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5 LANGUAGE SPECIFICATION

A study of the syntax and semantics of programming languages may be made at many levt
an important part of modern Computer Science. One can approach it from a very formal vie
or from a very informal one. In this chapter we shall mainly be concerned with ways of spec
the concrete syntax of languages in general, and programming languages in particular. Thi
basis for the further development of the syntax- directed translation upon which much of the
this text depends.

5.1 Syntax, semantics, and pragmatics

People use languages in order to communicate. In ordinary speech they use natural languz
English or French; for more specialized applications they use technical languages like that
mathematics, for example

¥ x3del|X-E|<e

We are mainly concerned with programming languages, which are notations for describing
computations. (As an aside, the word "language” is regarded by many to be unsuitable in t
context. The word "notation” is preferable; we shall, however, continue to use the traditiona
terminology.) A useful programming language must be suited bakstobing and to
implementing the solution to a problem, and it is difficult to find languages which satisfy both
requirements - efficient implementation seems to require the use of low-level languages, wl
description seems to require the use of high-level languages.

Most people are taught their first programming language by example. This is admirable in r
respects, and probably unavoidable, since learning the language is often carried out in par:
the more fundamental process of learning to develop algorithms. But the technique suffers
drawback that the tuition is incomplete - after being shown only a limited number of exampl
is inevitably left with questions of the "can | do this?" or "how do | do this?" variety. In recen
a great deal of effort has been spent on formalizing programming (and other) languages, al
finding ways to describe them and to define them. Of course, a formal programming langue
to be described by using another language. This language of description is called the
metalanguage. Early programming languages were described using English as the metalan
A precise specification requires that the metalanguage be completely unambiguous, and th
strong feature of English (politicians and comedians rely heavily on ambiguity in spoken lar
in pursuing their careers!). Some beginner programmers find that the best way to answer tt
guestions which they have about a programming language is to ask them of the compilers
implement the language. This is highly unsatisfactory, as compilers are known to be error-f
and to differ in the way they handle a particular language.

Natural languages, technical languages and programming languages are alike in several re
each case thentences of a language are composed of setstiohgs of symbols or tokens or
words, and the construction of these sentences is governed by the application of two sets ¢

® Syntax Rules describe thdorm of the sentences in the language. For example, in Engli



sentence "They can fish" is syntactically correct, while the sentence "Can fish they" is
incorrect. To take another example, the language of binary numerals uses only the sy
and 1, arranged in strings formed by concatenation, so that the sentence 101 is synta
correct for this language, while the sentence 1110211 is syntactically incorrect.

® Semantic Rules, on the other hand, define thmeaning of syntactically correct sentences i
language. By itself the sentence 101 has no meaning without the addition of semantic
the effect that it is to be interpreted as the representation of some number using a pos
convention. The sentence "They can fish" is more interesting, for it can have two poss
meanings; a set of semantic rules would be even harder to formulate.

The formal study of syntax as applied to programming languages took a great step forward
1960, with the publication of th&lgol 60 report by Naur (1960, 1963), which used an elegant,
simple, notation known a@ackus-Naur-Form (sometimes calleBackus-Nor mal-Form) which
we shall study shortly. Simply understood notations for describing semantics have not beer
forthcoming, and many semantic features of languages are still described informally, or by
example.

Besides being aware of syntax and semantics, the user of a programming language cannotf
coming to terms with some of the pragmatic issues involved with implementation technique
programming methodology, and so on. These factors govern subtle aspects of the design ¢
every practical language, often in a most irritating way. For example, in Fortran 66 and Fort
the length of an identifier was restricted to a maximum of six characters - a legacy of the wi
on the IBM computer for which the first Fortran compiler was written.

5.2 Languages, symbols, alphabets and strings

In trying to specify programming languages rigorously one must be aware of some features
formal languagetheory. We start with a few abstract definitions:

® A symbol ortoken is an atomic entity, represented by a character, or sometimes by a
or key word, for example, ; END

® An alphabet Ais a non-empty, but finite, set of symbols. For example, the alphabet of
Modula-2 includes the symbols

- /*abcABCBEGIN CASE END

while that for G+ would include a corresponding set

- /*abcABC {switch}

® A phrase, word orstring "over" an alphabed is a sequene== a,a,...a, of symbols fromA.

® [t is often useful to hypothesize the existence of a string of length zero, calledlte®ing
or empty word, usually denoted ky(some authors u¢zinstead). This has the property th
if it is concatenated to the left or right of any word, that word remains unaltered.

ac=ca=a



® The set of all strings of lengthover an alphabe is denoted byA". The set of all strings
(including the null string) over an alphal#ets called itKleene closure or, simply,closure,

and is denoted b#". The set of all strings of length at least one over an alpiaisetalled
its positive closure, and is denoted b&*. Thus

A=p0u Al U A2 U A3

® A languagelL over an alphabéh is a subset of’. At the present level of discussion this
involves no concept of meaning. A language is simply a set of strings. A language cor
of a finite number of strings can be defined simply by listing all those strings, or giving
for their derivation. This may even be possible for simple infinite languages. For exam
might have

L={([a+)"(b])"In>0}
(the vertical stroke can be read "such that"), which defines exciting expressions like
[a+Db]

[a+[a+Db] b]
[a+[a+[a+b] b] b]

5.3 Regular expressions

Several simple languages - but by no means all - can be conveniently specified using the n
regular expressions. A regular expression specifies the form that a string may take by using
symbols from the alphabétin conjunction with a few othenetasymbols, which represent
operations that allow for

@ Concatenation - symbols or strings may be concatenated by writing them next to one a
or by using the metasymbol - (dot) if further clarity is required.

® Alternation - a choice between two symbalandb is indicated by separating them by the
metasymbo]| (bar).

® Repetition - a symboh followed by the metasymbl(star) indicates that a sequence of z
or more occurrences dfis allowable.

® Grouping - a group of symbols may be surrounded by the metasyrhhot) (parentheses)
As an example of a regular expression, consider
1(1]0%0

This generates the set of strings, each of which has a leading 1, is followed by any number
1's, and is terminated with a O - that is, the set

{10, 100, 110, 1000 ... }



If a semantic interpretation is required, the reader will recognize this as the set of strings
representing non-zero even numbers in a binary representation,

Formally, regular expressions may be defined inductively as follows:
® A regular expression denotes a regular set of strings.
® (Jis aregular expression denoting the empty set.
® :is a regular expression denoting the set that contains only the empty string.

® o is a regular expression denoting a set containing only the string

® If A andB are regular expressions, theA Y andA | B andA - B andA” are also regular
expressions.

Thus, for example, & andt are strings generated by regular expressépra)do -t are also
generated by a regular expression.

