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12 USING COCO/R - OVERVIEW 

One of the main reasons for developing attributed grammars like those discussed in the last chapter
is to be able to use them as input to compiler generator tools, and so construct complete programs.
It is the aim of this chapter and the next to illustrate how this process is achieved with Coco/R, and
to discuss the Cocol specification language in greater detail than before. Our discussion will, as
usual, focus mainly on C++ applications, but a study of the documentation and examples on the
diskette should allow Modula-2, Pascal and "traditional C" readers to develop in those languages
just as easily. 

12.1 Installing and running Coco/R 

On the diskette that accompanies this book can be found three implementations of Coco/R that can
generate applications in C/C++, Modula-2, or Turbo Pascal. These have been configured for easy
use on MS-DOS based systems. Versions of Coco/R are also available for use with many other
compilers and operating systems. These can be obtained from several sites on the Internet; a list of
some of these appears in Appendix A. 

The installation and execution of Coco/R is rather system-specific, and readers will be obliged to
make use of the documentation that is provided on the diskette. Nevertheless, a brief overview of
the process can usefully be given here. 

12.1.1 Installation 

The MS-DOS versions of Coco/R are supplied as compressed, self-extracting executable files, and
for these the installation process requires a user to 

create a system directory to store the system files [MKDIR C:\COCO]; 
make this the active directory [CD C:\COCO]; 
copy the distribution file to the system directory [COPY A:COCORC.EXE C:\COCO]; 
start the decompression process [COCORC] (this process will extract the files, and create further
subdirectories to contain Coco/R and its support files and library modules); 
add the system directory to the MS-DOS "path" (this may often most easily be done by
modifying the PATH statement in the AUTOEXEC.BAT file); 
compile the library support modules; 
modify the host compiler and linker parameters, so that applications created by Coco/R can
easily be linked to the support modules; 
set an "environment variable", so that Coco/R can locate its "frame files" (this may often most
easily be done by adding a line like SET CRFRAMES = C:\COCO\FRAMES to the AUTOEXEC.BAT
file). 

12.1.2 Input file preparation 

For each application, the user has to prepare a text file to contain the attributed grammar. Points to
be aware of are that 



it is sensible to work within a "project directory" (say C:\WORK) and not within the "system
directory" (C:\COCO); 
text file preparation must be done with an ASCII editor, and not with a word processor; 
by convention the file is named with a primary name that is based on the grammar’s goal
symbol, and with an "ATG" extension, for example CALC.ATG. 

Besides the grammar, Coco/R needs to be able to read frame files. These contain outlines of the
scanner, parser, and driver files, to which will be added statements derived from an analysis of the
attributed grammar. Frame files for the scanner and parser are of a highly standard form; the ones
supplied with the distribution are suitable for use in many applications without the need for any
customization. However, a complete compiler consists of more than just a scanner and parser - in
particular it requires a driver program to call the parser. A basic driver frame file (COMPILER.FRM)
comes with the kit. This will allow simple applications to be generated immediately, but it is
usually necessary to copy this basic file to the project directory, and then to edit it to suit the
application. The resulting file should be given the same primary name as the grammar file, and a
FRM extension, for example CALC.FRM. 

12.1.3 Execution 

Once the input files have been prepared, generation of the application is started with a command
like 

            COCOR CALC.ATG

A number of compiler options may be specified in a way that is probably familiar, for example 

            COCOR -L -C CALC.ATG

The options depend on the particular version of Coco/R in use. A summary of those available may
be obtained by issuing the COCOR command with no parameters at all, or with only a -H parameter.
Compiler options may also be selected by pragmas embedded in the attributed grammar itself, and
this is probably the preferred approach for serious applications. Examples of such pragmas can be
found in the case studies later in this chapter. 

12.1.4 Output from Coco/R 

Assuming that the attributed grammar appears to be satisfactory, and depending on the compiler
switches specified, execution of Coco/R will typically result in the production of header and
implementation files (with names derived from the goal symbol name) for 

a FSA scanner (for example CALCS.HPP and CALCS.CPP) 
a recursive descent parser (for example CALCP.HPP and CALCP.CPP) 
a driver routine (for example CALC.CPP) 
a list of error messages (for example CALCE.H) 
a file relating the names of tokens to the integer numbers by which they will be known to the
parser (for example CALCC.H) 

12.1.5 Assembling the generated system 

After they have been generated, the various parts of an application can be compiled and linked with
one another, and with any other components that they need. The way in which this is done depends
very much on the host compiler. For a very simple MS-DOS application using the Borland C++

system, one might be able to use commands like 



    BCC -ml -IC:\COCO\CPLUS2 -c CALC.CPP CALCS.CPP CALCP.CPP
    BCC -ml -LC:\COCO\CPLUS2 -eCALC.EXE CALC.OBJ CALCS.OBJ CALCP.OBJ CR_LIB.LIB

but for larger applications the use of a makefile is probably to be preferred. Examples of makefiles
are found on the distribution diskette. 

12.2 Case study - a simple adding machine 

Preparation of completely attributed grammars suitable as input to Coco/R requires an in-depth
understanding of the Cocol specification language, including many features that we have not yet
encountered. Sections 12.3 and 12.4 discuss these aspects in some detail, and owe much to the
original description by Mössenböck (1990a). 

