Calling HLA Code From Other Languages

As explained in the HLA manual, calling HLA procedures and functions from other languages is
generally easy. Just create an “external” procedure declaration (to make your procedure’s name
public), compile the procedure as part of a unit, link it with your other code, and you're in busi-
ness (see the Chapter on “Mixed Language Programming” in the Art of Assembly Language) for
more details). There is one catch, and | quote from the chapter on Mixed Language Programming
from “The Art of Assembly Language”:

A large percentage of the HLA Standard Library routines include exception handling state-
ments or call other routines that use exception handling statements. Unless you' ve set up the
HLA exception handling subsystem properly, you should not call any HLA Standard Library
Routines from non-HLA programs.

Similarly, you should not use any exception handling statements in code that you call from non-
HLA code unless you've properly set up the exception handling subsystem.

Until now, that advice has simply meailidn’t use exceptions and don’t call any routines that

use exceptions (e.g., HLA Standard Library routines) when calling HLA procedures from a non-

HLA main program.” The reason for this tough restriction? Simple, other than myself and perhaps
a few hearty programmers who've probed the internals of HLA-generated code, very few people
have known how to set up the HLA exception handling system properly.

Properly setting up the HLA exception handling system isn’t that complex. In fact, once you
know what you're doing, it's actually quite easy. However, until now that knowledge hasn’'t been
publically available, so the best advice has always been “don’t even try it.” The purpose of this
white paper is to rectify this situation by describing what you need to do to initialize HLA's
exception handling system.

Before going too much farther, | should point out that the information in this document is specific
to Windows. While the same concepts apply to Linux, there are a few differences. If there is
demand for such a thing, I'll be more than happy to create a document such as this one for Linux
users. The principle differences have to do with the way x86 CPU exceptions are handled. The
general HLA exception handling mechanism is the same under both OSes, it’s just a question of
how the HLA exception handling subsystem taps into the OS’ exception system.

When an HLA program first starts running, it executes a (compiler-generated) call to an HLA
Standard Library procedure callBdildExcepts. BuildExcepts creates a Windows-compatible

SEH (Structured Exception Handling) record in the main program’s stack frame. This SEH record
becomes the “catch-all” for any exceptions that the program doesn’t specifically handle. Should
an exception wind its way down to this particular exception handling record, then the code exe-
cutes the programs default exception handler, that displays an error message and aborts the pro-
gram.

The problem with calling HLA code from another language is that this default SEH record has
never been built, because there is no HLA main program executing that built this record upon ini-
tial execution. When an unhandled exception comes along, the system generally crashes or hangs
as there exists no default exception handler to deal with the exception. To avoid this problem (so
you can use exceptions and call code that uses exceptions), what you've got to do is manually
build that SEH record yourself. Actually, you don’t have to build the SEH record yourself - that's
exactly what the HLA Standard LibraBuildExcepts procedure does. What you've got to do is

call this procedure so it can build the SEH record for you.

In a normal HLA main program, an application c&isldExcepts exactly once - immediately

upon entry into the main program. This creates a single SEH exception handling record that sits
around on the stack until the program exits. Unfortunately, when you call HLA code from some
other language, you don't get the opportunity to build this SEH record at the beginning of the
main program’s execution (and even if you did, there is no guarantee that the exception handling
system in place in that other language is compatible with HLAS). Therefore, we won'’t be able to
build the SEH record once and forget about it; instead, we’ll have to build the SEH record on each
call to some HLA procedure from external code, and we’ll have to tear down that SEH record
before leaving. Yep, this is all overhead that you're going to execute on each call to an HLA func-
tion you make from some other language. The good news is that setting up (and tearing down) the
SEH record takes less than a dozen instructions, so it's not that big of a deal.

Setting up and tearing down the SEH isn't the only work involved in supporting exceptions in
HLA code. There are a couple of routines and a couple of data structures that the HLA compiler
automatically generates whenever you write a main program. You'll have to manually supply
these routines and data structures yourself.

The data structures exist to support HLA coroutines. Though it's unlikely you'll use coroutines in
HLA code you call from C or some other language, you still have to create a coroutine data struc-
ture for the “main program” because the HLA exception handling code references this data struc-
ture. This is easily achieved with the following HLA code:

static
Mai nPgmiVMI: dwor d: = &Qui t Mai n;

/1 The follow ng conprise the Main Program s coroutine data structure.

Mai nPgnCor out i ne: dword[5]; @xternal ("M nPgnCoroutine__hla_");
Mai nPgnCor out i ne: dword; @ost or age;

dword &Wai nPgnivMr, 0, O;
SaveSEHPoi nt er : dwor d; @nost or age;

dword 0, O;

The important field in this structure is tBaveSEHPointer field. The exception handling system
expects a pointer to the previous SEH record in this field BlilelExcepts stores the old SEH
pointer in this field, when your code returns it should restore the SEH pointer from this field. You
can ignore the remaining fields in these two data structures, they just exist to keep HLA happy.

