend over a line

® [t is not possible to read past the end of file - attempts to do so simply returrcharacter.

® Thereporterror routine will not display an error message unless a minimum number
characters have been scanned since the last error was reported. This helps suppress
cascade of error messages that might otherwise appear at any one point during error
of the sort discussed in sections 10.3 and 14.6.

® Our implementation has chosen to usesth# o library, rather thamost r eans, mainly to
take advantage of the concise facilities provided bythet f routine.

Exercises

14.1 Thenext ch routine will be called once for every character in the source text. This can
represent a considerable bottleneck, especially as programs are often prepared with a gree
blanks at the starts of indented lines. Some editors also pad out the ends of lines with unne
blanks. Can you think of any way in which this overhead might be reduced?

14.2 Some systems allowing an ASCII character set (with ordinal values in the range 0 ... 1
used with input devices which generate characters having ordinal values in the range 0 ... 2
typically the "eighth bit" might always be set, or used or confused with parity checking. How

where could this bit be discarded?

14.3 A source handler might improve on efficiency rather dramatically were it able to read t
entire source file into a large memory buffer. Since modern systems are often blessed with
relatively huge amounts of RAM, this is usually quite feasible. Develop such a source hand
compatible with the class interface suggested above, bearing in mind that we wish to be ab
reflect the source line by line as it is read, so that error messages can be appended as exe
section 14.6.

14.4 Develop a source handler implementation that uses+thet@am-based facilities from the
i ost reams library.

14.2.2 Sour ce handling in Coco/R gener ated systems

As we have already mentioned, Coco/R integrates the functions of source handler and scai
as to be able to cut down on the number of files it has to generate. The source and listing fi
to be opened before making the call to instantiate or initialize the scanner, but this is handle
automatically by the generated driver routine. It is of interest that the standard frame files s
with Coco/R arrange for this initialization to read the entire source file into a buffer, as sugg
Exercise 14.3.

14.3 Error reporting

As can be seen from Figure 14.1, most components of a compiler have to be prepared to s
something has gone awry in the compilation process. To allow all of this to take place in a
way, we have chosen to introduce a base class with a very small interface:

cl ass REPORT {
public:
REPORT() ;
/1 Initializes error reporter

virtual void error(int errorcode);
/'l Reports on error designated by suitable errorcode nunber

bool anyerrors(void);
/'l Returns true if any errors have been reported

protected:
bool errors;
3

Error reporting is then standardized by calling onetlreor member of this class whenever an e
is detected, passing it a unique number to distinguish the error.

The base class can choose simply to abort compilation altogether. Although at least one hi
successful microcomputer Pascal compiler uses this strategy (Turbo Pascal, from Borland
International), it tends to become very annoying when one is developing large systems. Sir
error member is virtual, it is an easy matter to derive a more suitable class from this one, v
of course, having to amend any other part of the system. For our hand-crafted system we c
as follows:

class clangReport : public REPORT {
publi c:
cl angReport (SRCE *S) { Srce = §S; }
virtual void error(int errorcode)
{ Srce->reporterror(errorcode); errors = true; }
private:
SRCE *Srce;
H

and the same technique can be used to enhance Coco/R generated systems. The Modula-
Pascal implementations achieve the same functionality through the use of procedure variat

14.4 Lexical analysis

The main task of the scanner is to provide some way of uniquely identifying each successi\
or symbol in the source code that is being compiled. Lexical analysis was discussed in sect

and presents few problems for a language as simple as ours.
14.4.1 A hand-crafted scanner

The interface between the scanner and the main parser is conveniently provided by a routii
get symfor returning a parametsiymof a record or structure type assembled from the source
This can be achieved by defining a class with a public interface as follows:

enum SCAN synt ypes {
SCAN_unknown, SCAN becones, SCAN | bracket, SCAN tines, SCAN sl ash, SCAN plus,
SCAN_m nus, SCAN_eql sym SCAN negsym SCAN | sssym SCAN | eqsym SCAN gtrsym
SCAN_gegqsym SCAN_t hensym SCAN_dosym SCAN rbracket, SCAN rparen, SCAN _comm,
SCAN_I| paren, SCAN nunber, SCAN stringsym SCAN.identifier, SCAN _coendsym
SCAN_endsym SCAN_i fsym SCAN whi |l esym SCAN stacksym SCAN readsym
SCAN writesym SCAN returnsym SCAN cobegsym SCAN waitsym SCAN_ signal sym
SCAN_semi col on, SCAN_begi nsym SCAN_constsym SCAN varsym SCAN_procsym
SCAN_funcsym SCAN period, SCAN progsym SCAN eof sym

H

const int lexlength = 128;
typedef char |exene[lexlength + 1];

struct SCAN_synbol s {

SCAN_syntypes sym /1 synbol type
int num /1 val ue

| exenme nane; Il | exene

b

cl ass SCAN {
public:
voi d get sym(SCAN_synbol s &SYM ;
/1 Ootains the next symbol in the source text

SCAN(SRCE *S, REPORT *R);
/1 Initializes scanner

H
Some aspects of this interface deserve further comment:

® SCAN synbol s makes provision for returning not only a unique symbol type, but also th
corresponding textual representation (known kex@me), and also the numeric value whe
symbol is recognized as a number.

® SCAN_unknown caters for erroneous characters like # and ? which do not really form pa
the terminal alphabet. Rather than take action, the humble scanner returns the symba
comment, and leaves the parser to cope. Similarly, an e)guieit eof symis always
returned ifget symis called after the source code has been exhausted.

® The ordering of th&éCAN_synt ypes enumeration is significant, and supports an interestit
form of error recovery that will be discussed in section 14.6.1.

® The enumeration has also made provision for a few symbol types that will be used in f
extensions of later chapters.

A scanner for Clang is readily programmed iradinoc manner, driven by a selection statemer
and an implementation can be found in Appendix B. As with source handling, some
implementation issues call for comment:

® Some ingenuity has to be applied to the recognition of literal strings. A repeated quote
a string is used (as in Pascal) to denote a single quote, so that the end of a string can
detected when an odd number of quotes is followed by a non-quote.

® The scanner has assumed responsibility for a small amount of semantic activity, name
evaluation of a number. Although it may seem a convenient place to do this, such ane
not always as easy as it might appear. It becomes slightly more difficult to develop sc:
that have to distinguish between numbers represented in different bases, or between
integer numbers.

® There are two areas where the scanner has been given responsibility for detecting err

Although the syntactic description of the language does not demand it, practical
considerations require that the value of a numeric constant should be within the range
machine. This is somewhat tricky to ensure in the case of cross-compilers, where the
the host and target machines may be different. Some authors go so far as to suggest
semantic activity be divorced from lexical analysis for that reason. Our implementatior
how range checking can be handled for a self-resident compiler.

Not only do many languages insist that no identifier (or any other symbol) be carried &
line break, they usually do this for strings as well. This helps to guard against the chac
would arise were a closing quote to be omitted - further code would become string tex
future string text would become code! The limitation that a string be confined to one si
line is, in practice, rarely a handicap, and the restriction is easily enforced.

