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9 DETERMINISTIC TOP-DOWN PARSING 

In this chapter we build on the ideas developed in the last one, and discuss the relationship between
the formal definition of the syntax of a programming language, and the methods that can be used to
parse programs written in that language. As with so much else in this text, our treatment is
introductory, but detailed enough to make the reader aware of certain crucial issues. 

9.1 Deterministic top-down parsing

The task of the front end of a translator is, of course, not the generation of sentences in a source
language, but the recognition of them. This implies that the generating steps which led to the
construction of a sentence must be deduced from the finished sentence. How difficult this is to do
depends on the complexity of the production rules of the grammar. For Pascal-like languages it is,
in fact, not too bad, but in the case of languages like Fortran and C++ it becomes quite complicated,
for reasons that may not at first be apparent. 

Many different methods for parsing sentences have been developed. We shall concentrate on a
rather simple, and yet quite effective one, known as top-down parsing by recursive descent,
which can be applied to Pascal, Modula-2, and many similar languages, including the simple one of
section 8.7. 

The reason for the phrase "by recursive descent" will become apparent later. For the moment we
note that top- down methods effectively start from the goal symbol and try to regenerate the
sentence by applying a sequence of appropriate productions. In doing this they are guided by
looking at the next terminal in the string that they have been given to parse. 

To illustrate top-down parsing, consider the toy grammar 

              G = { N , T , S , P }
              N  = { A , B }
              T = { x , y , z }
              S = A 
              P =
                  A    xB           (1)
                  B    z            (2)
                  B    yB           (3)

Let us try to parse the sentence xyyz, which clearly is formed from the terminals of this grammar.
We start with the goal symbol and the input string 

            Sentential form  S = A             Input string      xyyz

To the sentential form A we apply the only possible production (1) to get 

            Sentential form     xB             Input string     xyyz

So far we are obviously doing well. The leading terminals in both the sentential form and the input
string match, and we can effectively discard them from both; what then remains implies that from
the non-terminal B we must be able to derive yyz. 

            Sentential form     B              Input string     yyz



We could choose either of productions (2) or (3) in handling the non-terminal B; simply looking at
the input string indicates that (3) is the obvious choice. If we apply this production we get 

            Sentential form     yB             Input string     yyz

which implies that from the non-terminal B we must be able to derive yz. 

            Sentential form     B              Input string     yz

Again we are led to use production (3) and we get 

            Sentential form     yB             Input string     yz

which implies that from the non-terminal B we must be able to derive the terminal z directly - which
of course we can do by applying (2). 

The reader can easily verify that a sentence composed only of the terminal x (such as xxxx) could
not be derived from the goal symbol, nor could one with y as the rightmost symbol, such as xyyyy. 

The method we are using is a special case of so-called LL(k) parsing. The terminology comes from
the notion that we are scanning the input string from Left to right (the first L), applying productions
to the Leftmost non- terminal in the sentential form we are manipulating (the second L), and
looking only as far ahead as the next k terminals in the input string to help decide which production
to apply at any stage. In our example, fairly obviously, k = 1; LL(1) parsing is the most common
form of LL(k) parsing in practice. 

Parsing in this way is not always as easy, as is evident from the following example 

              G = { N , T , S , P }
              N  = { A , B , C }
              T = { x , y , z }
              S = A 
              P =
                  A    xB            (1)
                  A    xC            (2)
                  B    xB            (3)
                  B    y             (4)
                  C    xC            (5)
                  C    z             (6)

If we try to parse the sentence xxxz we might proceed as follows 

            Sentential form     S  =  A       Input string     xxxz

In manipulating the sentential form A we must make a choice between productions (1) and (2). We
do not get any real help from looking at the first terminal in the input string, so let us try production
(1). This leads to 

            Sentential form     xB            Input string     xxxz

which implies that we must be able to derive xxz from B. We now have a much clearer choice; of
the productions for B it is (3) which will yield an initial x, so we apply it and get to 

            Sentential form     xB            Input string     xxz

which implies that we must be able to derive xz from B. If we apply (1) again we get 

            Sentential form     xB            Input string     xz

which implies that we must be able to derive z directly from B, which we cannot do. If we reflect on
this we see that either we cannot derive the string, or we made a wrong decision somewhere along



the line. In this case, fairly obviously, we went wrong right at the beginning. Had we used
production (2) and not (1) we should have matched the string quite easily. 