The discussion will be clarified by reference to a simple example, chosen to illustrate as many
features as possible (as a result, it may appear rather contrived). Suppose we wish to construct an
adding machine that can add numbers arranged in various groups into subtotals, and then either add
these subtotals to a running grand total, or reject them. Our numbers can have fractional parts; just
to be perverse we shall allow a shorthand notation for handling ranges of numbers. Typical input is
exemplified by 

   clear                       // start the machine
   10 + 20 + 3 .. 7 accept     // one subtotal 10+20+3+4+5+6+7, accepted
   3.4 + 6.875..50 cancel      // another one, but rejected
   3 + 4 + 6 accept            // and a third, this time accepted
   total                       // display grand total and then stop

Correct input of this form can be described by a simple LL(1) grammar that we might try initially to
specify in Cocol on the lines of the following: 

   COMPILER Calc

     CHARACTERS
       digit    = "0123456789" .

     TOKENS
       number   = digit { digit } [ "." digit { digit } ] .

     PRODUCTIONS
       Calc     = "clear" { Subtotal } "total" .
       Subtotal = Range { "+" Range } ( "accept" | "cancel" ) .
       Range    = Amount [ ".." Amount ] .
       Amount   = number .

   END Calc.

In general a grammar like this can itself be described in EBNF by 

   Cocol =   "COMPILER" GoalIdentifier
                 ArbitraryText
                 ScannerSpecification
                 ParserSpecification
             "END" GoalIdentifier "." .

We note immediately that the identifier after the keyword COMPILER gives the grammar name, and
must match the name after the keyword END. The grammar name must also match the name chosen
for the non-terminal that defines the goal symbol of the phrase structure grammar. 

Each of the productions leads to the generation of a corresponding parsing routine. It should not
take much imagination to see that the routines in our case study will also need to perform



operations like 

converting the string that defines a number token into a corresponding numerical value. Thus
we need mechanisms for extracting attributes of the various tokens from the scanner that
recognizes them. 
adding such numbers into variables declared for the purpose of recording totals and subtotals,
and passing these values between the routines. Thus we need mechanisms for declaring
parameters and local variables in the generated routines, and for incorporating arithmetic
statements. 
displaying the values of the variables on an output device. Thus we need mechanisms for
interfacing our parsing routines to external library routines. 
reacting sensibly to input data that does not conform to the proper syntax. Thus we need
mechanisms for specifying how error recovery should be accomplished. 
reacting sensibly to data that is syntactically correct, but still meaningless, as might happen if
one was asked to process numbers in the range 6 .. 2. Thus we need mechanisms for reporting
semantic and constraint violations. 

These mechanisms are all incorporated into the grammar by attributing it with extra information, as
discussed in the next sections. As an immediate example of this, arbitrary text may follow the
GoalIdentifier, preceding the ScannerSpecification. This is not checked by Coco/R, but is simply
incorporated directly in the generated parser. This offers the facility of providing code for IMPORT

clauses in Modula-2, USES clauses in Turbo Pascal, or #include directives in C++, and for the
declaration of global objects (constants, types, variables or functions) that may be needed by later
semantic actions. 

12.3 Scanner specification 

A scanner has to read source text, skip meaningless characters, and recognize tokens that can be
handled by the parser. Clearly there has to be some way for the parser to retrieve information about
these tokens. The most fundamental information can be returned in the form of a simple integer,
unique to the type of token recognized. While a moment’s thought will confirm that the members of
such an enumeration will allow a parser to perform syntactic analysis, semantic properties (such as
the numeric value of the number that appears in our example grammar) may require a token to be
analysed in more detail. To this end, the generated scanner allows the parser to retrieve the lexeme
or textual representation of a token. 

Tokens may be classified either as literals or as token classes. As we have already seen, literals (like
"END" and "!=") may be introduced directly into productions as strings, and do not need to be
named. Token classes (such as identifiers or numbers) must be named, and have structures that are
specified by regular expressions, defined in EBNF. 

In Cocol, a scanner specification consists of six optional parts, that may, in fact, be introduced in
arbitrary order. 

   ScannerSpecification =  {  CharacterSets
                             | Ignorable
                             | Comments
                             | Tokens
                             | Pragmas
                             | UserNames
                            } .



12.3.1 Character sets 

The CharacterSets component allows for the declaration of names for character sets like letters or
digits, and defines the characters that may occur as members of these sets. These names may then
be used in the other sections of the scanner specification (but not, it should be noted, in the parser
specification). 

   CharacterSets   =  "CHARACTERS" { NamedCharSet } .
   NamedCharSet    =  SetIdent "=" CharacterSet "." .
   CharacterSet    =  SimpleSet { ( "+" | "-" ) SimpleSet } .
   SimpleSet       =  SetIdent  |  string | SingleChar [ ".." SingleChar ] | "ANY" .
   SingleChar      =  "CHR" "(" number ")" .
   SetIdent        =  identifier .

Simple character sets are denoted by one of 

SetIdent            a previously declared character set with that name
String              a set consisting of all characters in the string
CHR(i)             a set of one character with ordinal value i
CHR(i) .. CHR(j)   a set consisting of all characters whose ordinal
                   values are in the range i ... j.
ANY                the set of all characters acceptable to the implementation

Simple sets may then be combined by the union (+) and difference operators (-). 