The reader should take note of the following points:

® As in arithmetic, where multiplication and division take precedence over addition and
subtraction, there is a precedence ordering between these operators. Parentheses tal
precedence over repetition, which takes precedence over concatenation, which in turr
precedence over alternation. Thus, for example, the following two regular expressions
equivalent

his | hers and h(iler)s
and both define the set of strings { his, hers }.

® |f the metasymbols are themselves allowed to be members of the alphabet, the conve
to enclose them in quotes when they appear as simple symbols within the regular exp
For example, comments in Pascal may be described by the regular expression

*

u( nwogn c "y n ") " WhereC € A

® Some other shorthand is commonly found. For example, the positive closure $ymbol

sometimes used, so thedt is an alternative representation & . A question mark is
sometimes used to denote an optional instanegsuf thal? denotes |=. Finally, brackets
and hyphens are often used in place of parentheses and bars, s@B@ltdenotes
(alblc|d|e|B]C).

® Regular expressions have a variety of algebraic properties, among which we can drav
attention to

A| B= B| (commutativity for alternation)
Al( Bl C)=( Al B)| C (associativity for alternation)
Al A= A (absorption for alternation)
( B- C)=( A- B)- C (associativity for concatenation)
A( B] C)= AB| AC (left distributivity)
( Al B) C= AC| BC (right distributivity)

Aeg= £ A= A (identity for concatenation)



A*A = AF (absorption for closure)

Regular expressions are of practical interest in programming language translation because
be used to specify the structure of the tokens (like identifiers, literal constants, and commer
whose recognition is the prerogative of the scanner (lexical analyser) phase of a compiler.

For example, the set of integer literals in many programming languages is described by the
expression

©lt]2]3]4]5]6]7|8]9)"
or, more verbosely, by
©l1]2]3]4]5]6]7(8]9)-@|1[2]3]4]5]6]7|8]9)
or, more concisely, by
[0-91"
and the set of identifiers by a similar regular expression
@lblc].. |2)-0]1].. |9]a].. |2)
or, more concisely, by
[a-zA-Z J[azA-Z0-9 ]
Regular expressions are also powerful enough to describe complete simple assembler lan¢

the forms illustrated in the last chapter, although the complete expression is rather tedious
down, and so is left as an exercise for the zealous reader.

Exercises

5.1 How would the regular expression for even binary numbers need modification if the stril
(zero) was allowed to be part of the language?

5.2 In some programming languages, identifiers may have embedded underscore characte
However, the first character may not be an underscore, nor may two underscores appear ir
succession. Write a regular expression that generates such identifiers.

5.3 Can you find regular expressions that describe the foraAfliteral constants in Pascal? Ir
C++? In Modula-2?

5.4 Find a regular expression that generates the Roman representation of numbers from 1
99.

5.5 Find a regular expression that generates strings like "facetious” and "abstemious" that «
all five vowels, in order, but appearing only once each.



5.6 Find a regular expression that generates all strings of 0's and 1's that have an odd nurr
and an even number of 1's.

5.7 Describe the simple assembler languages of the last chapter by means of regular expre

5.4 Grammar s and productions

Most practical languages are, of course, rather more complicated than can be defined by re
expressions. In particular, regular expressions are not powerful enough to describe langua
manifestself-embedding in their descriptions. Self-embedding comes about, for example, in
describing structured statements which have components that can themselves be statemer
expressions comprised of factors that may contain further parenthesized expressions, or ve
declared in terms of types that are structured from other types, and so on.

Thus we move on to consider the notion gfammar. This is essentially a set of rules for

describingsentences - that is, choosing the subsetsffin which one is interested. Formally, a
grammarG is a quadruple {, T, S P } with the four components

(&) N - a finite set ohon-terminal symbols,

(b) T - a finite set oferminal symbols,

(c) S- a speciagoal or start ordistinguished symbol,

(d) P - a finite set oproduction rules or, simply,productions.

(The word "set" is used here in the mathematical sense.) A sentence is a string composed
terminal symbols chosen from the $eOn the other hand, the $¢tdenotes theyntactic classes
of the grammar, that is, general components or concepts used in describing sentence cons

The union of the sefd andT denotes thgocabulary V of the grammar.
V =NuUT

and the setdl andT are required to be disjoint, so that
NNT=0

where @ is the empty set.

A convention often used when describing grammars in the abstract is to use lower-case Gr
letters &, 3, ¥, ...) to represent strings of terminals and/or non-terminals, capital Roman letter

(A, B, C ...) to represent single non- terminals and lower case Roman latters (..) to represen
single terminals. Each author seems to have his or her own set of conventions, so the read
be on guard when consulting the literature. Furthermore, when referring to the types of strir
generated by productions, use is often made of the closure operators. Thus, ifcacstnisigts of
zero or more terminals (and no non-terminals) we should write

*

we€ T

while if &« consists of one or more non-terminals (but no terminals)



ae Nt
and ifec consists of zero or more terminals and/or non-terminals
«€ (NUT) thatis,a € V"

English words used as the names of non-terminalssdikence or noun are often non-terminals.
When describing programming languages, reserved or key wordgNiik&EGIN andCASH are
inevitably terminals. The distinction between these is sometimes made with the use of diffe
face - we shall usialic font for non-terminals anshonospaced font  for terminals where it is
necessary to draw a firm distinction.

This probably all sounds very abstruse, so let us try to enlarge a little, by considering Englis
written language. The s&there would be one containing the 26 letters of the common alpha
and punctuation marks. The $&would be the set containing syntactic descriptors - simple or
like noun, adjective, verb, as well as more complex ones lik@in phrase, adverbial clause and
complete sentence. The seP would be one containing syntactic rules, such as a description o
noun phrase as a sequence afdljective followed bynoun. Clearly this set can become very large
indeed - much larger thanor evenN. The productions, in effect, tell us how we danve
sentences in the language. We start from the distinguished s§nfladiich is always a
non-terminal such asomplete sentence) and, by making successive substitutions, work throug
sequence of so- calledntential forms towards the final string, which contains terminals only.

There are various ways of specifying productions. Essentially a production is a rule relating
pair of strings, say ands, specifying how one may be transformed into the other. Sometimes
are calledewriterules or syntax equations to emphasize this property. One way of denoting

general production is

¥ — B

To introduce our last abstract definitions, let us suppose drat: are two strings each consistir
of zero or more non-terminals and/or terminals (thatis€ V= (NUT)").

® |f we can obtain the strirngfrom the strings by employingone of the productions of the
grammarG, then we say thatdirectly produces: (or thatr is directly derived fromg), and
express this as=1 .

That is, ife =« andt =«¥3, ands — ¥ is a production i, theno = 1.

® [f we can obtain the stringfrom the strings by applyingn productions of5, withn2 1, then
we say thas producest in a non-trivial way (or thatz is derived froma in a non-trivial way),

and express this a==" 1.

That is, if there exists a sequelrgex,, &, ...c (With k2 1), such that

o=,

o =1,



theno =" ¢ .