When faced with this sort of dilemma, a parser might adopt the strategy of simply proceeding
according to one of the possible options, being prepared to retreat along the chosen path if no
further progress is possible. Any backtracking action is clearly inefficient, and even with a
grammar as simple as this there is almost no limit to the amount of backtracking one might have to
be prepared to do. One approach to language design suggests that syntactic structures which can
only be described by productions that run the risk of requiring backtracking algorithms should be
identified, and avoided. 

This may not be possible after the event of defining a language, of course - Fortran is full of
examples where it seems backtracking might be needed. A classic example is found in the pair of
statements 

                DO 10 I = 1 , 2

and 

                DO 10 I = 1 . 2

These are distinguishable as examples of two totally different statement types (DO statement and
REAL assignment) only by the period/comma. This kind of problem is avoided in modern languages
by the introduction of reserved keywords, and by an insistence that white space appear between
some tokens (neither of which are features of Fortran, but neither of which cause difficulties for
programmers who have never known otherwise). 

The consequences of backtracking for full-blooded translators are far more severe than our simple
example might suggest. Typically these do not simply read single characters (even "unreading"
characters is awkward enough for a computer), but also construct explicit or implicit trees, generate
code, create symbol tables and so on - all of which may have to be undone, perhaps just to be
redone in a very slightly different way. In addition, backtracking makes the detection of malformed
sentences more complicated. All in all, it is best avoided. 

In other words, we should like to be able to confine ourselves to the use of deterministic parsing
methods, that is, ones where at each stage we can be sure of which production to apply next - or,
where, if we cannot find a production to use, we can be sure that the input string is malformed. 

It might occur to the reader that some of these problems - including some real ones too, like the
Fortran example just given - could be resolved by looking ahead more than one symbol in the input
string. Perhaps in our toy problem we should have been prepared to scan four symbols ahead? A
little more reflection shows that even this is quite futile. The language which this grammar
generates can be described by: 

L(G) = { xn p | n > 0, p  {y , z} }

or, if the reader prefers less formality: 

"at least one, but otherwise as many x’s in a row as you like, followed by a single y or z"

We note that being prepared to look more than one terminal ahead is a strategy which can work
well in some situations (Parr and Quong, 1996), although, like backtracking, it will clearly be more
difficult to implement. 



9.2 Restrictions on grammars so as to allow LL(1) parsing

The top-down approach to parsing looks so promising that we should consider what restrictions
have to be placed on a grammar so as to allow us to use the LL(1) approach (and its close cousin,
the method of recursive descent). Once these have been established we shall pause to consider the
effects they might have on the design or specification of "real" languages. 

A little reflection on the examples above will show that the problems arise when we have
alternative productions for the next (left-most) non-terminal in a sentential form, and should lead to
the insight that the initial symbols that can be derived from the alternative right sides of the
production for a given non-terminal must be distinct. 

9.2.1 Terminal start sets, the FIRST function and LL(1) conditions for -free grammars 

To enhance the discussion, we introduce the concept of the terminal start symbols of a
non-terminal: the set FIRST(A) of the non-terminal A is defined to be the set of all terminals with
which a string derived from A can start, that is 

a  FIRST(A)        if A + a      9 (A  N ; a  T ;   (N  T )* )

-productions, as we shall see, are a source of complication; for the moment we note that for a
unique production of the form A    , FIRST(A) = Ø. 

In fact we need to go further, and so we introduce the related concept of the terminal start symbols
of a general string  in a similar way, as the set of all terminals with which  or a string derived from

 can start, that is 

a  FIRST( )        if  * a       (a  T ;  ,   (N  T )* )

again with the ad hoc rule that FIRST() = Ø. Note that  is not a member of the terminal
vocabulary T, and that it is important to distinguish between FIRST() and FIRST(A). The string 

might consist of a single non- terminal A, but in general it might be a concatenation of several
symbols. 