The HLA Standard Library provides three routines we’ll need to reference in the exception han-
dler code we're setting up. However, the HLA Standard Library header files don't provide proto-
types for all of these routines (because it would be unusual for user code to call them), therefore,
you'll also have to manually supply prototypes for these routines. The prototypes are

procedure Buil dExcepts; @xternal ("Buil dExcepts__hla_ ");
procedur e HardwareException; @xternal ("HardwareException__hla ");
procedure Defaul t Excepti onHandl er; @xternal ("Defaul t Excepti onHandl er__hla_"

)

BuildExcepts we've already discussed. ThiardwareException procedure is where the system

would normally transfer control on a hardware exception.OdfaultExceptionHandler is the

code that HLA jumps to whenever an exception occurs. The purpose behind these last two proce-
dures is to allow the HLA compiler to link in a separate set of exception handling routines
depending on whether you want a “compact” exception handler or the full exception handler (the
difference has to do with the size of the string data that HLA would link in). Throughout this

paper we’ll assume you want to link in the full exception handling package. See the details in the
HLA reference manual concerning exceptions (and look at the code HLA emits for short excep-
tions) if you're interested in linking in the shorter version of the exception handller (with a single
generic message rather than exception-specific messages).

In addition to the Standard Library routines given above, the HLA compiler also writes a couple
of procedures (and provides program termination code). These procedures take the following
form:

procedure Quit Min;
begi n Qui t Mai n;

ExitProcess(1);
end QuitMin;

procedure HWxcept;
begi n HWexcept ;

jmp Har dwar eExcepti on;
end HWexcept ;

procedure DfltExHndl r;
begin Dflt ExHndl r;

jmp Def aul t Except i onHandl er;

end Dflt ExHndl r;

QuitMain, in the HLA generated code, is really just a label, not a full procedure. HLA transfers
control to this label whenever it wants to terminate the program. As some exceptions will transfer
control to this label, you must supply this label in your code. All this procedure’s body need do is

return control to the operating system. You can actually sneak in anything else you want, but when
the procedure completes, it must return control to Windows (e.g., via the ExitProcess call).

The HWexcept label is where HLA's initialization code points the “hardware exception vector.”
Specifically, hardware exceptions like divide errors, segmentation faults, bounds violations, etc.,
first jump to this procedure. This short procedure simply passes control to the routine in the HLA
Standard Library that actually handles the hardware exception.

DfltExHndIr is another procedure written by the HLA compiler. The purpose of this routine is to
allow HLA code to link with the full exception handlédfaultExceptionHandler) or the short
exception handler (see the HLA standard library exception handling code for details). As noted
earlier, in this paper we’re going to use the full exception handling system.

To explain how to use all these functions and data types, an example is in order. Consider the fol-
lowing C program that will call an HLA procedure naniéaFunc:

/*

** A denonstration of how you can call HLA code

** that calls the HLA Standard Library from code

** that is not an HLA nmain program (in this case, it's
** a "C' program.

* %

** Note: this programwas conpiled with Mcrosoft VC++
** using the follow ng command | i nes:

* %

** c:>vecvars32

** c:>hla -c hlafunc. hla

** ¢:>cl cdeno.c hlafunc.obj hlalib.lib kernel32.1ib user32.1ib
*/

#i ncl ude <stdi o. h>

extern void hlaFunc(int value);

i nt
mai n(void)
{
printf("Calling HLA code\n");
hl aFunc(10);
printf("Returned from HLA code\n");
return O;
}

As usual, we’ll place the code we want to call from our C function in an HLA unit and compile
this to an .OBJ file. Here’s the complete HLA procedure (discussion to follow):

unit hlaFuncUnit;

/1 W want to denonstrate how to call HLA Standard Library
/1l routines fromcode that is called fromC, so let's include
/1l the standard library right here.

#include(“stdlib. hhf")

/1l Here's the sanple function we're going to call from externa
/1l code ("C'" in this exanple) that denonstrates HLA stdlib calls
/'l and exception handling.

procedure hlaFunc(i:int32); @decl; @xternal ("_hlaFunc");

/'l These are declarations for procedures that exist in the HLA

/1l standard library, but are "shrouded” in the sense that there

/1l aren't corresponding declarations in the stdlib.hhf file (these
/1l routines generally get called by HLA generated code, and nothing
/'l else; however, as we have to sinulate "HLA generated code" here,
/1 we have to manual |y provide these decl arations):

procedure Buil dExcepts; @xternal ("Buil dExcepts__hla_");
procedur e HardwareException; @xternal ("HardwareException__hla ");
procedur e Defaul t Excepti onHandl er; @xternal ("Defaul t Excepti onHandl er __hla_"

)

/1 The follow ng are forward/ external declarations for procedures
/1 that are normally created by the HLA conpiler when you wite
/1 a "main program” As we are not using an HLA nain program here,
/1 we have to manually create these procedures.

procedure HWexcept; @xternal ("HWexcept__hla ");
procedure DfltExHndlr; @xternal ("DfltExHndlr__hla ");
procedure QuitMain; @xternal ("QuitMain__hla ");

/1 The following is a Wn32 APl function this code calls:

procedure ExitProcess(rtnCode:dword); @xternal ("_ExitProcess@");