® |f we can produce the stringrom the string: by applyingn productions of5, withn2 0
(this includes the above and, in addition, the trivial case wirerg then we say that

produces (or thatr is derived fromo ), and express this =" .

® |n terms of this notation, sentential form is the goal or start symbol, any string that can
be derived from it, that is, any strisguch that=" .

® A grammar is calledecursive if it permits derivations of the forma =+ w) Aw,, (Where
A€ N, andw,, w, € V *. More specifically, it is calleteft recursive if A=+ Aw andright
recursive if A="4w A

® A grammar isself-embedding if it permits derivations of the form =* wy Aw,, (Where

A€ N, and wherg,, w, € V¥, but wheres; orw, contain at least one terminal (that is
@ NT)U @NT)*3).

® Formally we can now define a languddé&) produced by a gramm& by the relation

LG) ={w|we T";S="w}

5.5 Classic BNF notation for productions

As we have remarked, a production is a rule relating to a pair of strin¢jsasdy specifying how
one may be transformed into the other. This may be dex—i] and for simple theoretical
grammars use is often made of this notation, using the conventions about the use of upper
letters for non-terminals and lower case ones for terminals. For more realistic grammars, st
those used to specify programming languages, the most common way of specifying produc
many years was to use an alternative notation invented by Backus, and first called
Backus-Normal-Form. Later it was realized that it was not, strictly speaking, a "normal form
was renamed Backus-Naur-Form. Backus and Naur were largely responsibleAigotta® report
(Naur, 1960 and 1963), which was the first major attempt to specify the syntax of a progran
language using this notation. Regardless of what the acronym really stands for, the notatiol
universally known aBNF.

In classic BNF, a non-terminal is usually given a descriptive name, and is written in angle b
to distinguish it from a terminal symbol. (Remember that non-terminals are used in the con:
of sentences, although they do not actually appear in the final sentence.) In BNF, productic
the form

leftside— definition
Here =" can be interpreted as "is defined as" or "produces” (in some texts the symimlsed

in preference t—). In such productions, botkftside anddefinition consist of a string
concatenated from one or more terminals and non-terminals. In fact, in terms of our earlier



leftsde€ (NUT)*
and
definitione (NUT)"

although we must be more restrictive than that|ditside must contain at least one non-terminz
so that we must also have

leftsiden N @

Frequently we find several productions with the séefiesde, and these are often abbreviated b
listing thedefinitions as a set of one or more alternatives, separated by a vertical bar symbol

5.6 Simple examples

It will help to put the abstruse theory of the last two sections in better perspective if we con:
two simple examples in some depth.

Our first example shows a grammar for a tiny subset of English itself. In full detail we have

G={ N, T, S, P}

N={ <sentence >, <qualified noun >, <noun>, <pronoun >, <verb >, <adjective >}

T ={the, man, girl, boy , lecturer , he , she , drinks , sleeps,

mystifies , tall , thin , thirsty }
S= <sentence >
P={ <sentence > —*+ the <qualified noun > <verb > (1)
<pronoun > <verb > 2)

<qualified noun > —F <adjective > <noun> 3
<noun > — man | girl | boy | lecturer (4,5,6,7)
<pronoun > —* he | she 8,9
<verb > —* talks | listens | mystifies (10, 11, 12)
<adjective > —* tall | thin | sleepy (13, 14, 15)

}

The set of productions defines the non-term#saintence as consisting of either the terminal "t
followed by a<qualified nourn followed by a<verb>, or as apronour followed by a<verb-. A
<qualified nourn is an<adjective followed by a<nours, and a<nour» is one of the terminal
symbols "man” or "girl" or "boy" or "lecturer". Apronourr is either of the terminals "he" or "sh
while a<verb> is either "talks" or "listens" or "mystifies". Hetsentence, <noun-, <qualified
noure, <pronourr, <adjective and<verb> are non-terminals. These do not appear in any sent
of the language, which includes such majestic prose as

the thin lecturer mystifies
he talks
the sleepy boy listens

From a grammar, one non-terminal is singled out as the so-galiedr start symboal. If we want
to generate an arbitrary sentence we start with the goal symbol and successively replace ea
non-terminal on the right of the production defining that non-terminal, until all non-terminals
been removed. In the above example the syrdmmtence is, as one would expect, the goal
symbol.

Thus, for example, we could start withentence and from this derive the sentential form



the<qualified noun <verb>

In terms of the definitions of the last section we say<tbkahtence directly produces "the
<qualified nour <verb>". If we now apply production 3{qualified nous — <adjective- <noun-
) we get the sentential form

the<adjective <nour» <verb>
In terms of the definitions of the last section, "tg@alified nour <verb>" directly produces "the
<adjective <noun» <verb>", while <sentence has produced this sentential form in a non-trivial
way. If we now follow this by applying production 14ddjective- — thin ) we get the form

the thin<noun> <verb>
Application of production 10 {verb>— talks ) gets to the form

the thin<noun- talks
Finally, after applying production 6<goun>— boy ) we get the sentence

the thin boy talks
The end result of all this is often represented by a tree, as in Figure 5.1, which gihvasea
structuretree or parsetree for our sentence. In this representation, the order in which the
productions were used is not readily apparent, but it should now be clear why we speak of

"terminals” and "non-terminals” in formal language theory - the leaves of such a tree are all
terminals of the grammar; the interior nodes are all labelled by non-terminals.

<5€nTence>
I | |

the <gualified noun’ {uerb’

Ladject ivex Lnoun talks

thin bow
Figure 5.1 Parse tree for "the thin bow talks™

A moment’s thought should reveal that there are many possible derivation paths from the g
start symbol to the final sentence, depending on the order in which the productions are app
convenient to be able to single out a particular derivation as ti&aigrivation. This is generally
called thecanonical derivation, and although the choice is essentially arbitrary, the usual one
that where at each stage in the derivation the left-most non-terminal is the one that is repla
is called deft canonical derivation. (In a similar way we could definerght canonical
derivation.)

Not only is it important to use grammars generatively in this way, it is also important - perhe
more so - to be able to take a given sentence and determine whether it is a valid member c
language - that is, to see whether it could have been obtained from the goal symbol by a st
choice of derivations. When mere recognition is accompanied by the determination of the

underlying tree structure, we speakpaf sing. We shall have a lot more to say about this in lat
chapters; for the moment note that there are several ways in which we can attempt to solve



problem. A fairly natural way is to start with the goal symbol and the sentence, and, by reac
sentence from left to right, to try to deduce which series of productions must have been apy

Let us try this on the sentence
the thin boy talks

If we start with the goatsentence we can derive a wide variety of sentences. Some of these
arise if we choose to continue by using production 1, some if we choose production 2. By rt
no further than "the" in the given sentence we can be fairly confident that we should try pro
1.

<sentence — the<qualified nour <verb>.