With the aid of these we may express a rule that easily allows us to determine when an -free
grammar is LL(1): 

Rule 1 

When the productions for any non-terminal A admit alternatives 

A  1 | 2 | . . . n

but where k >  for any k, the sets of initial terminal symbols of all strings that can be

generated from each of the ’s must be disjoint, that is 



generated from each of the k’s must be disjoint, that is 

FIRST( j)  FIRST( k) = Ø     for all j  k

If all the alternatives for a non-terminal A were simply of the form 

k = ak k       (ak  T ; k , k  (N  T )* )

it would be easy to check the grammar very quickly. All productions would have right-hand sides
starting with a terminal, and obviously FIRST(ak k) = { ak }. 

It is a little restrictive to expect that we can write or rewrite all productions with alternatives in this
form. More likely we shall find several alternatives of the form 

k = Bk k 

where Bk is another non-terminal. In this case to find FIRST(Bk k) we shall have to consider the

production rules for Bk, and look at the first terminals which can arise from those (and so it goes on,

because there may be alternatives all down the line). All of these must be added to the set

FIRST( k). Yet another complication arises if Bk is nullable, that is, if Bk 
* , because in that case

we have to add FIRST(k) into the set FIRST(k) as well. 

The whole process of finding the required sets may be summarized as follows: 

If the first symbol of the right-hand string k is a terminal, then FIRST(k) is of the form

FIRST(ak k), and then FIRST(ak k) = { ak }. 

If the first symbol of the right-hand string k is a non-terminal, then FIRST(k) is of the form

FIRST(Bk k). If Bk is a non-terminal with the derivation rule 

Bk  k1 | k2 | . . . . | kn 

then 

FIRST( k) = FIRST(Bk k) = FIRST( k1)  FIRST( k2) . . .  FIRST( kn)

with the addition that if any kj is capable of generating the null string, then the set FIRST(k)

has to be included in the set FIRST(k) as well. 

We can demonstrate this with another toy grammar, rather similar to the one of the last section.
Suppose we have 

              G = { N , T , S , P }
              N  = { A , B , C }
              T = { x , y , z }



              S = A
              P =
                  A    B             (1)
                  A    C             (2)
                  B    xB            (3)
                  B    y             (4)
                  C    xC            (5)
                  C    z             (6)

This generates exciting sentences with any number of x’s, followed by a single y or z. On looking at
the alternatives for the non-terminal A we see that 

FIRST(A1) = FIRST(B) = FIRST(xB)  FIRST(y) = { x , y }

FIRST(A2) = FIRST(C) = FIRST(xC)  FIRST(z) = { x , z }

so that Rule 1 is violated, as both FIRST(B) and FIRST(C) have x as a member. 

9.2.2 Terminal successors, the FOLLOW function, and LL(1) conditions for non -free
grammars 

We have already commented that -productions might cause difficulties in parsing. Indeed, Rule 1
is not strong enough to detect another source of trouble, which may arise if such productions are
used. Consider the grammar 

              G = { N , T , S , P }
              N  = { A , B }
              T = { x , y }
              S = A
              P =
                  A    Bx     (1)
                  B    xy     (2)
                  B          (3)

In terms of the discussion above, Rule 1 is satisfied. Of the alternatives for the non-terminal B, we
see that 

FIRST(B1) = FIRST(xy) = x

FIRST(B2) = FIRST() = Ø

which are disjoint. However, if we try to parse the string x we may come unstuck 

            Sentential form   S = A           Input string   x
            Sentential form   Bx              Input string   x

As we are working from left to right and have a non-terminal on the left we substitute for B, to get,
perhaps 

            Sentential form   xyx              Input string   x

which is clearly wrong. We should have used (3), not (2), but we had no way of telling this on the
basis of looking at only the next terminal in the input. 