® \We have chosen to use a binary search to recognize the reserved keywords. Tables ¢
types that correspond to keywords, and symbols that correspond to single character t
are initialized as the scanner is instantiated. The idioms-ep@gramming suggest that
such activities are best achieved by having static members of the class, set up by a
“initializer" that forms part of their definition. For a binary search to function correctly it
necessary that the table of keywords be in alphabetic order, and care must be taken i
when the scanner is extended.

Exercises

14.5 The only screening this scanner does is to strip blanks separating symbols. How woul
arrange for it to strip comments

(a) of the form{ comment in curly braces }

(b) of the form(* comment in Modul a-2 braces *)

(c) of the fornv/ conment to end of the line as in C++
(d) of either or both of forms (a) and (b), allowing for nesting?

14.6 Balanced comments are actually dangerous. If not properly closed, they may consumt
source code. One way of assisting the coder is to issue a warning if a semicolon is found w
comment. How could this be implemented as part of the answer to Exercise 14.5?

14.7 The scanner does not react sensibly to the presence of tab or formfeed characters in 1
How can this be improved?

14.8 Although the problem does not arise in the case of Clang, how do you suppose a hant
scanner is written for languages like Modula-2 and Pascal that must distinguish trEeen
literals of the forns. 4 and subrange specifiers of the fadm 4, where no spaces delimit the "..’

as is quite legal? Can you think of an alternative syntax which avoids the issue altogether?
you suppose Modula-2 and Pascal do not use such a syntax?

14.9 Modula-2 allow string literals to be delimited by either single or double quotes, but not
contain the delimiter as a member of the string. C anduSe single and double quotes to
distinguish between character literals and string literals. Develop scanners that meet such
requirements.

14.10 In G+, two strings that appear in source with nothing but white space between them
automatically concatenated into a single string. This allows long strings to be spread over s
lines, if necessary. Extend your scanner to support this feature.

14.11 Extend the scanner to allow escape sequences like the fam{li@wline) ont (tab) to
represent "control” characters in literal strings, as+n.C

14.12 Literal strings present other difficulties to the rest of the system that may have to proc
them. Unlike identifiers (which usually find their way into a symbol table), strings may have
stored in some other way until the code generator is able to handle them. Consider extendi
SCAN_synbol s structure so that it contains a member that points to a dynamically allocated :
exactly the correct length for storing any string that has been recognized (and is a null poin
otherwise).

14.13 In our compiler, a diagnostic listing of the symbol table will be provided if the Do is
used for the main program. Several compilers make use of pragmatic comments as compil
directives, so as to make such demands of the system - for example a comment of the forn
(*$L- *) might request that the listing be switched off, and one of the (fosm+ *) that it be
reinstated. These requests are usually handled by the scanner. Implement such facilities fo
controlling listing of the source program, and listing the symbol table (for example (us$ing *)
to request a symbol table listing). What action should be taken if a source listing has been
suppressed, and if errors are discovered?

14.14 The restriction imposed on the recognizable length of a lexeme, while generous, cou
embarrassing at some stage. If, as suggested in Exercise 14.3, a source handler is develoj
stores the entire source text in a memory buffer, it becomes possible to use a less restrictiv
structure foISCAN_synbol s, like that defined by

struct SCAN synbol s {
SCAN_syntypes sym // synbol type
int num /1 val ue
| ong pos, |ength; /] starting position and | ength of |exene

Develop a scanner based on this idea. While this is easy to do, it may have ramifications ol
parts of the system. Can you predict what these might be?

14.15 Develop a hand-crafted scanner for the Topsy language of Exercise 8.25. Incorporat
the features suggested in Exercises 14.5 to 14.14.

14.4.2 A Coco/R generated scanner

A Cocol specification of the token grammar for our language is straightforward, and little m¢
need be said. In4G, the generated scanner class is derived from a standard base class that
that the source file has already been opened; its constructor takes an argument specifying
corresponding "file handle". As we have already noted in Chapter 12, calls&a treutine of thi:

scanner simply return a token number. If we need to determine the text of a string, the nam
identifier, or the value of a numeric literal, we are obliged to write appropriately attributed
productions into the phrase structure grammar. This is easily done, as will be seen by stud
productions in the grammars to be presented later.

Exercises

14.16 Is it possible to write a Cocol specification that generates a scanner that can handle 1
suggestions made in Exercises 14.10 and 14.11 (allowing strings that immediately follow o
another to be automatically concatenated, and allowing for escape sequences tlkeppear
within strings to have the meanings that they do+im)€ If not, how else might such features be
incorporated into Coco/R generated systems?

14.4.3 Efficient keyword recognition

The subject of keyword recognition is important enough to warrant further comment. It is pc
to write a FSA to do this directly (see section 10.5). However, in most languages, including
and Topsy, identifiers and keywords have the same basic format, suggesting the constructi
scanners that simply extract a "word" into a string, which is then tested to see whether it is,
a keyword. Since string comparisons are tedious, and since typically 50%-70% of program
consists of either identifiers or keywords, it makes sense to be able to perform this test as ¢
possible. The technique used in our hand-crafted scanner of arranging the keywords in an

alphabetically ordered table and then using a binary search is only one of several ideas tha
for efficiency. At least three other methods are often advocated:

® The keywords can be stored in a table in length order, and a sequential search used ¢
those that have the same length as the word just assembled.

® The keywords can be stored in alphabetic order, and a sequential search used amonc
that have the same initial letter as the word just assembled. This is the technique emg
Coco/R.

® A "perfect hashing function" can be derived for the keyword set, allowing for a single ¢
comparison to distinguish between all identifiers and keywords.

A hashing function is one that is applied to a string so as to extract particular characters, m
onto small integer values, and return some combination of those. The function is usually ke
simple, so that no time is wasted in its computatioperect hash function is one chosen to be
clever enough so that its application to each of the strings in a set of keywords results in a |
value for each keyword. Several such functions are known. For example, if we use an ASC
character set, then the-€function

int hash (char *s)

{ int L =strlen(s); return (256 * s[0] + s[L-1] + L) % 139; }
will return 40 unique values in the range 0 ... 138 when applied to the 40 strings that are the
keywords of Modula-2 (Gough and Mohay, 1988). Of course, it will return some of these va
non-keywords as well (for example the keywovdrR' maps to the value 0, as does any other tl
letter word starting with "V" and ending with "R"). To use this function one would first consti
139 element string table, with the appropriate 40 elements initialized to store the keywords,

rest to store null strings. As each potential identifier is scanned, its hash value is computed
above formula. A single probe into the table will then ascertain whether the word just recog
a keyword or not.

Considerable effort has gone into the determination of "minimal perfect hashing functions" -
in which the number of possible values that the function can return is exactly the same as t
number of keywords. These have the advantage that the lookup table can be kept small (G
function would require a table in which nearly 60% of the space was wasted).

