
HLA Standard Library Reference
28 Sockets Module (sockets.hhf)

The HLA Standard Library provides two mechanisms that support network communications via sockets: a
low-level library (whose functions appear in the sock namespace) and a higher-level socket class that makes it
almost trivial to create client/server applications. The low-level sock library provides a thin veneer over the low-
level OS calls (largely to make the calls portable across all OSes). Those wanting to write networking
applications using traditional BSD-style socket calls should consider using the sock module rather the low-level
OS calls.

Note: HLA also provides access to certain low-level OS API primitives that directly access the native OS’
networking code. Please see the discussions of the native OS functions for more details on such low-level
network access.

28.1 The SOCK Module
The sock namespace in the HLA standard library contains a fair set of functions that behave largely like the

original BSD socket functions (that most OSes support). These functions, by and large, work just like the low-
level socket calls that most OSes support. Largely, these function smooth out some data type differences
between various OSes (e.g., the definition of the fd_set_t data type) so that function calls (and the data types of
their arguments) are consistent across all OSes, regardless of the underlying data types a particular OS might use.

28.2 Socket Initialization and Cleanup
Before using any socket functions, you must first call the sock.socketInit function to initialize the socket

library. When you are done using sockets in an application, you must call sock.socketCleanup to free system
resources and shut down the socket system. These are HLA standard library functions that are not particularly
related to the underlying OS socket API. You must call these function before any other socket operations and
when you’re done using the sockets.

sock.socketInit;

This function initializes the socket library for the HLA standard library. You must call this function exactly
one in any application that makes other low-level socket calls (before making those calls). Note that this function
may increment an internal reference counter, so make sure you make a corresponding call to sock.socketCleanup
before your application terminates.

sock.socketInit();

sock.socketCleanup;

This function undoes the effects of sock.socketInit and frees up any system resources reserved by
sock.socketInit. You must call it exactly once when your application is done using sockets.

sock.socketCleanup();

28.3 Generic Socket Functions
A few functions in the sock namespace provide conversions on socket metadata. These functions include

sock.a_adrsToStr, sock.adrsToStr, and sock.strToAdrs.

sock.a_adrsToStr(a:bigEndianDW); @returns("eax");
sock.adrsToStr(a:bigEndianDW; s:string);

These functions take a dword parameter in network byte order (big endian form) and convert the address to
the form "ddd.ddd.ddd.ddd" (where each "ddd" represents exactly three decimal digits). The sock.a_adrsToStr
function allocates storage for the 15-character string on the heap and returns a pointer to the new string in the
EAX register. The sock.adrsToStr function stores the string result into the string object passed as the second
argument (s). The sock.adrsToStr function will raise an exception if s doesn’t have sufficient storage to hold a
15-character strong.
Released to the Public Domain Page 761

HLA Standard Library
sock.a_adrsToStr($01020304); // Produces "004.003.002.001"
sock.adrsToStr($04030201, s); // Stores "001.002.003.004" into s

sock.strToAdrs(s:string); @returns("eax");

This function take a string parameter of the form "ddd.ddd.ddd.ddd" (where each "ddd" represents exactly
three decimal digits) and converts it to a double word in network byte order (big endian form) and returns this
value in the EAX register. This function raises an exception of there is a conversion error.

sock.strToAdrs("001.002.003.004");// Produces $04030201 in EAX

28.4 Low-Level BSD-Style Socket Functions
The functions in this category correspond to the Berkeley (BSD) sockets functions. You should not assume

that the data types passed to these functions are identical to those in BSD sockets. Some data types have been
changed in order to make the HLA sockets module compatible across all the OSes that the HLA stdlib supports.
It is the responsibility of all of these functions to do any necessary conversion prior to calling the OS-level socket
API functions.

This documentation will not describe the functionality for each of these functions. See a discussion of the
BSD sockets API (on the internet) for more details. If you are unfamiliar with low-level socket calls, you should
either use the HLA standard library socket classes (which simplify network programming) or pick up a good
book on making networking calls via the BSD sockets API. You can also look at the source code for the socket
server and client classes in the HLA standard library for examples of these calls.

sock.accept
(

s :dword;
var addr :sock.sockaddr;
var addrlen :sock.socklen_t

);

The argument s is a socket that has been created with sock.socket, bound to an address with sock.bind, and is
listening for connections after a sock.listen call. The sock.accept function extracts the first connection request
on the queue of pending connections, creates a new socket with the same properties of s and allocates a new file
descriptor for the socket. If no pending connections are present on the queue, and the socket is not marked as
non-blocking, sock.accept blocks the caller until a connection is present. If the socket is marked non-blocking
and no pending connections are present on the queue, sock.accept returns an error as described below. The
accepted socket may not be used to accept more connections. The original socket s remains open.

The argument addr is a result parameter that is filled in with the address of the connecting entity, as known
to the communications layer. The exact format of the addr parameter is determined by the domain in which the
communication is occurring. The addrlen is a value-result parameter; it should initially contain the amount of
space pointed to by addr; on return it will contain the actual length (in bytes) of the address returned. This call is
used with connection-based socket types, currently with sock.SOCK_STREAM.

 It is possible to sock.select a socket for the purposes of doing a sock.accept by selecting it for read.
This function raises an ex.SocketError exception if any error occurs.

sock.bind
(

sockfd :dword;
var addr :sockaddr;

addrlen :socklen_t
);

sock.bind assigns a name (that is, an IP address) to an unnamed socket. When a socket is created with
sock.socket it exists in a name space (address family) but has no name (IP address) assigned. sock.bind requests
that name (IP address) be assigned to the socket.

This function raises an ex.SocketError exception if any error occurs.
Page 762 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
sock.connect
(

s :dword;
var serv_addr :sockaddr;

addrlen :socklen_t
);

The parameter s is a socket. If it is of type sock.SOCK_DGRAM, this call specifies the peer with which the
socket is to be associated; this address is that to which datagrams are to be sent, and the only address from which
datagrams are to be received. If the socket is of type sock.SOCK_STREAM, this call attempts to make a
connection to another socket. The other socket is specified by name (i.e., IP address), which is an address in the
communications space of the socket. Each communications space interprets the name parameter in its own way.
Generally, stream sockets may successfully connect only once; datagram sockets may use sock.connect multiple
times to change their association. Datagram sockets may dissolve the association by connecting to an invalid
address, such as a null address or an address with the address family set to sock.AF_UNSPEC .

This function raises an ex.SocketError exception if any error occurs.

sock.close(s:dowrd);

sock.close closes the socket whose handle is specified by the s descriptor passed as a parameter.
This function raises an ex.SocketError exception if any error occurs.

sock.listen
(

s :dword;
backlog :dword

);

To accept connections, a socket is first created with sock.socket, a willingness to accept incoming
connections and a queue limit for incoming connections are specified with sock.listen, and then the connections
are accepted with sock.accept. The sock.listen call applies only to sockets of type sock.SOCK_STREAM or
sock.SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may grow to. If a
connection request arrives with the queue full the client may receive an error, or, if the underlying protocol
supports retransmission, the request may be ignored so that retries may succeed.

This function raises an ex.SocketError exception if any error occurs.

sock.recv
(

s :dword;
var buf :var;

len :dword;
flags :dword

); @returns("eax");

sock.recvfrom
(

s :dword;
var buf :var;

len :dword;
flags :dword;

var from :sockaddr;
Released to the Public Domain Page 763

HLA Standard Library
var fromlen :socklen_t
); @returns("eax");

sock.recvfrom is used to receive messages from a socket, and may be used to receive data on a socket
whether or not it is connection oriented.

If from is non-nil, and the socket is not connection-oriented, the source address of the message is filled in.
Fromlen is a value-result parameter, initialized to the size of the buffer associated with from, and modified on
return to indicate the actual size of the address stored there.

The sock.recv call is normally used only on a connected socket (see sock.connect) and is identical to
sock.recvfrom with a NJLL from parameter.

 On successful completion, both routines return the number of message bytes read in the EAX register. If
a message is too long to fit in the supplied buffer, excess bytes may be discarded depending on the type of socket
the message is received from (see sock.socket). Note that if these functions read fewer bytes from the socket than
specified by the len parameter, these functions do not raise an end-of-file exception (as is common for the socket
class input routines).

 The receive calls normally return any data available, up to the requested amount, rather than waiting for
receipt of the full amount requested; this behavior is affected by the socket-level options sock.SO_RCVLOWAT
and sock.SO_RCVTIMEO described in sock.getsockopt.

 The sock.select call may be used to determine when more data arrives.
 The flags argument to a sock.recv call is formed by or'ing one or more of the values:
 sock.MSG_OOB process out-of-band data
 sock.MSG_PEEK peek at incoming message
 sock.MSG_WAITALL wait for full request or error
 The sock.MSG_OOB flag requests receipt of out-of-band data that would not be received in the normal

data stream. Some protocols place expedited data at the head of the normal data queue, and thus this flag cannot
be used with such protocols. The sock.MSG_PEEK flag causes the receive operation to return data from the
beginning of the receive queue without removing that data from the queue. Thus, a subsequent receive call will
return the same data. The sock.MSG_WAITALL flag requests that the operation block until the full request is
satisfied. However, the call may still return less data than requested if a signal is caught, an error or disconnect
occurs, or the next data to be received is of a different type than that returned.

This function raises an ex.SocketError exception if any error occurs.

sock.select
(

nfds :dword;
var readSet :sock.fd_set_t;
var writeSet :sock.fd_set_t;
var exceptSet :sock.fd_set_t;
var timeout :sock.timeval

); @returns("eax");

The sock.select function examines the I/O descriptor sets whose addresses are passed in readfds, writefds,
and exceptfds to see if some of their descriptors are ready for reading, are ready for writing, or have an
exceptional condition pending, respectively. The first nfds descriptors are checked in each set; i.e., the
descriptors from 0 through nfds-1 in the descriptor sets are examined. (Example: If you have set two file
descriptors "4"and "17", nfds should not be "2", but rather "17 + 1" or "18".) On return, sock.select replaces the
given descriptor sets with subsets consisting of those descriptors that are ready for the requested operation.

 Select() returns the total number of ready descriptors in all the sets in the EAX register.
Note that the sock.fd_set_t data type may not be equivalent to the fd_set data type used by the underlying

operating system. In particular, you should not assume that this is a bit map. The function may choose to ignore
the nfds parameter (which is present for historical reasons), but you should still set it up properly.

If timeout is a non-nil pointer, it specifies a maximum interval to wait for the selection to complete. If
timeout is a NULL pointer, the select blocks indefinitely. To effect a poll, the timeout argument should be non-
NULL, pointing to a zero-valued sock.timeval structure. Timeout is not changed by sock.select, and may be
reused on subsequent calls, however it is good style to re-initialize it before each invocation of sock.select.

Any of readfds, writefds, and exceptfds may be given as nil pointers ifno descriptors are of interest.
The sock.select function returns the number of ready descriptors that are contained in the descriptor sets. If

the time limit expires, sock.select returns 0. If sock.select raises an exception, the descriptor sets will be
unmodified.

This function raises an ex.SocketError exception if any error occurs.
Page 764 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
sock.send
(

s :dword;
var buf :var;

len :dword;
flags :dword // MSG_* constants

); @returns("eax");

sock.sendto
(

s :dword;
var buf :var;

len :dword;
flags :dword // MSG_* constants

var _to :sock.sockaddr;
tolen :sock.socklen_t

); @returns("eax");

 The sock.end and sock.sendto functions are used to transmit a message to another
 socket. The sock.send function may be used only when the socket is in a connected state, while

sock.sendto may be used at any time.
 The address of the target is given by to with tolen specifying its size. The length of the message is given

by len. If the message is too long to pass atomically through the underlying protocol, the function raises an
ex.SocketError exception and the message is not transmitted.

 No indication of failure to deliver is implicit in a sock.send call.
 If no messages space is available at the socket to hold the message to be transmitted, then sock.send

normally blocks, unless the socket has been placed in non-blocking I/O mode. The sock.select call may be used
to determine when it is possible to send more data.