As examples we might have 

  digit     = "0123456789" .      /* The set of all digits */
  hexdigit  = digit + "ABCDEF" .  /* The set of all hexadecimal digits */
  eol       = CHR(10) .           /* Line feed character */
  noDigit   = ANY - digit .       /* Any character that is not a digit */
  ctrlChars = CHR(1) .. CHR(31) . /* The ASCII control characters */
  InString  = ANY - ’"’ - eol .   /* Strings may not cross line boundaries */

12.3.2 Comments and ignorable characters 

Usually spaces within the source text of a program are irrelevant, and in scanning for the start of a
token, a Coco/R generated scanner will simply ignore them. Other separators like tabs, line ends,
and form feeds may also be declared irrelevant, and some applications may prefer to ignore the
distinction between upper and lower case input. 

Comments are difficult to specify with the regular expressions used to denote tokens - indeed,
nested comments may not be specified at all in this way. Since comments are usually discarded by a
parsing process, and may typically appear in arbitrary places in source code, it makes sense to have
a special construct to express their structure. 

Ignorable aspects of the scanning process are defined in Cocol by 

   Comments  = "COMMENTS" "FROM" TokenExpr "TO" TokenExpr [ "NESTED" ] .
   Ignorable = "IGNORE" ( "CASE" | CharacterSet ) .

where the optional keyword NESTED should have an obvious meaning. A practical restriction is that
comment brackets must not be longer than 2 characters. It is possible to declare several kinds of
comments within a single grammar, for example, for C++: 

      COMMENTS FROM "/*" TO "*/"
      COMMENTS FROM "//" TO eol
      IGNORE CHR(9) .. CHR(13)



The set of ignorable characters in this example is that which includes the standard white space
separators in ASCII files. The null character CHR(0) should not be included in any ignorable set. It
is used internally by Coco/R to mark the end of the input file. 

12.3.3 Tokens 

A very important part of the scanner specification declares the form of terminal tokens: 

   Tokens       =  "TOKENS" { Token } .
   Token        =  TokenSymbol [ "=" TokenExpr "." ] .
   TokenExpr    =  TokenTerm { "|" TokenTerm } .
   TokenTerm    =  TokenFactor { TokenFactor } [ "CONTEXT" "(" TokenExpr ")" ] .
   TokenFactor  =  SetIdent | string
                     | "(" TokenExpr ")"
                     | "[" TokenExpr "]"
                     | "{" TokenExpr "}" .
   TokenSymbol  =  TokenIdent | string .
   TokenIdent   =  identifier .

Tokens may be declared in any order. A token declaration defines a TokenSymbol together with its
structure. Usually the symbol on the left-hand side of the declaration is an identifier, which is then
used in other parts of the grammar to denote the structure described on the right-hand side of the
declaration by a regular expression (expressed in EBNF). This expression may contain literals
denoting themselves (for example "END"), or the names of character sets (for example letter),
denoting an arbitrary character from such sets. The restriction to regular expressions means that it
may not contain the names of any other tokens. 

While token specification is usually straightforward, there are a number of subtleties that may need
emphasizing: 

Since spaces are deemed to be irrelevant when they come between tokens in the input for
most languages, one should not attempt to declare literal tokens that have spaces within them. 

Our case study has introduced but one explicit token class: 

          number = digit { digit } [ "." digit { digit } ] .

However it has also introduced tokens like "clear", "cancel" and "..". This last one is
particularly interesting. A scanner might have trouble distinguishing the tokens in input like 

          3 .. 5.4  +  5.4..16.4  + 50..80

because in some cases the periods form part of a real literal, in others they form part of an
ellipsis. This sort of situation arises quite frequently, and Cocol makes special provision for it.
An optional CONTEXT phrase in a TokenTerm specifies that this term only be recognized when
its right-hand context in the input stream is the TokenExpr specified in brackets. Our case
study example requires alteration: 

       TOKENS
         number =   digit { digit } [ "." digit { digit } ]
                  | digit { digit } CONTEXT ( ".." ) .

The grammar for tokens allows for empty right-hand sides. This may seem strange, especially
as no scanner is generated if the right-hand side of a declaration is missing. This facility is
used if the user wishes to supply a hand-crafted scanner, rather than the one generated by
Coco/R. In this case, the symbol on the left- hand side of a token declaration may also simply
be specified by a string, with no right-hand side. 



Tokens specified without right-hand sides are numbered consecutively starting from 0, and
the hand-crafted scanner has to return token codes according to this numbering scheme. 

12.3.4 Pragmas 

A pragma, like a comment, is a token that may occur anywhere in the input stream, but, unlike a
comment, it cannot be ignored. Pragmas are often used to allow programmers to select compiler
switches dynamically. Since it becomes impractical to modify the phrase structure grammar to
handle this, a special mechanism is provided for the recognition and treatment of pragmas. In Cocol
they are declared like tokens, but may have an associated semantic action that is executed whenever
they are recognized by the scanner. 

   Pragmas     =  "PRAGMAS" { Pragma } .
   Pragma      =  Token [ Action ] .
   Action      =  "(." arbitraryText ".)" .

As an example, we might add to our case study 

      PRAGMAS
        page = "page" .  (. printf("\f"); .)

to allow the word page to appear anywhere in the input data; each appearance would have the effect
of moving to a new page on the output. 

