Compilers and Compiler Generators © P.D. Terry, 2000

12 USING COCO/R - OVERVIEW

One of the main reasons for developing attributed grammars like those discussed in the las
is to be able to use them as input to compiler generator tools, and so construct complete pr
It is the aim of this chapter and the next to illustrate how this process is achieved with Cocc
to discuss the Cocol specification language in greater detail than before. Our discussion wi
usual, focus mainly on42 applications, but a study of the documentation and examples on t
diskette should allow Modula-2, Pascal and "traditional C" readers to develop in those lang
just as easily.

12.1 Installing and running Coco/R

On the diskette that accompanies this book can be found three implementations of Coco/R
generate applications in G/€ Modula-2, or Turbo Pascal. These have been configured for €
use on MS-DOS based systems. Versions of Coco/R are also available for use with many ¢
compilers and operating systems. These can be obtained from several sites on the Internet
some of these appears in Appendix A.

The installation and execution of Coco/R is rather system-specific, and readers will be oblic
make use of the documentation that is provided on the diskette. Nevertheless, a brief overy
the process can usefully be given here.

12.1.1 Installation

The MS-DOS versions of Coco/R are supplied as compressed, self-extracting executable fi
for these the installation process requires a user to

create a system directory to store the system filk@ R C:\ cocq);

make this the active directorgg C:\ cocq;

copy the distribution file to the system directobpfY A: COCORC. EXE C: \ COCQ);

start the decompression proces3RC] (this process will extract the files, and create fur

subdirectories to contain Coco/R and its support files and library modules);

® add the system directory to the MS-DOS "path"” (this may often most easily be done b

modifying thePATH statement in theUTOEXEC. BAT file);

compile the library support modules;

® modify the host compiler and linker parameters, so that applications created by Coco/
easily be linked to the support modules;

® set an "environment variable”, so that Coco/R can locate its "frame files" (this may oft

easily be done by adding a line liIBET CRFRAMES = C:\ COCO FRAMES to theAUTOEXEC. BAT

file).

12.1.2 Input file preparation

For each application, the user has to prepare a text file to contain the attributed grammar. F
be aware of are that

® it is sensible to work within a "project directory” (say WORK) and not within the "system
directory" (. \ cocO);

® text file preparation must be done with an ASCII editor, and not with a word processor

® by convention the file is named with a primary name that is based on the grammar’s g
symbol, and with anATG' extension, for exampleALC. ATG.

Besides the grammar, Coco/R needs to be able tdraaeé files. These contain outlines of the
scanner, parser, and driver files, to which will be added statements derived from an analysi
attributed grammar. Frame files for the scanner and parser are of a highly standard form; tt
supplied with the distribution are suitable for use in many applications without the need for
customization. However, a complete compiler consists of more than just a scanner and par
particular it requires a driver program to call the parser. A basic driver framedv@ (ER. FRM)
comes with the kit. This will allow simple applications to be generated immediately, but it is
usually necessary to copy this basic file to the project directory, and then to edit it to suit the
application. The resulting file should be given the same primary name as the grammar file,
FRMextension, for exampleaLC. FRM

12.1.3 Execution

Once the input files have been prepared, generation of the application is started with a con
like

COCOR CALC. ATG

A number of compiler options may be specified in a way that is probably familiar, for examg

COCOR -L -C CALC ATG

The options depend on the particular version of Coco/R in use. A summary of those availat
be obtained by issuing tlt®cor command with no parameters at all, or with onlyHgarameter.
Compiler options may also be selectedpbgigmas embedded in the attributed grammar itself,

this is probably the preferred approach for serious applications. Examples of such pragmas
found in the case studies later in this chapter.

12.1.4 Output from Coco/R

Assuming that the attributed grammar appears to be satisfactory, and depending on the co
switches specified, execution of Coco/R will typically result in the production of header and
implementation files (with names derived from the goal symbol name) for

® a FSA scanner (for exampbaLCs. HPP andCALCS. CPP)

® a recursive descent parser (for exangalecP. HPP andCALCP. CPP)

® a driver routine (for exampleaLC. CPP)

® a list of error messages (for examphe.CE. H)

® a file relating the names of tokens to the integer numbers by which they will be known
parser (for exampleALccC. H)

12.1.5 Assembling the generated system

After they have been generated, the various parts of an application can be compiled and lir
one another, and with any other components that they need. The way in which this is done
very much on the host compiler. For a very simple MS-DOS application using the Boftand (
system, one might be able to use commands like

BCC -m -1C:\ COCON CPLUS2 -c CALC. CPP CALCS. CPP CALCP. CPP
BCC -m -LC:\COCO CPLUS2 -eCALC. EXE CALC. OBJ CALCS. 0OBJ CALCP.OBJ CR LIB.LIB

but for larger applications the use ahakefile is probably to be preferred. Examples of makef
are found on the distribution diskette.

12.2 Case study - a simple adding machine

Preparation of completely attributed grammars suitable as input to Coco/R requires an in-d
understanding of the Cocol specification language, including many features that we have n
encountered. Sections 12.3 and 12.4 discuss these aspects in some detail, and owe much
original description by Méssenbdck (1990a).