 The flags parameter may include one or more of the following:

 sock.MSG_OOB /* process out-of-band data */
 sock.MSG_DONTROUTE/* bypass routing, use direct interface */

The flag sock.MSG_OOB is used to send ``out-of-band'' data on sockets that support this notion (e.g.

sock.SOCK_STREAM); the underlying protocol must also support ``out-of-band'' data.
sock.MSG_DONTROUTE is usually used only by diagnostic or routing programs.

The call returns the number of characters sent in the EAX register.
This function raises an ex.SocketError exception if any error occurs.

sock.socket(int domain, int type, int protocol);@returns("eax");

sock.socket creates an endpoint for communication and returns a descriptor. The domain parameter
specifies a communications domain within which communication will take place; this selects the protocol family
which should be used. These families are defined in the include file sockets.hhf.

 The currently understood formats are

 sock.AF_UNIX (UNIX internal protocols),
 sock.AF_INET (ARPA Internet protocols),

The socket has the indicated type, which specifies the semantics of communication. Currently defined types
are:

 sock.SOCK_STREAM
 sock.SOCK_DGRAM
Released to the Public Domain Page 765

HLA Standard Library
A sock.SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams. An
out-of-band data transmission mechanism may be supported. A sock.SOCK_DGRAM socket supports datagrams
(connectionless, unreliable messages of a fixed (typically small) maximum length).

The protocol specifies a particular protocol to be used with the socket. Normally only a single protocol
exists to support a particular socket type within a given protocol family. However, it is possible that many
protocols may exist, in which case a particular protocol must be specified in this manner. The protocol number
to use is particular to the communication domain in which communication is to take place.

Sockets of type sock.SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must
be in a connected state before any data may be sent or received on it. A connection to another socket is created
with a sock.connect call. Once connected, data may be transferred using some variant of the sock.send and
sock.recv calls. When a session has been completed a sock.close may be performed. Out-of-band data may also
be transmitted as described in sock.send and received as described in sock.recv.

 The communications protocols used to implement a sock.SOCK_STREAM stream insure that data is not
lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be successfully
transmitted within a reasonable length of time, then the connection is considered broken and calls will indicate an
error by raising an ex.SocketError exception. The protocols optionally keep sockets ``warm'' by forcing
transmissions roughly every minute in the absence of other activity. An error is then indicated if no response can
be elicited on an otherwise idle connection for a extended period (e.g. 5 minutes). An ex.SocketError exception
is raised if a process sends on a broken stream; this causes naive processes, which do not handle the exceptoin, to
exit.

The operation of sockets is controlled by socket level options. sock.setsockopt and sock.getsockopt are used
to set and get options, respectively.

 If the call is successful, the return value (in EAX) is a descriptor referencing the socket.
This function raises an ex.SocketError exception if any error occurs.

sock.setsockopt
(

s :dword;
level :dword;
optname :dword;

var optval :var;
optlen :socklen_t

); @returns("eax");

sock.getsockopt
(

s :dword;
level :dword;
optname :dword;

var optval :var;
optlen :socklen_t

); @returns("eax");

sock.getsockopt and sock.setsockopt manipulate the options associated with a socket. Options may exist at
multiple protocol levels; they are always present at the uppermost ``socket'' level.

When manipulating socket options the level at which the option resides and the name of the option must be
specified. To manipulate options at the socket level, level is specified as sock.SOL_SOCKET. To manipulate
options at any other level the protocol number of the appropriate protocol controlling the option is supplied. For
example, to indicate that an option is to be interpreted by the TCP protocol, level should be set to the protocol
number of TCP.

The parameters optval and optlen are used to access option values for sock.setsockopt. For sock.getsockopt
they identify a buffer in which the value for the requested option(s) are to be returned. For sock.getsockopt,
optlen is a value-result parameter, initially containing the size of the buffer pointed to by optval, and modified on
return to indicate the actual size of the value returned. If no option value is to be supplied or returned, optval
may be NULL.

Optname and any specified options are passed uninterpreted to the appropriate protocol module for
interpretation. The include file sockets.hhf contains definitions for socket level options, described below.
Page 766 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
Most socket-level options utilize a dword parameter for optval. For sock.setsockopt, the parameter should
be non-zero to enable a Boolean option, or zero if the option is to be disabled. sock.SO_LINGER uses a record
sock.linger parameter, defined in socket.hhf, which specifies the desired state of the option and the linger interval
(see below). sock.SO_SNDTIMEO and sock.SO_RCVTIMEO use a sock. timeval parameter, defined in
sockets.hhf.

 The following options are recognized at the socket level. Except as noted, each may be examined with
sock.getsockopt and set with sock.setsockopt.

sock.SO_DEBUG enables recording of debugging information
sock.SO_REUSEADDR enables local address reuse
sock.SO_REUSEPORT enables duplicate address and port bindings
sock.SO_KEEPALIVE enables keep connections alive
sock.SO_DONTROUTE enables routing bypass for outgoing messages
sock.SO_LINGER linger on close if data present
sock.SO_BROADCAST enables permission to transmit broadcast messages
sock.SO_OOBINLINE enables reception of out-of-band data in band
sock.SO_SNDBUF set buffer size for output
sock.SO_RCVBUF set buffer size for input
sock.SO_SNDLOWAT set minimum count for output
sock.SO_RCVLOWAT set minimum count for input
sock.SO_SNDTIMEO set timeout value for output
sock.SO_RCVTIMEO set timeout value for input
sock.SO_TYPE get the type of the socket (get only)
sock.SO_ERROR get and clear error on the socket (get only)
sock.SO_NOSIGPIPE do not generate SIGPIPE, instead return EPIPE

 sock.SO_DEBUG enables debugging in the underlying protocol modules. sock.SO_REUSEADDR
indicates that the rules used in validating addresses supplied in a sock.bind call should allow reuse of local
addresses. sock.SO_REUSEPORT allows completely duplicate bindings by multiple processes if they all set
sock.SO_REUSEPORT before binding the port. This option permits multiple instances of a program to each
receive UDP/IP multicast or broadcast datagrams destined for the bound port. sock.SO_KEEPALIVE enables the
periodic transmission of messages on a connected socket. Should the connected party fail to respond to these
messages, the connection is considered broken and processes using the socket are notified via an ex.SocketError
exception when attempting to send data. sock.SO_DONTROUTE indicates that outgoing messages should
bypass the standard routing facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address.

sock.SO_LINGER controls the action taken when unsent messages are queued on socket and a sock.close is
performed. If the socket promises reliable delivery of data and sock.SO_LINGER is set, the system will block the
process on the close attempt until it is able to transmit the data or until it decides it is unable to deliver the
information (a timeout period, termed the linger interval, is specified in the sock.setsockopt call when
sock.SO_LINGER is requested). If sock.SO_LINGER is disabled and a close is issued, the system will process
the close in a manner that allows the process to continue as quickly as possible.

The option sock.SO_BROADCAST requests permission to send broadcast datagrams on the socket.
Broadcast was a privileged operation in earlier versions of the socket system. With protocols that support out-of-
band data, the sock.SO_OOBINLINE option requests that out-of-band data be placed in the normal data input
queue as received; it will then be accessible with sock.recv without the sock.MSG_OOB flag. Some protocols
always behave as if this option is set. sock.SO_SNDBUF and sock.SO_RCVBUF are options to adjust the normal
buffer sizes allocated for output and input buffers, respectively. The buffer size may be increased for high-
volume connections, or may be decreased to limit the possible backlog of incoming data. The system places an
absolute limit on these values.

sock.SO_SNDLOWAT is an option to set the minimum count for output operations. Most output operations
process all of the data supplied by the call, delivering data to the protocol for transmission and blocking as
necessary for flow control. Nonblocking output operations will process as much data as permitted subject to
flow control without blocking, but will process no data if flow control does not allow the smaller of the low water
mark value or the entire request to be processed. A sock.select operation testing the ability to write to a socket
will return true only if the low water mark amount could be processed. The default value for
sock.SO_SNDLOWAT is set to a convenient size for network efficiency, often 1024. sock.SO_RCVLOWAT is an
option to set the minimum count for input operations. In general, receive calls will block until any (non-zero)
amount of data is received, then return with the smaller of the amount available or the amount requested. The
default value for sock.SO_RCVLOWAT is 1. If sock.SO_RCVLOWAT is set to a larger value, blocking receive
calls normally wait until they have received the smaller of the low water mark value orthe requested amount.
Receive calls may still return less than the low water mark if an error occurs, a signal is caught, or the type of
datanext in the receive queue is different than that returned.
Released to the Public Domain Page 767

HLA Standard Library
sock.SO_SNDTIMEO is an option to set a timeout value for output operations. It accepts a struct timeval
parameter with the number of seconds and microseconds used to limit waits for output operations to complete. If
a send operation has blocked for this much time, it returns with a partial count or raises an exception if no data
were sent. In the current implementation, this timer is restarted each time additional data are delivered to the
protocol, implying that the limit applies to output portions ranging in size from the low water mark to the high
water mark foroutput. sock.SO_RCVTIMEO is an option to set a timeout value for input operations. It accepts a
record sock.timeval parameter with the number of seconds and microseconds used to limit waits for input
operations to complete. In the current implementation, this timer is restarted each time additional data are
received by the protocol, and thus the limit is in effect an inactivity timer. If a receive operation has been
blocked for this much time without receiving additional data, it returns with a short count or with the error
EWOULDBLOCK if no data were received. The struct

The timeval parameter must represent a positive time interval otherwise sock.setsockopt raises an
ex.SocketError exception.

 Finally, sock.SO_TYPE and sock.SO_ERROR are options used only with sock.getsockopt.
sock.SO_TYPE returns the type of the socket, such as sock.SOCK_STREAM; it is useful for servers that inherit
sockets on startup. sock.SO_ERROR returns any pending error on the socket and clears the error status. It may
be used to check for asynchronous errors on connected datagram sockets or for other asynchronous errors.

This function raises an ex.SocketError exception if any error occurs.

sock.setTimeout(s:dword; timeout: sock.timeval);

sock.setTimeout sets the timeout period for both transmission and reception on the socket specified by the
socket descriptor s. Note: this function is a convenience function that calls sock.setsockopt to set the timeout
periods. There is no equivalent gettimeout function; call sock.getsockopt if you need to retrieve one of the
timeout periods. If you need to set the receive timeout period independently of the send timeout period, you will
need to call sock.setsockopt to achieve this.

This function raises an ex.SocketError exception if any error occurs.

sock.gethostname(s:string);

The sock.gethostname makes a copy of (one of) the host name string(s) and stores this into the string
variable you pass as an argument. Some systems can have more than one host name. In such a case,
sock.gethostname returns one of the names (arbitrary choice).

This function raises an ex.SocketError exception if any socket-based error occurs. This function raises an
ex.StringOverflow error if the hostname string is too long to fit in the storage allocated for the s argument. It can
raise other exceptions if the value of s is bad.

sock.gethostbyname(s:string; var hstent:sock.hostent);

The sock.gethostbyname function fills in a sock.hostent data structure you pass by reference with host
information based on the host name you pass as a string (s) to the function. Here is the current definition of the
sock.hostent data structure (note that this is subject to change over time, so always use the sock.hostent type
rather than manually creating this data structure yourself):

hostent:record

h_name :zstring;
h_aliases :dword;
h_addrtype :sock.sa_family_t;
padding0 :word;
h_length :word;
padding1 :word;
h_addr_list :dword;

endrecord;

The h_aliases field is a pointer to a sequence of dword addresses, terminated by a NULL address, each of
which points at a zstring containing an alternate name for the host. You must not modify this array and you must
not modify the strings its entries point at.

The h_addrtype field contains the type of the address being returned. This is usually sock.AF_INET.
The h_length field contains the length, in bytes, of each address in the address list.
Page 768 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
The h_addr_list is a pointer to an array of pointers to network addresses for the host. Note that these
addresses are stored in network byte order (big endian) form. The list is terminated with a NULL pointer.

