
HLA Standard Library Reference
37 Time Functions (datetime.hhf)

HLA contains a set of procedures and functions that simplify correct time calculations. The time module
contains functions and other objects that manipulate time in terms of hours, minutes, and seconds. This includes
functions that read the current time, perform time arithmetic, do time conversions, and output time values.

There are two sets of time functions available in the standard library: the standard time functions and a set of
time classes. This document will describe both sets of time functions.

Note: be sure to read the chapter on "Passing Parameters to Standard Library Routines" (parmpassing.rtf) before
reading this chapter.

A Note About Thread Safety: The date and time routines maintain a couple of static global variables that
track the output format and output separate characters for dates. Currently, these values apply to all threads in a
process. You should take care when changing these values in threads. When the process module is added to the
standard library, these values will be placed in a per-thread data structure. Until then, you should set the format/
separator character before starting any other threads and avoid changing their values once other threads (that
might use the date/time library module) begin execution.

Note about function overloading: the functions in the date/time module use function overloading in order
to allow you to specify the parameter lists in different ways. The macro that handles the overloading generally
coerces the possible parameter types into a single object that it passes to the underlying function. The
documentation for the specific functions will tell you whether a symbol is a macro or a function. For the most
part, this should matter to you unless you are taking the address of a function (which you cannot do with a
macro). See the HLA documentation for more details on function overloading via macros.

37.1 Time Module
#include("datetime.hhf")
or
#include("stdlib.hhf")

37.2 Time Data Types
The principal time data structure is the time.timerec record:

time.timerec

This data structure has the following definition:

type
timerec:

daterec:
record

day :uns8;
month :uns8;
year :uns16;

endrecord;

The time field allows you to treat the entire object as a single 32-bit value. This is great for comparisons or
for passing the timerec value around in an opaque fashion.

The standard library uses the time.timerec data type to hold valid times in the range 00:00:00 to 23:59:59.
Values outside this range are invalid and the standard library will raise an exception if you try to use such values
in a time.timerec object. Sometimes, however, it is convenient to measure time as a duration rather than as a time
of day. The standard library provides the time.duration data type for this purpose. The time.duration data type is
structurally identical to the time.timerec data type. However, the standard library routines allow any 16-bit
signed value for the hours fields. Note that the mins and secs fields are still limited to the range 0..59 (and are
considered invalid if they are outside this range).

 duration:
record;
Released to the Public Domain Page 1113

HLA Standard Library
secs:int8;
mins:int8;
hours:int16;

endrecord;

The time.OutputFormat data type controls how the string conversion functions format time values when
converting them to strings. This is an enumerated data type with the following values:

 OutputFormat: enum
 {
 hhmmssAMPM,
 hhmmssAP,
 hhmmss12,
 hhmmss24,

 hhmmAMPM,
 hhmmAP,
 hhmm12,
 hhmm24,

 badTimeFormat
 };

The Standard Library maintains an internal static variable that keeps track of the current output format
(which you can change via the time.setFormat function). The various settings affect the output format as follows:

hhmmssAMPM: Date is output using a 12-hour clock in the range 01:00:00 to 12:59:59 with an "AM" or "PM"
suffix on the time.

hhmmssAP: Date conversion uses a 12-hour clock in the range 01:00:00 to 12:59:59 with an "A" or "P" suffix
on the time.

hhmmss12: Date conversion uses a 12-hour clock in the range 01:00:00 to 12:59:59 with no suffix to denote
morning or evening times.

hhmmss24: Date conversion uses a 24-hour clock in the range 00:00:00 to 23:59:59.

hhmmAMPM: Date is output using a 12-hour clock in the range 01:00 to 12:59 with an "AM" or "PM" suffix on
the time.

hhmmAP: Date conversion uses a 12-hour clock in the range 01:00 to 12:59 with an "A" or "P" suffix on the
time.

hhmm12: Date conversion uses a 12-hour clock in the range 01:00 to 12:59 with no suffix to denote morning or
evening times.

hhmm24: Date conversion uses a 24-hour clock in the range 00:00 to 23:59.