In a sense we now have a residual input string "thin boy talks" which somehow must match
<qualified nourn <verb>. We could now choose to substitute $oerb> or for<qualified noun.
Again limiting ourselves to working from left to right, our residual sentential taqualified nourn
<verb> must next be transformed irtadjective- <nour» <verb> by applying production 3.

In a sense we now have to match "thin boy talks" with a residual sententialddjective
<noun> <verb>. We could choose to substitute for anyafljective-, <noun- or <verb>; if we read
the input string from the left we see that by using production 14 we can reduce the problem
matching a residual input string "boy talks" to the residual sententialkiooom> <verb>. And so i
goes; we need not labour a very simple point here.

The parsing problem is not always as easily solved as we have done. It is easy to see that
algorithms used to parse a sentence to see whether it can be derived from the goal symbol
very different from algorithms that might be used to generate sentences (almost at random’
from the start symbol. The methods used for successful parsing depend rather critically on
in which the productions have been specified; for the moment we shall be content to exami
sets of productions without worrying too much about how they were developed.

In BNF, a production may define a non-terminal recursively, so that the same non-terminal
occur on both the left and right sides of —esign. For example, if the production tayualified
nour» were changed to

<qualified nour — <nour- | <adjective- <qualified nourn (3a, 3b)
this would define aqualified nour as either anour», or an<adjective followed by a<qualified
nour» (which in turn may be anours, or an<adjective- followed by a<qualified nour and so
on). In the final analysis equalified nous would give rise to zero or moradjective-s followed
by a<noun-. Of course, a recursive definition can only be useful provided that there is some
terminating it. The single production

<qualified noun — <adjective- <qualified nour (3b)
is effectively quite useless on its own, and it is the alternative production

<qualified nourn — <nour- (3a)

which provides the means for terminating the recursion.



As a second example, consider a simple grammar for describing a somewhat restricted set
algebraic expressions:

G={ N, T, S, P}

N={ <goal >, <expression >, <term >, <factor >}

T={ a, b, c, -,*}

S= <goal >

P=
<goal > —F <expression > (1)
<expression > —F <term >| <expression > - <term > 2,3)
<term > —* <factor >| <term >* <factor > (4,5)
<factor > —+ a| b| c (6,7,8)

It is left as an easy exercise to show that it is possible to derive theastirfgc using these
productions, and that the corresponding phrase structure tree takes the form shown in Figu

A point that we wish to stress here is that the construction of this tree has, happily, reflecte«
relative precedence of the multiplication and subtraction operations - assuming, of course,
symbolst and - are to have implied meanings of "multiply” and "subtract" respectively. We ¢
also point out that it is by no means obvious at this stage how one goes about designing a
productions that not only describe the syntax of a programming language but also reflect sc
semantic meaning for the programs written in that language. Hopefully the reader can fores
there will be a very decided advantage if such a cleaicde made, and we shall have more to
about this in later sections.

<goal
1

LEHpression

LeHpression® <t§rm>
[
<t?rm> Lhermk “factor:
1
“factor <Fa?tnr>
1
a = b * =1

Figure 5.2 Parse tree for the edpression a — b # o

Exercises

5.8 What would be the shortest sentence in the language defined by our first example? Wh
be the longest sentence? Would there be a difference if we used the alternative production
3b)?

5.9 Draw the phrase structure trees that correspond to the expressimneanda* b * c using
the second grammar.

5.10 Try to extend the grammar for expressions so as to incorporatare operators.

5.7 Phrase structure and lexical structure

It should not take much to see that a set of productions for a real programming language gi
will usually divide into two distinct groups. In such languages we can distinguish between tt
productions that specify th#hrase structure - the way in which the words or tokens of the



language are combined to form components of programs - and the productions that specify
lexical structure orlexicon - the way in which individual characters are combined to form suc
words or tokens. Some tokens are easily specified as simple constant strings standing for

themselves. Others are more generic - lexical tokens such as identifiers, literal constants, &
are themselves specified by means of productions (or, in many cases, by regular expressic

As we have already hinted, the recognition of tokens for a real programming language is us
done by a scanner (lexical analyser) that returns these tokens to the parser (syntax analyse
demand. The productions involving only individual characters on their right sides are thus tl
productions used by a sub-parser forming part of the lexical analyser, while the others are
productions used by the main parser in the syntax analyser.

5.8 -productions

The alternatives for the right-hand side of a production usually consist of a string of one or |
terminal and/or non-terminal symbols. At times it is useful to be able to derive an empty stri
is, one consisting of no symbols. This string is usually denoteavbhen it is necessary to revea
its presence explicitly. For example, the set of productions

<unsigned integer > —F  <digit > <rest of integer >
<rest of integer > — <digit > <rest of integer >| £
<digit > —* 0|1]2|3]4]|5/6]718]9

defines<rest of integer as a sequence of zero or medégit>s, and henceunsigned integeris
defined as a sequence of one or maligit>s. In terms of our earlier notation we should have

<rest of integer > —  <digit >
or

<unsigned integer > —  <digit >*
The production

<rest of integer > —* ¢

is called anull production, or ane-production, or sometimeslambda production (from an
alternative convention of usiriginstead o# for the null string). Applying a production of the foi
L — = amounts to the erasure of the non-termineibm a sentential form; for this reason such
productions are sometimes calldsures. More generally, if for some strirgt is possible that

*
o = £

then we say thatis nullable. A non-terminaL is said to be nullable if it has a production whos
definition (right side) is nullable.

5.9 Extensionsto BNF

Various simple extensions are often employed with BNF notation for the sake of increased
readability and for the elimination of unnecessary recursion (which has a strange habit of c



people brought up on iteration). Recursion is often employed in BNF as a means of specify
simple repetition, as for example

<unsigned integer > —F <digit >| <digit > <unsigned integer >
(which uses right recursion) or

<unsigned integer > —# <digit >| <unsigned integer > <digit >

(which uses left recursion).

Then we often find several productions used to denote alternatives which are very similar, 1
example

<integer > —#  <unsigned integer >| <sign > <unsigned integer >
<unsigned integer > —F* <digit >| <digit > <unsigned integer >
<sign > —F +| -

using six productions (besides the omitted obvious oneglfgit>) to specify the form of an
<integee.

The extensions introduced to simplify these constructions lead to what is kn&BINES
(Extended BNF). There have been many variations on this, most of them inspired by the
metasymbols used for regular expressions. Thus we might find the use of the Kleene closu
operators to denote repetition of a symbol zero or more times, and the use of round bracke
parentheses () to group items together.

Using these ideas we might define an integer by

<integer > — <sign > <unsigned integer >
<unsigned integer > —F  <digit >( <digit >) "
<sign > —+ -+ -] €
or even by
<integer > —+ (+] - &) <digit >( <digit >)*

which is, of course, nothing other than a regular expression anyway. In fact, a language the
expressed as a regular expression can always be expressed in a single EBNF expression.