For example, when applied to the 19 keywords used for Clang;+th&ifction

int hash (char *s)
{ int L =strlen(s); return Map[s[0]] + Map[s[L-2]] + L - 2; }

will return a unique value in the range 0 ... 18 for each of them. Here the mapping is done v
element arrayap, which is initialized so that all values contain zero save for those shown be

Map['B'] = 6; Map['D] =8; Map['E] = 5 Mp['L] =9
Map['M] = 7; Map['N] =8, Mp['O] = 12; Map['P'] = 3;
Map[' S'] = 3; Map['T'] =8 Map['W] = 1;

Clearly this particular function cannot be applied to strings consisting of a single character,
strings can easily be recognized as identifiers anyway. It is one of a whole class of similar f
proposed by Cichelli (1980), who also developed a backtracking search technique for deter
the values of the elements of tiwp array.

It must be emphasized that if a perfect hash function technique is used for constructing sca
languages like Clang and Topsy that are in a constant state of flux as new keywords are pr
then the hash function has to be devised afresh with each language change. This makes it
awkward technique to use for prototyping. However, for production quality compilers for we
established languages, the effort spent in finding a perfect hash function can have a marke
influence on the compilation time of tens of thousands of programs thereafter.

Exercises

To assist with these exercises, a program incorporating Cichelli’s algorithm, based on the ¢
published by him in 1979, appears on the source diskette. Another well known program for
construction of perfect hash functions is known@s f . This is written in C, and is available frc
various Internet sites that mirror the extensive GNU archives of software distributed by the
Software Foundation (see Appendix A).

14.17 Develop hand-crafted scanners that make use of the alternative methods of keyword
identification suggested here.

14.18 Carry out experiments to discover which method seems to be best for the reserved w
of languages like Clang, Topsy, Pascal, Modula-2+6t. To do so it is not necessary to develo
full scale parser for each of these languages. It will suffice to invokgtlgmroutine repeatedly
on a large source program until all symbols have been scanned, and to time how long this

Further reading

Several texts treat lexical analysis in far more detail than we have done; justifiably, since fo
languages there are considerably more problem areas than our simple one raises. Good di
are found in the books by Gough (1988), Aho, Sethi and Ullman (1986), Welsh and Hay (1¢
Elder (1994). Pemberton and Daniels (1982) give a very detailed discussion of the lexical a
found in the Pascal-P compiler.

Discussion of perfect hash function techniques is the source of a steady stream of literature
the papers by Cichelli (1979, 1980), the reader might like to consult those by Cormack, Hor
and Kaiserwerth (1985), Sebesta and Taylor (1985), Panti and Valenti (1992), and Trono (J

14.5 Syntax analysis

For languages like Clang or Topsy, which are essentially described by LL(1) grammars,
construction of a simple parser presents few problems, and follows the ideas developed in
chapters.

14.5.1 A hand-crafted par ser

Once again, if €+ is the host language, it is convenient to define a hand-crafted parser in te
its own class. If all that is required is syntactic analysis, the public interface to this can be ki
simple:

cl ass PARSER {
public:
PARSER(SCAN *S, REPORT *R);
Il Initializes parser

voi d parse(void);
" /1 Parses the source code
where we note that the class constructor associates the parser instance with the appropriai
instances of a scanner and error reporter. Our complete compiler will need to go further the
an association will have to be made with at least a code generator and symbol table handle
should be clear from Figure 14.1, in principle no direct association need be made with a so
handler (in fact, our system makes such an association, but only so that the parser can dire
diagnostic output to the source listing).

An implementation of this parser, devoid of any attempt at providing error recovery, constre
analysis or code generation, is provided on the source diskette. The reader who wishes to
much larger application of the methods discussed in section 10.2 might like to study this. In
connection it should be noted that Modula-2 and Pascal allow for procedures and functions
nested. This facility (which is lacking in C and} can be used to good effect when developir
compilers in those languages, so as to mirror the highly embedded nature of the phrase str
grammar.

14.5.2 A Coco/R generated par ser
A parser for Clang can be generated immediately from the Cocol grammar presented in se:

8.7.2. At this stage, of course, no attempt has been made to attribute the grammar to incorj
error recovery, constraint analysis, or code generation.

Exercises

Notwithstanding the fact that the construction of an parser that does little more than check :
still some distance away from having a complete compiler, the reader might like to turn his
attention to some of the following exercises, which suggest extensions to Clang or Topsy, ¢
construct grammars, scanners and parsers for recognizing such extensions.

14.19 Compare the hand-crafted parser found on the source diskette with the source code
produced by Coco/R.

14.20 Develop a hand-crafted parser for Topsy as suggested by Exercise 8.25.

14.21 Extend your parser for Clang to accepREREAT ... UNTIL loop as itis found in Pascal
Modula-2, or add an equivalet loop to Topsy.

14.22 Extend theF ... THEN statement to provide @nSE clause.

14.23 How would you parse a Pascal-liesE statement? The standard PageaE statement dor
not have arELSE or OTHERW SE option. Suggest how this could be added to Clang, and modif
parser accordingly. Is it a good idea to O8&ERW SE or ELSE for this purpose - assuming that y
already have anF ... THEN ... ELSE construct?

14.24 What advantages does the ModutasEt statement have over the Pascal version? How
would you parse the Modula-2 version?

14.25 The @+ swi t ch statement bears some resemblance taAbe statement, although its
semantics are rather different. Add thwet ch statement to Topsy.

14.26 How would you add a Modula-2 or Pascal-f&e loop to Clang?

14.27 The @+ f or statement is rather different from the Pascal one, although it is often use(
much the same way. Add ar statement to Topsy.

14.28 ThemH LE, FOR andREPEAT loops used in Wirth’s languages atauctured - they have onl
one entry point, and only one exit point. Some languages allow a slightly less structured loc
which has only one entry point, but which allows exit from various places within the loop bo
example of this might be as follows

EBE
IF A » 188 THEM EXIT;
Al;
1
e

GIN
Lo
Fi
L

READOICE] §
éBTHEH BEGIM WRITE("Last "1; EXIT EMD;

12 tHEM EXIT |
EN;
WRITEC"Total ", A1:

WRITEC'Finizshed')
EMD.

Like others L oop statements can be nested. HowergrT statements may only appear within
LOoP sequences. Can you find context-free productions that will allow you to incorporate the
statements into Clang?

14.29 If you are extending Topsy to make it resembleds closely as possible, the equivalent
theEX T statement would be found in theeak orcont i nue statements that+@ allows within its
various structured statements lié t ch, do andwhi | e. How would you extend the grammar fc
Topsy to incorporate these statements? Can the restrictions on their placement be express
context-free grammar?

14.30 As a more challenging exercise, suppose we wished to extend Clang or Topsy to allc
variables and expressions of other types besides integer (for example, Boolean). Various
approaches might be taken, as exemplified by the following

(a) Replacing the Clang keywovdR by a set of keywords used to introduce variable lists:

int X Y, Z[4];
bool InTinme, Finished;

(b) Retention of th&AR symbol, along with a set of standard type identifiers, used after varia
lists, as in Pascal or Modula-2:

VAR
X, Y, Z[4] : | NTEGER;
I nTime, Finished : BOOLEAN,

Develop a grammar (and parser) for an extended version of Clang or Topsy that uses one «
of these approaches. The language should allow expressions to use Boolean opepat@rs (
NOT) and Boolean constantsRUE andFALSE). Some suggestions were made in this regard in
Exercise 13.17.