37.3 Time Predicates
The functions in this category test times for validity and do other checks on times.

time.validate(h:word; m:byte; s:byte);
time.validate(hms:time.timerec);
time._validate(tm:timerec);

HLA high-level calling sequence examples:
Page 1114 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
try

time.validate(someTimeVar);

 anyexception

// Do something if the time is invalid

endtry;

try

time.validate(someHour, someMinute, someSecond);

 anyexception

// Do something if the time is invalid

endtry;

try

time._validate(someTimeVar);

 anyexception

// Do something if the time is invalid

endtry;

HLA low-level calling sequence examples:

push(someTimeVar.time);
call time._validate;

The functions in this category test times for validity and do other checks on times.

time.isValid(h:word; m:byte; s:byte);
time.isValid(hms:time.timerec);
time._isValid(tm:timerec);

HLA high-level calling sequence examples:

time.isValid(someTimeVar);
mov(al, timeIsValidVar1);
time.isValid(someHour, someMinute, someSecond);
mov(al, timeIsValid2);
time._validate(someTimeVar);
mov(al, timeIsValid3);

HLA low-level calling sequence examples:

push(someTimeVar.time);
call time._isValid;
mov(al, timeIsValid3);
Released to the Public Domain Page 1115

HLA Standard Library
37.4 Time Conversions
The functions in this category convert time between hours/minutes/second format and an integer specifying

some number of seconds, and the functions in this category also perform basic time arithmetic functions such as
the addtion and subtraction of time.

#macro unpack(tm, h, m, s)

This macro takes a time.timerec object as its first argument and extracts the hours, mins, and secs fields
(zero-extending them to 32 bits) and stores the extract values in the dword h, m, and s arguments (respectively).

HLA macro invocation examples:

time.unpack(sometimeVar, hoursVar32, MinutesVar32, SecondsVar32);

#macro pack(h, m, s, _tm_)

This macro takes the hours (h), minutes (m), and seconds (s) arguments and packs them into a time.timerec
object. This macro is very similar to the date.pack macro, see the description of that macro for more details about
the operation of this macro. Note that if h, m, or s are constant values, this macro will check them to see if they
are valid (that is, values in the range 00:00:00 to 23:59:59).

HLA macro invocation examples:

time.unpack(hoursVar32, MinutesVar32, SecondsVar32, someTimeVar);

time.durationToSecs(hours:word; mins:byte; secs:byte); @returns("eax");

This function converts a time span in HHMMSS format to some number of seconds (if HHMMSS is the
time of day, then these functions return the time in seconds since midnight). Note that HHMMSS does not have
to be a 12-hour or 24-hour clock value. You may specify any number of hours between 0 and 65535, and any
number of seconds or minutes between 0 and 255 for this function.

time.secsToDuration
(
 seconds :uns32;
 var hours :word;
 var mins :byte;
 var secs :byte
);

This function converts some number of seconds to a duration (the number of hours, minutes, and seconds)
and stores that duration in the hours, mins, and seconds parameters passed by reference. If the number of seconds
exceeds 65535 hours, 59 minutes, and 59 seeconds, then this function raises an ex.TimeOverflow exception.

HLA high-level calling sequence examples:

time.secsToDuration(seconds, hoursVar32, MinsVar32, SecsVar32);

HLA low-level calling sequence examples:

push(seconds);
pushd(&hoursVar32);// Assumes hoursVar32 is STATIC
lea(eax, MinsVar32);// MinsVar32 need not be static
push(eax);
lea(eax, SecsVar32);// SecsVar32 need not be static
push(eax);
call time.secsToDuration;
Page 1116 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
#macro time.toSecs(theTime: time.timerec); @returns("eax");
#macro time.toSecs(h:uns16; m:byte; s:byte); @returns("eax");
time._toSecs(HMS:timerec); @returns("eax");

These functions convert a time span in HHMMSS format to some number of seconds (if HHMMSS is the
time of day, then these functions return the time in seconds since midnight). Technically, these functions and
macros don’t care if their parameters are valid times (that is, within the range 00:00:00 to 23:59:59), however
you should use time.durationToSecs when convertion durations (versus valid time of day values) to seconds.