This situation is called the null string problem, and it arises only for productions which can
generate the null string. One might try to rewrite the grammar so as to avoid -productions, but in
fact that is not always necessary, and, as we have commented, it is sometimes highly inconvenient.
With a little insight we should be able to see that if a non-terminal is nullable, we need to examine
the terminals that might legitimately follow it, before deciding that the -production is to be applied.
With this in mind it is convenient to define the terminal successors of a non-terminal A as the set
of all terminals that can follow A in any sentential form, that is 



a  FOLLOW(A)       if S * Aa       (A, S  N ; a  T ;  ,   (N  T )* )

To handle this situation, we impose the further restriction 

Rule 2 

When the productions for a non-terminal A admit alternatives 

A  1 | 2 | . . . n 

and in particular where k   for some k, the sets of initial terminal symbols of all

sentences that can be generated from each of the j for j  k must be disjoint from the

set FOLLOW(A) of symbols that may follow any sequence generated from A, that is 

FIRST( j)  FOLLOW(A) = Ø,      j  k

or, rather more loosely, 

FIRST(A)  FOLLOW(A) = Ø

where, as might be expected 

FIRST(A) = FIRST(1)  FIRST( 2)  . . . FIRST(n )

In practical terms, the set FOLLOW(A) is computed by considering every production Pk of the

form 

Pk  k A k

and forming the sets FIRST(k), when 

FOLLOW(A) = FIRST(1)  FIRST( 2)  . . .  FIRST( n)

with the addition that if any k is also capable of generating the null string, then the set

FOLLOW(Pk) has to be included in the set FOLLOW(A) as well. 

In the example given earlier, Rule 2 is clearly violated, because 

FIRST(B1) = FIRST(xy) = { x } = FOLLOW(B)

9.2.3 Further observations 

It is important to note two points that may have slipped the reader’s attention: 

In the case where the grammar allows -productions as alternatives, Rule 2 applies in addition



to Rule 1. Although we stated Rule 1 as applicable to -free grammars, it is in fact a necessary
(but not sufficient) condition that any grammar must meet in order to satisfy the LL(1)
conditions. 

FIRST is a function that may be applied to a string (in general) and to a non-terminal (in
particular), while FOLLOW is a function that is applied to a non-terminal (only). 

It may be worth studying a further example so as to explore these rules further. Consider the
language defined by the grammar 

              G = { N , T , S , P }
              N  = { A , B , C , D }
              T = { w , x , y , z }
              S = A
              P =
                  A    BD  |  CB           (1, 2)
                  B    x B z  |  y  |     (3, 4, 5)
                  C     w   |  z            (6, 7)
                  D     x  |  z            (8, 9)

All four non-terminals admit to alternatives, and B is capable of generating the empty string . Rule
1 is clearly satisfied for the alternative productions for B, C and D, since these alternatives all
produce sentential forms that start with distinctive terminals. 

To check Rule 1 for the alternatives for A requires a little more work. We need to examine the
intersection of FIRST(BD) and FIRST(CB). 

FIRST(CB) is simply FIRST(C) = { w }  { z } = { w , z }. 

FIRST(BD) is not simply FIRST(B), since B is nullable. Applying our rules to this situation leads to
the result that FIRST(BD) = FIRST(B)  FIRST(D) = ( { x }  { y } )  ( { x }  { z } ) =
{ x , y , z }. 

Since FIRST(CB)  FIRST(BD) = { z }, Rule 1 is broken and the grammar is non-LL(1). Just for
completeness, let us check Rule 2 for the productions for B. We have already noted that
FIRST(B) = { x , y }. To compute FOLLOW(B) we need to consider all productions where B
appears on the right side. These are productions (1), (2) and (3). This leads to the result that 

     FOLLOW( B)    =  FIRST( D)                          (from the rule  A  BD)
                         FOLLOW( A)                    (from the rule  A  CB)
                         FIRST( z)                     (from the rule  B  xBz)
                  =  { x , z }  Ø  { z } = { x , z }

Since FIRST(B)  FOLLOW(B) = { x , y }    { x , z } = { x }, Rule 2 is broken as well. 