14.31 The approach used in Pascal and Modula-2 has the advantage that it extends seaml
more general situations in which users may introduce their own type identifierst bn€ finds a
hybrid: variable lists may be preceded either by special keywords or by user defined type n

typedef bool sieve[1000];
int X Y, /1 introduced by keyword
sieve Prines; // introduced by identifier

Critically examine these alternative approaches, and list the advantages and disadvantage:
seems to offer. Can you find context-free productions for Topsy that would allow for the
introduction of a simpleypedef construct?

A cynic might contend that if a language has features which are the cause of numerous be
errors, then one should redesign the language. Consider a selection of the following:

14.32 Bailes (1984) made a plea for the introduction of a "Rational Pascal”. According to hi
keywordsDO (in WHI LE andFOR statements)THEN (in | F statements) and the semicolons which
used as terminators at the ends of declarations and as statement separators should all be «
(He had a few other ideas, some even more contentious). Can you excise semicolons from
and Topsy, and then write a recursive descent parser for them? If, indeed, semicolons seel
no purpose other than to confuse learner programmers, why do you suppose language des
them?

14.33 The problems withF ... THENandIF ... THEN ... ELSE statements are such that or
might be tempted to try a language construct described by

IfStatenent = "IF' Condition "THEN' Statenent
{ "ELSIF" Condition "THEN' Statenent }
["ELSE Statenent] .

Discuss whether this statement form might easily be handled by extensions to your parser.
have any advantages over the standard.. THEN ... ELSE arrangement - in particular, doe
resolve the "dangling else" problem neatly?

14.34 Extend your parser to accept structured statements on the lines of those used in Moc
example

| f St at enent = "IF" Condition "THEN' Statenent Sequence
{ "ELSIF" Condition "THEN' Statenent Sequence }
["ELSE" StatenentSequence]
"END' .
"WHI LE" Condition "DO' StatenentSequence "END' .
Statenent { ";" Statenent } .

Whi | eSt at enent
St at ement Sequence

14.35 Brinch Hansen (1983) did not approve of implicit "empty" statements. How do these i
in our languages, are they ever of practical use, and if so, in what ways would an explicit st
(like theski P suggested by Brinch Hansen) be any improvement?

14.36 Brinch Hansen incorporated only one form of loop into EdisonwHthes loop - arguing
that the other forms of loops were unnecessary. What particular advantages and disadvant
these loops have from the points of view of a compiler writer and a compiler user respective
you were limited to only one form of loop, which would you choose, and why?

14.6 Error handling and constraint analysis

In section 10.3 we discussed techniques for ensuring that a recursive descent parser can r
after detecting a syntax error in the source code presented to it. In this section we discuss |
to apply these techniques to our Clang compiler, and then go on to discuss how the parser
extended to perform context-sensitive or constraint analysis.

14.6.1 Syntax error handling in hand-crafted parsers

The scheme discussed previously - in which each parsing routine is passed a set of "follow
symbols that it can use in conjunction with its own known set of "first” symbols - is easily af
systematically to hand-crafted parsers. It suffers from a number of disadvantages, however

® [t is quite expensive, since each call to a parsing routine is effectively preceded by twc
time-consuming operations - the dynamic construction of a set object, and the parame
passing operation itself - operations which turn out not to have been required if the so
being translated is correct.

® |[f, as often happens, seemingly superfluous symbols like semicolons are omitted from
source text, the resynchronization process can be overly severe.

Thus the scheme is usually adapted somewhat, often in the light of experience gained by o
typical user errors. A study of the source code for such parsers on the source diskette will r
examples of the following useful variations on the basic scheme:

® |n those many places where "weak" separators are found in constructs involving iterat
such as

Var Decl ar ati ons = "VAR' Onevar { "," OneVar } ";"

ConmpoundsSt at ement
Term

"BEA N' Statement { ";" Statenment } "END' .
Factor { MulOp Factor } .

the iteration is started as long as the parser detects the presence of the weak separat
valid symbol that would follow it in that context (of course, appropriate errors are repo
the separator has been omitted). This has the effect of "inserting” such missing sepatr:
the stream of symbols being parsed, and proves to be a highly effective enhancement
basic technique.

® Places where likely errors are expected - such as confusion betwees'taed ="
operators, or attempting to provide an integer expression rather than a Boolean comp
expression in atfStatement or WhileStatement - are handled in aad-hoc way.

® Many sub-parsers do not need to make use of the prologue and epilogue calle4o the
routine. In particular, there is no need to do this in routines like thostStatement,
WhileStatement and so on, which have been introduced mainly to enhance the modulai
Satement.

® The Modula-2 and Pascal implementations nest their parsing routines as tightly as po
Not only does this match the embedded nature of the grammar very nicely, it also red
number of parameters that have to be passed around.

Because of the inherent cost in the follower-set based approach to error recovery, some ca
writers make use of simpler schemes that can achieve very nearly the same degree of suct
less cost. One of these, suggested by Wirth (1986, 1996), is based on the observation that
symbols passed as members of follower sets to high level parsing routines - Blodk as
effectively become members of every follower set parameter computed thereafter. When ol
gets to parse &atement, for example, the set of stopping symbols used to establish
synchronization at the start of tB&tement routine is the union of FIRSH@tement) +
FOLLOW(Program) + FOLLOW(BIock), while the set of stopping symbols used to establish
synchronization at the end 8fatement is the union of FOLLOWg&atement) +
FOLLOW(Program) + FOLLOW(BIock). Furthermore, if we treat the semicolon that separate
statements as a "weak" separator, as previously discussed, no great harm is done if the se
establish synchronization at the endSaitement also includes the elements of FIRSt&{ement).

Careful consideration of th&®AN synt ypes enumeration introduced in section 14.4.1 will reve
that the values have been ordered so that the following patterns hold to a high degree of ac

SCAN_unknown .. SCAN I bracket, M scel | aneous
SCAN_ti mes, SCAN_ sl ash, FOLLOW Fact or)
SCAN_pl us, SCAN_ni nus, FOLLOWN Ter m
SCAN_eql sym .. SCAN _geqsym FOLLOWN Expressionl) in Condition
SCAN_t hensym SCAN_dosym FOLLOW Condi ti on)
SCAN rbracket .. SCAN conma, FOLLOW Expr essi on)
SCAN | paren, .. SCAN_.identifier, FI RST(Fact or)
SCAN_coendsym SCAN_endsym FOLLOW St at enent)
SCAN_i fsym .. SCAN_ si gnal sym FI RST(St at errent)
SCAN_semi col on, FOLLOW BI ock)
SCAN_begi nsym .. SCAN_funcsym FI RST(Bl ock)
SCAN_peri od, FOLLOW Pr ogr am
SCAN_pr ogsym FI RST(Program
SCAN_eof sym

The argument now goes that, with this carefully ordered enumeration, virtually all of the tes
form