This function raises an ex.SocketError exception if any socket-based error occurs.

sock.gethostbyaddr
(

var addr :var;
len :dword;
_type :dword;

var hstent:hostent
);

The sock.gethostbyaddr function fills in a sock.hostent data structure you pass by reference with host
information based on the host whose address you pass to the function. The addr argument is the address of a
network address data structure whose type is specified by the type argument (usually sock.AFINET) and the
length of which is specified by the len argument. This function copies the host information to the hstent argument
you pass by reference. The h_name field of the sock.hostent data structure will contain the primary name of the
host.

This function raises an ex.SocketError exception if any socket-based error occurs.

sock.getpeername
(

s :dword;
var _name :sock.sockaddr;
var namelen :sock.socklen_t

); @returns("eax");

The sock.getpeername function returns the IP address (the "name") of the peer connected to the socket
specified by the s socket descriptor. The namelen parameter should be initialized to indicate the amount of space
pointed to by _name. On return it contains the actual size of the _name returned (in bytes). The name is
truncated if the buffer provided is too small. Note that the term "name" here refers to an IP address, not the name
of the peer machine. This confusion is unfortunate, but that’s the way the BSD sockets system was designed.

This function raises an ex.SocketError exception if any socket-based error occurs.

sock.getsockname
(

s :dword;
var _name :sock.sockaddr;
var namelen :sock.socklen_t

); @returns("eax");

The sock.getsockname function returns the IP address (the "name") of the socket machine specified by the s
socket descriptor. The namelen parameter should be initialized to indicate the amount of space pointed to by
_name. On return it contains the actual size of the _name returned (in bytes). The name is truncated if the buffer
provided is too small. Note that the term "name" here refers to an IP address, not the name of the peer machine.
This confusion is unfortunate, but that’s the way the BSD sockets system was designed.

This function raises an ex.SocketError exception if any socket-based error occurs.

sock.fd_zero(var fdset:sock.fd_set_t);
sock.fd_set(fd:dword; var fdset:sock.fd_set_t);
sock.fd_clr(fd:dword; var fdset:sock.fd_set_t);
sock.fd_isset(fd:dword; var fdset:sock.fd_set_t);@returns("al");

The sock.fd_* functions manipulate "file descriptor sets" that the sock.select function uses. The
sock.fd_zero function creates the empty set and stores this into the fdset argument that you pass as by reference to
the function. The sock.fd_set function unions the file (socket) descriptor pass in fd into the set fdset that you pass
by reference to the function. The sock.fd_clr function removes (if preset) the file descriptor you pass in the fd
argument from the set fd_set that you pass by reference to the function. The sock.fd_isset function checks for set
membership. That is, it checks to see if the file descriptor specified by fd is present in the set fdset that you pass
Released to the Public Domain Page 769

HLA Standard Library
by reference to the function; this function returns true/false in the AL register to denote presence/absence of the
file descriptor in the set.

Note: always use these functions to manipulate socket descriptor sets. Do not assume that the HLA stdlib
data structures match that of the underlying OS (they don’t). Do not assume that the current implementation will
always be used in future versions of the HLA stdlib. By using these functions, you can avoid future problems.

This function raises an ex.SocketError exception if any error occurs.

28.5 Socket Classes
Warning: Don’t forget that HLA objects modify the values in the ESI and EDI registers whenever you call a

class procedure, method, or iterator. Do not leave any important values in either of these registers when making
calls to the socket object functions. If the use of ESI and EDI is a problem for you, you might consider using the
sock module that does not suffer from this problem.

The HLA Standard Library provides an object-oriented network socket access mechanism implemented via
the baseSocket_t, server_t, client_t, vBaesSocket_t, vServer_t, and vClient_t classes. As is typical for classes
appearing in the HLA Standard Library, you can create customized versions of the generic socket classes,
selecting which class functions are procedures or methods. This lets you choose between efficient static linking
and virtual (overload) method capability on a function by function basis. Unless otherwise specified, this
document will use the terms socket class, server class, and client class to describe the generic socket classes
rather than the specific instance of the these classes (which uses static linking for all functions).

The HLA Standard Library sockets module provide six predefined classes that simplify the use of sockets,
particularly for client/server applications. There are three basic classes with two variants of each class (a static
variant and a virtual variant). In HLA classes, there are three types of functions: (static) procedures, (dynamic)
methods, and dynamic iterators. The only difference between a method and a procedure is how the program
actually calls the function: the program calls procedures directly, it calls methods indirectly through an entry in
the virtual method table (VMT). The system always calls object iterators indirectly through the VMT, so we will
not consider them in this discussion. This section will discuss the impact of class procedures versus class
methods in your programs.

Static procedure calls are very efficient, but you lose the benefits of inheritance and functional
polymorphism when you define a function as a static procedure in a class. Methods, on the other hand, fully
support polymorphic calls, but introduce some (in)efficiency issues. The following paragraphs describe some of
the efficiency issues concerning the use of methods.

First of all, unlike static procedures, your program will link in all methods defined in your program even if
you don’t explicitly call those methods. Because the call is indirect, there really is no way for the assembler and
linker to determine whether you’ve actually called the function, so it must assume that you do call it and links in
the code for each method in the class. This can make your program a little larger because it may be including
several socket class functions that you don’t actually call.

The second efficiency issue concerning method calls is that they use the EDI register to make the indirect
call (static procedure calls do not disturb the value in EDI). Therefore, you must ensure that EDI is free and
available before making a virtual method call, or take the effort to preserve EDI’s value across such a call.

A third, though extremely minor, efficiency issue concerning methods is that the class’ VMT will need an
extra entry in the virtual method table. As this is only four bytes per class (not per object), this probably isn’t
much of a concern.

The predefined baseSocketClass_t and vBaseSocketClass, server_t and vServer_t, and client_t and vClient_t
classes differ in how they define the functions appearing in the class types. The non-virtual types (without the ‘v’
prefix) generally use static procedures for all functions, the virtual types (with the ‘v’ prefix) use methods for all
class functions. Therefore, the non-virtual socket object types will make direct calls to all the functions (and
only link in the procedures you actually call); however, the non-virtual socket objects do not support function
polymorphism in derived classes. The virtual socket types do support polymorphism for all the class methods,
but whenever you use these data types you will link in all the methods (even if you don’t call them all) and calls
to these methods will require the use of the EDI register.

It is important to understand that baseSocketClass_t/vBaseSocketClass_t, server_t/vServer_t, and client_t/
vClient_t pairs are two separate types. Neither is derived from the other. Nor are the two types in each pair
compatible with one another. You should take care not to confuse objects of these two types if you’re using both
types in the same program.

The baseSocketClass_t and vBaseSocketClass_t types are base types intended for creating derived types
(e.g., server_t/vServer_t and client_t/vClient_t); you would not normally use these two types in your programs,
instead, you would use some type derived from these base classes (such as server_t/vServer_t, or client_t/
vClient_t).
Page 770 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
28.6 A Quick Note
The following sections do not include sample code demonstrating the calling sequences for a couple of

reasons:
For high level calls, the syntax depends on the object name and type.
Low-level calling sequences don’t appear here because it doesn’t really make sense to make a low-level

object invocation.
These functions are really intended for use by programmers experienced with HLA’s Object-oriented

assembly facilities.
For the same reasons, there are no stack diagrams for these function calls. If you want more information on

making calls to HLA class methods and procedures, please consult the HLA documentation.
In the following function descriptions, the symbol <object> is used to specify a socket class object or a

pointer to a socket class object. Wherever this document uses the name "socket", you may substitute (as
appropriate) server_t, vServer_t, client_t, vClient_t, or any other socket class you’ve created by subclassing
baseSocketClass_t or vBaseSocketClass_t.

28.7 Client/Server Applications Using the Socket Classes
The HLA sockets module makes creating client/server applications in assembly language almost trivial. The

HLA Stdlib provides four classes for this purpose: server_t, vServer_t, client_t and vClient_t. The classes with
the ‘v’ prefix use virtual methods for all functions, those without the ‘v’ prefix use static procedures. Generally,
you’ll use the static versions of these classes unless you need to create derived classes from them and overload
some methods in these classes. Using the static classes produces more efficient code, but you lose the ability to
overload the class functions (i.e., polymorphism is not possible with static classes). Note that you do not have to
chose both virtual or static classes for your client and server applications. That is, one application can use a
virtual class and the other can use a static class. The server and client applications and independent with respect
to the choice of virtual or static classes. The examples in this document will use static classes because they don’t
require polymorphism, but you can easily substitute a virtual class into these examples, as needed.

28.8 A Simple Server Application
A server application is one that is running waiting for some other application (the client) to communicate

with it. In particular, the server application must be running before the client application attempts to connect to it.
Usually, the client and server applications run on separate computer systems on the network, though it is
perfectly possible (and common for testing purposes) to run both applications on the same computer. The
important thing to understand is that the server must be running before the client application begins because the
client assumes that the server is available to provide services when it attempts to connect to the server.

To create a server application, you begin by declaring a server_t variable, e.g.,

static
myServer :server_t;

The server_t data type inherits all the functions from the baseSocketClass_t (which this document will
describe later) and it adds two methods you can call: start and close. Though the server_t (and
baseSocketClass_t) type has some data fields, you should consider them private to the class and never access or
modify them directly.

The start method has the following prototype:

method start
(

adrs :dword;
port :word;
timeoutCallback :thunk;
connectionCallback :procedure

); @returns("eax");

The first parameter is the IP address that this server will be listening for clients on. This is a 32-bit IP
address in little endian format! This value is not in big endian (network byte order) form.
Released to the Public Domain Page 771

HLA Standard Library
The second parameter is the port (socket) number that the server will listen on for a connection from a client.
This is a 16-bit value in little endian (not network byte order/big endian) format! The combination of IP address
and socket port number is what uniquely identifies a particular server.

The timeoutCallback parameter is a thunk that the start function calls before attempting to listen for a client
and on each timeout period while listening for a client. For those unfamiliar with thunks, they are simply
procedures embedded in other code; when called, the EBP register is initialized to the value of EBP in the
surrounding code when the thunk was initialized. This means that the code in the thunk can access variables that
are local to the code that the thunk is embedded in.

When the start method invokes the timeoutCallback thunk code, the EAX register contains the address of a
sock.timeval object that controls the timeout period. On the first call, the start method has initialized this timeout
to zero (which means infinite timeout period). If your thunk code does not change this value, then the server will
wait indefinitely for a connection and will never again invoke the timeout thunk. If you would like to have your
timeout thunk invoked on a periodic basis while the server is listening for a client connection (perhaps to update
a progress bar or something like that to indicate the program is still operating), you should initialize the
sock.timeval value pointed at by EAX. Before returning, the thunk should load a Boolean value (true or false, 1
or 0) into EAX to tell the start method whether it should quit. False/0 means "don’t quit", true/1 means "quit"
(and return to whomever called the start method).

Here is a typical thunk that sets up a one-second timeout period:

static
timeout :thunk;
calls :dword := 0;

.

.

.
thunk timeout :=
#{

// On entry to thunk, EAX contains the address of the timeout
// variable. Set this as desired for the timeout (1 second,
// in this case).

mov(1, (type sock.timeval [eax]).tv_sec);
mov(0, (type sock.timeval [eax]).tv_usec);

// On successive calls, print a period to the stdout
// to let an observer know that we’re still listening
// for a connection:

cmp(calls, 0);
je dontPrintPeriod;

stdout.putc(‘.’);

dontPrintPeriod:
inc(calls);
mov(0, eax); // Never quit

}#;

After initializing the timeout thunk as shown above, you can pass the timeout thunk variable to the start
method.

The fourth parameter to the start method is the address of a procedure that start will call when it connects
with a client application over the network. This is a standard HLA procedure with no parameters. This procedure
must preserve all registers it modifies. This connectionCallback procedure provides whatever service the client
requires and generally operates in one of two modes:

The connectionCallback procedure directly provides whatever services the client requires and then returns.
At that point, the server and client are disconnected and the server starts listening for a new client. In this mode,
the server can provide services to only one client at a time.