The rules derived in this section have been expressed in terms of regular BNF notation, and we
have so far avoided discussing whether they might need modification in cases where the
productions are expressed in terms of the option and repetition (closure) metasymbols ( [ ] and { }
respectively). While it is possible to extend the discussion further, it is not really necessary, in a
theoretical sense, to do so. Grammars that are expressed in terms of these symbols are easily
rewritten into standard BNF by the introduction of extra non-terminals. For example, the set of
productions 

A   [  ] 

B   {  } 



is readily seen to be equivalent to 

A   C 
B   D 
C   | 

D   D | 

to which the rules as given earlier are easily applied (note that the production for D is right
recursive). In effect, of course, these rules amount to saying for this example that 

FIRST( )  FIRST( ) = Ø

FIRST( )  FIRST() = Ø

with the proviso that if  or  are nullable, then we must add conditions like 

FIRST( )  FOLLOW(A) = Ø

FIRST( )  FOLLOW(B) = Ø

There are a few other points that are worth making before closing this discussion. 

The reader can probably foresee that in a really large grammar one might have to make many
iterations over the productions in forming all the FIRST and FOLLOW sets and in checking the
applications of all these rules. Fortunately software tools are available to help in this regard - any
reasonable LL(1) compiler generator like Coco/R must incorporate such facilities. 

A difficulty might come about in automatically applying the rules to a grammar with which it is
possible to derive the empty string. A trivial example of this is provided by 

              G = { N , T , S , P }
              N  = { A }
              T = { x , y }
              S = A
              P =
                  A    xy     (1)
                  A          (2)

Here the nullable non-terminal A admits to alternatives. In trying to determine FOLLOW(A) we
should reach the uncomfortable conclusion that this was not really defined, as there are no
productions in which A appears on the right side. Situations like this are usually handled by
constructing a so-called augmented grammar, by adding a new terminal symbol (denoted, say, by
#), a new goal symbol, and a new single production. For the above example we would create an
augmented grammar on the lines of 

              G = { N , T , S , P }
              N  = { A, B }
              T = { x , y, # }
              S = B
              P =
                  B    A #    (1)
                  A    xy     (2)
                  A          (3)

The new terminal # amounts to an explicit end-of-file or end-of-string symbol; we note that realistic
parsers and scanners must always be able to detect and react to an end-of-file in a sensible way, so
that augmenting a grammar in this way really carries no practical overheads. 



9.2.4 Alternative formulations of the LL(1) conditions 

The two rules for determining whether a grammar is LL(1) are sometimes found stated in other
ways (which are, of course, equivalent). Some authors combine them as follows: 

Combined LL(1) Rule 

A grammar is LL(1) if for every non-terminal A that admits alternatives 

A  1 | 2 | . . . n 

the following holds 

FIRST( j ° FOLLOW(A))  FIRST( k ° FOLLOW(A)) = Ø,     j  k

where ° denotes "composition" in the mathematical sense. Here the cases j >  and j   are

combined - for j >*  we have that FIRST(j ° FOLLOW(A)) = FIRST( j), while for j 
*  we

have similarly that FIRST(j ° FOLLOW(A)) = FOLLOW(A) . 

Other authors conduct this discussion in terms of the concept of director sets. For every
non-terminal A that admits to alternative productions of the form 

A  1 | 2 | . . . | n

we define DS(A, k) for each alternative to be the set which helps choose whether to use the

alternative; when the input string contains the terminal a we choose k such that a  DS(A, k). The

LL(1) condition is then 

DS(A, j)  DS(A, k) = Ø,     j  k

The director sets are found from the relation 

a  DS(A, k) if either a  FIRST( k)       (if k >*  )

or     a  FOLLOW(A)       (if k 
*  )

Exercises 

9.1 Test the following grammar for being LL(1) 

              G = { N , T , S , P }
              N  = { A , B  }
              T = { w , x , y , z }
              S = A
              P =
                  A    B ( x | z ) | ( w  | z ) B
                  B    x B z  | { y }

9.2 Show that the grammar describing EBNF itself (section 5.9.1) is LL(1). 



9.3 The grammar for EBNF as presented in section 5.9.1 does not allow an implicit  to appear in a
production, although the discussion in that section implied that this was often found in practice.
What change could you make to the grammar to allow an implicit ? Is your resulting grammar still
LL(1)? If not, can you find a formulation that is LL(1)? 