HLA high-level calling sequence examples:

time.toSecs(someTimeVar);
mov(eax, numSeconds1);
time.toSecs(hours, minutes, seconds);
mov(eax, numSeconds2);
time._toSecs(someTimeVar);
mov(eax, numSeconds3);

HLA low-level calling sequence examples:

push(someTimeVar.time);
call time.toSecs;
mov(eax, numSeconds3);

time.fromSecs(seconds:uns32; var HMS:time.timerec);

This function converts the seconds parameter to an HMS time value. The first parameter must be less than
235,929,600 since this is the maximum time representable by 65535 hours. If the seconds parameter exceeds this
value, then time.secsToHMS will raise an ex.TimeOverflow exception.

HLA high-level calling sequence example:

time.fromSecs(seconds, someTimeVar);

HLA low-level calling sequence examples:

push(seconds);
lea(eax, someTimeVar);// If someTimeVar is non-static
call time.fromSecs;

push(seconds);
pushd(&someTimeVar);// If someTimeVar is static

time.toUnixTime(DMY:date.daterec; HMS:timerec);
@returns("edx:eax");

This function converts a Standard Library date and time value to a UNIX/C stdlib date/time value. UNIX/C
stdlib time values are specified as the number of seconds since midnight, Jan 1, 1970. This function raises an
ex.InvalidDate exception if the DMY parameter specifies a date prior to Jan 1, 1970.

This function returns a 64-bit value. Most UNIX systems and C standard library packages currently specify
a "time_t" object as a 32-bit signed integer. This data type will fail to properly maintain dates sometime during
the year 2038. Newer system define time_t as an unsigned 32-bit integer, thereby doubling the effective range of
the date. Nevertheless, the date.daterec data type can represent dates outside the range of even a 32-bit unsigned
integer, so this function returns a 64-bit value in EDX:EAX. If you need to work with a 32-bit value, simply
ignore the value returned in EDX.

HLA high-level calling sequence example:
Released to the Public Domain Page 1117

HLA Standard Library
time.toUnixTime(someDate, someTime);
mov(eax, (type dword unixTimeVar));
mov(edx, (type dword unixTimeVar[4]));// Assuming it’s 64 bits.

HLA low-level calling sequence examples:

push(someDate.date);
push(someTime.time);
call time.toUnixTime;
mov(eax, (type dword unixTimeVar));
mov(edx, (type dword unixTimeVar[4]));// Assuming it’s 64 bits.

time.fromUnixTime
(
 unixTime :qword;
 var HMS :timerec;
 var DMY :date.daterec
);

This function converts the UNIX/C standard library time_t object passed in unixTime to HLA Standard
Library date.daterec (DMY) and time.timerec (HMS) objects. Note that the time_t type on most Unix systems
(and in the C standard library) is a 32-bit value whereas this function expects a 64-bit value. If working with
actual 32-bit time_t values, simply zero extend them to 64 bits before calling this function.

HLA high-level calling sequence example:

time.fromUnixTime(unixDateTime, someDate, someTime);

HLA low-level calling sequence examples:

// If the unix date/time on your system is 32 bits:

pushd(0);
push((type dword unixTimeVar));

pushd(&someDate.date);// Assumes someDate.date and
pushd(&someTime.time);// someTime.time are STATIC
call time.fromUnixTime;

// If the unix date/time on your system is 64 bits:

push((type dword unixTimeVar[4]));
push((type dword unixTimeVar));

lea(eax, someDate.date);// Assumes someDate.date and
push(eax); // someTime.time are not STATIC
lea(eax, someTime.time);
push(eax);
call time.fromUnixTime;

time.toWinFileTime(DMY:date.daterec; HMS:timerec);
@returns("edx:eax");

Windows file times are 64-bit values that represent the number of 100 nanosecond periods since midnight,
Jan 1, 1601. This function converts a Standard Library date and time value (passed in the DMY and HMS
parameters) to a Windows file time and returns that value in the EDX:EAX register pair. Because HLA time
values only maintain seconds precision, the resulting value will have a granularity of one second. If you actually
need to create a value with finer granularity, add the number of 0.1 microseconds to the result that
time.toWinFileTime returns. This function raises an ex.InvalidDate exception if the Standard library date is less
than Jan 1, 1601.
Page 1118 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
HLA high-level calling sequence example:

time.toWinFileTime(someDate, someTime);
mov(eax, (type dword win32TimeVar));
mov(edx, (type dword win32TimeVar[4]));