5.9.1 Wirth’sEBNF notation

In defining Pascal and Modula-2, Wirth came up with one of these many variations on BNF
has now become rather widely used (Wirth, 1977). Further metasymbols are used, so as to
more succinctly the many situations that otherwise require combinations of the Kleene clos
operators and thestring. In addition, further simplifications are introduced to facilitate the
automatic processing of productions by parser generators such as we shall discuss in a lat
In this notation for EBNF:

Non-terminals ~ are written as single words, asvarDeclaration (rather than the
<Var Declaration of our previous notation)

Terminals are all written in quotes, as iBEGIN"
(rather than as themselves, as in BNF)

| is used, as before, to denote alternatives

() (parentheses) are used to denote grouping

[1] (brackets) are used to denote the optional appearance of a



symbol or group of symbols

{1} (braces) are used to denote optional repetition of a symbol
or group of symbols

= is used in place of the= or— symbol
is used to denote the end of each production

* * are used in some extensions to allow comments
€ can be handled by using the [ ] notation
spaces are essentially insignificant.
For example

I nt eger = Si gn Unsi gnedl nt eger .

Unsi gnedl nteger = digit { digit }.

Si gn = -

di git = 0" ATt 2|t 3|t 4|t 5|t o8|t 7|t o8|t 9.

The effect is that non-terminals are less "noisy" than in the earlier forms of BNF, while term
are "noisier". Many grammars used to define programming language employ far more
non-terminals than terminals, so this is often advantageous. Furthermore, since the termine
non-terminals are textually easily distinguishable, it is usually adequate to give only the set
productions® when writing down a grammar, and not the complete quadrugld{S P }.

As another example of the use of this notation we show how to describe a set of EBNF pro
in EBNF itself:

EBNF = { Production}.
Production = nontermnal " =" Expression".".
Expression =  Term{"|" Term}.
Term = Factor { Factor }.
Fact or = nonterminal | termnal |"[" Expression"]"
| " Expression")"|"{" Expression"}".
nontermnal = letter { letter}.
termnpal ="" character { character }"|™ character { character }™.

character = (*implementation defined *) .

Here we have chosen to spahterminal andterminal in lower case throughout to emphasize t
they are lexical non-terminals of a slightly different status from the otherBriddeiction,
Expression, Term andFactor.

A variation on the use of braces allows the (otherwise impossible) specification of a limit on
number of times a symbol may be repeated - for example to express that an identifier in Fo
may have a maximum of six characters. This is done by writing the lower and upper limits ¢
and super-scripts to the right of the curly braces, as for example

Fortranidentifier — letter { letter | digit }°

5.9.2 Semantic overtones

Sometimes productions are developed to give semantic overtones. As we shall see in a lati
this leads more easily towards the possibility of extendiragtabuting the grammar to incorpore
a formal semantic specification along with the syntactic specification. For example, in descl
Modula-2, where expressions and identifiers fall into various classes at the static semantic
might find among a large set of productions:

Const Decl arations =" CONST
Constldentifier " =" Const Expression";"
Constldentifier " =" ConstExpression""}.
Const | denti fier = identifier .



Const Expression = Expression.

5.9.3 TheBritish Standard for EBNF

The British Standards Institute has a published standard for EBNF (BS6154 of 1981). The |
standard notation is noisier than Wirth’s one: elements of the productions are separated by
productions are terminated by semicolons, and spaces become insignificant. This means tf
compound words lik€onstldentifier are unnecessary, and can be written as separate words.
example in BSI notation follows:

Constant Declarations =" CONST,
Constant ldentifier, " =", Constant Expression, ",
Constant ldentifier, " =", Constant Expression, ""};
Constant ldentifier = identifier;
Const ant Expression = Expression;

5.9.4 Lexical and phrase structure emphasis

We have already commented that real programming language grammars have a need to sj
phrase structure as well as lexical structure. Sometimes the distinction between "lexical" ar
"syntactic" elements is taken to great lengths. For example we might find:

Const Decl arations = const Sym
Constldentifier equals ConstExpression semicol on
{ Constl dentifier equals ConstExpression senicolon}.

with productions like

const Sym CONST.
semi col on

equal s =" =".

and so on. This may seem rather long-winded, but there are occasional advantages, for ex
allowing alternatives for limited character set machines, as in

| ef t Bracket =" [“1" "
poi nter Sym =" "

as is used in some Pascal systems.
5.9.5 Cocol

The reader will recall from Chapter 2 that compiler writers often make use of compiler gene
to assist with the automated construction of parts of a compiler. Such tools usually take as
augmented description of a grammar, one usually based on a variant of the EBNF notation
have just been discussing. We stress that far more is required to construct a compiler than
description of syntax - which is, essentially, all that EBNF can provide. In later chapters we
describe the use of a specific compiler generator, Coco/R, a product that originated at the

University of Linz in Austria (Rechenberg and Méssenbdck, 1989, Mdssenbéck, 1990a,b). -
name Coco/R is derived froncbmpiler-Compiler/Recursive descent. A variant of Wirth’s EBN
known as Cocol/R is used to define the input to Coco/R, and is the notation we shall prefer
rest of this text (to avoid confusion between two very similar acronyms we shall simply refe
Cocol/R as Cocol). Cocol draws a clear distinction between lexical and phrase structure, ar
makes clear provision for describing the character sets from which lexical tokens are consti

A simple example will show the main features of a Cocol description. The example describt
calculator that is intended to process a sequence of simple four-function calculations involv
decimal or hexadecimal whole numbers, for examaple * 8 = Or $3F / 7 + $1AF =



COMPILER Calculator

CHARACTERS
digit ="0123456789" .
hexdigit = digit + "ABCDEF" .

IGNORE CHR(1) .. CHR(31)

TOKENS
decNumber = digit { digit } .
hexNumber ="$" hexdigit { hexdigit } .

PRODUCTIONS
Calculator = { Expression "="1}.
Expression = Term { "+" Term | "-" Term }.
Term = Factor { "*" Factor | "/" Factor } .
Factor = decNumber | hexNumber .

END Calculator.

The CHARACTERSection describes the set of characters that can appear in decimal or hexac
digit strings - the right sides of these productions are to be interpreted as defining setKEN%&
section describes the valid forms that decimal and hexadecimal numbers may take - but no
we do not, at this stage, indicate how the values of these numbers are to be computed fron
digits. ThePRODUCTIONSection describes the phrase structure of the calculations themselve
again without indicating how the results of the calculations are to be obtained.