The discussion will be clarified by reference to a simple example, chosen to illustrate as me
features as possible (as a result, it may appear rather contrived). Suppose we wish to cons
adding machine that can add numbers arranged in various groups into subtotals, and then
these subtotals to a running grand total, or reject them. Our numbers can have fractional pz
to be perverse we shall allow a shorthand notation for handling ranges of numbers. Typical
exemplified by

start the machine

one subtotal 10+20+3+4+5+6+7, accepted
anot her one, but rejected

and a third, this tinme accepted

di splay grand total and then stop

cl ear

10 + 20 + 3 .. 7 accept
3.4 + 6.875..50 cancel
3 + 4 + 6 accept

tot al

~————
~————

Correct input of this form can be described by a simple LL(1) grammar that we might try inif
specify in Cocol on the lines of the following:

COWPI LER Cal ¢

CHARACTERS
digit = "0123456789" .
TOKENS
nunber =digit { digit } ["." digit { digit }] .
PRODUCTI ONS
Cal c = "clear" { Subtotal } "total" .
Subtotal = Range { "+" Range } ("accept" | "cancel") .
Range = Amount [".." Anount] .
Amount = nunber .
END Cal c.

In general a grammar like this can itself be described in EBNF by

Cocol = "COWPI LER' Coal I dentifier
ArbitraryText
Scanner Speci ficati on
Par ser Speci fi cation
"END' Goal Identifier "."

We note immediately that the identifier after the keywamdPl LER gives the grammar name, ar
must match the name after the keywekd. The grammar name must also match the name cf
for the non-terminal that defines the goal symbol of the phrase structure grammar.

Each of the productions leads to the generation of a corresponding parsing routine. It shoul
take much imagination to see that the routines in our case study will also need to perform

operations like

® converting the string that defines@er token into a corresponding numerical value. Tl
we need mechanisms for extracting attributes of the various tokens from the scanner -
recognizes them.

® adding such numbers into variables declared for the purpose of recording totals and s
and passing these values between the routines. Thus we need mechanisms for decla
parameters and local variables in the generated routines, and for incorporating arithm
statements.

® displaying the values of the variables on an output device. Thus we need mechanism:
interfacing our parsing routines to external library routines.

® reacting sensibly to input data that does not conform to the proper syntax. Thus we ne
mechanisms for specifying how error recovery should be accomplished.

® reacting sensibly to data that is syntactically correct, but still meaningless, as might he
one was asked to process numbers in the range 6 .. 2. Thus we need mechanisms fo
semantic and constraint violations.

These mechanisms are all incorporated into the grammar by attributing it with extra informe
discussed in the next sections. As an immediate example of this, arbitrary text may follow t|
Goalldentifier, preceding th&canner Specification. This is not checked by Coco/R, but is simpl
incorporated directly in the generated parser. This offers the facility of providing cadeéer
clauses in Modula-2JsSes clauses in Turbo Pascal,#mcl ude directives in G+, and for the
declaration of global objects (constants, types, variables or functions) that may be needed |
semantic actions.

12.3 Scanner specification

A scanner has to read source text, skip meaningless characters, and recognize tokens that
handled by the parser. Clearly there has to be some way for the parser to retrieve informati
these tokens. The most fundamental information can be returned in the form of a simple int
unique to the type of token recognized. While a moment’s thought will confirm that the men
such an enumeration will allow a parser to perform syntactic analysis, semantic properties |
the numeric value of thaunber that appears in our example grammar) may require a token t
analysed in more detail. To this end, the generated scanner allows the parser to retersméeh
or textual representation of a token.

Tokens may be classified either as literals or as token classes. As we have already seen, li
"END" and " =") may be introduced directly into productions as strings, and do not need to b«
named. Token classes (suchdentifiers or numbers) must be named, and have structures that
specified by regular expressions, defined in EBNF.

In Cocol, a scanner specification consists of six optional parts, that may, in fact, be introduc
arbitrary order.

Scanner Specification = { CharacterSets
| I'gnorable
| Comments
| Tokens

| Pragnas

| User Nanes

12.3.1 Character sets

The Character Sets component allows for the declaration of names for character sets like lette
digits, and defines the characters that may occur as members of these sets. These names
be used in the other sections of the scanner specification (but not, it should be noted, in the
specification).

Char act er Set s "CHARACTERS" { NanedChar Set } .

NarmedChar Set = Setldent "=" CharacterSet "." .

Char act er Set = SinpleSet { ("+" | "-") SinpleSet } .

Si npl eSet = Setldent | string | SingleChar [".." SingleChar] | "ANY" .
Si ngl eChar = "CHR' "(" nunber ")" .

Set | dent = identifier .

Simple character sets are denoted by one of

Setldent a previously declared character set with that name
Sring a set consisting of all characters in the string
CHR(i) a set of one character with ordinal value

CHR(i) .. CHR(j) a set consisting of all characters whose ordinal
values are in the range. j.
ANY the set of all characters acceptable to the implementation
Simple sets may then be combined by the union (+) and difference operators (

As examples we might have

digit = "0123456789" . /* The set of all digits */

hexdigit = digit + "ABCDEF" . [* The set of all hexadecimal digits */

eol = CHR(10) . /* Line feed character */

noDi gi t = ANY - digit . /* Any character that is not a digit */
ctrlChars = CHR(1) .. CHR(31) . /* The ASCI| control characters */
InString = ANY - """ - eol . /* Strings may not cross |ine boundaries */

12.3.2 Comments and ignor able characters

Usually spaces within the source text of a program are irrelevant, and in scanning for the si
token, a Coco/R generated scanner will simply ignore them. Other separators like tabs, line
and form feeds may also be declared irrelevant, and some applications may prefer to ignor
distinction between upper and lower case input.