The
connectionCallback procedure spawns a new process to handle the client’s requests and then immediately

returns to the start method. The server then begins listening for a new client connection while the spawned
Page 772 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
process provides appropriate services for the client. This mode allows the server to provide services to multiple
clients simultaneously.

Upon entry into the connectionCallback procedure, the EAX register contains a socket handle and the ESI
register contains the address of a server_t (or vServer_t) object. You should save these values in local (not
static!) variables. At the very least, you will need the object address in order to communicate with the client.

If you choose to spawn a new process to provide services to the client, you must make a copy of the server
object address passed to you in the ESI register. This is because the value passed in ESI is the main object used
by the start procedure and upon returning to start after you spawn the new process, start will write to the data
fields of that object. This would be a disaster for the service process. You can avoid this problem by making a
copy of the server_t (or vServer_t) using code like the following:

procedure connected;
@nodisplay;
@nostackalign;
@noframe;

var
handle :dword;
object :pointer to server_t;
newObject :pointer to server_t;

begin connected;

push(ebp);
mov(esp, ebp);
sub(_vars_, esp);

pushad();
pushfd();

mov(eax, handle);
mov(esi, object);
server_t.create();
mov(esi, newObject);

// Duplicate the server object:

mov(esi, edi);
mov(object, esi);
mov(@size(server_t), ecx);
cld();
rep.movsb();

/***/

// Spawn process here and pass it the address of the new object
// contained in newObject.

//

/***/

// Return to start, so it can handle other client requests

popfd();
popad();
leave();
ret(_parms_);

end connected;
Released to the Public Domain Page 773

HLA Standard Library
Note that the server_t start method will never return unless the timeout thunk returns true in the EAX
register. Therefore, if you elect to specify an indefinite timeout by storing zero into the sock.timeval object
passed to the timeout thunk, the start method will never return to its caller.

Whenever a connectionCallback procedure (or the thread it spawns) finishes providing services for a
connected client, it should call the server object’s close method to disconnect the socket from the client and free
up system resources,. If you’ve allocated a new socket object (e.g., prior to spawning a new process), you should
call the server destroy method and also free the storage associated with the socket object before terminating the
spawned process.

28.9 A Simple Client Application
Setting up a client application is even easier than setting up a server application. You declare an object of

type client_t (or vClient_t), invoke the object’s create procedure, and then call the connect method to connect to
a listening server. Here is the prototype for the connect method:

method connect
(

adrs :dword;
port :word

); @returns("eax");

The adrs parameter is the IP address (in little endian form). The port parameter is the socket port number (a
16-bit value, also in little endian form). When you call this function, it will attempt to connect to the server at
the specified IP address and port number. If a server is not available or it refuses to connect to the client program,
the connect method will raise an ex.SocketError exception. Note that the connect method will not wait for a
server to become available. If it goes to the specify IP address and port number and there isn’t a server
application listing on that port, the connect method will raise an exception.

Once the connect method returns (without raising an exception), you can assume that the client and server
are connected and communication between the two application may commence. When the client is done using
the services of the server, it should call the client_t (or vClient_t) close method to disconnect itself from the
server.

28.10 Client/Server Communication
Once a client establishes a connection to a server, the two applications may exchange data. A socket

supports bidirectional data transfer; that is, the server can send data to the client and receive data from the client,
and the client may send data to and receive data from the server.

The server_t/vServer_t and client_t/vClient_t classes are derived class that inherit all the information from
the baseSocketClass_t/vBaseSocketClass_t classes. The baseSocketClass_t/vBaseSocketClass_t classes define
all the procedures and methods that the server and client objects use to communicate via the socket. Without
question, the most generic I/O functions (and the ones you will probably use most commonly) are the read and
write functions. These methods/procedures use prototypes like the following:

method read(var buf:var; len:dword);
@returns("eax");

method write(var buf:var; len:dword);
@returns("eax");

The first parameter (buf) is the address of some block of memory, the second parameter (len) is the number
of bytes to read or write at the address in memory. This function returns the number of bytes read or the number
of bytes written in the EAX register.

All socket I/O communication is subject to a timeout period. The base socket class defines a (private) data
field that specifies the timeout period in seconds and microseconds. You can use the socket class’ setTimeout and
setTimeout2 functions to specify the timeout period (the default is zero, which means wait indefinitely). Should a
timeout occur during a socket read or write call, the function will immediately return without completing the I/O
operation. The EAX register will contain the actual number of bytes read or written; so you can check the return
result to determine if the I/O operation was complete.

In addition to the generic read and write functions, the base socket classes provide a full set of formatted I/O
functions similar to those provided by the stdout, stdin, stderr, and fileio modules. The following sections will
describe the use of those functions.
Page 774 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
28.11 General Socket Class Operations
The functions in this category let you initialize socket objects, access fields of the socket objects, and

perform other conversion and housekeeping tasks.

<object>.create; @returns("esi");
server_t.create; @returns("esi"); [to create dynamic objects]
client_t.create; @returns("esi"); [to create dynamic objects]

The socket classes provide a <socket>.create constructor which you should always call before making use
of a client or server variable. For socket variables (as opposed to socket pointer variables), you should call this
routine specifying the name of the socket variable. For socket pointer variables, you should call this routine
using the class name and store the pointer returned in EAX into your file variable. For example, to initialize the
following two socket objects, you would use code like the following:

var
MyClientSocket : client_t;
clientPtr : pointer to vClient_t;

.

.

.

MyClientSocket.create();

vclient_t.create();
mov(eax, clientPtr);

Note that the vClient_t.create constructor simply initializes the virtual method table pointer and does other
necessary internal initialization. The constructor does not open a socket or perform other socket-related
activities.

<object>.destroy; @returns("esi");
server_t.destroy; @returns("esi"); [to create dynamic objects]
client_t.destroy; @returns("esi"); [to create dynamic objects]

The socket classes provide a <socket>.destroy destructor which you should always call when you’re done
using a socket. For example, when you are done working with the MyClientSocket and the clientPtr objects
from the previous examples, you should execute the following code:

MyClientSocket.destroy();

clientPtr.destroy();

The socket destructor frees up system resources in use by an active socket. Note: some of these resources
are system wide and may not be automatically reclaimed when your program terminates. Be sure you always call
the destructor to prevent system resource leaks.

<object>.close;
server_t.close;
client_t.close;

This method closes a socket opened via <object>.start or <object>.connect.

MyClientSocket.close();
clientPtr.close();
Released to the Public Domain Page 775

HLA Standard Library
Note that calling the destroy method/procedure does not close the socket. You must always call the close
function before calling destroy. The difference between the two is that the close function tells the OS you’re
done using the socket, the destroy method deallocates resources associated with the HLA Standard Library.

<serverObject>.start
(

adrs :dword;
port :word;
timeoutCallback :thunk;
connectionCallback :procedure

);

This method starts a server that listens on IP address adrs and socket port number port for a connection from
a client.

After setting up the server-side socket (but before checking for a client attempting to connect), this function
calls the thunk specified by the timeoutCallback parameter. It passes the address of a sock.timeval variable to the
thunk in the EAX register. The timeoutCallback thunk should set this sock.timeval variable to an appropriate
timeout value (zero mean indefinite timeout). Generally, the timeout value is non-zero because you want to
check the status of the listening socket on a periodic basis; further, the only way the start function ever returns to
the caller is via a signal from the timeoutCallback thunk; Therefore, if you do not specify a timeout value (that is,
if you specify an indefinite timeout period by writing zeros to the sock.timeval object), then start will have no
way to terminate (other than by manually killing the process).

The timeoutCallback thunk passes true/false (1/0) back to the start function in the EAX register. If EAX
contains true, then the start function returns to the caller and terminates listening for a client connection. If EAX
contains zero upon return, then the start function continues to listen for a socket connection or until the timeout
period expires.

The start function calls the procedure pointed at by the connectionCallback parameter whenever the server
accepts a connection from a client. Upon entry into the connectionCallback procedure, ESI will contain the
address of the server object (<serverObject>) and EAX will contain a copy of the new socket connection handle.
At this point, most programs do one of two things: either the procedure pointed at by connectionCall provides all
the services required by the client (during which the server will not accept any more client connections), or the
procedure can spawn a new thread to provide those services and then immediately return (allowing the start
function to handle additional client requests while the new thread provides any necessary services to the
connected client).

The simplest case is to have the connectionCallback procedure provide all the services without spawning an
new thread. In this case, the connectionCallback procedure would store the value in ESI into a server_t (or
vServer_t) pointer variable and then use that pointer variable with all the I/O functions described in the following
sections. When your code finishes, it simply returns to the start function and the server continues listening for
new connections. Note, however, that while your server code is providing those services, the start function is
suspended and your server will not accept any other client requests. This mode of operation is great for peer-to-
peer type socket communications where only two network nodes communicate at one time.

If you want to allow your server to handle multiple client requests simultaneously, the situation is more
complicated. First of all, you cannot simply store away the pointer held in the ESI register; instead, you have to
make a copy of that object for use by the new thread and pass the address of this copy to the thread. After
creating the copy, you should spawn a new thread (passing the address of the new object to the thread) and then
reference the copy of the object within that thread. The reason for making a copy of the server object is because
the server will modify that object on the next client connection. This would create problems for the current server
thread.

Note that you don’t actually have to create a new server_t or vServer_t object. The data server thread will
only need a baseSocketClass_t (or vBaseSocketClass_t) object, so you can create one of those objects and then
copy the pertinent fields from the server_t/vServer_t object to the baseSocketClass_t/vBaseSocketClass_t object
(use the <object>.assign function to copy data from one baseSocketClass_t/vBaseSocketClass_t object into the
current object).

Of course, don’t forget that multithreaded applications have their own host of synchronization requirements.
Also be aware that many of the stdlib functions are not (as this was being written) thread-safe, so be sure to
protect stdlib calls with a mutex unless you are sure that the call you’re making will function properly in a
multithreaded environment.

MyServerSocket.start($01020304, $1234, myTimeoutThunk, &connection);
Page 776 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
<clientObject>.connect(IPadrs:dword; port :word);

This method connects a client to a server.

MyClientSocket.connect($01020304, $1234);

This function attempts to connect a client to a server. The IPadrs is the IP address of the server (in little
endian form); port is the socket port number (also in little endian form). If the server is ready and willing to
accept a socket connection, this function returns; if the server is not running, or is unwilling to connect, then this
function raises an ex.SocketError exception.

<baseSocketClass_t>.assign(var src:baseSocketClass_t);
<vBaseSocketClass_t>.assign(var src:vBaseSocketClass_t);

These functions copy the pertinent data fields from the src operand to the current object. This is useful when
creating a copy of a socket for use by a server thread (see the discussion in start’s description).

MySocket.assign((type baseSocketClass_t [esi]));

<object>.setTimeout(timeout:sock.timeval);
<object>.setTimeout2(tv_sec:dword; tv_usec:dword);
<object>.getTimeout(var timeout:sock.timeval);

These functions get and set the internal timeout values for a socket object. The getTimeout function is an
accessor that returns the value of the socket object’s internal timeout value. The setTimeout and setTimeout2
functions (which differ only insofar as how you pass the timeout argument) store their argument into the internal
data field and they also notify the OS’ socket package of the new timeout value.

mov(1, timeValVar.tv_sec);
mov(500_000, timeValVar.tv_usec);
MyClientSocket.setTimeout(timeValVar);
clientPtr.setTimeout2(2, 0);

.

.

.
clientPtr.getTimeout(timeValVar);

Note: to ensure consistency with the system, the getTimeout function will actually write the internal timeout
value to the system. This way, you’re ensured that the value that getTimeout returns is the timeout value that the
operating system will actually use.

<object>.getAdrs; @returns("eax");

This function returns the IP address associated with the object’s socket. It returns the IP address in the EAX
register in little endian form (not network byte order/big endian form).