At this stage it will probably come as no surprise to the reader to learn that Cocol, the langt
the input to Coco/R, can itself be described by a grammar - and, indeed, we may write this
in a way that it could be processed by Coco/R itself. (Using Coco/R to process its own gran
of course, just another example of the bootstrapping techniques discussed in Chapter 3; Cq
another good example of a self-compiling compiler). A full description of Coco/R and Cocol
appears later in this text, and while the finer points of this may currently be beyond the reac
comprehension, the following simplified description will suffice to show the syntactic elemel
most importance:

COMPILER Cocol

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz" .
digit ="0123456789" .
tab = CHR(9) .
cr = CHR(13).
If = CHR(10) .
noQuote2 =ANY-"-cr-If.
noQuotel =ANY-""-cr-If.

IGNORE tab + cr + If

TOKENS
identifier = letter { letter | digit } .
string =""{noQuote2 } " | " { noQuotel } """ .
number = digit { digit } .
PRODUCTIONS
Cocol ="COMPILER" Goal
[ Characters ]
[ Ignorable ]
[ Tokens ]
Productions
"END" Goal ".".
Goal = identifier .

Characters ="CHARACTERS" { NamedCharSet } .

NamedCharSet = Setldent "=" CharacterSet "." .

CharacterSet = SimpleSet { "+" SimpleSet | "-" SimpleSet } .
SimpleSet = Setldent | string | SingleChar [ ".." SingleChar ] | "ANY" .
SingleChar ="CHR""(" number ")".

Setldent = identifier .

Ignorable ="IGNORE" CharacterSet .

Tokens ="TOKENS" { Token } .
Token = Tokenldent "=" TokenExpr "." .



TokenExpr = TokenTerm {"|" TokenTerm}.
TokenTerm = TokenFactor { TokenFactor } [ "CONTEXT" (" TokenExpr ")"] .
TokenFactor = TokenSymbol | "(" TokenExpr ")" | "[* TokenExpr ""
| "{" TokenExpr "}" .
TokenSymbol = Setldent | string .
Tokenldent = identifier .

Productions ="PRODUCTIONS" { Production } .
Production = NonTerminal "=" Expression ".".
Expression =Term {"|" Term}.

Term = Factor { Factor } .

Factor = Symbol | (" Expression ")" | "[" Expression "]"
| "{" Expression "}" .
Symbol = string | NonTerminal | Tokenldent .

NonTerminal = identifier .

END Cocaol.

The following points are worth emphasizing:

® The productions in theOKENSsection specify identifiers, strings and numbers in the usL
simple way.

® The first production (for Cocol) shows the overall form of a grammar description as
consisting of four sections, the first three of which are all optional (although they are u
present in practice).

® The productions foCharacterSets  show how character sets may be given naiSetkléents)
and values (o8 mpleSets).

® The production forgnorable  allows certain characters - typically line feeds and other
unimportant characters - to be included in a set that will simply be ignored by the scar
when it searches for and recognizes tokens.

® The productions forokens show how tokens (terminal classes) may be namadbl dents)
and defined by expressions in EBNF. Careful study of the semantic overtones of thes:
productions will show that they are not self-embedding - that is, one token may not be
in terms of another token, but only as a quoted string, or in terms of characters chose!
the named character sets defined indRe@RACTERSection. This amounts, in effect, to
defining these tokens by means of regular expressions, even though the notation use:
the same as that given for regular expressions in section 5.3.

® The productions foProductions ~ show how we define the phrase structure by naming
NonTerminals and expressing their productions in EBNF. Notice that herarallowed to
have self-embedding and recursive productions. Although terminals may again be spe
directly as strings, we are not allowed to use the names of character sets as symbols
productions.

® Although it is not specified by the grammar above, one non-terminal must have the sa
identifier name as the grammar itself to act as the goal symbol (and, of course, all ide!
must be "declared" properly).

® |t is possible to write input in Cocol that is syntactically correct (in terms of the grammi
above) but which cannot be fully processed by Coco/R because it does not satisfy oth
constraints. This topic will be discussed further in later sections.

We stress again that Coco/R input really specifigsgrammars. One is the grammar specifying
the non- terminals for the lexical analyse0KEN$ and the other specifies non-terminals for the



higher level phrase structure grammar used by the syntax an&Re&UCTIONS However,
terminals may also be implicitly declared in the productions section. So the following, in one
may appear to be equivalent:

COMPILER Sample (* one *)

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz" .

TOKENS
ident = letter { letter } .

PRODUCTIONS
Sample = "BEGIN" ident ":=" ident "END" .

END Sample .

COMPILER Sample (* two *)

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz" .

TOKENS
Letter = letter .

PRODUCTIONS
Sample = "BEGIN" Ident ":=" Ident "END" .
Ident = Letter { Letter }.

END Sample .

COMPILER Sample (* three *)

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz" .

TOKENS
ident = letter { letter } .
begin = "BEGIN" .
end ="END".
becomes =":=".

PRODUCTIONS
Sample = begin ident becomes ident end .

END Sample .

Actually they are not quite the same. Since Coco/R always ignores spaces (other than in st
the second one would treat the input

ACE:=SPADE
as the first would treat the input
ACE := SPADE

The best simple rule seems to be that one should declarenandgsany class of symbol that h
to be recognized as a contiguous string of characters, and of which there may be several ir
(this includes entities like identifiers, numbers, and strings) - as well as special character te
(like EOL) that cannot be graphically represented as quoted characters. Reserved keywords
symbols like *=" are probably best introduced as terminals implicitly declared iRRI@®UCTION:
section. Thus grammar (1) above is probably the best so far as Coco/R is concerned.

Exercises



5.11 Develop simple grammars to describe each of the following
(a) A person’s name, with optional title and qualifications (if any), for example

S.B. Terry , BSc
Master Kenneth David Terry
Helen Margaret Alice Terry

(b) A railway goods train, with one (or more) locomotives, several varieties of trucks,
and a guard’s van at the rear.

(c) A mixed passenger and goods train, with one (or more) locomotives, then one or
more goods trucks, followed either by a guard’s van, or by one or more passenger
coaches, the last of which should be a passenger brake van. In the interests of safety
to build in a regulation to the effect that fuel trucks may not be marshalled immediatel
behind the locomotive, or immediately in front of a passenger coach.

(d) A book, with covers, contents, chapters and an index.
(e) A shopping list, with one or more items, for example
3 Practical assignments
124 bottles Castle Lager
12 cases Rhine Wine
large box aspirins

(f) Input to a postfix (reverse Polish) calculator. In postfix notation, brackets are not
used, but instead the operators are placed after the operands.

For example,
infix expression reverse Polish equivalent
6+9= 69+=
(a+b)*(c+d) ab+cd+*

(g) A message in Morse code.
(h) Unix or MS-DOS file specifiers.
(1) Numbers expressed in Roman numerals.

()) Boolean expressions incorporating conjunction (OR), disjunction (AND) and
negation (NOT).

5.12 Develop a Cocol grammar using only BNF-style productions that defines the rules for
expressing a set of BNF productions.