/1 The follow ng are sone gl obal, public, variables that the

/1 HLA exception handling run-tinme system expect the conpiler

/1l to create for the HLA nain program Once again, as we are not
/1 witing an HLA mai n program here, we have to nmanually supply
/'l these objects:

static
Mai nPgmVMT: dwor d: = &Qui t Mai n

Mai nPgnmCor outi ne: dword[5]; @xternal ("Mai nPgnCoroutine__hla ");
Mai nPgnCor out i ne: dword; @ost or age;

dword &Mai nPgnivMr, 0, O
SaveSEHPoi nt er : dwor d; @ost or age;

dword 0, O;

/1 HLA main programs provide a "QuitMin" external |abel that

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

exception handling code can when the exception causes the
programto abort. This [abel imrediately term nates program
execution. As we are not witing an HLA main program the HLA
conpi |l er does not provide this code for us, we have to supply

it manually. You can do anything you want here, as |long as you
cause the *whol e* programto term nate execution. This particul ar
exanple sinply calls ExitProcess and returns a termnation code

of one (which you can change to anything you want; non-zero usually
i ndi cates successful conpletion of the application, but this | abe
normal |y gets called when the application aborts because of sone
exception, so returning zero isn't typical in this particular case

procedure Quit Min;
begi n Qui t Mai n;

ExitProcess(1);

end QuitMin;

/1
/1
/1
/1

HWexcept is where the OS would nornmally transfer control
when an x86 exception occurs. This procedure is normally
written by the HLA conpiler and sinply junps to an
appropriate handler in the HLA Standard Library.

procedure HWxcept;
begi n HWexcept ;

j mp Har dwar eExcepti on;

end HWexcept ;

/1 DfltExHndlr is where the exception handling code transfers
/1 control when an HLA exception occurs. This is nornally

/1 witten by the conmpiler (to allow the conmpiler to choose
/1 between the full and short forns of the default exception
/1 handler). NOTE: the follow ng code invokes the *full*

/1 exception handler (lots of neaningful nessages, at the

/'l expense of the space needed for all those nessages).

procedure DfltExHndl r;
begin Dflt ExHndl r;

j mp Def aul t Excepti onHandl er

end Dflt ExHndl r;

/1 Here's the HLA code we're going to call from C that

/1 denonstrates exception handling without an HLA nain program
procedure hlaFunc(i:int32);

var

s:string;

begi n hl aFunc;

/1 Upon entry into any HLA code that needs exception support,
/1 we have to set up the structured exception handling record
/1l for HLA:

cal | Buil dExcepts;

/1 Okay, here's the code we're going to execute that uses
/'l exceptions, calls HLA stdlib routines, etc., even though
/1l caller is not an HLA program

try

stdout. put("stdout.put called fromHLA code, i =", i, nl
raise(5);

exception(5);
stdout. put("Exception handl ed by HLA code" nl);

endtry;

/1 One nore denonstration, this tine with an exception
/1l occurring deep down inside an HLA Standard Li brary routine:

try
stralloc(16);
mov(eax, S);
str.cpy("Hello Wrld", s);
stdout. put("Successfully copied "Hello Wrld" to s: ", s,
str.cpy("0123456789abcdef ghi j kl mop", s);
stdout. put("Shouldn't get here" nl);

anyexception
stdout. put("Exception code: ", eax, nl);
ex. print Excepti onError();

endtry;
strfree(s);
stdout.put("Returning to C code" nl);

/1 Before we | eave, we have to clean up the SEH record
/'l pushed on the stack by Buil dExcepts. Actually, the
/1l return will clean this up, but we do need to restore
/'l the system s SEH poi nter before returning.

mov(SaveSEHPoi nter, eax);

/1 The follow ng actually *coul d* be done in straight
/1 HLA code, but this is easier.

#asm
mov fs:[0], eax
#endasm

end hl aFunc;

end hl aFuncUni t;

ThehlaFunc procedure appearing at the end of this source file is of primary interest to us here.
The HLA function you call from C (or any other language) must begin by immediately calling
BuildExcepts upon entry into the procedure. This constructs the HLA SEH record and initializes
the HLA exception handling system. Just as important, before the procedure returns it must clean
up the SEH record; this is accomplished with the last two MOV instructions in this code (includ-
ing the one appearing in the #asm..#endasm sequence). Everything between those two points is
the normal body of your procedure. This code can use the try..endtry statement, raise exceptions,
and call external procedures that using try..end and/or raise exceptions. The code appearing in this
sample both demonstrates directly raising an exception and calling an HLA Standard Library rou-
tine that raises an exception. Also note how this code is free to call HLA Standard Library rou-
tines without fear of crashing the system should an exception occur.

It is important to realize that you must c&lildExcepts and clean up the SEH record in each
HLA procedure you call from some other language. Note, however, that you don't have to do this
for HLA procedures that you only call from HLA code (that has already built the SEH record).

This paper should provide you with sufficient information to initialize the HLA exception han-
dling system whenever you call an HLA procedure from some other language (or whenever the
HLA exception handling system has not been previously initialized). If you have any questions,
feel free to email me at rhyde@cs.ucr.edu.

Randy Hyde