MyClientSocket.getAdrs();
mov(eax, ipAdrs1);
clientPtr.getAdrs();
mov(eax, ipAdrs2);

<object>.setAdrs(adrs:dword);

This function stores the IP address passed as a parameter into the internal address field of the socket object.
The adrs parameter contains the IP address in little endian form (not network byte order/big endian form). Note
that this function is really intended for internal use by the socket classes. This function only stores the IP address
Released to the Public Domain Page 777

HLA Standard Library
into the internal field. It does not update the IP address of any open socket and it does not change the IP address.
The client_t.connect and server_t.start functions provide the mechanism for specifying the IP address of an
internet connection. The setAdrs function exists so the start and connect functions can set the IP address in an
object-oriented fashion. For that reason, this document is not providing any sample calls to this function.

<object>.getPort; @returns("ax");

This function returns the socket port number associated with the object’s socket. It returns the port value in
the AX register in little endian form (not network byte order/big endian form).

MyClientSocket.getPort();
mov(ax, port1);
clientPtr.getPort();
mov(ax, port2);

<object>.setPort(port:word);

This function stores the socket port number passed as a parameter into the internal port field of the socket
object. The port parameter contains the port value in little endian form (not network byte order/big endian form).
Note that this function is really intended for internal use by the socket classes. This function only stores the port
number into the object’s internal data field. It does not update the port number of any open socket and it does not
change the port number in use. The client_t.connect and server_t.start functions provide the mechanism for
specifying the port number of an internet connection. The setPort function exists so the start and connect
functions can set the port value in an object-oriented fashion. For that reason, this document is not providing any
sample calls to this function.

<object>.adrsToStr(s:string);
<object>.a_adrsToStr; @returns("eax");

These functions convert the IP address found in the socket’s internal IP address data field to a string of the
form "ddd.ddd.ddd.ddd". The adrsToStr function stores the string data into the string passed as the argument
(raising an exception if that string has insufficient storage); the a_adrsToStr function allocates the storage on the
heap and returns a pointer to that string in the EAX register.

MyClientSocket.adrsToStr(adrsStr);
clientPtr.a_adrsToStr();
mov(eax, adrsStr2);

28.12 Miscellaneous Output
The following socket output routines all assume that you’ve opened the <object> socket variable via a call to

<serverObject>.start or <clientObject>.connect.

<object>.write(var buffer:var; count:dword)

This method writes the number of bytes specified by the count parameter to the sockiet. The bytes starting
at the address of the buffer byte are written to the file. No range checking is done on the buffer, it is your
responsibility to ensure that the buffer contains at least count valid data bytes.

Note: Notice that the buffer parameter is an untyped reference parameter. Untyped reference parameters
have special properties, so be sure to read the chapter on "Passing Parameters to Standard Library Routines"
(parmpassing.rtf) if you are not absolutely sure you understand how untyped reference parameters operate.

HLA high-level calling sequence examples:
Page 778 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
socketPtr.write(buffer, count);

// If bufPtr is a dword object containing the
// address of the buffer whose data you wish to
// write to the socket:

socketPtr.write(val bufPtr, count);

// The following writes the four-byte value of
// the bufPtr variable to the socket (an unusual
// operation):

socketPtr.write(bufPtr, 4);

<object>.putbool(b:boolean);

This procedure writes the string "true" or "false" to the <object> output socket depending on the value of the
b parameter.

HLA high-level calling sequence examples:

socketPtr.putbool(boolVar);

// If the boolean is in a register (AL):

socketPtr.putbool(al);

<object>.newln();

This function writes a newline sequence (carriage return/line feed under Windows, linefeed under other
operating systems) to the specified socket (<object>).

HLA high-level calling sequence examples:

socketPtr.newln();

28.13 Character, Character Set, and String Output
The following socket output routines all assume that you’ve opened the <object> socket variable via a call to

<serverObject>.start or <clientObject>.connect.

<object>.putc(c:char)

Writes the character specified by the c parameter to the socket.

HLA high-level calling sequence examples:

socketPtr.putc(charVar);

// If the character is in a register (AL):

socketPtr.putc(al);
Released to the Public Domain Page 779

HLA Standard Library
<object>.putcSize(c:char; width:int32; fill:char)

Outputs the character c to the socket specified by <object> using at least width output positions. If the
absolute value of width is greater than one, then this function writes fill characters as padding characters during
the output. If width is a positive value greater than one, then <object>.putcSize writes c left justfied in a field of
width characters; if width is a negative value less than one, then <object>.putcSize writes c right justified in a
field of width characters.

HLA high-level calling sequence examples:

socketPtr.putcSize(charVar, width, padChar);

<object>.putcset(cst:cset);

This function writes all the members of the cst character set parameter to the specified socket variable.

HLA high-level calling sequence examples:

socketPtr.putcset(csVar);
socketPtr.putcset([ebx]); // EBX points at the cset.

<object>.puts(s:string);

This procedure writes the value of the string parameter to the socket.

HLA high-level calling sequence examples:

socketPtr.puts(strVar);
socketPtr.puts(ebx); // EBX holds a string value.
socketPtr.puts("Hello World");

<object>.putsSize(s:string; width:int32; fill:char)

This function writes the s string to the socket using at least width character positions. If the absolute value of
width is less than or equal to the length of s, then this function behaves exactly like <object>.puts. On the other
hand, if the absolute value of width is greater than the length of s, then <object>.putsSize writes width characters
to the output file. This procedure emits the fill character in the extra print positions. If width is positive, then
<object>.putsSize right justifies the string in the print field. If width is negative, then <object>.putsSize left
justifies the string in the print field. Generally, people expect the string to be left justified, so you should ensure
that this value is negative to achieve this.

HLA high-level calling sequence examples:

socketPtr.putsSize(strVar, width, ‘ ‘);

// For the following, EBX holds the string value,
// ECX contains the width, and AL holds the pad
// character:

socketPtr.putsSize(ebx, ecx, al);

socketPtr.putsSize("Hello World", 25, padChar);

<object>.putz(z:zstring);

This procedure writes the value of the zstring parameter to the socket.
Page 780 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

socketPtr.putz(zstrVar);
socketPtr.putz(ebx); // EBX holds a zstring value.
socketPtr.putz("Hello World");

<object>.putzSize(z:zstring; width:int32; fill:char)

This function writes the z zstring to the socket using at least width character positions. If the absolute value
of width is less than or equal to the length of z, then this function behaves exactly like <object>.putz. On the
other hand, if the absolute value of width is greater than the length of z, then <object>.putzSize writes width
characters to the output file. This procedure emits the fill character in the extra print positions. If width is
positive, then <object>.putzSize right justifies the string in the print field. If width is negative, then
<object>.putzSize left justifies the string in the print field. Generally, people expect the string to be left justified,
so you should ensure that this value is negative to achieve this.

HLA high-level calling sequence examples:

socketPtr.putzSize(zstrVar, width, ‘ ‘);

// For the following, EBX holds the string value,
// ECX contains the width, and AL holds the pad
// character:

socketPtr.putzSize(ebx, ecx, al);

socketPtr.putzSize("Hello World", 25, padChar);

28.14 Hexadecimal Numeric Output
The following socket output routines all assume that you’ve opened the <object> socket variable via a call to

<serverObject>.start or <clientObject>.connect.

<object>.putb(b:byte);

This procedure writes the value of b to the socket using exactly two hexadecimal digits (including a leading
zero if necessary).

HLA high-level calling sequence examples:

socketPtr.putb(byteVar);

// If the character is in a register (AL):

socketPtr.putb(al);

<object>.puth8(b:byte);

This procedure writes the value of b to the socket using one or two hexadecimal digits (the minimum
necessary).

HLA high-level calling sequence examples:

socketPtr.puth8(byteVar);
Released to the Public Domain Page 781

HLA Standard Library
// If the character is in a register (AL):

socketPtr.puth8(al);

<object>.puth8Size(b:byte; width:dword; fill:char)

This procedure writes the value of b to the socket using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

socketPtr.puth8Size(byteVar, width, padChar);

<object>.putw(w:word);

This procedure writes the value of w to the socket using exactly four hexadecimal digits (including leading
zeros if necessary).

HLA high-level calling sequence examples:

socketPtr.putw(wordVar);

// If the word is in a register (AX):

socketPtr.putw(ax);

<object>.puth16(w:word);

This procedure writes the value of w to the socket using 1-4 hexadecimal digits (the minimum necessary).

HLA high-level calling sequence examples:

socketPtr.puth16(wordVar);

// If the word is in a register (AX):

socketPtr.puth16(ax);

<object>.puth16Size(w:word; width:dword; fill:char)

This procedure writes the value of w to the socket using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

socketPtr.puth16Size(wordVar, width, padChar);
Page 782 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.putd(dw:dword);

This procedure writes the value of d to the socket using exactly eight hexadecimal digits (including leading
zeros if necessary). If the stdlib global underscores value (see the conversions module for details) contains true,
then this function will also print an underscore between the fourth and fifth digits.

HLA high-level calling sequence examples:

socketPtr.putd(dwordVar);

// If the dword value is in a register (EAX):

socketPtr.putd(eax);

<object>.puth32(dw:dword);

This procedure writes the value of d to the file using the minimum number of hexadecimal required. If the
stdlib global underscores value (see the conversions module for details) contains true, then this function will also
print an underscore between the fourth and fifth digits (if there are at least five digits in the number).

HLA high-level calling sequence examples:

socketPtr.puth32(dwordVar);

// If the dword is in a register (EAX):

socketPtr.puth32(eax);

<object>.puth32Size(d:dword; width:dword; fill:char)

This procedure writes the value of d to the socket using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

socketPtr.puth32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

socketPtr.puth32Size(eax, width, cl);

<object>.putq(q:qword);

This procedure writes the value of q to the socket using exactly 16 hexadecimal digits (including leading
zeros if necessary). If the stdlib global underscores value (see the conversions module for details) contains true,
then this function will also print an underscore between each group of four digits.

HLA high-level calling sequence example:

socketPtr.putq(qwordVar);
Released to the Public Domain Page 783

HLA Standard Library
<object>.puth64(q:qword);

This procedure writes the value of q to the socket using 1-16 hexadecimal digits (the minimum necessary).
If the stdlib global underscores value (see the conversions module for details) contains true, then this function
will also print an underscore between each group of four digits.

HLA high-level calling sequence example:

socketPtr.puth64(qwordVar);

<object>.puth64Size(q:qword; width:dword; fill:char)

This procedure writes the value of q to the socket using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence example:

socketPtr.puth64Size(qwordVar, width, ‘ ‘);

<object>.puttb(tb:tbyte)

This procedure writes the value of tb to the socket using exactly 20 hexadecimal digits (including leading
zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

socketPtr.puttb(tbyteVar);

<object>.puth80(tb:tbyte)

This procedure writes the value of tb to the socket using 1-20 hexadecimal digits (the minimum necessary)
and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

socketPtr.puth80(tbyteVar);

<object>.puth80Size(tb:tbyte; width:dword; fill:char)

This procedure writes the value of tb to the socket using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

socketPtr.puth80Size(tbyteVar, width, ‘ ‘);
Page 784 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.putl(l:lword)

This procedure writes the value of l to the socket using exactly 32 hexadecimal digits (including leading
zeros if necessary and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

socketPtr.putl(lwordVar);

<object>.puth128(l:lword)

This procedure writes the value of l to the socket using 1-32 hexadecimal digits (the minimum necessary)
and an intervening underscores if underscore output is enabled).

HLA high-level calling sequence examples:

socketPtr.puth128(lwordVar);

<object>.puth128Size(l:lword; width:dword; fill:char)

This procedure writes the value of l to the socket using a minimum field width and a fill character. See the
discussion of width and fill in the description of the <object>.putcSize function for more details on their
behavior.

HLA high-level calling sequence examples:

socketPtr.puth128Size(tbyteVar, width, ‘ ‘);

28.15 Signed Integer Numeric Output
The following socket output routines all assume that you’ve opened the <object> socket variable via a call to

<serverObject>.start or <clientObject>.connect.
These routines convert signed integer values to string format and write that string to the <object> socket.