12.3.5 User names 

The scanner and parser produced by Coco/R use small integer values to distinguish tokens. This
makes their code harder to understand by a human reader (some would argue that humans should
never need to read such code anyway). When used with appropriate options, Coco/R can generate
code that uses names for the tokens. By default these names have a rather stereotyped form (for
example "..." would be named "pointpointpointSym"). The UserNames section may be used to
prefer user-defined names, or to help resolve name clashes (for example, between the default names
that would be chosen for "point" and "."). 

   UserNames  = "NAMES" { UserName } .
   UserName   = TokenIdent  "=" ( identifier | string ) "." .

As examples we might have 

      NAMES
        period   = "." .
        ellipsis = "..." .

12.3.6 The scanner interface 

The scanner generated by Coco/R declares various procedures and functions that may be called
from the parser whenever it needs to obtain a new token, or to analyse one that has already been
recognized. As it happens, a user rarely has to make direct use of this interface, as the generated
parser incorporates all the necessary calls to the scanner routines automatically, and also provides
facilities for retrieving lexemes. 

The form of the interface depends on the host system. For example, for the C++ version, the
interface is effectively that shown below, although there is actually an underlying class hierarchy,
so that the declarations are not exactly the same as those shown. The reader should take note that
there are various ways in which source text may be retrieved from the scanner (to understand these
in full it will be necessary to study the class hierarchy, but easier interfaces are provided for the



parser; see section 12.4.6). 

  class grammarScanner
  { public:
      grammarScanner(int SourceFile, int ignoreCase);
      // Constructs scanner for grammar and associates this with a
      // previously opened SourceFile.  Specifies whether to IGNORE CASE

      int Get();
      // Retrieves next token from source

      void GetString(Token *Sym, char *Buffer, int Max);
      // Retrieves at most Max characters from Sym into Buffer

      void GetName(Token *Sym, char *Buffer, int Max);
      // Retrieves at most Max characters from Sym into Buffer
      // Buffer is capitalized if IGNORE CASE was specified

      long GetLine(long Pos, char *Line, int Max);
      // Retrieves at most Max characters (or until next line break)
      // from position Pos in source file into Line

  };

12.4 Parser specification 

The parser specification is the main part of the input to Coco/R. It contains the productions of an
attributed grammar specifying the syntax of the language to be recognized, as well as the action to
be taken as each phrase or token is recognized. 

12.4.1 Productions 

The form of the parser specification may itself be described in EBNF as follows. For the Modula-2
and Pascal versions we have: 

   ParserSpecification =  "PRODUCTIONS" { Production } .
   Production          =  NonTerminal [ FormalAttributes ]
                            [ LocalDeclarations ]        (* Modula-2 and Pascal *)
                            "=" Expression "." .
   FormalAttributes    =  "<"  arbitraryText ">" | "<."  arbitraryText ".>" .
   LocalDeclarations   =  "(." arbitraryText ".)" .
   NonTerminal         =  identifier .

For the C and C++ versions the LocalDeclarations follow the "=" instead: 

   Production          =  NonTerminal [ FormalAttributes ]
                            "=" [ LocalDeclarations ]  /* C and C++ */
                            Expression "." .

Any identifier appearing in a production that was not previously declared as a terminal token is
considered to be the name of a NonTerminal, and there must be exactly one production for each
NonTerminal that is used in the specification (this may, of course, specify a list of alternative right
sides). 

A production may be considered as a specification for creating a routine that parses the
NonTerminal. This routine will constitute its own scope for parameters and other local components
like variables and constants. The left-hand side of a Production specifies the name of the
NonTerminal as well as its FormalAttributes (which effectively specify the formal parameters of
the routine). In the Modula-2 and Pascal versions the optional LocalDeclarations allow the
declaration of local components to precede the block of statements that follow. The C and C++

versions define their local components within this statement block, as required by the host
language. 



As in the case of tokens, some subtleties in the specification of productions should be emphasized: 

The productions may be given in any order. 

A production must be given for a GoalIdentifier that matches the name used for the grammar.

The formal attributes enclosed in angle brackets "<" and ">" (or "<." and ".>") simply consist
of parameter declarations in the host language. Similarly, where they are required and
permitted, local declarations take the form of host language declarations enclosed in "(." and
".)" brackets. However, the syntax of these components is not checked by Coco/R; this is left
to the responsibility of the compiler that will actually compile the generated application. 

All routines give rise to "regular procedures" (in Modula-2 terminology) or "void functions"
(in C++ terminology). Coco/R cannot construct true functions that can be called from within
other expressions; any return values must be transmitted using reference parameter
mechanisms. 

The goal symbol may not have any FormalAttributes. Any information that the parser is
required to pass back to the calling driver program must be handled in other ways. At times
this may prove slightly awkward. 

While a production constitutes a scope for its formal attributes and its locally declared
objects, terminals and non-terminals, globally declared objects, and imported modules are
visible in any production. 

It may happen that an identifier chosen as the name of a NonTerminal may clash with one of
the internal names used in the rest of the system. Such clashes will only become apparent
when the application is compiled and linked, and may require the user to redefine the
grammar to use other identifiers. 

The Expression on the right-hand-side of each Production defines the context-free structure of
some part of the source language, together with the attributes and semantic actions that specify how
the parser must react to the recognition of each component. The syntax of an Expression may itself
be described in EBNF (albeit not in LL(1) form) as 

   Expression   =  Term { "|" Term } .
   Term         =  Factor { Factor }  .
   Factor       =     [ "WEAK" ] TokenSymbol
                   |  NonTerminal [ Attributes ]
                   |  Action
                   |  "ANY"
                   |  "SYNC"
                   |  "(" Expression ")"
                   |  "[" Expression "]"
                   |  "{" Expression "}" .
   Attributes   =  "<"  arbitraryText ">" |  "<."  arbitraryText ".>" .
   Action       =  "(." arbitraryText ".)" .