5.13 Develop a Cocol grammar using only BNF-style productions that defines the rules for
expressing a set of EBNF productions.

5.14 Develop an EBNF grammar that defines regular expressions as described in section £



5.15 What real practical advantage does the Wirth notation using [ ] and { } afford over the |
the Kleene closure symbols?

5.16 In yet another variation on EBMEan be written into an empty right side of a production
explicitly, in addition to being handled by using the [ ] notation, for example:

Sign="+"|" =", (*the £ or null is between the last | and . *)

Productions like this cannot be described by the productions for EBNF given in section 5.9.
Develop a Cocol grammar that describes EBNF productionsldialow an empty string to appe
implicitly.

5.17 The local Senior Citizens Association make a feature of Friday evenings, when they e
mediocre group to play for dancing. At such functions the band perform a number of selecti
interspersed with periods of silence which are put to other good use. The band have only fc
of selection at present. The first of these consists of waltzes - such a selection always start
slow waltz, which may be followed by several more slow waltzes, and finally (but only if the
of the evening demands it) by one or more fast waltzes. The second type of selection consi
several Rock’'n’Roll numbers. The third is a medley, consisting of a number of tunes of any
played in any order. The last is the infamous "Paul Jones", which is a special medley in wh
second tune is "Here we go round the mulberry bush". During the playing of this, the dance
pretend to change partners, in some cases actually succeeding in doing so. Develop a grar
which describes the form that the evening assumes.

5.18 Scottish pipe bands often compete at events called Highland Gatherings where three
competition are traditionally mounted. There is the so-called "Slow into Quick March" comp
in which each band plays a single Slow March followed by a single Quick March. There is t
so-called "March, Strathspey and Reel" competition, where each band plays a single Quick
followed by a single Strathspey, and then by a single Reel; this set may optionally be follow
further Quick March. And there is also the "Medley", in which a band plays a selection of tu
almost any order. Each tune fall into one of the categories of March, Strathspey, Reel, Slov
Jig and Hornpipe but, by tradition, a group of one or more Strathspeys within such a medle
always followed by a group of one or more Reels.

Develop a grammar to describe the activity at a Highland Gathering at which a number of
competitions are held, and in each of which at least one band performs. Competitions are f
one category at a time. Regard concepts like "March", "Reel" and so on as terminals - in fa
are many different possible tunes of each sort, but you may have to be a piper to recognize
from another.

5.19 Here is an extract from the index of my forthcoming bestseller "Hacking out a Degree"

abstract class 12, 45

abstraction, data 165

advantages of Modula-2 1-99, 100-500, Appendix 4
aegrotat examinations -- see unethical doctors
class attendance, intolerable 745

deadlines, compiler course -- see sunrise

horrible design (C and+@) 34, 45, 85-96

lectures, missed 1, 3, 5-9, 12, 14-17, 21-25, 28
recursion -- see recursion

senility, onset of 21-24, 105



subminimum 30
supplementary exams 45 - 49
wasted years 1996-1998

Develop a grammar that describes this form of index.

5.20 You may be familiar with the "make" facility that is found on Unix (and sometimes on
MS-DOS) for program development. A "make file" consists of input tentlke command that
typically allows a system to be re-built correctly after possibly modifying some of its compol
parts. A typical example for a system involving®&ompilation is shown below. Develop a
grammar that describes the sort of make files that you may have used in your own prograrn
development.

# makefile for maintaining my compiler
CFLAGS = -Wall
CC =g++
HDRS = parser.h scanner.h generator.h
SRCS = compiler.cpp\
parser.cpp scanner.cpp generator.cpp
OBJS = compiler.o parser.o scanner.o generator.o

%.0: %.cpp $(HDRS)
$(CC) -¢ $(CFLAGS) $<

all:  compiler
new: clean compiler

cin:  $(OBJS)
$(CC) -0 cIn $(CFLAGS) $(OBJS)

clean:

rm*.o
rm compiler

5.21 C programmers should be familiar with the use of the standard fursetiensandprintf
for performing input and output. Typical calls to these functions are

scanf("%d %s %c", &n, string, &ch);
printf("Total = %-10.4d\nProfit = %d\%%\n", total, profit);

in which the first argument is usually a literal string incorporating various specialized format
specifiers describing how the remaining arguments are to be processed.

Develop a grammar that describes such statements as fully as you can. For simplicity restr
yourself to the situation where any arguments after the first refer to simple variables.

Further reading

The use of BNF and EBNF notation is covered thoroughly in all good books on compilers a
syntax analysis. Particularly useful insight will be found in the books by Watt (1991), Pittma
Peters (1992) and Gough (1988).

5.10 Syntax diagrams

An entirely different method of syntax definition is by means of the graphic representation k



as syntax diagrams, syntax charts, or sometimes "railroad diagrams". These have been us
define the syntax of Pascal, Modula-2 and Fortran 77. The rules take the form of flow diagr
possible paths representing the possible sequences of symbols. One starts at the left of a ¢
and traces a path which may incorporate terminals, or incorporate transfers to other diagral
word is reached that corresponds to a non-terminal. For example, an identifier might be del

Identifier
—+ Letter

Digit

with a similar diagram applying teetter , which we can safely assume readers to be intellige
enough to draw for themselves.

Exercises

5.22 Attempt to express some of the solutions to previous exercises in terms of syntax diac

5.11 Formal treatment of semantics

As yet we have made no serious attempt to describe the semantics of programs written in ¢
"languages”, and have just assumed that these would be self-evident to a reader who alreg
come to terms with at least one imperative language. In one sense this is satisfactory for ot
purposes, but in principle it is highly unsatisfactory not to have a simple, yet rigidly formal n
of specifying the semantics of a language. In this section we wish to touch very briefly on w
which this might be achieved.

We have already commented that the division between syntax and semantics is not always
clear-cut, something which may be exacerbated by the tendency to specify productions usi
with clearly semantic overtones, and whose sentential forms already reflect meanings to be
to operator precedence and so on. When specifying semantics a distinction is often attemp
between what is termestiatic semantics - features which, in effect, mean something that can |
checked at compile-time, such as the requirement that one may not branch into the middle
procedure, or that assignment may only be attempted if type checking has been satisfied -
dynamic semantics - features that really only have meaning at run-time, such as the effect o
branch statement on the flow of control, or the effect of an assignment statement on eleme
storage.

Historically, attempts formally to specify semantics did not meet with the same early succes
those which culminated in the development of BNF notation for specifying syntax, and we f
the semantics of many, if not most, common programming languages have been explained
of a natural language document, often regrettably imprecise, invariably loaded with jargon,
difficult to follow (even when one has learned the jargon). It will suffice to give two example



(a) In a draft description of Pascal, the syntax ofittib statement was defined by

<with-statement > = wi t h <record-variable-list > do <statement >
<record-variable-list > = <record-variable >{, <record-variable >}
<variable-identifier > = <field-identifier >

with the commentary that

"The occurrence of erecord-variable in the<record-variable-list is a defining occurrence of its
<field-identifier-s as<variable-identifiess for the<with-statement in which the<record-variable-
list> occurs."