The <object>.putxxxSize functions contain width and fill parameters that let you specify the minimum field
width when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the socket. If width is non-negative, then these functions right-justify the
value in the output field; if value is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra print positions.

xxxSize(value, width, fill);

V A L U Ef f f
Assuming “value” requires five print positions,
“width” is eight, and fill is “f” then the xxxSize
functions produce the string

Assuming “value” requires five print positions,
“width” is minus eight, and fill is “f” then the
xxxSize functions produce the string

V A L U E f f f
Released to the Public Domain Page 785

HLA Standard Library
<object>.puti8 (b:byte);

This function converts the eight-bit signed integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.puti8(byteVar);

// If the character is in a register (AL):

socketPtr.puti8(al);

<object>.puti8Size (b:byte; width:int32; fill:char);

This function writes the eight-bit signed integer value you pass to the specified output socket using the width
and fill values as specified above.

HLA high-level calling sequence examples:

socketPtr.puti8Size(byteVar, width, padChar);

<object>.puti16(w:word);

This function converts the 16-bit signed integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.puti16(wordVar);

// If the word is in a register (AX):

socketPtr.puti16(ax);

<object>.puti16Size(w:word; width:int32; fill:char);

This function writes the 16-bit signed integer value you pass to the specified socket using the width and fill
values as specified above.

HLA high-level calling sequence examples:

socketPtr.puti16Size(wordVar, width, padChar);

<object>.puti32(d:dword);

This function converts the 32-bit signed integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.puti32(dwordVar);
Page 786 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
// If the dword is in a register (EAX):

socketPtr.puti32(eax);

<object>.puti32Size(d:dword; width:int32; fill:char);

This function writes the 32-bit value you pass as a signed integer to the specified socket using the width and
fill values as specified above.

HLA high-level calling sequence examples:

socketPtr.puti32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

socketPtr.puti32Size(eax, width, cl);

<object>.puti64(q:qword);

This function converts the 64-bit signed integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.puti64(qwordVar);

<object>.puti64Size(q:qword; width:int32; fill:char);

This function writes the 64-bit value you pass as a signed integer to the specified socket using the width and
fill values as specified above.

HLA high-level calling sequence examples:

socketPtr.puti64Size(qwordVar, width, ‘ ‘);

<object>.puti128(l:lword);

This function converts the 128-bit signed integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.puti128(lwordVar);
Released to the Public Domain Page 787

HLA Standard Library
<object>.puti128Size(l:lword; width:int32; fill:char);

This function writes the 128-bit value you pass as a signed integer to the specified socket using the width and
fill values as specified above.

HLA high-level calling sequence examples:

socketPtr.puti128Size(lwordVar, width, ‘ ‘);

28.16 Unsigned Integer Numeric Output
These routines convert unsigned integer values to string format and write that string to the socket. The

<object>.putxxxSize functions contain width and fill parameters that let you specify the minimum field width
when outputting a value.

If the absolute value of width is greater than the number of print positions the value requires, then these
functions output width characters to the socket. If width is non-negative, then these functions right-justify the
value in the output field; if value is negative, then these functions left-justify the value in the output field.

These functions print the fill character as the padding value for the extra print positions.

<object>.putu8 (b:byte)

This function converts the eight-bit unsigned integer you pass as a parameter to a string and writes this string
to the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.putu8(byteVar);

// If the character is in a register (AL):

socketPtr.putu8(al);

<object>.putu8size(b:byte; width:int32; fill:char)

This function writes the unsigned eight-bit value you pass to the specified socket using the width and fill
values as specified above.

HLA high-level calling sequence examples:

socketPtr.putu8Size(byteVar, width, padChar);

<object>.putu16(w:word)

This function converts the 16-bit unsigned integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.putu16(wordVar);

// If the word is in a register (AX):

socketPtr.putu16(ax);
Page 788 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.putu16size(w:word; width:int32; fill:char)

This function writes the unsigned 16-bit value you pass to the specified socket using the width and fill values
as specified above.

HLA high-level calling sequence examples:

socketPtr.putu16Size(wordVar, width, padChar);

<object>.putu32(d:dword)

This function converts the 32-bit unsigned integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.putu32(dwordVar);

// If the dword is in a register (EAX):

socketPtr.putu32(eax);

<object>.putu32Size(d:dword; width:int32; fill:char)

This function writes the unsigned 32-bit value you pass to the specified socket using the width and fill values
as specified above.

HLA high-level calling sequence examples:

socketPtr.putu32Size(dwordVar, width, ‘ ‘);

// If the dword is in a register (EAX):

socketPtr.putu32Size(eax, width, cl);

<object>.putu64(q:qword)

This function converts the 64-bit unsigned integer you pass as a parameter to a string and writes this string to
the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.putu64(qwordVar);

<object>.putu64Size(q:qword; width:int32; fill:char);

This function writes the unsigned 64-bit value you pass to the specified socket using the width and fill values
as specified above.
Released to the Public Domain Page 789

HLA Standard Library
HLA high-level calling sequence examples:

socketPtr.putu64Size(qwordVar, width, ‘ ‘);

<object>.putu128(l:lword)

This function converts the 128-bit unsigned integer you pass as a parameter to a string and writes this string
to the socket using the minimum number of print positions the number requires.

HLA high-level calling sequence examples:

socketPtr.putu128(lwordVar);

<object>.putu128Size(l:lword; width:int32; fill:char);

This function writes the unsigned 128-bit value you pass to the specified socket using the width and fill
values as specified above.

HLA high-level calling sequence examples:

socketPtr.putu128Size(lwordVar, width, ‘ ‘);

28.17 Floating-Point Numeric Output Using Scientific Notation
The floating point numeric output routines translate the three different binary floating point formats to their

string representation and then write this string to the socket that <object> specifies. There are two generic
classes of these routines: those that convert their values to exponential/scientific notation and those that convert
their string to a decimal form.

The <object>.pute80, <object>.pute64, and <object>.pute32 routines convert their values to a string using
scientific notation. These three routines each have two parameters: the value to output and the field width of the
result. These routines produce a string with the following format:

<object>.pute32(r:real32; width:uns32)

This function writes the 32-bit single precision floating point value passed in r to the socket using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 32-bit extended precision floating point values support about 6-7 significant digits. So a width value
that yields more than seven mantissa digits will produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

s i . f f f f f E ± x

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
x is one or more base-10 exponent digits.
Page 790 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
socketPtr.pute32(r32Var, width);

// If the real32 value is in an FPU register (ST0):

var
r32Temp :real32;
.
.
.

fstp(r32Temp);
socketPtr.pute32(r32Temp, 12);

<object>.pute64(r:real64; width:uns32)

This function writes the 64-bit double precision floating point value passed in r to the socket using scientific/
exponential notation. This procedure prints the value using width print positions in the file. width should have a
minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all other values.
Note that 64-bit double precision floating point values support about 15 significant digits. So a width value that
yields more than 15 mantissa digits will produce garbage output in the low order digits of the number.

HLA high-level calling sequence examples:

socketPtr.pute64(r64Var, width);

// If the real64 value is in an FPU register (ST0):

var
r64Temp:real64;
.
.
.

fstp(r64Temp);
socketPtr.pute64(r64Temp, 12);

<object>.pute80(r:real80; width:uns32)

This function writes the 80-bit extended precision floating point value passed in r to the socket using
scientific/exponential notation. This procedure prints the value using width print positions in the file. width
should have a minimum value of five for real numbers in the range 1e-9..1e+9 and a minimum value of six for all
other values. Note that 80-bit extended precision floating point values support about 18 significant digits. So a
width value that yields more than 18 mantissa digits will produce garbage output in the low order digits of the
number.

HLA high-level calling sequence examples:

socketPtr.pute80(r80Var, width);

// If the real80 value is in an FPU register (ST0):

var
r80Temp :real80;
.
.
.

fstp(r80Temp);
Released to the Public Domain Page 791

HLA Standard Library
socketPtr.pute80(r80Temp, 12);

28.18 Floating-Point Numeric Output Using Decimal Notation
Although scientific (exponential) notation is the most general display format for real numbers, real numbers

you display in this format are very difficult to read. Therefore, the HLA socket class module also provides a set
of functions that output real values using the decimal representation. Although you cannot (practically) use these
decimal output routines for all real values, they are applicable to a wide variety of common numbers you will use
in your programs.

These functions come in two varieties. The first variety requires four parameters: the real value to convert,
the width of the converted value, the number of digit positions to the right of the decimal point, and a padding
character. The second variety only requires the first three parameters and assumes the padding character is a
space. These functions write their values using the following string format:

<object>.putr32(r:real32; width:uns32; decpts:uns32; fill:char)

This procedure writes a 32-bit single precision floating point value to the socket as a string. The string
consumes exactly width characters in the output file. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the fill value as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

socketPtr.putr32(r32Var, width, decpts, fill);
socketPtr.putr32(r32Var, 10, 2, ‘*’);

// If the real32 value is in an FPU register (ST0):

var
r32Temp :real32;
.
.
.

fstp(r32Temp);
socketPtr.putr32(r32Temp, 12, 2, al);

<object>.putr64(r:real64; width:uns32; decpts:uns32; fill:char)

This procedure writes a 64-bit double precision floating point value to <object> socket as a string. The
string consumes exactly width characters in the output. If the numeric output, using the specified number of
positions to the right of the decimal point, is sufficiently small that the string representation would be less than
width characters, then this procedure uses the value of fill as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

s i i i . f f f f f f

s is a space for positive values, ‘-’ for negative values
i represents the integer portion of the mantissa
fffff represents the fractional portion of the mantissa
Page 792 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
socketPtr.putr64(r64Var, width, decpts, fill);
socketPtr.putr64(r64Var, 10, 2, ‘*’);

// If the real64 value is in an FPU register (ST0):

var
r64Temp :real64;
.
.
.

fstp(r64Temp);
socketPtr.putr64(r64Temp, 12, 2, al);

<object>.putr80(r:real80; width:uns32; decpts:uns32; fill:char)

This procedure writes an 80-bit extended precision floating point value to the socket as a string. The string
consumes exactly width characters in the output. If the numeric output, using the specified number of positions
to the right of the decimal point, is sufficiently small that the string representation would be less than width
characters, then this procedure uses the value of fill as the padding character to fill the output with width
characters.

HLA high-level calling sequence examples:

socketPtr.putr80(r80Var, width, decpts, fill);
socketPtr.putr80(r80Var, 10, 2, ‘*’);

// If the real80 value is in an FPU register (ST0):

var
r80Temp :real80;
.
.
.

fstp(r80Temp);
socketPtr.putr80(r80Temp, 12, 2, al);

28.19 Generic File Output

<object>.put(parameter_list)

<object>.put is a macro that automatically invokes an appropriate <object> output routine based on the
type of the parameter(s) you pass it. This is a very convenient output routine and is probably the socket class
formatted output call you will use most often in your programs. Keep in mind that this macro is not a single
function call; instead, HLA translates this macro into a sequence of calls to procedures like <object>.puti32,
<object>.puts, etc.

<object>.put is a macro that provides a flexible syntax for outputting data to the socket. This macro allows
a variable number of parameters. For each parameter present in the list, <object>.put will call the appropriate
routine to emit that data, according to the type of the parameter. Parameters may be constants, registers, or
memory locations. You must separate each macro parameter with a comma.

Here is an example of a typical invocation of an <object>.put :

<object>.put("I=", i, " j=", j, nl);
Released to the Public Domain Page 793

HLA Standard Library
The above is roughly equivalent to

<object>.puts("I=");
<object>.puti32(i);
<object>.puts(" j=");
<object>.puti32(j);
<object>.newln();

This assumes, of course, that i and j are int32 variables.
The <object>.put macro also lets you specify the minimum field width for each parameter you specify. To

print a value using a minimum field width, follow the object you wish to print with a colon and the value of the
minimum field width. The previous example, using field widths, could look like the following:

<object>.put("I=", i:2, " j=", j:5, nl);

Although this example used the literal decimal constants two and five for the field widths, keep in mind that
register values and memory value (integers, anyway) are prefectly legal here.