Comments are difficult to specify with the regular expressions used to denote tokens - inde
nested comments may not be specified at all in this way. Since comments are usually disce
parsing process, and may typically appear in arbitrary places in source code, it makes sens
a special construct to express their structure.

Ignorable aspects of the scanning process are defined in Cocol by

Conmrent s
I gnor abl e

" COWENTS' "FROM TokenExpr "TO TokenExpr [“NESTED'] .
"I GNORE" ("CASE' | CharacterSet) .

where the optional keywont=STED should have an obvious meaning. A practical restriction is
comment brackets must not be longer than 2 characters. It is possible to declare several kil
comments within a single grammar, for example, fer:C

COMVENTS FROM "/*" TO "*/"
COMMVENTS FROM "/ /" TO eol
| GNORE CHR(9) .. CHR(13)

The set of ignorable characters in this example is that which includes the standard white sg
separators in ASCII files. The null charaateR(0) should not be included in any ignorable set
is used internally by Coco/R to mark the end of the input file.

12.3.3 Tokens

A very important part of the scanner specification declares the form of terminal tokens:

Tokens = "TOKENS" { Token }
Token = TokenSynbol ["=" TokenExpr "."]
TokenExpr = TokenTerm{ "|" TokenTerm }
TokenTerm = TokenFactor { TokenFactor } ["CONTEXT" "(" TokenExpr ")"] .
TokenFactor = Setldent | string
| "(" TokenExpr ")"
| "[" TokenExpr "]"

| "{" TokenExpr "}"
Tokenl dent | string .
identifier .

TokenSynbo
Tokenl dent

Tokens may be declared in any order. A token declaration defif@®aSymbol together with its
structure. Usually the symbol on the left-hand side of the declaration is an identifier, which |
used in other parts of the grammar to denote the structure described on the right-hand side
declaration by a regular expression (expressed in EBNF). This expression may contain litel
denoting themselves (for examplkb"), or the names of character sets (for exartgiter),
denoting an arbitrary character from such sets. The restriction to regular expressions mean
may not contain the names of any other tokens.

While token specification is usually straightforward, there are a number of subtleties that m
emphasizing:

® Since spaces are deemed to be irrelevant when theyhstween tokens in the input for
most languages, one should not attempt to declare literal tokens that havergiharcédsem.

® Our case study has introduced but one explicit token class:
number = digit { digit } ["." digit { digit }]

However it has also introduced tokens likeéar ", "cancel " and "..". This last one is
particularly interesting. A scanner might have trouble distinguishing the tokens in inpu

3.. 54 + 54.16.4 + 50..80

because in some cases the periods form part of a real literal, in others they form part «
ellipsis. This sort of situation arises quite frequently, and Cocol makes special provisic
An optionalCONTEXT phrase in &okenTerm specifies that this term only be recognized w
its right-hand context in the input stream is TlokenExpr specified in brackets. Our case
study example requires alteration:

TOKENS
nunber = digit { digit } ["." digit { digit }]
| digit { digit } CONTEXT ("..") .
® The grammar for tokens allows for empty right-hand sides. This may seem strange, e:
as no scanner is generated if the right-hand side of a declaration is missing. This facil
used if the user wishes to supply a hand-crafted scanner, rather than the one generat
Coco/R. In this case, the symbol on the left- hand side of a token declaration may alsc
be specified by atring, with no right-hand side.

® Tokens specified without right-hand sides are numbered consecutively starting from O
the hand-crafted scanner has to return token codes according to this numbering scheil

12.3.4 Pragmas

A pragma, like a comment, is a token that may occur anywhere in the input stream, but, un
comment, it cannot be ignored. Pragmas are often used to allow programmers to select col
switches dynamically. Since it becomes impractical to modify the phrase structure gramma
handle this, a special mechanism is provided for the recognition and treatment of pragmas.
they are declared like tokens, but may have an associated semantic action that is executec
they are recognized by the scanner.

Pragnmas = "PRAGVAS' { Pragnma }
Pragma = Token [Action] .
Action = "(." arbitraryText ".)"

As an example, we might add to our case study

PRAGVAS
page = "page" . (. printf("\f"); .)
to allow the worcbage to appear anywhere in the input data; each appearance would have tl
of moving to a new page on the output.

12.3.5 User names

The scanner and parser produced by Coco/R use small integer values to distinguish token:
makes their code harder to understand by a human reader (some would argue that human:
never need to read such code anyway). When used with appropriate options, Coco/R can ¢
code that uses names for the tokens. By default these names have a rather stereotyped fol
example "..." would be namegdadi nt poi nt poi nt Sym'). The UserNames section may be used to
prefer user-defined names, or to help resolve name clashes (for example, between the def:
that would be chosen fopdi nt " and ".").