The Attributes enclosed in angle brackets that may follow a NonTerminal effectively denote the
actual parameters that will be used in calling the corresponding routine. If a NonTerminal is defined
on the left-hand side of a Production to have FormalAttributes, then every occurrence of that
NonTerminal in a right-hand side Expression must have a list of actual attributes that correspond to
the FormalAttributes according to the parameter compatibility rules of the host language. However,
the conformance is only checked when the generated parser is itself compiled. 

An Action is an arbitrary sequence of host language statements enclosed in "(." and ".)". These



are simply incorporated into the generated parser in situ; once again, no syntax is checked at that
stage. 

These points may be made clearer by considering a development of part of our case study, which
hopefully needs little further explanation: 

  PRODUCTIONS
    Calc                                                        /* goal */
    =                 (. double total = 0.0, sub; .)            /* locals */
      "clear"
      { Subtotal<sub> (. total += sub; .)                       /* add to total */
      }
      "total"         (. printf("   total: %5.2f\n", total); .) /* display */
      .

    Subtotal<double &s>                                         /* ref param */
    =                 (. double r; .)                           /* local */
      Range<s>
      { "+" Range<r>  (. s += r; .)                             /* add to s */
      }
      (   "accept"    (. printf("subtotal: %5.2f\n", s); .)     /* display */
        | "cancel"    (. s = 0.0; .)                            /* nullify */
      ) .

Although the input to Coco/R is free-format, it is suggested that the regular EBNF appear on the
left, with the actions on the right, as in the example above. 

Many aspects of parser specification are straightforward, but there are some subtleties that call for
comment: 

Where it appears, the keyword ANY denotes any terminal that cannot follow ANY in that
context. It can conveniently be used to parse structures that contain arbitrary text. 

The WEAK and SYNC keywords are used in error recovery, as discussed in the next section. 

In earlier versions of Coco/R there was a potential pitfall in the specification of attributes.
Suppose the urge arises to attribute a NonTerminal as follows: 

        SomeNonTerminal< record->field >

where the parameter uses the right arrow selection operator "->". Since the ">" would
normally have been taken as a Cocol meta-bracket, this had to be recoded in terms of other
operators as 

        SomeNonTerminal< (*record).field >

The current versions of Coco/R allow for attributes to be demarcated by "<." and ".>"
brackets to allow for this situation, and for other operators that involve the > character. 

Close perusal of the grammar for Expression will reveal that it is legal to write a Production
in which an Action appears to be associated with an alternative for an Expression that
contains no terminals or non- terminals at all. This feature is often useful. For example we
might have 

        Option =   "push" (. stack[++top] = item; .)
                 | "pop"  (. item = stack[top--]; .)
                 |        (. for (int i = top; i > 0; i--) cout << stack[i]; .) .

Another useful feature that can be exploited is the ability of an Action to drive the parsing
process "semantically". For example, the specification of assignment statements and
procedure calls in a simple language might be defined as follows so as to conform to LL(1)



restrictions 

        AssignmentOrCall = Identifier [ ":=" Expression ] .

Clearly the semantics of the two statement forms are very different. To handle this we might
write the grammar on the lines of 

        AssignmentOrCall
        = Identifier<name>          (. Lookup(name);
                                       if (IsProcedure(name))
                                         { HandleCall(name); return; } .)
          ":=" Expression<value>    (. HandleAssignment(name, value); .) .

12.4.2 Syntax error recovery 

Compiler generators vary tremendously in the way in which they provide for recovery from
syntactic errors, a subject that was discussed in section 10.3. 

The technique described there, although systematically applicable, slows down error-free parsing,
inflates the parser code, and is relatively difficult to automate. Coco/R uses a simpler technique, as
suggested by Wirth (1986), since this has proved to be almost as effective, and is very easily
understood. Recovery takes place only at a rather small number of synchronization points in the
grammar. Errors at other points are reported, but cause no recovery - parsing simply continues up to
the next synchronization point. One consequence of this simplification is that many spurious errors
are then likely to be detected for as long as the parser and the input remain out of step. An effective
technique for handling this is to arrange that errors are simply not reported if they follow too
closely upon one another (that is, a minimum amount of text must be correctly parsed after one
error is detected before the next can be reported). 

In the simplest approach to using this technique, the designer of the grammar is required to specify
synchronization points explicitly. As it happens, this does not usually turn out to be a difficult task:
the usual heuristic is to choose locations in the grammar where especially safe terminals are
expected that are hardly ever missing or mistyped, or appear so often in source code that they are
bound to be encountered again at some stage. In most Pascal-like languages, for example, good
candidates for synchronization points are the beginning of a statement (where keywords like IF and
WHILE are expected), the beginning of a declaration sequence (where keywords like CONST and VAR
are expected), or the beginning of a type definition (where keywords like RECORD and ARRAY are
expected). 

In Cocol, a synchronization point is specified by the keyword SYNC, and the effect is to generate
code for a loop that is prepared simply to consume source tokens until one is found that would be
acceptable at that point. The sets of such terminals can be precomputed at parser generation time.
They are always extended to include the end-of-file symbol (denoted by the keyword EOF), thus
guaranteeing that if all else fails, synchronization will succeed at the end of the source text. 