For floating point numbers you wish to display in decimal form, you can specify both the minimum field
width and the number of digits to print to the right of the decimal point by using the following syntax:

<object>.put("Real value is ", f:10:3, nl);

The <object>.put macro can handle all the basic primitive types, including boolean, unsigned (8, 16, 32, 64,
128), signed (8, 16, 32, 64, 128), character, character set, real (32, 64, 80), string, and hexadecimal (byte, word,
dword, qword, tbyte, lword).

If you specify a class variable (object) and that class defines a toString method, the <object>.put macro will
call the associated toString method and output that string to the socket. Note that the toString method must
dynamically allocate storage for the string by calling str.alloc. This is because <object>.put will call str.free on
the string once it outputs the string.

There is a known "design flaw" in the <object>.put macro. You cannot use it to print HLA intermediate
variables (i.e., non-local VAR objects). The problem is that HLA’s syntax for non-local accesses takes the form
"reg32:varname" and <object>.put cannot determine if you want to print reg32 using varname print positions
versus simply printing the non-local varname object. If you want to display non-local variables you must copy
the non-local object into a register, a static variable, or a local variable prior to using <object>.put to print it. Of
course, there is no problem using the other <object>.putXXXX functions to display non-local VAR objects, so
you can use those as well.

Important(!), don’t forget that method calls (e.g., the routines that <object>.put translates into) modify the
values in the ESI and EDI registers. Therefore, it never makes any sense to attempt to print the values of ESI and
EDI within the parameter list. All you will wind up doing is printing the address of the file variable (ESI) or the
address of its virtual method table (EDI). If you need to write these two values to a file, move them to another
register or a memory location first.

28.20 Generic File Input
The following socket input routines behave just like their standard input and file input counterparts (unless

otherwise noted). Because of the nature of sockets, it is not possible to provide an "end-of-file" function that
tests whether you’re currently at the end of file on an input stream. End of file is determined by a timeout (set by
the setTimeout and setTimeout2 functions). Whenever a timeout occurs while the program is waiting for an input
from a socket, the system translates that timeout into an ex.EndOfFile exception. Therefore, you should really
surround all socket input requests with a try..endtry sequence that handles the ex.EndOfFile exception.

<object>.read(var buffer:var; count:dword)

This will probably be the most commonly-called input function in a typical socket-based application. This
function reads count bytes from the socket and stores them into memory starting with the first byte of the buffer
variable. This routine does not do any range checking. It is your responsibility to ensure that buffer is large
enough to hold the data read.

Note: Notice that the buffer parameter is an untyped reference parameter. Untyped reference parameters
have special properties, so be sure to read the chapter on "Passing Parameters to Standard Library Routines"
(parmpassing.rtf) if you are not absolutely sure you understand how untyped reference parameters operate.
Page 794 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

socketPtr.read(buffer, count);
socketPtr.read([eax], 1024);

<object>.readLn;

This function reads and discards all characters up to and including the newline sequence in the socket
stream.

HLA high-level calling sequence examples:

socketPtr.readLn();

28.21 Character and String Input
The following functions read character data from a socket. Note that HLA’s socket class module does not

provide the ability to read character set data directly from the user. However, you can always read a string and
then convert that string to a character set using the appropriate function in the cset module.

<object>.getc; @returns("al");

This function reads a single character from the socket and returns that character in the AL register.

HLA high-level calling sequence examples:

socketPtr.getc();
mov(al, charVar);

<object>.gets(s:string);

This function reads a sequence of characters from the socket through to the next end of line sequence and
stores these characters (without the end of line sequence) into the string variable you pass as a parameter. Before
calling this routine, you must allocate sufficient storage for the string. If <object>.gets attempts to read a larger
string than the string’s MaxLen value, <object>.gets raises a string overflow exception.

Note that this function does not store the end of line sequence into the string, though it does consume the end
of line sequence. The next character a file class function will read from the socket will be the first character of
the following line.

If the incoming socket data is a newline sequence, then <object>.gets consumes the end of line and stores
the empty string into the s parameter.

HLA high-level calling sequence examples:

socketPtr.gets(inputStr);
socketPtr.gets(eax); // EAX contains string value

 <object>.a_gets; @returns("eax");

Like <object>.gets, this function also reads a string from the socket. However, rather than storing the string
data into a string you supply, this function allocates storage for the string on the heap and returns a pointer to this
string in the EAX register. You code should call str.free to release this storage when you’re done with the string
data.

The <object>.a_gets function imposes a line length limit of 4,096 characters. If this is a problem, you
should modify the source code for this function to raise the limit. This functions raises an exception if you
attempt to read a line longer than this internal limit.

HLA high-level calling sequence examples:
Released to the Public Domain Page 795

HLA Standard Library
socketPtr.a_gets();
mov(eax, inputStr);

28.22 Signed Integer Input
The functions in this group read numeric values from the socket using a signed decimal integer format.

These functions read the string data, translate it to numeric form, and return that numeric data in an appropriate
location.

 <object>.geti8; @returns("al");

This function reads a signed eight-bit decimal integer in the range -128..+127 from the socket. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by an optional minus sign and a string of one or more decimal
digits. The number must end with a valid delimiter character or the end of file (i.e., timeout). This function
allows underscores in the interior of the number. The <object>.geti8 function raises an appropriate exception if
the input violates any of these rules or the value is outside the range -128..+127. This function returns the binary
form of the integer in the AL register.

HLA high-level calling sequence examples:

socketPtr.geti8();
mov(al, i8Var);

<object>.geti16; @returns("ax");

This function reads a signed 16-bit decimal integer in the range -32768..+32767 from the socket. The
number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by an optional minus sign and a string of one or more
decimal digits. The number must end with a valid delimiter character or the end of the file (i.e., timeout). This
function allows underscores in the interior of the number. The <object>.geti16 function raises an appropriate
exception if the input violates any of these rules or the value is outside the range -32768..+32767. This function
returns the binary form of the integer in the AX register.

HLA high-level calling sequence examples:

socketPtr.geti16();
mov(ax, i16Var);

 <object>.geti32; @returns("eax");

This function reads a signed 32-bit decimal integer in the (approximate) range ±2 Billion from the socket.
The number may begin with any number of delimiter characters (see the conv.setDelimiter and
conv.getDelimiter functions for details on the delimiter characters) followed by an optional minus sign and a
string of one or more decimal digits. The number must end with a valid delimiter character or the end of the file
(i.e., timeout). This function allows underscores in the interior of the number. The <object>.geti32 function
raises an appropriate exception if the input violates any of these rules or the value is outside the range plus or
minus two billion. This function returns the binary form of the integer in the EAX register.

HLA high-level calling sequence examples:

socketPtr.geti32();
Page 796 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
mov(eax, i32Var);

<object>.geti64; @returns("edx:eax");

This function reads a signed 64-bit decimal integer from the socket. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by an optional minus sign and a string of one or more decimal digits. The number
must end with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in
the interior of the number. The <object>.geti64 function raises an appropriate exception if the input violates any
of these rules or the value is outside the range of a 64-bit signed integer. This function returns the 64-bit result in
the EDX:EAX register pair (it returns the H.O. dword in EDX and the L.O. dword in EAX).

HLA high-level calling sequence examples:

socketPtr.geti64();
mov(edx, (type dword i64Var[4]));
mov(eax, (type dword i64Var[0]));

<object>.geti128(var l:lword);

This function reads a signed 128-bit decimal integer from the socket. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by an optional minus sign and a string of one or more decimal digits. The number
must end with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in
the interior of the number. The <object>.geti128 function raises an appropriate exception if the input violates
any of these rules or the value is outside the range of a 128-bit signed integer. This function stores the 128-bit
result into the lword you pass as a reference parameter.

HLA high-level calling sequence examples:

socketPtr.geti128(lwordVar);

28.23 Unsigned Integer Input
The functions in this group read numeric values from the socket using an unsigned decimal integer format.

These functions read the string data, translate it to numeric form, and return that numeric data in an appropriate
location.

<object>.getu8; @returns("al");

This function reads an unsigned eight-bit decimal integer in the range 0..+255 from the socket. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in the
interior of the number. The <object>.getu8 function raises an appropriate exception if the input violates any of
these rules or the value is outside the range 0..255. This function returns the binary form of the integer in the AL
register.

HLA high-level calling sequence examples:

socketPtr.getu8();
mov(al, u8Var);
Released to the Public Domain Page 797

HLA Standard Library
<object>.getu16; @returns("ax");

This function reads an unsigned 16-bit decimal integer in the range 0..+65535 from the socket. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by a string of one or more decimal digits. The number must end
with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in the
interior of the number. The <object>.getu16 function raises an appropriate exception if the input violates any of
these rules or the value is outside the range 0..65535. This function returns the binary form of the integer in the
AX register.

HLA high-level calling sequence examples:

socketPtr.getu16();
mov(ax, u16Var);

<object>.getu32; @returns("eax");

This function reads an unsigned 32-bit decimal integer in the range 0..+4,294,967,295 from the socket. The
number may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter
functions for details on the delimiter characters) followed by a string of one or more decimal digits. The number
must end with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in
the interior of the number. The <object>.getu32 function raises an appropriate exception if the input violates any
of these rules or the value is outside the range 0..4,294,967,295. This function returns the binary form of the
integer in the EAX register.

HLA high-level calling sequence examples:

socketPtr.getu32();
mov(eax, u32Var);

<object>.getu64; @returns("edx:eax");

This function reads an unsigned 64-bit decimal integer from the socket. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more decimal digits. The number must end with a valid
delimiter character or the end of the file (i.e., timeout). This function allows underscores in the interior of the
number. The <object>.getu64 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..264-1. This function returns the binary form of the integer in EDX:EAX register
pair (EDX contains the H.O. dword, EAX holds the L.O. dword).

HLA high-level calling sequence examples:

socketPtr.getu32();
mov(eax, (type dword u64Var));
mov(edx, (type dword u64Var[4]));

<object>.getu128(var l:lword);

This function reads an unsigned 128-bit decimal integer from the socket. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more decimal digits. The number must end with a valid
delimiter character or the end of the file (i.e., timeout). This function allows underscores in the interior of the
number. The <object>.getu64 function raises an appropriate exception if the input violates any of these rules or
the value is outside the range 0..2128-1. This function returns the binary form of the integer in the lword
parameter you pass by reference.
Page 798 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence examples:

socketPtr.getu128(u128Var);

28.24 Hexadecimal Input
<object>.geth8; @returns("al");

This function reads an eight-bit hexadecimal integer in the range 0..$FF from the socket. The number may
begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for
details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value
may not have a leading "$" unless you add this character to the delimiter character set. The number must end
with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in the
interior of the number. The <object>.geth8 function raises an appropriate exception if the input violates any of
these rules or the value is outside the range 0..$FF. This function returns the binary form of the value in the AL
register.

HLA high-level calling sequence examples:

socketPtr.geth8();
mov(al, h8Var);

<object>.geth16; @returns("ax");

This function reads a 16-bit hexadecimal integer in the range 0..$FFFF from the socket. The number may
begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for
details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value
may not have a leading "$" unless you add this character to the delimiter character set. The number must end
with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in the
interior of the number. The <object>.geth16 function raises an appropriate exception if the input violates any of
these rules or the value is outside the range 0..$FFFF. This function returns the binary form of the value in the
AX register.

HLA high-level calling sequence examples:

socketPtr.geth16();
mov(ax, h16Var);

<object>.geth32; @returns("eax");

This function reads a 32-bit hexadecimal integer in the range 0..$FFFF_FFFF from the socket. The number
may begin with any number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions
for details on the delimiter characters) followed by a string of one or more hexadecimal digits. Note that the
value may not have a leading "$" unless you add this character to the delimiter character set. The number must
end with a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in the
interior of the number. The <object>.geth32 function raises an appropriate exception if the input violates any of
these rules or the value is outside the range 0..$FFFF_FFFF. This function returns the binary form of the value
in the EAX register.