User Names
User Nane

"NAMES' { UserNanme } .
Tokenldent "=" (identifier | string) "."

As examples we might have

NAMES
period
ellipsis

12.3.6 The scanner interface

The scanner generated by Coco/R declares various procedures and functions that may be
from the parser whenever it needs to obtain a new token, or to analyse one that has alread
recognized. As it happens, a user rarely has to make direct use of this interface, as the ger
parser incorporates all the necessary calls to the scanner routines automatically, and also |
facilities for retrieving lexemes.

The form of the interface depends on the host system. For example, ferther€ion, the

interface is effectively that shown below, although there is actually an underlying class hier:
so that the declarations are not exactly the same as those shown. The reader should take r
there are various ways in which source text may be retrieved from the scanner (to underste
in full it will be necessary to study the class hierarchy, but easier interfaces are provided fol

parser; see section 12.4.6).

cl ass granmmar Scanner
{ public:
grammar Scanner (i nt SourceFile, int ignoreCase);
/'l Constructs scanner for grammar and associates this with a
/'l previously opened SourceFile. Specifies whether to | GNORE CASE

int Get();
/1 Retrieves next token from source

voi d GetString(Token *Sym char *Buffer, int Mx);
/! Retrieves at nost Max characters from Syminto Buffer

voi d CGet Nanme(Token *Sym char *Buffer, int Mx);
/1 Retrieves at nost Max characters from Syminto Buffer
/1 Buffer is capitalized if | GNORE CASE was specified

| ong GetLine(long Pos, char *Line, int Max);
/!l Retrieves at nost Max characters (or until next |ine break)
/1 fromposition Pos in source file into Line

12.4 Par ser specification

The parser specification is the main part of the input to Coco/R. It contains the productions
attributed grammar specifying the syntax of the language to be recognized, as well as the ¢
be taken as each phrase or token is recognized.

12.4.1 Productions

The form of the parser specification may itself be described in EBNF as follows. For the Mc
and Pascal versions we have:

Par ser Speci fication "PRODUCTI ONS* { Production } .

Production NonTernminal [Formal Attributes]
[Local Decl arations] (* Modul a-2 and Pascal *)
"=" Expression "." .

Formal Attri butes = "<" arbitraryText ">" | "<." arbitraryText ".>"

Local Decl ar ati ons = "(." arbitraryText ".)"

NonTer mi nal = identifier .

For the C and &+ versions théd.ocal Declarations follow the '=" instead:

Producti on = NonTerminal [Formal Attributes]
"=" [Local Declarations] /* C and C++ */
Expression "."

Any identifier appearing in a production that was not previously declared as a terminal toke
considered to be the name dllenTerminal, and there must be exactly one production for eac
NonTerminal that is used in the specification (this may, of course, specify a list of alternative
sides).

A production may be considered as a specification for creating a routine that parses the
NonTerminal. This routine will constitute its own scope for parameters and other local comp
like variables and constants. The left-hand sideRyfoduction specifies the name of the
NonTerminal as well as it§-ormal Attributes (which effectively specify the formal parameters o
the routine). In the Modula-2 and Pascal versions the optimcalDeclarations allow the
declaration of local components to precede the block of statements that follow. The € and ¢
versions define their local components within this statement block, as required by the host
language.

As in the case of tokens, some subtleties in the specification of productions should be emp
® The productions may be given in any order.
® A production must be given for@oalldentifier that matches the name used for the gram

® The formal attributes enclosed in angle bracketahd >" (or "<. " and " >") simply consis
of parameter declarations in the host language. Similarly, where they are required anc
permitted, local declarations take the form of host language declarations enclgsédimd
".)" brackets. However, the syntax of these components is not checked by Coco/R; tt
to the responsibility of the compiler that will actually compile the generated applicatior

® All routines give rise to "regular procedures” (in Modula-2 terminology) or "void functic
(in C++ terminology). Coco/R cannot construct true functions that can be called from w
other expressions; any return values must be transmitted using reference parameter
mechanisms.

® The goal symbol may not have aRgrmal Attributes. Any information that the parser is
required to pass back to the calling driver program must be handled in other ways. At
this may prove slightly awkward.

® While a production constitutes a scope for its formal attributes and its locally declared
objects, terminals and non-terminals, globally declared objects, and imported modules
visible in any production.

® [t may happen that an identifier chosen as the naméoh&erminal may clash with one of
the internal names used in the rest of the system. Such clashes will only become app:i
when the application is compiled and linked, and may require the user to redefine the
grammar to use other identifiers.

TheExpression on the right-hand-side of eaBhoduction defines the context-free structure of
some part of the source language, together with the attributes and semantic actions that sp
the parser must react to the recognition of each component. The syntaxxpf ession may itself
be described in EBNF (albeit not in LL(1) form) as

Expr essi on
Term
Fact or

Term{ "|" Term} .
Factor { Factor } .
["WEAK"] TokenSynbol

| NonTerminal [Attributes]

| Action

| "ANY"

| "SYNC'

| "(" Expression ")"

| "[" Expression "]"

| "{" Expression "}" .