For our case study we might choose the end of the routine for handling a subtotal as such a point: 

    Subtotal = Range { "+" Range } SYNC ( "accept" | "cancel" ) .

This would have the effect of generating code on the following lines: 

   PROCEDURE Subtotal;
     BEGIN
       Range;
       WHILE Sym = plus DO GetSym; Range END;

       WHILE Sym  { accept, cancel, EOF } DO GetSym END;

       IF Sym  { accept, cancel } THEN GetSym END;



     END

The union of all the synchronization sets (which we shall denote by AllSyncs) is also computed by
Coco/R, and is used in further refinements on this idea. A terminal can be designated to be weak in
a certain context by preceding its appearance in the phrase structure grammar with the keyword
WEAK. A weak terminal is one that might often be mistyped or omitted, such as the semicolon
between statements. When the parser expects (but does not find) such a terminal, it adopts the
strategy of consuming source tokens until it recognizes either a legal successor of the weak
terminal, or one of the members of AllSyncs - since terminals expected at synchronization points are
considered to be very "strong", it makes sense that they never be skipped in any error recovery
process. 

As an example of how this could be used, consider altering our case study grammar to read: 

   Calc     = WEAK "clear" Subtotal { Subtotal } WEAK "total" .
   Subtotal = Range { "+" Range } SYNC ( "accept" | "cancel" ) .
   Range    = Amount [ ".." Amount ] .
   Amount   = number .

This would give rise to code on the lines of 

   PROCEDURE Calc;
     BEGIN
       ExpectWeak(clear, FIRST(Subtotal)); (* ie { number } *)
       Subtotal; WHILE Sym = number DO Subtotal END;
       ExpectWeak(total, { EOF })
     END

The ExpectWeak routine would be internal to the parser, implemented on the lines of: 

   PROCEDURE ExpectWeak (Expected : TERMINAL; WeakFollowers : SYMSET);
     BEGIN
       IF Sym = Expected
         THEN GetSym
         ELSE
           ReportError(Expected);

           WHILE sym  (WeakFollowers + AllSyncs) DO GetSym END
       END
     END

Weak terminals give the parser another chance to synchronize in case of an error. The
WeakFollower sets can be precomputed at parser generation time, and the technique causes no
run-time overhead if the input is error-free. 

Frequently iterations start with a weak terminal, in situations described by EBNF of the form 

     Sequence =  FirstPart { "WEAK" ExpectedTerminal  IteratedPart } LastPart .

Such terminals will be called weak separators and can be handled in a special way: if the
ExpectedTerminal cannot be recognized, source tokens are consumed until a terminal is found that
is contained in one of the following three sets: 

FOLLOW(ExpectedTerminal) (that is, FIRST(IteratedPart))
FIRST(LastPart)
AllSyncs

As an example of this, suppose we were to modify our case study grammar to read 

     Subtotal = Range { WEAK "+" Range } ( "accept" | "cancel" ) .

The generated code would then be on the lines of 



   PROCEDURE Subtotal;
     BEGIN
       Range;
       WHILE WeakSeparator(plus, { number }, { accept, cancel } ) DO
         Range
       END;

       IF Sym  {accept, cancel } THEN GetSym END;
     END

The WeakSeparator routine would be implemented internally to the parser on the lines of 

   BOOLEAN FUNCTION WeakSeparator (Expected : TERMINAL;
                                   WeakFollowers, IterationFollowers : SYMSET);
     BEGIN
       IF Sym = Expected THEN GetSym; RETURN TRUE

         ELSIF Sym  IterationFollowers THEN RETURN FALSE
         ELSE
           ReportError(Expected);

           WHILE Sym  (WeakFollowers + IterationFollowers + AllSyncs) DO
             GetSym
           END;

           RETURN Sym  WeakFollowers
       END
     END

Once again, all the necessary sets can be precomputed at generation time. Occasionally, in highly
embedded grammars, the inclusion of AllSyncs (which tends to be "large") may detract from the
efficacy of the technique, but with careful choice of the placing of WEAK and SYNC keywords it can
work remarkably well. 

12.4.3 Grammar checks 

Coco/R performs several tests to check that the grammar submitted to it is well-formed. In
particular it checks that 

each non-terminal has been associated with exactly one production; 
there are no useless productions (in the sense discussed in section 8.3.1); 
the grammar is cycle free (in the sense discussed in section 8.3.3); 
all tokens can be distinguished from one another (that is, no two terminals have been declared
to have the same structure). 

If any of these tests fail, no code generation takes place. In other respects the system is more
lenient. Coco/R issues warnings if analysis of the grammar reveals that 

a non-terminal is nullable (this occurs frequently in correct grammars, but may sometimes be
indicative of an error); 
the LL(1) conditions are violated, either because at least two alternatives for a production
have FIRST sets with elements in common, or because the FIRST and FOLLOWER sets for a
nullable string have elements in common. 