9.4 In section 8.7.2, constant declarations in Clang were described by the productions 

         ConstDeclarations = " CONST" OneConst { OneConst } .
         OneConst          = identifier  " ="  number  ";" .

Is this part of the grammar LL(1)? What would be the effect if one were to factorize the grammar 

         ConstDeclarations = " CONST" OneConst { " ; " OneConst } " ; " .
         OneConst          = identifier  " ="  number  .

9.5 As a more interesting example of applying an analysis to a grammar expressed in EBNF, let us
consider how we might describe the theatrical production of a Shakespearian play with five acts. In
each act there may be several scenes, and in each scene appear one or more actors, who gesticulate
and make speeches to one another (for the benefit of the audience, of course). Actors come onto the
stage at the start of each scene, and come and go as the scene proceeds - to all intents and purposes
between speeches - finally leaving at the end of the scene (in the Tragedies some may leave dead,
but even these usually revive themselves in time to go home). Plays are usually staged with an
interval between the third and fourth acts. 

Actions like "speech", "entry" and "exit" are really in the category of the lexical terminals which a
scanner (in the person of a member of the audience) would recognize as key symbols while
watching a play. So one description of such a staged play might be on the lines of 

            Play   =  Act Act Act "interval" Act Act .
            Act    =  Scene { Scene } .
            Scene  =  { "speech" } "entry" { Action } .
            Action =  "speech" | "entry" | "exit" | "death" | "gesticulation" .

This does not require all the actors to leave at the end of any scene (sometimes this does not happen
in real life, either). We could try to get this effect by writing 

            Scene  =  { "speech" } "entry" { Action } { "exit" } .

but note that this context-free grammar cannot force as many actors to leave as entered - in
computer language terms the reader should recognize this as the same problem as being unable to
specify that the number of formal and actual parameters to a procedure agree. 

Analyse this grammar in detail. If it proves out to be non-LL(1), try to find an equivalent that is
LL(1), or argue why this should be impossible. 

9.3 The effect of the LL(1) conditions on language design

There are some immediate implications which follow from the rules of the last section as regards
language design and specification. Alternative right-hand sides for productions are very common;
we cannot hope to avoid their use in practice. Let us consider some common situations where
problems might arise, and see whether we can ensure that the conditions are met. 

Firstly, we should note that we cannot hope to transform every non-LL(1) grammar into an



equivalent LL(1) grammar. To take an extreme example, an ambiguous grammar must have two
parse trees for at least one input sentence. If we really want to allow this we shall not be able to use
a parsing method that is capable of finding only one parse tree, as deterministic parsers must do.
We can argue that an ambiguous grammar is of little interest, but the reader should not go away
with the impression that it is just a matter of trial and error before an equivalent LL(1) grammar is
found for an arbitrary grammar. 

Often a combination of substitution and re-factorization will resolve problems. For example, it is
almost trivially easy to find a grammar for the problematic language of section 9.1 which satisfies
Rule 1. Once we have seen the types of strings the language allows, then we easily see that all we
have to do is to find productions that sensibly deal with leading strings of x’s, but delay introducing
y and z for as long as possible. This insight leads to productions of the form 

                       A    xA  |  C
                       C    y  |  z

Productions with alternatives are often found in specifying the kinds of Statement that a
programming language may have. Rule 1 suggests that if we wish to parse programs in such a
language by using LL(1) techniques we should design the language so that each statement type
begins with a different reserved keyword. This is what is attempted in several languages, but it is
not always convenient, and we may have to get round the problem by factorizing the grammar
differently. 

As another example, if we were to extend the language of section 8.7 we might contemplate
introducing REPEAT loops in one of two forms 

         RepeatStatement      =    " REPEAT"  StatementSequence  " UNTIL"  Condition
                                 |  " REPEAT"  StatementSequence  " FOREVER" .