Sym € Synchr oni zat i onSet

can be accurately replaced by tests of the form
Sym 2Snal | est El ement (Synchr oni zat i onSet)

and that synchronization at crucial points in the grammar can be achieved by using a routir
developed on the lines of

voi d synchroni ze(SCAN_synt ypes Snal | est El enent, int errorcode)
{ if (SYMsym>= Smal | estEl enent) return;
reporterror(errorcode);
do { getsyn(); } while (SYM sym < Snul | est El enent) ;

The way in which this idea could be used is exemplified in a routine for parsing Clang state

d Statenment (void)

Statenment = [ConpoundStatenent | Assignment | |fStatenent

| WhileStatenent | WiteStatenment | ReadStatenent]

ynchroni ze(SCAN_i denti fier, 15);
/ W shall return correctly if SYMsymis a senicolon or END (enpty statenent)
/ or if we have synchronized (prematurely) on a synbol that really follows
/ a Bl ock
witch (SYMsym

case SCAN identifier: Assignment(); break;

case SCAN i fsym | fStatenent(); break;

case SCAN whil esym Wi | eSt at enent (); break;

case SCAN writesym WiteStatenent(); break;

case SCAN readsym ReadsSt at ement (); break;
case SCAN begi nsym ConpoundSt at enent (); break;
defaul t: return;

}
synchroni ze(SCAN_endsym 32);

/1l I'n some situations we shall have synchronized on a synbol that can start
/1 a further Statenent, but this should be handled correctly fromthe call
/1 made to Statement from within ConpoundSt at enent

}

It turns out to be necessary to replace some other set inclusion tests, by providing predicat:
functions exemplified by

bool inFirstStatenent(SCAN_syntypes Syn)

/! Returns true if Symcan start a Statenent

{ return (Sym == SCAN_ identifier || Sym == SCAN begi nsym ||
Sym >= SCAN_i f sym & & Sym <= SCAN_si gnal syn);

}

Complete parsers using this ingenious scheme are to be found on the source diskette. How
idea is fairly fragile. Symbols do not always fall uniquely into only one of the FIRST or FOLI
sets, and in large languages there may be several keyworda\gikese andor in Pascal) that
can appear in widely different contexts. If new keywords are added to an evolving language
care has to be taken to maintain the optimum ordering; if a token value is misplaced, error |
would be badly affected.

The scheme can be made more robust by declaring various synchronization set constants,
requiring their elements to have contiguous values. This is essentially the technique used il
generated recovery schemes, and adapting it to hand-crafted parsers is left as an interestir
for the reader.

14.6.2 Syntax error handling in Coco/R generated parsers

The way in which a Cocol description of a grammar is augmented to indicate where
synchronization should be attempted has already been discussed in section 12.4.2. To be i
achieve optimal use of the basic facilities offered by the use sfrtizzandweAK directives calls
for some ingenuity. If too margyNC directives are introduced, the error recovery achievable

the use ofAEAK can actually deteriorate, since the union of allsyic symbol sets tends to beco
the entire universe. Below we show a modification of the grammar in section 8.7.2 that has
found to work quite well, and draw attention to the use of two places (in the productions for
Condition andTerm) where an explicit call to the error reporting interface has been used to h
situations where one wishes to be lenient in the treatment of missing symbols.

PRODUCTI ONS /* sone omtted to save space */

C ang = "PROGRAM' identifier WEAK ";" Block "." .
Bl ock = SYNC { (ConstDecl arations | Var Decl arations) SYNC }
ConpoundSt at enent .
OneConst = identifier WEAK "=" nunber ;"
Var Decl ar ati ons = "VAR' OneVar { WEAK " " OﬂeVar P
ConmpoundSt at ement = "BEG N' Statement { WEAK ";" Staten‘ent } "END'
St at enent = SYNC [ConpoundsSt atement | Assi gnnment
| IfStatement | Wil eStatenent
| ReadSt at emrent | WiteStatenent] .
Assi gnnent = Variable ":=" Expression SYNC .
Condi tion = Expression (Rel Op Expression | (. SynError(91) L))
ReadSt at enment = "READ" "(" Variable { WEAK ", " Variable } ")" .
WiteStatenent = "WRI TE"
["(" WiteEl emrent { WEAK "," WiteEl enent } ")"] .

Term Factor { (MulOp | (. SynError(92); .)) Factor } .

14.6.3 Constraint analysis and static semantic error handling

We have already had cause to remark that the boundary between syntactic and semantic €
be rather vague, and that there are features of real computer languages that cannot be rea
described by context-free grammars. To retain the advantages of simple one-pass compila
we include semantic analysis, and start to attach meaning to our identifiers, usually require.
"declaration” parts of a program come before the "statement" parts. This is easily enforced
context-free grammar, all very familiar to a Modula-2, Pascal or C programmer, and seems
natural after a while. But it is only part of the story. Even if we insist that declarations prece
statements, a context-free grammar is still unable to specify that only those identifiers whicl
appeared in the declarations (so-cadefiining occurrences) may appear in the statements (in
so-calledapplied occurrences). Nor is a context-free grammar powerful enough to specify suc
constraints as insisting that only a variable identifier can be used to denote the target of an
assignment statement, or that a complete array cannot be assigned to a scalar variable. W
tempted to write productions that seem to capture these constraints:

d ang
Bl ock

"PROGRAM' Progldentifier ";" Block "."
{ ConstDeclarations | VarDeclarations }
CorrpoundSt atement .

"CONST" OneConst { OneConst } .

Const Decl ar ati ons

OneConst = Const I dentifi er "=" nunber ";"

Var Decl ar ati ons = "VAR' Onevar { "," Onevar } ";

OneVar = ScalarVarldentifier | Arr ayVarI dentifier Upper Bound .

Upper Bound = "[" nunber "]"

Assi gnnent = Variable ":=" Expression .

Vari abl e = Scal arVarldentifier | ArrayVarI denti f| er "[" Expression "]"
ReadSt at enent = "READ' "(" Variable { "," Variable } ")"

Expr essi on = ("+" Term| "-" Term| Term) { AddOp Term} .

Term = Factor { Mul Op Factor } .

Fact or = Constldentifier | Variable | nunber

| "(" Expression ")"

This would not really get us very far, since all identifiers are lexically equivalent! We could ¢
to use a context-sensitive grammar to overcome such problems, but that turns out to be
unnecessarily complicated, for they are easily solved by leaving the grammar as it was, adt
attributes in the form of context conditions, and using a symbol table.