The reader might be forgiven for finding this awkward, especially in the way it indicates tha
the<statement the<field-identifier>-s may be used as though they werariable-identifiess.

(b) In the same description we find thvile statement described by
<while-statement::= while <Boolean-expressiondo <statement
with the commentary that

"The <statement is repeatedly executed while thBoolean-expressiceryields the value TRUE.
its value is FALSE at the beginning, th&atement is not executed at all. Thavhile- statement

while b do body
is equivalent to
if bthen repeat body until not b."

If one is to be very critical, one might be forgiven for wondering what exactly is meant by
"beginning"” (does it mean the beginning of the program, or of execution of this one part of t
program). One might also conclude, especially from all the emphasis given to the effect wh
<Boolean-expressicfis initially FALSE, that in that case tk&vhile-statementis completely
equivalent to an empty statement. This is not necessarily true, for evaluation of the
<Boolean-expressicimight require calls to a function which has side-effects; nowhere (at le
the vicinity of this description) was this point mentioned.

The net effect of such imprecision and obfuscation is that users of a language often resort 1
simple test programs to help them understand language features, that is to say, they use tr
operation of the machine itself to explain the language. This is a technique which can be di
on at least two scores. In the first place, the test examples may be incomplete, or too speci
only a half-truth will be gleaned. Secondly, and perhaps more fundamentally, one is then cc
an abstract language with one concrete implementation of that language. Since implement:
may be error prone, incomplete, or, as often happens, may have extensions that do not fori
the standardized language at all, the possibilities for misconception are enormous.

However, one approach to formal specification, knowopasational semantics essentially
refines this ad-hoc arrangement. To avoid the problems mentioned above, the (written)
specification usually describes the action of a program construction in terms of the changes
of an abstract machine which is supposed to be executing the construction. This method w
specify the language PL/I, using the metalangiégk (Vienna Definition Language). Of cours



to understand such specifications, the reader has to understand the definition of the abstra
machine, and not only might this be confusingly theoretical, it might also be quite unlike the
machines which he or she has encountered. As in all semantic descriptions, one is simply ¢
the problem of "meaning” from one area to another. Another drawback of this approach is t
tends to obscure the semantics with a great detail of what is essentially useful knowledge fi
implementor of the language, but almost irrelevant for the user of the same.

Another approach makes useattribute grammars, in which the syntactic description (in term
of EBNF) is augmented by a set of distinct attribiggsach one associated with a single termi
or non-terminal) and a set of assertions or predicates involving these attributes, each asser
associated with a single production. We shall return to this approach in a later chapter, for i
the basis of practical applications of several compiler generators, among them Coco/R.

Other approaches taken to specifying semantics tend to rely rather more heavily on mather
logic and mathematical notation, and for this reason may be almost impossible to understal
programmer is one of the many thousands whose mathematical background is comparative
Denotational semantics, for example defines programs in terms of mappings into mathemati
operations and constructs: a program is simply a function that maps its input data to its out
and its individual component statements are functions that map an environment and store t
updated store. A variant of thigDM (Vienna Definition Method), has been used in formal
specifications of Ada, Algol-60, Pascal and Modula-2. These specifications are long and dif
follow (that for Modula-2 runs to some 700 pages).

Another mathematically based method, which was used by Hoare and Wirth (1973) to spec
semantics of most of Pascal, uses so-cabkomatic semantics, and it is worth a slight digressit
to examine the notation used. It is particularly apposite when taken in conjunction with the ¢
of program proving, but, as will become apparent, rather limited in the way in which it speci
what a program actually seems to be doing.

In the notationSis used to represent a statement or statement sequence, and leteI@ bkelR

are used to represeptedicates, that is, the logical values of Boolean variables or expression:
notation like

{P}S{Q}
denotes a so-callaedductive expression, and is intended to convey thabiis true before&Sis
executed, the@ will be true afteliSterminates (assuming that it does terminate, which may n
always happen).
P is often called therecondition andQ thepostcondition of S, Such inductive expressions ma
be concatenated with logical operations #k@nd) and- (not) and= (implies) to give expressiol
like

{P}S{Q}A{Q}S{R}
from which one can infer that

{P}S:S{R}

which is written more succinctly ag ale of inference



{P}S{Q}A{Q}S{R}

{P}S S{R}
Expressions like
P=Qand{Q} S{ R}
and
{P}S{Q}andQ=R
lead to theconsequencerules

P=Qand{Q} S{ R}

{P}S{R}
and

{P}S{Q}andQ=R

{P}S{R}

In these rules, the top line is called Hmtecedent and the bottom one is called ttansequent; so
far as program proving is concerned, to prove the truth of the consequent it is necessary or
prove the truth of the antecedent.

In terms of this notation one can write down rules for nearly all of Pascal remarkably tersely
example, thavhile statement can be described by

{PAB}S{P}

{P}whileBdoS{PA-B}
and thaf statements by

{PAB}S{Q}andPA-B=Q

{P}if Bthen S{ Q}

{PArB}S{Q}land{PAr-B}S,{Q}

{P}if Bthen S élseS,{ Q}

With a little reflection one can understand this notation quite easily, but it has its drawbacks
Firstly, the rules given are valid only if the evaluatioBqiroceeds without side-effects (compe
the discussion earlier). Secondly, there seems to be no explicit description of what the mac
implementing the program actually does to alter its state - the idea of "repetition” in the rule
while statement probably does not exactly strike the reader as obvious.



Further reading

In what follows we shall, perhaps cowardly, rely heavily on the reader’s intuitive grasp of
semantics. However, the keen reader might like to follow up the ideas germinated here. So
natural language descriptions go, a draft description of the Pascal Standard is to be found i
article by Addymaret al (1979). This was later modified to become the 1ISO Pascal Standard
known variously as ISO 7185 and BS 6192, published by the British Standards Institute, Lo
copy is given as an appendix to the book by Wilson and Addyman (1982)). A most readabls
to the Pascal Standard was later produced by Cooper (1983). Until a standardifoc@npleted
the most precise description of-Cis probably the "ARM" (Annotated Reference Manual) by E
and Stroustrup (1990), but-€has not yet stabilized fully (in fact the standard appeared shor
after this book was published). In his book, Brinch Hansen (1983) has a very interesting ch
the problems he encountered in trying to specify Edison completely and concisely.

The reader interested in the more mathematically based approach will find useful introducti
the very readable books by McGettrick (1980) and Watt (1991). Descriptions of VDM and
specifications of languages using it are to be found in the book by Bjorner and Jones (1982
Finally, the text by Pittman and Peters (1992) makes extensive use of attribute grammars.