HLA high-level calling sequence examples:

socketPtr.geth32();
mov(eax, h32Var);
Released to the Public Domain Page 799

HLA Standard Library
<object>.geth64; @returns("edx:eax");

This function reads a 64-bit hexadecimal integer in the range 0..$FFFF_FFFF_FFFF_FFFF from the socket.
The number may begin with any number of delimiter characters (see the conv.setDelimiter and
conv.getDelimiter functions for details on the delimiter characters) followed by a string of one or more
hexadecimal digits. Note that the value may not have a leading "$" unless you add this character to the delimiter
character set. The number must end with a valid delimiter character or the end of the file (i.e., timeout). This
function allows underscores in the interior of the number. The <object>.geth64 function raises an appropriate
exception if the input violates any of these rules or the value is outside the range 0..$FFFF_FFFF_FFFF_FFFF.
This function returns the 64-bit result in the EDX:EAX register pair (EDX contains the H.O. dword, EAX
contains the L.O. dword).

HLA high-level calling sequence examples:

socketPtr.geth64();
mov(edx, (type dword h64Var[4]));
mov(eax, (type dword h64Var[0]));

<object>.geth128(var l:lword);

This function reads a 128-bit hexadecimal integer in the range
0..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF from the socket. The number may begin with any
number of delimiter characters (see the conv.setDelimiter and conv.getDelimiter functions for details on the
delimiter characters) followed by a string of one or more hexadecimal digits. Note that the value may not have a
leading "$" unless you add this character to the delimiter character set. The number must end with a valid
delimiter character or the end of the file (i.e., timeout). This function allows underscores in the interior of the
number. The <object>.getq function raises an appropriate exception if the input violates any of these rules or the
value is outside the range 0..$FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF . This function stores the
128-bit result into the variable you pass as a reference parameter.

HLA high-level calling sequence examples:

socketPtr.geth128(lwordVar);

28.25 Floating-Point Input
<object>.getf; @returns("st0");

This function reads an 80-bit floating point value in either decimal or scientific from from the socket and
leaves the result sitting on the FPU stack. The number may begin with any number of delimiter characters (see
the conv.setDelimiter and conv.getDelimiter functions for details on the delimiter characters) followed by an
optional minus sign and a sequence of characters that represent a floating point value. The number must end with
a valid delimiter character or the end of the file (i.e., timeout). This function allows underscores in the interior of
the number. This function raises an appropriate exception if an error occurs.

HLA high-level calling sequence examples:

socketPtr.getf();
fstp(fpVar);
Page 800 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
28.26 Generic File Input
 <object>.get(List_of_items_to_read);

This is a macro that allows you to specify a list of variable names as parameters. The <object>.get macro
reads an input value for each item in the list and stores the resulting value in each corresponding variable. This
macro determines the type of each variable that you pass it and emits a call to the appropriate <object>.getxxx
function to read the actual value. As an example, consider the following call to <object>.get:

socketPtr.get(i32, charVar, u16, strVar);

The macro invocation above expands into the following:

push(eax);
socketPtr.geti32(i32);
socketPtr.getc();
mov(al, charVar);
socketPtr.geti16();
mov(ax, u16);
socketPtr.gets(strVar);
pop(eax);

Notice that <object>.get preserves the value in the EAX register even though various <object>.getxxx
functions use this register. Note that <object>.get automatically handles the case where you specify EAX as an
input variable and writes the value to [esp] so that in properly modifies EAX upon completion of the macro
expansion.

Note that <object>.get only supports eight-, sixteen-, and thirty-two bit integer input. If you need to read
64-bit or 128-bit values, you must use the appropriate <object>.getx64 or <object>.getx128 function to achieve
this.
Released to the Public Domain Page 801

HLA Standard Library
Page 802 Version: 5/24/10 Written by Randall Hyde

	28 Sockets Module (sockets.hhf)
	28.1 The SOCK Module
	28.2 Socket Initialization and Cleanup
	sock.socketInit;
	sock.socketCleanup;

	28.3 Generic Socket Functions
	sock.a_adrsToStr(a:bigEndianDW); @returns("eax"); sock.adrsToStr(a:bigEndianDW; s:string);
	sock.strToAdrs(s:string); @returns("eax");

	28.4 Low-Level BSD-Style Socket Functions
	sock.accept (s :dword; var addr :sock.sockaddr; var addrlen :sock.socklen_t);
	sock.bind (sockfd :dword; var addr :sockaddr; addrlen :socklen_t);
	sock.connect (s :dword; var serv_addr :sockaddr; addrlen :socklen_t);
	sock.close(s:dowrd);
	sock.listen (
	s :dword; backlog :dword);
	sock.recv (s :dword; var buf :var; len :dword; flags :dword); @returns("eax");
	sock.recv (s :dword; var buf :var; len :dword; flags :dword); @returns("eax");
	sock.recvfrom (s :dword; var buf :var; len :dword; flags :dword; var from :sockaddr; var fromlen :socklen_t); @returns("eax");
	sock.select (nfds :dword; var readSet :sock.fd_set_t; var writeSet :sock.fd_set_t; var exceptSet :sock.fd_set_t; var timeout :sock.timeval); @returns("eax");
	sock.send (s :dword; var buf :var; len :dword; flags :dword // MSG_* constants); @returns("eax");
	sock.sendto (s :dword; var buf :var; len :dword; flags :dword // MSG_* constants var _to :sock.sockaddr; tolen :sock.socklen_t); @returns("eax");
	sock.socket(int domain, int type, int protocol); @returns("eax");
	sock.setsockopt (s :dword; level :dword; optname :dword; var optval :var; optlen :socklen_t); @returns("eax");
	sock.getsockopt (s :dword; level :dword; optname :dword; var optval :var; optlen :socklen_t); @returns("eax");
	sock.setTimeout(s:dword; timeout: sock.timeval);
	sock.gethostname(s:string);
	sock.gethostbyname(s:string; var hstent:sock.hostent);
	sock.gethostbyaddr (var addr :var; len :dword; _type :dword; var hstent :hostent);
	sock.getpeername (s :dword; var _name :sock.sockaddr; var namelen :sock.socklen_t); @returns("eax");
	sock.getsockname (s :dword; var _name :sock.sockaddr; var namelen :sock.socklen_t); @returns("eax");
	sock.fd_zero(var fdset:sock.fd_set_t); sock.fd_set(fd:dword; var fdset:sock.fd_set_t); sock.fd_clr(fd:dword; var fdset:sock.fd_set_t); sock.fd_isset(fd:dword; var fdset:sock.fd_set_t); @returns("al");

	28.5 Socket Classes
	28.6 A Quick Note
	28.7 Client/Server Applications Using the Socket Classes
	28.8 A Simple Server Application
	28.9 A Simple Client Application
	28.10 Client/Server Communication
	28.11 General Socket Class Operations
	<object>.create; @returns("esi"); server_t.create; @returns("esi"); [to create dynamic objects] client_t.create; @returns("esi"); [to create dynamic objects]
	<object>.destroy; @returns("esi"); server_t.destroy; @returns("esi"); [to create dynamic objects] client_t.destroy; @returns("esi"); [to create dynamic objects]
	<object>.close; server_t.close; client_t.close;
	<serverObject>.start (adrs :dword; port :word; timeoutCallback :thunk; connectionCallback :procedure);
	<clientObject>.connect(IPadrs:dword; port :word);
	<baseSocketClass_t>.assign(var src:baseSocketClass_t); <vBaseSocketClass_t>.assign(var src:vBaseSocketClass_t);
	<object>.setTimeout(timeout:sock.timeval); <object>.setTimeout2(tv_sec:dword; tv_usec:dword); <object>.getTimeout(var timeout:sock.timeval);
	<object>.getAdrs; @returns("eax");
	<object>.setAdrs(adrs:dword);
	<object>.getPort; @returns("ax");
	<object>.setPort(port:word);
	<object>.adrsToStr(s:string); <object>.a_adrsToStr; @returns("eax");

	28.12 Miscellaneous Output
	<object>.write(var buffer:var; count:dword)
	<object>.putbool(b:boolean);
	<object>.newln();

	28.13 Character, Character Set, and String Output
	<object>.putc(c:char)
	<object>.putcSize(c:char; width:int32; fill:char)
	<object>.putcset(cst:cset);
	<object>.puts(s:string);
	<object>.putsSize(s:string; width:int32; fill:char)
	<object>.putz(z:zstring);
	<object>.putzSize(z:zstring; width:int32; fill:char)

	28.14 Hexadecimal Numeric Output
	<object>.putb(b:byte);
	<object>.puth8(b:byte);
	<object>.puth8Size(b:byte; width:dword; fill:char)
	<object>.putw(w:word);
	<object>.puth16(w:word);
	<object>.puth16Size(w:word; width:dword; fill:char)
	<object>.putd(dw:dword);
	<object>.puth32(dw:dword);
	<object>.puth32Size(d:dword; width:dword; fill:char)
	<object>.putq(q:qword);
	<object>.puth64(q:qword);
	<object>.puth64Size(q:qword; width:dword; fill:char)
	<object>.puttb(tb:tbyte)
	<object>.puth80(tb:tbyte)
	<object>.puth80Size(tb:tbyte; width:dword; fill:char)
	<object>.putl(l:lword)
	<object>.puth128(l:lword)
	<object>.puth128Size(l:lword; width:dword; fill:char)

	28.15 Signed Integer Numeric Output
	<object>.puti8 (b:byte);
	<object>.puti8Size (b:byte; width:int32; fill:char);
	<object>.puti16(w:word);
	<object>.puti16Size(w:word; width:int32; fill:char);
	<object>.puti32(d:dword);
	<object>.puti32Size(d:dword; width:int32; fill:char);
	<object>.puti64(q:qword);
	<object>.puti64Size(q:qword; width:int32; fill:char);
	<object>.puti128(l:lword);
	<object>.puti128Size(l:lword; width:int32; fill:char);

	28.16 Unsigned Integer Numeric Output
	<object>.putu8 (b:byte)
	<object>.putu8size(b:byte; width:int32; fill:char)
	<object>.putu16(w:word)
	<object>.putu16size(w:word; width:int32; fill:char)
	<object>.putu32(d:dword)
	<object>.putu32Size(d:dword; width:int32; fill:char)
	<object>.putu64(q:qword)
	<object>.putu64Size(q:qword; width:int32; fill:char);
	<object>.putu128(l:lword)
	<object>.putu128Size(l:lword; width:int32; fill:char);

	28.17 Floating-Point Numeric Output Using Scientific Notation
	<object>.pute32(r:real32; width:uns32)
	<object>.pute64(r:real64; width:uns32)
	<object>.pute80(r:real80; width:uns32)

	28.18 Floating-Point Numeric Output Using Decimal Notation
	<object>.putr32(r:real32; width:uns32; decpts:uns32; fill:char)
	<object>.putr64(r:real64; width:uns32; decpts:uns32; fill:char)
	<object>.putr80(r:real80; width:uns32; decpts:uns32; fill:char)

	28.19 Generic File Output
	<object>.put(parameter_list)

	28.20 Generic File Input
	<object>.read(var buffer:var; count:dword)
	<object>.readLn;

	28.21 Character and String Input
	<object>.getc; @returns("al");
	<object>.gets(s:string);
	<object>.a_gets; @returns("eax");

	28.22 Signed Integer Input
	<object>.geti8; @returns("al");
	<object>.geti16; @returns("ax");
	<object>.geti32; @returns("eax");
	<object>.geti64; @returns("edx:eax");
	<object>.geti128(var l:lword);

	28.23 Unsigned Integer Input
	<object>.getu8; @returns("al");
	<object>.getu16; @returns("ax");
	<object>.getu32; @returns("eax");
	<object>.getu64; @returns("edx:eax");
	<object>.getu128(var l:lword);

	28.24 Hexadecimal Input
	<object>.geth8; @returns("al");
	<object>.geth16; @returns("ax");
	<object>.geth32; @returns("eax");
	<object>.geth64; @returns("edx:eax");
	<object>.geth128(var l:lword);

	28.25 Floating-Point Input
	<object>.getf; @returns("st0");

	28.26 Generic File Input
	<object>.get(List_of_items_to_read);