Attributes = "<" arbitraryText ">" | "<." arbitraryText ".>"
Action = "(." arbitraryText ".)"

The Attributes enclosed in angle brackets that may folloWamTerminal effectively denote the
actual parameters that will be used in calling the corresponding routindotiTarminal is definec
on the left-hand side ofRroduction to haveFormal Attributes, then every occurrence of that
NonTerminal in a right-hand sid&xpression must have a list of actual attributes that correspor

the Formal Attributes according to the parameter compatibility rules of the host language. Ho
the conformance is only checked when the generated parser is itself compiled.

An Action is an arbitrary sequence of host language statements enclogsetand ") ". These

are simply incorporated into the generated parsgtu; once again, no syntax is checked at the
stage.

These points may be made clearer by considering a development of part of our case study.
hopefully needs little further explanation:

PRODUCTI ONS

Cal c /* goal */
= (. double total = 0.0, sub; .) /* locals */
"clear"

{ Subtotal <sub> (. total += sub; .) /* add to total */
"total" (. printf(" total: 9%.2f\n", total); .) /* display */
Subt ot al <doubl e &s> /* ref param */

= (. double r; .) /* local */
Range<s>
{ "+" Range<r> (. s +=7r1; .) /* add to s */
("accept" (. printf("subtotal: 9%.2f\n", s); .) /* display */
| "cancel" (. s =0.0; .) [* nullify */

) .

Although the input to Coco/R is free-format, it is suggested that the regular EBNF appear o
left, with the actions on the right, as in the example above.

Many aspects of parser specification are straightforward, but there are some subtleties that
comment:

Where it appears, the keywosdy denotes any terminal that cannot follamy in that
context. It can conveniently be used to parse structures that contain arbitrary text.

TheWeAK andSYNC keywords are used in error recovery, as discussed in the next sectic

In earlier versions of Coco/R there was a potential pitfall in the specification of attribut
Suppose the urge arises to attribuddoaTerminal as follows:

SoneNonTerm nal < record->field >

where the parameter uses the right arrow selection operatoiSince the 2" would
normally have been taken as a Cocol meta-bracket, this had to be recoded in terms o
operators as

SomeNonTermi nal < (*record).field >

The current versions of Coco/R allow for attributes to be demarcated 'bgrid " >"
brackets to allow for this situation, and for other operators that involvedharacter.

Close perusal of the grammar texpression will reveal that it is legal to write Broduction
in which anAction appears to be associated with an alternative faxpression that
contains no terminals or non- terminals at all. This feature is often useful. For example
might have

Option = "push" (. stack[++top] = item
| "pop" (. item= stack[top--];
i

)
(. for (int i = top; %)

> i--) cout << stack[i]; .) .

Another useful feature that can be exploited is the ability @&aion to drive the parsing
process "semantically”. For example, the specification of assignment statements and
procedure calls in a simple language might be defined as follows so as to conform to |

restrictions
AssignmentOrCall = Identifier [":=" Expression] .

Clearly the semantics of the two statement forms are very different. To handle this we
write the grammar on the lines of

Assi gnment O Cal |
= ldentifier<nane> (. Lookup(nane);
if (1sProcedure(nane))
{ Handl eCal | (nanme); return; } .)
":=" Expression<val ue> (. Handl eAssi gnnent (nane, value); .) .

12.4.2 Syntax error recovery

Compiler generators vary tremendously in the way in which they provide for recovery from
syntactic errors, a subject that was discussed in section 10.3.

The technique described there, although systematically applicable, slows down error-free
inflates the parser code, and is relatively difficult to automate. Coco/R uses a simpler techn
suggested by Wirth (1986), since this has proved to be almost as effective, and is very eas
understood. Recovery takes place only at a rather small numdyerchf onization pointsin the
grammar. Errors at other points are reported, but cause no recovery - parsing simply contir
the next synchronization point. One consequence of this simplification is that many spuriou
are then likely to be detected for as long as the parser and the input remain out of step. An
technique for handling this is to arrange that errors are simply not reported if they follow toc
closely upon one another (that is, a minimum amount of text must be correctly parsed after
error is detected before the next can be reported).

In the simplest approach to using this technique, the designer of the grammar is required tc
synchronization points explicitly. As it happens, this does not usually turn out to be a difficu
the usual heuristic is to choose locations in the grammar where especially safe terminals al
expected that are hardly ever missing or mistyped, or appear so often in source code that t
bound to be encountered again at some stage. In most Pascal-like languages, for example
candidates for synchronization points are the beginning of a statement (where keywomrlaté
VWH LE are expected), the beginning of a declaration sequence (where keywoatsidik@andvAR
are expected), or the beginning of a type definition (where keyword=sadaRD andARRAY are
expected).

In Cocol, a synchronization point is specified by the keyvgsret, and the effect is to generate
code for a loop that is prepared simply to consume source tokens until one is found that wc
acceptable at that point. The sets of such terminals can be precomputed at parser generati
They are always extended to include the end-of-file symbol (denoted by the kexpwprtthus

guaranteeing that if all else fails, synchronization will succeed at the end of the source text.