Demanding that identifiers be declared in such a way that their static semantic attributes ce
recorded in a symbol table, whence they can be retrieved at any future stage of the analysi
nearly as tedious as users might at first imagine. It is clearly a semantic activity, made easi
syntactic association with keywords liRenST, VAR andPROGRAM

Setting up a symbol table may be done in many ways. If one is interested merely in perforn
sort of constraint analysis suggested earlier for a language as simple as Clang we may bec
noting that identifiers designate objects that are restricted to one of three simple varieties -
constant, variable andprogram. The only apparent complication is that, unlike the other two, :
variable identifier can denote either a simple scalar, or a simple linear array. A simple table
can then be developed with a class having a public interface like the following:

const int TABLE alfalength = 15; // maxi mumlength of identifiers
typedef char TABLE_ al fa[TABLE al falength + 1];

enum TABLE_ i dcl asses { TABLE consts, TABLE vars, TABLE progs };

struct TABLE entries {
TABLE al fa nane; 11
TABLE i dcl asses i dcl ass; 11
bool scal ar; I

h

class TABLE {
publi c:
TABLE(REPORT *R);
/1 Initializes synbol table

identifier
cl ass
di stinguish arrays from scal ars

voi d enter(TABLE entries &entry);
/1 Adds entry to synbol table

voi d search(char *nane, TABLE entries &entry, bool &found);
/'l Searches table for presence of nane. If found then returns entry

void printtable(FILE *Ist);
. /1 Prints synbol table for diagnostic purposes

An augmented parser must construct appropeiatey structures and enter these into the table
when identifiers are first recognized by the routine that handles the producti@efonst and
OneVar. Before identifiers are accepted by the routines that handle the productiesifyrator
they are checked against this table for non-declaratioanef abuse of dcl ass (such as trying t
assign to a constant) and abuseci ar (such as trying to subscript a constant, or a scalar
variable). The interface suggested here is still inadequate for the purposes of code generat
delay further discussion of the symbol table itself until the next section.

However, we may take the opportunity of pointing out that the way in which the symbol tabl
facilities are used depends rather critically on whether the parser is being crafted by hand,
using a parser generator. We draw the reader’s attention to the produckantéor which we
have written

Factor = Designator | nunber | "(" Expression ")"

rather than the more descriptive

Factor = Constldentifier | Variable | nunber | "(" Expression ")"

which does not satisfy the LL(1) constraints. In a hand-crafted parser we are free to use se
information to drive the parsing process, and to break this LL(1) conflict, as the following ex
from such a parser will show.

voi d Factor(synset followers)
/'l Factor = Variable | Constldentifier | Number | "(" Expression ")"
/1 Variable = Designator .
{ TABLE entries entry;
bool found;
test(FirstFactor, followers, 14); /1 Synchroni ze
switch (SYMsym
{ case SCAN i dentifier:
Tabl e- >sear ch(SYM nane, entry, found); /1 Look it up
if (!found) Report->error(202); /1 Undecl ared identifier

if (entry.idclass = TABLE consts) GetSym(); // Constldentifier
el se Designator(entry, followers, 206); /'l Variable
br eak;
case SCAN nunber:
Get Syn(); break;
case SCAN | paren:
Get Synm(); Expression(synset(SCAN rparen) + followers);
accept (SCAN_rparen, 17); break;
defaul t: /1 Synchroni zed on a
Report->error(14); break; /1 follower instead

}

In a Coco/R generated parser some other way must be found to handle the conflict. The ge
parser will always set up a call to pard@esignator, and so the distinction must be drawn at th
stage. The following extracts from an attributed grammar shows one possible way of doing

Fact or
= (. int value; TABLE entries entry; .)
Desi gnat or <cl assset (TABLE_consts, TABLE vars), entry>
| Number <val ue>
| "(" Expression ")"

Notice that thédesignator routine is passed the setiak! asses that are acceptable in this cont
The production foDesignator needs to check quite a number of context conditions:

De3| gnat or<cl assset all owed, TABLE entries &entry>
= (. TABLE al fa nane;
bool isvariable, found; .)
| dent <name> (. Tabl e->search(name, entry, found);
if (!found) SenError(202);
if (lallowed. menb(entry.idclass)) Sentrror(206);
isvariable = entry.idclass == TABLE vars;
c"r" (. if (Visvariable || entry.scalar) SenError(204); .)
Expression "]"
| (. if (isvariable & !entry.scalar) SenError(205); .)
) .

Other variations on this theme are possible. One of these is interesting in that it effectively |
semantic information to drive the parser, returning prematurely if it appears that a subscript
not be allowed:

DeS| ghat or <cl assset al |l owed, TABLE entries &entry>
(. TABLE_ al fa nane;

bool found; .)

| dent <nane> (. Tabl e->search(nanme, entry, found);
if (!found) SenError(202);
if (lallowed. menmb(entry.idclass)) Sentrror(206);
if (entry.idclass != TABLE vars) return; .)

(G (. if (entry.scalar) SenError(204); .)

Expression "]"

) .

As an example of how these ideas combine in the reporting of incorrect programs we prese
source listing produced by the hand-crafted parser found on the source diskette:

(. if ('entry.scalar) SenError(205); .)

PROGRAM Debug
CONST
~; expected
TooBi gANunber = 328000;
AConstant out of range

Zero := 0;
A= in wong context
VAR
Val u, Snmallest, Largest, Total;
CONST
Mn = Zero;
ANurber expect ed
BEG N
Total := Zero;
I F Val u THEN,

“Rel ati onal operator expected
READ (Valu); IF Valu > Mn DO WRI TE(Val u);

R e
NRRO©OONOUTARWWNN R

12 : ATHEN expect ed

13 : Largest := Valu; Snallest = Valu;
13 : A= expected
14 : WH LE Valu <> Zero DO
15 : BEG N
16 : Total := Total + Valu
17 : IF Valu > = Largest THEN Largest := Val ue;
17 : ~; expected
17 : Al nvalid factor
17 AUndecl ared identifier
18 : IF Valu < Snall est THEN Snal |l est : = Val u;
19 : READLN(Val u); IF Valu > Zero THEN WRI TE(Val u)
19 : AUndecl ared identifier
20 : END;
21 WRI TE(' TOTAL: ', Total, ' LARGEST:', Largest);
22 WRI TE(' SMALLEST: , Snmall est)
22 Al nconpl ete string
23 : END.
23 : N) expected
Exercises

14.37 Submit the incorrect program given above to a Coco/R generated parser, and compe
guality of error reporting and recovery with that achieved by the hand-crafted parser.

14.38 At present the error messages for the hand-crafted system are reported onaftgyriol
point where the error was detected. Can you find a way of improving on this?

14.39 A disadvantage of the error recovery scheme used here is that a user may not realiz
symbols have been skipped. Can you find a way to mark some or all of the symbols skippe
test ? Hast est been used in the best possible way to facilitate error recovery?

14.40 If, as we have done, all error messages after the first at a given point are suppressec
might occasionally find that the quality of error message deteriorates - "early" messages mi
less apposite than "later" messages might have been. Can you implement a better method
one we have? (Notice that tRellowers parameter passed to a sub-parse&iocludes not only
the genuine FOLLOWS) symbols, but also furth&eacons.)

14.41 If you study the code for the hand-crafted parser carefully you will realiZelatfi er
effectively appears in all tHeollower sets? Is this a good idea? If not, what alterations are ne

14.42 Although not strictly illegal, the appearance of a semicolon in a program immediately
following aDo or THEN, or immediately preceding @&nD may be symptomatic of omitted code.
possible to warn the user when this has occurred, and if so, how?

14.43 The error reporter makes no real distinction between context-free and semantic or
context-sensitive errors. Do you suppose it would be an improvement to try to do this, and |
how could it be done?

14.44 Why does this parser not allow you to assign one array completely to another array?
modifications would you have to make to the context-free grammar to permit this? How wol
constraint analysis have to be altered?