Both of these start with the reserved word REPEAT. However, if we define 

         RepeatStatement      =  " REPEAT"  StatementSequence  TailRepeatStatement .
         TailRepeatStatement  =  " UNTIL"  Condition  |  " FOREVER" .

parsing can proceed quite happily. Another case which probably comes to mind is provided by the
statements 

         Statement            =  IfStatement  |  OtherStatement .
         IfStatement          =   " IF "  Condition  " THEN"  Statement
                                 | " IF "  Condition  " THEN"  Statement  " ELSE"  Statement .

Factorization on the same lines as for the REPEAT loop is less successful. We might be tempted to
try 

         Statement            =  IfStatement  |  OtherStatement .                 (1, 2)
         IfStatement          =  " IF "  Condition  " THEN"  Statement  IfTail .     (3)
         IfTail               =  " ELSE"  Statement  |   .                        (4, 5)

but then we run foul of Rule 2. The production for IfTail is nullable; a little reflection shows that 

         FIRST(" ELSE" Statement) = { " ELSE" }

while to compute FOLLOW(IfTail) we consider the production (3) (which is where IfTail appears
on the right side), and obtain 

         FOLLOW( IfTail)   = FOLLOW( IfStatement)     (production 3)
                          = FOLLOW( Statement)       (production 1)

which clearly includes ELSE. 



The reader will recognize this as the "dangling else" problem again. We have already remarked that
we can find ways of expressing this construct unambiguously; but in fact the more usual solution is
just to impose the semantic meaning that the ELSE is attached to the most recent unmatched THEN,
which, as the reader will discover, is handled trivially easily by a recursive descent parser.
(Semantic resolution is quite often used to handle tricky points in recursive descent parsers, as we
shall see.) 

Perhaps not quite so obviously, Rule 1 eliminates the possibility of using left recursion to specify
syntax. This is a very common way of expressing a repeated pattern of symbols in BNF. For
example, the two productions 

A  B | AB

describe the set of sequences B , BB , BBB ... . Their use is now ruled out by Rule 1, because 

FIRST(A1) = FIRST(B)

FIRST(A2) = FIRST(AB) = FIRST(A) = FIRST(B)  FIRST(AB)

FIRST(A1)  FIRST(A2)  Ø

Direct left recursion can be avoided by using right recursion. Care must be taken, as sometimes the
resulting grammar is still unsuitable. For example, the productions above are equivalent to 

A  B | BA

but this still more clearly violates Rule 1. In this case, the secret lies in deliberately introducing
extra non- terminals. A non-terminal which admits to left recursive productions will in general have
two alternative productions, of the form 

A  AX | Y

By expansion we can see that this leads to sentential forms like 

Y , YX , YXX , YXXX

and these can easily be derived by the equivalent grammar 

A  YZ
Z   | XZ

The example given earlier is easily dealt with in this way by writing X = Y = B, that is 

A  BZ
Z   | BZ

The reader might complain that the limitation on two alternatives for A is too severe. This is not
really true, as suitable factorization can allow X and Y to have alternatives, none of which start with
A. For example, the set of productions 

A  Ab | Ac | d | e



can obviously be recast as 

A  AX | Y
X  b | c
Y  d | e

(Indirect left recursion, for example 

A  B
B  C . . .
C  A . . .

is harder to handle, and is, fortunately, not very common in practice.) 

This might not be quite as useful as it first appears. For example, the problem with 

             Expression      =  Expression  " - "  Term  |  Term .

can readily be removed by using right recursion 

             Expression      =  Term  RestExpression .
             RestExpression  =    |  " - "  Term  RestExpression .

but this may have the side-effect of altering the implied order of evaluation of an Expression. For
example, adding the productions 

             Term            =  " x"  |  " y"  |  " z" .

to the above would mean that with the former production for Expression, a string of the form
x -  y -  z would be evaluated as (x -  y) -  z. With the latter production it might be evaluated as
x -  (y -  z), which would result in a very different answer (unless z were zero). 

The way to handle this situation would be to write the parsing algorithms to use iteration, as
introduced earlier, for example 

             Expression      =  Term {  " - "  Term } .