For our case study we might choose the end of the routine for handling a subtotal as such
Subtotal = Range { "+" Range } SYNC ("accept" | "cancel") .
This would have the effect of generating code on the following lines:

PROCEDURE Subt ot al ;
BEG N
Range;
WHI LE Sym = plus DO Get Sym Range END;
VWHI LE Sym & { accept, cancel, ECF } DO Get Sym END;

IF Sym€ { accept, cancel } THEN Get Sym END;

END

The union of all the synchronization sets (which we shall deno#élByncs) is also computed by
Coco/R, and is used in further refinements on this idea. A terminal can be designatesaioihe
a certain context by preceding its appearance in the phrase structure grammar with the key
VEAK. A weak terminal is one that might often be mistyped or omitted, such as the semicolo
between statements. When the parser expects (but does not find) such a terminal, it adopt:
strategy of consuming source tokens until it recognizes either a legal successor of the weal
terminal, or one of the membersAlfSyncs - since terminals expected at synchronization poin
considered to be very "strong", it makes sense that they never be skipped in any error reco
process.

As an example of how this could be used, consider altering our case study grammar to rea

Cal c = WEAK "cl ear" Subtotal { Subtotal } WEAK "total" .
Subtotal = Range { "+" Range } SYNC ("accept" | "cancel") .
Range = Anmount [".." Amount] .

Anmount = nunber .

This would give rise to code on the lines of

PROCEDURE Cal c;
BEG N
Expect Weak(cl ear, FIRST(Subtotal)); (* ie { nunber } *)
Subtotal; WHI LE Sym = nunber DO Subtotal END;
Expect Wak(total, { EOF })
END

TheExpect Weak routine would be internal to the parser, implemented on the lines of:

PROCEDURE Expect Weak (Expected : TERM NAL; WakFol | owers : SYMSET);
BEG N
| F Sym = Expect ed
THEN Get Sym
ELSE
Report Err or (Expect ed) ;

WHI LE sym & (WeakFol | owers + Al'l Syncs) DO Get Sym END
END
END

Weak terminals give the parser another chance to synchronize in case of an error. The
WeakFol | oner sets can be precomputed at parser generation time, and the technique cause
run-time overhead if the input is error-free.

Frequently iterations start with a weak terminal, in situations described by EBNF of the forn

Sequence = FirstPart { "WEAK' ExpectedTerm nal |IteratedPart } LastPart .

Such terminals will be callegeak separators and can be handled in a special way: if the
ExpectedTerminal cannot be recognized, source tokens are consumed until a terminal is fou
is contained in one of the following three sets:

FOLLOW/(ExpectedTerminal) (that is, FIRSTiteratedPart))
FIRST (LastPart)
AllSyncs

As an example of this, suppose we were to modify our case study grammar to read
Subtotal = Range { WEAK "+" Range } ("accept" | "cancel") .

The generated code would then be on the lines of

PROCEDURE Subt ot al ;
BEG N
Range;
WH LE WeakSeparat or (plus, { nunmber }, { accept, cancel }) DO
Range
END;

IF Sym € {accept, cancel } THEN Get Sym END;
END

TheweakSepar at or routine would be implemented internally to the parser on the lines of

BOOLEAN FUNCTI ON WeakSepar at or (Expected : TERM NAL;
WeakFol | owers, IterationFollowers : SYMSET);
BEG N
| F Sym = Expected THEN Get Symy RETURN TRUE

ELSIF Sym € |terationFol | owers THEN RETURN FALSE
ELSE
Report Err or (Expect ed) ;

WH LE Sym & (WeakFol I owers + IterationFollowers + All Syncs) DO
Get Sym
END;

RETURN Sym € WeakFol | overs
END
END

Once again, all the necessary sets can be precomputed at generation time. Occasionally, i
embedded grammars, the inclusiorAfSyncs (which tends to be "large") may detract from the
efficacy of the technique, but with careful choice of the placingeak andsyNC keywords it can
work remarkably well.

12.4.3 Grammar checks

Coco/R performs several tests to check that the grammar submitted to it is well-formed. In
particular it checks that

® each non-terminal has been associated with exactly one production;

® there are no useless productions (in the sense discussed in section 8.3.1);

® the grammar is cycle free (in the sense discussed in section 8.3.3);

® all tokens can be distinguished from one another (that is, no two terminals have been
to have the same structure).

If any of these tests fail, no code generation takes place. In other respects the system is m¢
lenient. Coco/R issues warnings if analysis of the grammar reveals that

® a non-terminal is nullable (this occurs frequently in correct grammars, but may someti
indicative of an error);

® the LL(1) conditions are violated, either because at least two alternatives for a produc
have FIRST sets with elements in common, or because the FIRST and FOLLOWER ¢
nullable string have elements in common.

If Coco/R reports an LL(1) error for a construct that involves alternatives or iterations, the u
should be aware that the generated parser is highly likely to misbehave. As simple example
productions like the following

"a" A
[e
{ "

a" B.
"

] .
}ord .