If Coco/R reports an LL(1) error for a construct that involves alternatives or iterations, the user
should be aware that the generated parser is highly likely to misbehave. As simple examples,
productions like the following 

      P = "a" A | "a" B .
      Q = [ "c" B ] "c"  .
      R = { "d" C } "d" .

result in generation of code that can be described algorithmically as 

      IF Sym = "a" THEN Accept("a"); A ELSIF Sym = "a" THEN Accept("a"); B END;



      IF Sym = "c" THEN Accept("c"); B END; Accept("c");
      WHILE Sym = "d" DO Accept("d"); C END; Accept("d");

Of these, only the second can possibly ever have any meaning (as it does in the case of the
"dangling else"). If these situations arise it may often be necessary to redesign the grammar. 

12.4.4 Semantic errors 

The parsers generated by Coco/R handle the reporting of syntax errors automatically. The default
driver programs can summarize these errors at the end of compilation, along with source code line
and column references, or produce source code listings with the errors clearly marked with
explanatory messages (an example of such a listing appears in section 12.4.7). Pure syntax analysis
cannot reveal static semantic errors, but Coco/R supports a mechanism whereby the grammar
designer can arrange for such errors to be reported in the same style as is used for syntactic errors.
The parser class has routines that can be called from within the semantic actions, with an error
number parameter that can be associated with a matching user-defined message. 

In the grammar of our case study, for example, it might make sense to introduce a semantic check
into the actions for the non-terminal Range. The grammar allows for a range of values to be
summed; clearly this will be awkward if the "upper" limit is supplied as a lower value than the
"lower" limit. The code below shows how this could be detected, resulting in the reporting of the
semantic error 200. 

    Range<double &r>
    =                        (. double low, high; .)
      Amount<low>            (. r = low; .)
      [ ".." Amount<high>    (. if (low > high) SemError(200);
                                else while (low < high) { low++; r += low; } .)
      ] .

(Alternatively, we could also arrange for the system to run the loop in the appropriate direction, and
not regard this as an error at all.) Numbers chosen for semantic error reporting must start at some
fairly large number to avoid conflict with the low numbers chosen internally by Coco/R to report
syntax errors. 

12.4.5 Interfacing to support modules 

It will not have escaped the reader’s attention that the code specified in the actions of the attributed
grammar will frequently need to make use of routines that are not defined by the grammar itself.
Two typical situations are exemplified in our case study. 

Firstly, it has seen fit to make use of the printf routine from the stdio library found in all
standard C and C++ implementations. To make use of such routines - or ones defined in other
support libraries that the application may need - it is necessary simply to incorporate the appropriate
#define, IMPORT or USES clauses into the grammar before the scanner specification, as discussed
in section 12.2. 

Secondly, the need arises in routines like Amount to be able to convert a string, recognized by the
scanner as a number, into a numerical value that can be passed back via a formal parameter to the
calling routine (Range). This situation arises so frequently that the parser interface defines several
routines to simplify the extraction of this string. The production for Amount, when fully attributed,
might take the form 

    Amount<double &a>
    = number                 (. char str[100];
                                LexString(str, 100);



                                a = atof(str); .) .

The LexString routine (defined in the parser interface) retrieves the string into the local string str,
whence it is converted to the double value a by a call to the atof function that is defined in the
stdlib library. If the functionality of routines like LexString and LexName is inadequate, the user
can incorporate calls to the even lower level routines defined in the scanner interface, such as were
mentioned in section 12.3.6. 

12.4.6 The parser interface 

The parser generated by Coco/R defines various routines that may be called from an application. As
for the scanner, the form of the interface depends on the host system. For the C++ version, it
effectively takes the form below. (As before, there is actually an underlying class hierarchy, and the
declarations are really slightly different from those presented here). 

The functionality provides for the parser to 

initiate the parse for the goal symbol by calling Parse(). 
investigate whether the parse succeeded by calling Successful(). 
report on the presence of syntactic and semantic errors by calling SynError and SemError. 
obtain the lexeme value of a particular token in one of four ways (LexString, LexName,
LookAheadString and LookAheadName). Calls to LexString are most common; the others
are used for special variations. 

  class grammarParser
  { public:
      grammarParser(AbsScanner *S, CRError *E);
      // Constructs parser associated with scanner S and error reporter E

      void Parse();
      // Parses the source

      int Successful();
      // Returns 1 if no errors have been recorded while parsing

    private:
      void LexString(char *lex, int size);
      // Retrieves at most size characters from the most recently parsed
      // token into lex

      void LexName(char *lex, int size);
      // Retrieves at most size characters from the most recently parsed
      // token into lex, converted to upper case if IGNORE CASE was specified

      void LookAheadString(char *lex, int size);
      // Retrieves at most size characters from the lookahead token into lex

      void LookAheadName(char *lex, int size);
      // Retrieves at most size characters from the lookahead token into lex,
      // converted to upper case if IGNORE CASE was specified

      void SynError(int errorcode);
      // Reports syntax error denoted by errorcode

      void SemError(int errorcode);
      // Reports semantic error denoted by errorcode

      // ... Prototypes of functions for parsing each non-terminal in grammar
  };

12.4.7 A complete example 

To place all of the ideas of the last sections in context, we present a complete version of the
attributed grammar for our case study: 

  $CX     /* pragmas - generate compiler, and use C++ classes */



  COMPILER Calc

    #include <stdio.h>
    #include <stdlib.h>

    CHARACTERS
      digit =  "0123456789" .

    IGNORE CHR(9) .. CHR(13)

    TOKENS
      number =   digit { digit } [ "." digit { digit } ]
               | digit { digit } CONTEXT ( ".." ) .

    PRAGMAS
      page   = "page" .        (. printf("\f"); .)