14.45 In Topsy - at least as it is used in the example program of Exercise 8.25 - all "declare
seem to precede "statements". k@ is possible to declare variables at the point where they
first needed. How would you define Topsy to support the mingling of declarations and state

14.46 One school of thought maintains that in a statement like a Mogafal@op, the control
variable should be implicitly declared at the start of the loop, so that it is truly local to the loc
should also not be possible to alter the value of the control variable within the loop. Can yo!
your parser and symbol table handler to support these ideas?

14.47 Exercises 14.21 through 14.36 suggested many syntactic extensions to Clang or Tog
Extend your parsers so that they incorporate error recovery and constraint analysis for all tl
extensions.

14.48 Experiment with error recovery mechanisms that depend on the ordering of the
SCAN_synt ypes enumeration, as discussed in section 14.6.1. Can you find an ordering that
adequately for Topsy?

14.7 The symbol table handler

In an earlier section we claimed that it would be advantageous to split our compiler into disi
phases for syntax/constraint analysis and code generation. One good reason for doing this
isolate the machine dependent part of compilation as far as possible from the language an:
The degree to which we have succeeded may be measured by the fact that we have not ye
any mention of what sort of object code we are trying to generate.

Of course, any interface between source and object code must take cognizance of data-rel
concepts likestorage, addresses anddata representation, as well as control-related ones like
location counter, sequential execution andbranch instruction, which are fundamental to nearly a
machines on which programs in our imperative high-level languages execute. Typically, me
allow some operations which simulate arithmetic or logical operations on data bit patterns v
simulate numbers or characters, these patterns being stored in an array-like struatomnar pf
whose elements are distinguishedalyresses. In high-level languages these addresses are us
given mnemonic names. The context-free syntax of many high-level languages, as it happe
rarely seems to draw a distinction between the "address" for a variable and the "value" ass
with that variable, and stored at its address. Hence we find statements like

X = X+ 4

in which thex on the left of the = operator actually represents an address, (sometimes callec
L-value of X) while thex on the right (sometimes called tRevalue of X) actually represents the
value of the quantity currently residing at the same address. Small wonder that mathematic
trained beginners sometimes find the assignment notation strange! After a while it usually k
second nature - by which time notations in which the distinction is made clearer possibly or
confuse still further, as witness the problems beginners often have with pointer typesin C
Modula-2, where P or P* (respectively) denote the explicit value residing at the explicit addre
If we relate this back to the productions used in our grammar, we would find that ieatie
above assignment was syntacticallpesignator. Semantically these two designators are very
different - we shall refer to the one that represents an addreS&dalade Designator, and to the
one that represents a value aghue Designator.

To perform its task, the code generation interface will require the extraction of further inforn
associated with user-defined identifiers and best kept in the symbol table. In the case of co
we need to record the associated values, and in the case of variables we need to record th
associated addresses and storage demands (the elements of array variables will occupy a

block of memory). If we can assume that our machine incorporates a "linear array" model o
memory, this information is easily added as the variables are declared.

Handling the different sorts of entries that need to be stored in a symbol table can be done
various ways. In a object-oriented class-based implementation one might define an abstrac
class to represent a generic type of entry, and then derive classes from this to represent er
variables or constants (and, in due course, records, procedures, classes and any other forr
that seem to be required). The traditional way, still required if one is hosting a compiler in a
language that does not support inheritance as a concept, is to make use of a variant recorc
Modula-2 terminology) or union (in4G terminology). Since the class-based implementation ¢
so much scope for exercises, we have chosen to illustrate the variant record approach, whi
efficient, and quite adequate for such a simple language. We extend the declaration of the
TABLE_entri es type to be

struct TABLE entries {

TABLE al f a nane; /1 identifier
TABLE_i dcl asses idclass; // class
uni on {
struct {
int val ue;
} c; /1 constants
struct {
int size, offset; /'l number of words, relative address
bool scal ar; /1 distinguish arrays
/'l variabl es

}ov
b

The way in which the symbol table is constructed can be illustrated with reference to the re
parts of a Cocol specification for handli@geConst andOneVar:

OneConst

= (. TABLE entries entry; .)
| dent <entry. nane> (. entry.idclass = TABLE consts; .)
VEAK " =

Number <entry. c.val ue> ";" . Tabl e->enter(entry); .) .

—

OneVar<int &framnesi ze>
= (. TABLE entries entry;
entry.idclass = TABLE vars;
entry.v.size = 1; entry.v.scalar = true;
entry.v.offset = framesize + 1; .)
| dent <ent ry. name>
[UpperBound<entry.v.size> (. entry.v.scalar = false; .)
(. Table->enter(entry);
franesize += entry.v.size; .) .

Upper Bound<i nt &si ze>
= "[" Nunber<size> "]" (. size++; .) .

| dent <char *nane>

= identifier (. LexNanme(name, TABLE alfalength); .) .
Heref r amesi ze is a simple count, which is initialized to zero at the start of pardBigch. It
keeps track of the number of variables declared, and also serves to define the addresses w
variables will have relative to some known location in memory when the program runs. A tri
modification gets around the problem if it is impossible or inconvenient to use zero-based a
in the real machine.

Programming a symbol table handler for a language as simple as ours can be correspondit
simple. On the source diskette can be found such implementations, based on the idea that
symbol table can be stored within a fixed length array. A few comments on implementation
techniques will guide the reader who wishes to study this code:

® The table is set up so that the entry indexed by zero can be used as a sentinel in a sir

sequential search gar ch. Although this is inefficient, it is adequate for prototyping the
system.

® A call toTabl e- >search(name, entry, found) will always return with a well defined
value forent ry, even if thenanme had never been declared. Such undeclared identifiers \
seem to have an effectivecl ass = TABLE_pr ogs, which will be semantically unaccepta
everywhere, thus ensuring that incorrect code can never be generated.

Exercises
14.49 How would you check that no identifier is declared more than once?

14.50 Identifiers that are undeclared by virtue of mistyped declarations tend to be annoying
they result in many subsequent errors being reported. Perhaps in languages as simple as ¢
could assume that all undeclared identifiers should be treated as variables, and entered as
the symbol table at the point of first reference. Is this a good idea? Can it easily be impleme
What happens if arrays are undeclared?

14.51 Careful readers may have noticed that a Clang array declaration is different frerore €
the bracketed number in Clang specifies the highest permitted index value, rather than the
length. This has been done so that one can declare variables like

VAR Scal ar, List[10], VeryShortlList[O0];

How would you modify Clang and Topsy to use+r&emantics, where the declaration of
VeryShort Li st would have to be forbidden?

14.52 The names of identifiers are held within the symbol table as fixed length strings, trun:
necessary. It may seem unreasonable to expect compilers (especially written in Modula-2 ¢
which do not have dynamic strings as standard types) to cater for identifiers of any length, |
small a limitation on length is bound to prove irksome sooner or later, and too generous a li
simply wastes valuable space when, as so often happens, users choose very short names.
variation on the symbol table handler that allocates the name fields dynamically, to be of th
size. (This can, of course, also be done in Modula-2.) Making table entries should be quite
searching for them may call for a little more ingenuity.