0O T
nn
Ow—

result in generation of code that can be described algorithmically as

IF Sym= "a" THEN Accept("a"); A ELSIF Sym = "a" THEN Accept("a"); B END;

IF Sym= "¢" THEN Accept("c"); B END; Accept("c");

WHI LE Sym = "d" DO Accept("d"); C END; Accept("d");
Of these, only the second can possibly ever have any meaning (as it does in the case of th
"dangling else"). If these situations arise it may often be necessary to redesign the gramme

12.4.4 Semanticerrors

The parsers generated by Coco/R handle the reporting of syntax errors automatically. The
driver programs can summarize these errors at the end of compilation, along with source c
and column references, or produce source code listings with the errors clearly marked with
explanatory messages (an example of such a listing appears in section 12.4.7). Pure synta
cannot reveal static semantic errors, but Coco/R supports a mechanism whereby the grami
designer can arrange for such errors to be reported in the same style as is used for syntact
The parser class has routines that can be called from within the semantic actions, with an €
number parameter that can be associated with a matching user-defined message.

In the grammar of our case study, for example, it might make sense to introduce a semanti
into the actions for the non-termirrdnge. The grammar allows for a range of values to be
summed; clearly this will be awkward if the "upper” limit is supplied as a lower value than tt
"lower" limit. The code below shows how this could be detected, resulting in the reporting o
semantic error 200.

Range<doubl e &r>
= (. double low, high; .)
Amount <| ow> (. r=low .)
[".." Amount<hi gh> (. if (low > high) SenError(200);

else while (low < high) { low+, r += low } .)
] .

(Alternatively, we could also arrange for the system to run the loop in the appropriate direct
not regard this as an error at all.) Numbers chosen for semantic error reporting must start a
fairly large number to avoid conflict with the low numbers chosen internally by Coco/R to re
syntax errors.

12.4.5 Interfacing to support modules

It will not have escaped the reader’s attention that the code specified in the actions of the a
grammar will frequently need to make use of routines that are not defined by the grammar |
Two typical situations are exemplified in our case study.

Firstly, it has seen fit to make use of thent f routine from thest di o library found in all
standard C and-G implementations. To make use of such routines - or ones defined in othe
support libraries that the application may need - it is necessary simply to incorporate the ag
#def i ne, | MPORT Or USES clauses into the grammar before the scanner specification, as disc
in section 12.2.

Secondly, the need arises in routines Akeunt to be able to convert a string, recognized by tt
scanner as a number, into a numerical value that can be passed back via a formal paramet
calling routine Range). This situation arises so frequently that the parser interface defines se
routines to simplify the extraction of this string. The productiomfieunt , when fully attributed,
might take the form

Anmount <doubl e &a>
= nunber (. char str[100];
LexString(str, 100);

a = atof(str); .) .

TheLexst ri ng routine (defined in the parser interface) retrieves the string into the localsstrir
whence it is converted to thieubl e valuea by a call to theat of function that is defined in the
stdli b library. If the functionality of routines likeexSt ri ng andLexName is inadequate, the ust
can incorporate calls to the even lower level routines defined in the scanner interface, such
mentioned in section 12.3.6.

12.4.6 The parser interface

The parser generated by Coco/R defines various routines that may be called from an applic
for the scanner, the form of the interface depends on the host system. Fer tleedbn, it
effectively takes the form below. (As before, there is actually an underlying class hierarchy,
declarations are really slightly different from those presented here).

The functionality provides for the parser to

initiate the parse for the goal symbol by callregse() .

investigate whether the parse succeeded by calliogessf ul ().

report on the presence of syntactic and semantic errors by lliBgr or andSenError .
obtain the lexeme value of a particular token in one of four wayst(ri ng, LexNane,
LookAheadSt ri ng andLookAheadNane). Calls toLexSt ri ng are most common; the others
are used for special variations.

cl ass granmar Par ser
{ public:
gr anmar Par ser (AbsScanner *S, CRError *E);
/1 Constructs parser associated with scanner S and error reporter E

void Parse();
/] Parses the source

int Successful ();
/!l Returns 1 if no errors have been recorded while parsing

private:
void LexString(char *lex, int size);
/! Retrieves at nost size characters fromthe nost recently parsed
/1 token into |ex

voi d LexName(char *lex, int size);
/1 Retrieves at nost size characters fromthe nost recently parsed
/1 token into lex, converted to upper case if | GNORE CASE was specified

voi d LookAheadString(char *lex, int size);
/1l Retrieves at nost size characters fromthe | ookahead token into |ex

voi d LookAheadNane(char *lex, int size);
/!l Retrieves at nost size characters fromthe | ookahead token into |ex,
/1 converted to upper case if | GNORE CASE was specified

voi d SynError(int errorcode);
/'l Reports syntax error denoted by errorcode

voi d SenError(int errorcode);
/'l Reports semantic error denoted by errorcode

/Il ... Prototypes of functions for parsing each non-term nal in grammar

H
12.4.7 A complete example

To place all of the ideas of the last sections in context, we present a complete version of th
attributed grammar for our case study:

$CX /* pragmas - generate conpiler, and use C++ cl asses */

COWPI LER Cal ¢

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

CHARACTERS
digit = "0123456789" .

| GNORE CHR(9) .. CHR(13)

TOKENS
nunber = digit { digit } ["." digit { digit }]
| digit { digit } CONTEXT ("..") .
PRAGVAS
page = "page" . (. printf("\f"); .)
PRODUCTI ONS
Cal c
= (. double total = 0.0, sub; .)
WEAK "cl ear"
{ Subt ot al <sub> (. total += sub; .)
} SYNC "total" (. printf(" total: 9%.2f\n", total); .)