    PRODUCTIONS
      Calc
      =                        (. double total = 0.0, sub; .)
        WEAK "clear"
        { Subtotal<sub>        (. total += sub; .)
        } SYNC "total"         (. printf("   total: %5.2f\n", total); .)
        .

      Subtotal<double &s>
      =                        (. double r; .)
        Range<s>
        { WEAK "+" Range<r>    (. s += r; .)
        } SYNC
        (   "accept"           (. printf("subtotal: %5.2f\n", s); .)
          | "cancel"           (. s = 0.0; .)
        ) .

      Range<double &r>
      =                        (. double low, high; .)
        Amount<low>            (. r = low; .)
        [ ".." Amount<high>    (. if (low > high) SemError(200);
                                  else while (low < high)
                                  { low++; r += low; } .)
        ] .

      Amount<double &a>
      = number                 (. char str[100];
                                  LexString(str, 100);
                                  a = atof(str); .) .

  END Calc.

To show how errors are reported, we show the output from applying the generated system to input
that is fairly obviously incorrect. 

        1  clr
    ***** ^  clear  expected (E2)
        2  1 + 2 + 3 .. 4 + 4..5 accep
    *****                        ^  +  expected (E4)
        3  3.4 5 cancel
    *****      ^  +  expected (E4)
        4  3 + 4 .. 2 + 6 accept
    *****           ^ High < Low (E200)
        5  TOTAL
    *****  ^ unexpected symbol in Calc (E10)

12.5 The driver program 

The most important tasks that Coco/R has to perform are the construction of the scanner and parser.
However, these always have to be incorporated into a complete program before they become useful.

12.5.1 Essentials of the driver program 

Any main routine for a driver program must be a refinement of ideas that can be summarized: 



  BEGIN
    Open(SourceFile);
    IF Okay THEN
      InstantiateScanner;
      InstantiateErrorHandler;
      InstantiateParser;
      Parse();
      IF Successful() THEN ApplicationSpecificAction END
    END
  END

Much of this can be automated, of course, and Coco/R can generate such a program, consistent with
its other components. To do so requires the use of an appropriate frame file. A generic version of
this is supplied with the distribution. Although it may be suitable for constructing simple
prototypes, it acts best as a model from which an application-specific frame file can easily be
derived. 

12.5.2 Customizing the driver frame file 

A customized driver frame file generally requires at least three simple additions: 

It is often necessary to declare global or external variables, and to add application specific
#include, USES or IMPORT directives so that the necessary library support will be provided. 

The section dealing with error messages may need extension if the grammar has made use of
the facility for adding errors to those derived by the parser generator, as discussed in section
12.4.4. For example, the default C++ driver frame file has code that reads 

         char *MyError::GetUserErrorMsg(int n)
         { switch (n) {
             // Put your customized messages here
             default:  return "Unknown error";
           }
         }

To tailor this to the case study application we should need to add an option to the switch

statement: 

         char *MyError::GetUserErrorMsg(int n)
         { switch (n) {
             case 200: return "High < Low";
             default:  return "Unknown error";
           }
         }

Finally, at the end of the default frame file can be found code like 

          // instantiate Scanner, Parser and Error handler
          Scanner = new -->ScanClass(S_src, -->IgnoreCase);
          Error   = new MyError(SourceName, Scanner);
          Parser  = new -->ParserClass(Scanner, Error);

          // parse the source
          Parser->Parse();
          close(S_src);

          // Add to the following code to suit the application
          if (Error->Errors) fprintf(stderr, "Compilation errors\n");
          if (Listinfo) SourceListing(Error, Scanner);
          else if (Error->Errors) Error->SummarizeErrors();

          delete Scanner;
          delete Parser;
          delete Error;
        }

the intention of which should be almost self explanatory. For example, in the case of a



compiler/interpreter such as we shall discuss in a later chapter, we might want to modify this
to read 

         // generate source listing
         FILE *lst = fopen("listing");
         Error->SetOutput(lst);
         Error->PrintListing(Scanner);
         fclose(lst);

         if (Error->Errors)
           fprintf(stderr, "Compilation failed - see %s\n", ListName);
         else {
           fprintf(stderr, "Compilation successful\n");
           CGen->getsize(codelength, initsp);
           Machine->interpret(codelength, initsp);
         }

Exercises 

12.1 Study the code produced by Coco/R from the grammar used in this case study. How closely
does it correspond to what you might have written by hand? 

12.2 Experiment with the grammar suggested in the case study. What happens if the CONTEXT

clause is omitted in the scanner specification? What happens if the placement of the WEAK and SYNC
keywords is changed? 

12.3 Extend the system in various ways. For example, direct output to a file other than stdout, use
the iostreams library rather than the stdio library, develop the actions so that they conform to
"traditional" C (rather than using reference parameters), or arrange that ranges can be correctly
interpreted in either order. 

Further reading 

The text by Rechenberg and Mössenböck (1989) describes the original Coco system in great detail.
This system did not have an integrated scanner generator, but made use of one known as Alex
(Mössenböck, 1986). Dobler and Pirklbauer (1990) and Dobler (1991) discuss Coco-2, a variant of
Coco that incorporated automatic and sophisticated error recovery into table-driven LL(1) parsers.
Literature on the inner workings of Coco/R is harder to come by, but the reader is referred to the
papers by Mössenböck (1990a, 1990b). 