Although this is merely another way of expressing the right recursive productions used above, it
may be easier for the reader to follow. It carries the further advantage of more easily retaining the
left associativity which the "- " terminal normally implies. 

It might be tempting to try to use such iteration to remove all the problems associated with
recursion. Again, care must be taken, since this action often implies that -productions either
explicitly or implicitly enter the grammar. For example, the construction 

A  { B }

actually implies, and can be written 

A   | B A

but can only be handled if FIRST(B)  FOLLOW(A) = Ø. The reader might already have realized
that all our manipulations to handle Expression would come to naught if "- " could follow
Expression in other productions of the grammar. 



Exercises 

9.6 Determine the FIRST and FOLLOW sets for the following non-terminals of the grammar
defined in various ways in section 8.7, and comment on which formulations may be parsed using
LL(1) techniques. 

Block
ConstDeclarations
VarDeclarations
Statement
Expression
Factor
Term

9.7 What are the semantic implications of using the productions suggested in section 8.4 for the IF

... THEN  and IF ... THEN ... ELSE  statements? 

9.8 Whether to regard the semicolon as a separator or as a terminator has been a matter of some
controversy. Do we need semicolons at all in a language like the one suggested in section 8.7? Try
to write productions for a version of the language where they are simply omitted, and check
whether the grammar you produce satisfies the LL(1) conditions. If it does not, try to modify the
grammar until it does satisfy these conditions. 

9.9 A close look at the syntax of Pascal, Modula-2 or the language of section 8.7 shows that an
-production is allowed for Statement. Can you think of any reasons at all why one should not

simply forbid empty statements? 

9.10 Write down a set of productions that describes the form that REAL literal constants may assume
in Pascal, and check to see whether they satisfy the LL(1) conditions. Repeat the exercise for REAL

literal constants in Modula-2 and for float  literals in C++ (surprisingly, perhaps, the grammars are
different). 

9.11 In a language like Modula-2 or Pascal there are two classes of statements that start with
identifiers, namely assignment statements and procedure calls. Is it possible to find a grammar that
allows this potential LL(1) conflict to be resolved? Does the problem arise in C++? 

9.12 A full description of C or C++ is not possible with an LL(1) grammar. How large a subset of
these languages could one describe with an LL(1) grammar? 

9.13 C++ and Modula-2 are actually fairly close in many respects - both are imperative, both have
the same sorts of statements, both allow user defined data structures, both have functions and
procedures. What features of C++ make description in terms of LL(1) grammars difficult or
impossible, and is it easier or more difficult to describe the corresponding features in Modula-2?
Why? 

9.14 Why do you suppose C++ has so many levels of precedence and the rules it does have for
associativity? What do they offer to a programmer that Modula-2 might appear to withhold? Does
Modula-2 really withhold these features? 

9.15 Do you suppose there may be any correlation between the difficulty of writing a grammar for a



language (which programmers do not usually try to do) and learning to write programs in that
language (which programmers often do)? 

Further reading 

Good treatments of the material in this chapter may be found at a comprehensible level in the books
by Wirth (1976b, 1996), Welsh and McKeag (1980), Hunter (1985), Gough (1988), Rechenberg
and Mössenböck (1989), and Tremblay and Sorenson (1985). Pittman and Peters (1992) have a
good discussion of what can be done to transform non-LL(k) grammars into LL(k) ones. 

Algorithms exist for the detection and elimination of useless productions. For a discussion of these
the reader is referred to the books by Gough (1988), Rechenberg and Mössenböck (1989), and
Tremblay and Sorenson (1985). 

Our treatment of the LL(1) conditions may have left the reader wondering whether the process of
checking them - especially the second one - ever converges for a grammar with anything like the
number of productions needed to describe a real programming language. In fact, a little thought
should suggest that, even though the number of sentences which they can generate might be
infinite, convergence should be guaranteed, since the number of productions is finite. The process
of checking the LL(k) conditions can be automated, and algorithms for doing this and further
discussion of convergence can be found in the books mentioned above. 