14.53 A simple sequential search algorithm is probably perfectly adequate for the small Cle
programs that one is likely to write. It becomes highly inefficient for large applications. It is {
more efficient to store the table in the form of a binary search tree, of the sort that you may
encountered in other courses in Computer Science. Develop such an implementation, notir
should not be necessary to alter the public interface to the table class.

14.54 Yet another approach is to construct the symbol table using a hash table, which prob
yields the shortest times for retrievals. Hash tables were briefly discussed in Chapter 7, anc
also be familiar from other courses you may have taken in Computer Science. Develop a h
implementation for your Clang or Topsy compiler.

14.55 We might consider letting the scanner interact with the symbol table. Consider the
implications of developing a scanner that stores the strings for identifiers and string literals
string table, as suggested in Exercise 6.6 for the assemblers of Chapter 6.

14.56 Develop a symbol table handler that utilizes a simple class hierarchy for the possible
entries, inheriting appropriately from a suitable base class. Once again, construction of suc
should prove to be straightforward, regardless of whether you use a linear array, tree, or he
as the underlying storage structure. Retrieval might call for more ingenuity, sin@®€s not
provide syntactic support for determining the exact class of an object that has been statical
declared to be of a base class type.

14.8 Other aspects of symbol table management - further types

It will probably not have escaped the reader’s attention, especially if he or she has attempte
exercises in the last few sections, that compilers for languages which handle a wide variety
types, both "standard" and "user defined"”, must surely take a far more sophisticated approz
constructing a symbol table and to keeping track of storage requirements than anything we
seen so far. Although the nature of this text does not warrant a full discussion of this point,
comments may be of interest, and in order.

In the first place, a compiler for a block-structured language will probably organize its symb
as a collection of dynamically allocated trees, with one root for each level of nesting. Althot
using simple binary trees runs the risk of producing badly unbalanced trees, this is unlikely.
for source programs which are produced by program generators, user programs tend to int
identifiers with fairly random names; few compilers are likely to need really sophisticated tre
constructing algorithms.

Secondly, the nodes in the trees will be fairly complex record structures. Besides the obvio
to other nodes in the tree, there will probably be pointers to other dynamically constructed t
which contain descriptions of the types of the identifiers held in the main tree.

Thus a Pascal declaration like

VAR
Matrix : ARRAY [1 .. 10, 2 .. 20] OF SET OF CHAR

might result in a structure that can be depicted something like that of Figure 14.2.

Hame HMatrin

pe
— Ltink
RLink ——*

Size (18 # 19 1 32 butes)
Eind aArravs
Tndey

BazeTupe
Size [1 wordl 1

Kind subranges Size (19 ¥ 32 bytes)
Lower 1 Eind arravs

Upper_ 1A Tndey
l_ RangeTupe BazeTupe —l

Size (1 wordl

Size (1 word) Kind subranges Size (32 bwtes)
Eind integers Lower 2 Eind sets
Upper_28 Base
RangeTupe
i 1 Size (1 butel
Size [1 word) Kind chars
Eind integers

Figure 14.2 Sumbol table entry for
VAR Matrix : ARRAY [1 .. 18, 2 .. 281 OF SET OF CHAR;

We may take this opportunity to comment on a rather poorly defined area in Pascal, one th
in for much criticism. Suppose we were to declare

TYPE

LISTS = ARRAY [1 .. 10] OF CHAR
VAR

X : LISTS;

A ARRAY [1 .. 10] OF CHAR

B: ARRAY [1 .. 10] OF CHAR

Z: LISTS

A andB are said to be ainonymoustype, but to most people it would seem obvious thahds
are of the same type, implying that an assignment of theAorm B should be quite legal, and,
furthermore, thak andz would be of the same type asndB. However, some compilers will be
satisfied with meratructural equivalence of types before such an assignment would be perrr
while others will insist on so-callathme equivalence. The original Pascal Report did not spec
which was standard.

In this exampley, B, X andz all have structural equivalenceandz have name equivalence a:
well, as they have been specified in terms of a named.tygJes.

With the insight we now have we can see what this difference means from the compiler wri
viewpoint. Suppose andB have entries in the symbol table pointed taréy andToB respectively
Then for name equivalence we should insist@®. Type andToB". Type being the same (that i
their Type pointers address the same descriptor), while for structural equivalence we should
onToA*. Type® andToA". Type” being the same (that is, th&iipe pointers address descriptors
that have the same structure).

Further reading and exploration

We have just touched on the tip of a large and difficult iceberg. If one adds the concept of t
type constructors into a language, and insists on strict type-checking, the compilers becom
larger and harder to follow than we have seen up till now. The energetic reader might like t
up several of the ideas which should now come to mind. Try a selection of the following, wt
deliberately rather vaguely phrased.

14.57 Just how do real compilers deal with symbol tables?

14.58 Just how do real compilers keep track of type checking? Why should name equivaler
easier to handle than structural equivalence?

14.59 Why do some languages simply forbid the use of "anonymous types"”, and why don’t
languages forbid them?

14.60 How do you suppose compilers keep track of storage allocatiair t@t or RECORD types,
and foruni on or variant record types?

14.61 Find out how storage is managed for dynamically allocated variables in language like
Pascal, or Modula-2.

14.62 How does one cope with arrays of variable (dynamic) length in subprograms?

14.63 Why can we easily allow the declaration of a pointer type to precede the definition of
it points to, even in a one-pass system? For example, in Modula-2 we may write

TYPE
LI NKS = PO NTER TO NODES (* NODES not yet seen *);
NCDES = RECORD
ETC : JUNK;
Link : LINKS;

14.64 Brinch Hansen did not like the Pascal subrange type because it seems to lead to am
(for example, a value @f4 can be of type .. 45, and also of typeo .. 90 and so on), and so
omitted them from Edison. Interestingly, a later Wirth language, Oberon, omits them as wel
might Pascal and Modula-2 otherwise have introduced the subrange concept, how could w
overcome Brinch Hansen'’s objections, and what is the essential point that he seems to hav
overlooked in discarding them?

14.65 One might accuse the designers of Pascal, Modula-2 and C of making a serious erra
judgement - they do not introduce a string type as standard, but rely on programmers to m:
arrays of characters, and to use error prone ways of recognizing the end, or the length, of ¢
Do you agree? Discuss whether what they offer in return is adequate, and if not, why not. £
why they might deliberately not have introduced a string type.

14.66 Brinch Hansen did not like the Pascal variant recorgh(@n). What do such types allow
one to do in Pascal which is otherwise impossible, and why should it be necessary to provi
facility to do this? How else are these facilities catered for in Modula-2, C-as®ti\&hich is the
better way, and why? Do the ideas of type extension, as found in Oberoanother "object
oriented" languages provide even better alternatives?

14.67 Many authors dislike pointer types because they allow "insecure" programming”. Wh
meant by this? How could the security be improved? If you do not like pointer types, can yc
of any alternative feature that would be more secure?

There is quite a lot of material available on these subjects in many of the references cited
previously. Rather than give explicit references, we leave the Joys of Discovery to the read