Subt ot al <doubl e &s>

= (. double r; .)
Range<s>
{ WEAK "+" Range<r> (. s +=7r1; .)
} SYNC
("accept” (. printf("subtotal: 9%.2f\n", s); .)
| "cancel" (. s =0.0; .)
) .

Range<doubl e &r >
= (. double low, high; .)
Anmount <l ow> (. r =low .
[".." Amount<hi gh> (. if (low > high) SenError(200);
el se while (low < high)
{ lowt+; r +=1low } .)

]

Anount <doubl e &a>

= nunber (. char str[100];
LexString(str, 100);
a = atof(str); .) .

END Cal c.

To show how errors are reported, we show the output from applying the generated system
that is fairly obviously incorrect.

1 clr
**%kxx A clear expected (E2)
2 1 +2+3.. 4+ 4.5 accep

*okok kK N+ expected (E4)
3 3.4 5 cancel

*okok ok ok N+ expected (E4)
4 3 +4 .. 2+ 6 accept

el N H gh < Low (E200)
5 TOTAL

*xx%x% A unexpected synbol in Calc (E10)

12.5 Thedriver program

The most important tasks that Coco/R has to perform are the construction of the scanner a
However, these always have to be incorporated into a complete program before they becor

12.5.1 Essentials of the driver program

Any main routine for a driver program must be a refinement of ideas that can be summarize

BEG N
Open(Sour ceFil e);
| F Okay THEN
I nst anti at eScanner ;
I nstanti at eErr or Handl er;
I nstanti at ePar ser;
Parse();
I F Successful () THEN ApplicationSpecificActi on END
END
END

Much of this can be automated, of course, and Coco/R can generate such a program, cons
its other components. To do so requires the use of an appropriate frame file. A generic vers
this is supplied with the distribution. Although it may be suitable for constructing simple
prototypes, it acts best as a model from which an application-specific frame file can easily k
derived.

12.5.2 Customizing thedriver framefile
A customized driver frame file generally requires at least three simple additions:

® |t is often necessary to declare global or external variables, and to add application spe
#i ncl ude, USES orl MPORT directives so that the necessary library support will be provi

® The section dealing with error messages may need extension if the grammar has mac
the facility for adding errors to those derived by the parser generator, as discussed in
12.4.4. For example, the defaukCdriver frame file has code that reads

char *MyError:: Get User ErrorMsg(int n)
{ switch (n) {
/1 Put your custom zed nmessages here
default: return "Unknown error";
}
}

To tailor this to the case study application we should need to add an optiosotttie
statement:

char *MyError:: Get User ErrorMsg(int n)
{ switch (n) {
case 200: return "High < Low';
default: return "Unknown error";
}
}

® Finally, at the end of the default frame file can be found code like

/1 instantiate Scanner, Parser and Error handl er
Scanner = new -->ScanC ass(S src, -->lgnoreCase);
Error new MyError (Sour ceNanme, Scanner);

Par ser new -->Parser Cl ass(Scanner, Error);

/] parse the source
Par ser - >Par se() ;
cl ose(S_src);

// Add to the followi ng code to suit the application

if (Brror->Errors) fprintf(stderr, "Conpilation errors\n");
if (Listinfo) SourcelListing(Error, Scanner);

else if (Error->Errors) Error->Summari zeErrors();

del et e Scanner;
del ete Parser;
delete Error;

}
the intention of which should be almost self explanatory. For example, in the case of ¢

compiler/interpreter such as we shall discuss in a later chapter, we might want to mod
to read

/'l generate source listing
FILE *Ist = fopen("listing");
Error->Set Qut put (I st);
Error->PrintListing(Scanner);
fclose(lst);

if (Brror->Errors)

fprintf(stderr, "Conpilation failed - see %\n", ListNange);
el se {
fprintf(stderr, "Conpilation successful\n");

CGen- >get si ze(codel ength, initsp);
Machi ne- >i nter pret (codel ength, initsp);

}

Exercises

12.1 Study the code produced by Coco/R from the grammar used in this case study. How ¢
does it correspond to what you might have written by hand?

12.2 Experiment with the grammar suggested in the case study. What happeosNfHxe
clause is omitted in the scanner specification? What happens if the placememraktardsyNC
keywords is changed?

12.3 Extend the system in various ways. For example, direct output to a file otherdban use
thei ost r eans library rather than thet di o library, develop the actions so that they conform tc
"traditional" C (rather than using reference parameters), or arrange that ranges can be corr
interpreted in either order.

Further reading

The text by Rechenberg and Mossenbdck (1989) describes the original Coco system in gre
This system did not have an integrated scanner generator, but made use of one known as .
(Mdssenbock, 1986). Dobler and Pirklbauer (1990) and Dobler (1991) discuss Coco-2, a ve
Coco that incorporated automatic and sophisticated error recovery into table-driven LL(1) p
Literature on the inner workings of Coco/R is harder to come by, but the reader is referred 1
papers by Mdssenbdck (1990a, 1990b).