HLA low-level calling sequence examples:

push(someDate.date);
push(someTime.time);
call time.toWinFileTime;
mov(eax, (type dword win32TimeVar));
mov(edx, (type dword win32TimeVar[4]));

time.fromWinFileTime
(
 winTime :qword;
 var HMS :timerec;
 var DMY :date.daterec
);

This function converts a Windows file time to a Standard Library date and time. This function stores the
resulting date in the DMY parameter and the time to the HMS parameter (both passed by reference). Because
Windows file times provide 100ns precision whereas the Standard Library functions only work with 1 sec
precision, this function rounds the Windows time to the nearest second during the conversion (specfically, if
there are 0.5 or more fractional seconds, this function bumps up the seconds value by one).

HLA high-level calling sequence example:

time.fromWinFileTime(win32DateTime, someDate, someTime);

HLA low-level calling sequence example:

push((type dword win32DateTime[4]));
push((type dword win32DateTime));

lea(eax, someDate.date);// Assumes someDate.date and
push(eax); // someTime.time are not STATIC
lea(eax, someTime.time);
push(eax);
call time.fromWinFileTime;

37.5 Time Arithmetic
time.secsBetweenTimes(time1:timerec; time2:timerec); @returns("eax");

This function computes the number of seconds between the two times passed as parameters. It returns the
value in the EAX register. Note that this is the absolute value of their difference, so the relative sizes of the two
operands is immaterial. Both times must be valid Standard Library timerec values in the range
00:00:00..23:59:59 or this function will raise an ex.InvalidTime exception.

HLA high-level calling sequence example:

time.secsBetweenTimes(someTime1, someTime2);
mov(eax, secondsBetween);

HLA low-level calling sequence example:
Released to the Public Domain Page 1119

HLA Standard Library
push(someTime1.time);
push(someTime2.time);

call time.secsBetweenTimes;
mov(secondsBetween);

time.subHours(hours:uns32; var HMS:timerec); @returns("eax");

This function subtracts the number of hours from the timerec object passed by reference as the second
parameter (HMS). This function returns in EAX the number of days "borrowed" during the calculation (that is,
for each transition past midnight during this calculation, the calculation "borrows" one day).

HLA high-level calling sequence example:

time.subHours(hours, someTime);

HLA low-level calling sequence examples:

push(hours);
pushd(&someTime);// Assuming someTime is STATIC

call time.subHours;

push(hours);
lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.subHours;

time.subMins(minutes:uns32; var HMS:timerec); @returns("eax");

This function subtracts the number of minutes from the timerec object passed by reference as the second
parameter (HMS). This function returns in EAX the number of days "borrowed" during the calculation (that is,
for each transition past midnight during this calculation, the calculation "borrows" one day).

HLA high-level calling sequence example:

time.subMins(minutes, someTime);

HLA low-level calling sequence examples:

push(minutes);
pushd(&someTime);// Assuming someTime is STATIC

call time.subMins;

push(minutes);
lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.subMins;

time.subSecs(seconds:uns32; var HMS:timerec); @returns("eax");

This function subtracts the number of seconds from the timerec object passed by reference as the second
parameter (HMS). This function returns in EAX the number of days "borrowed" during the calculation (that is,
for each transition past midnight during this calculation, the calculation "borrows" one day).

HLA high-level calling sequence example:

time.subSecs(seconds, someTime);
Page 1120 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
HLA low-level calling sequence examples:

push(seconds);
pushd(&someTime);// Assuming someTime is STATIC

call time.subSecs;

push(seconds);
lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.subSecs;

time.addHours(hours:uns32; var HMS:timerec); @returns("eax");

This function adds the number of hours to the timerec object passed by reference as the second parameter
(HMS). This function returns in EAX the number of days skipped during the calculation (that is, for each
transition past midnight during this calculation, the calculation "skips" one day).

HLA high-level calling sequence example:

time.addHours(hours, someTime);

HLA low-level calling sequence examples:

push(hours);
pushd(&someTime);// Assuming someTime is STATIC

call time.addHours;

push(hours);
lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.addHours;

time.addMins(minutes:uns32; var HMS:timerec); @returns("eax");

This function adds the number of minutes to the timerec object passed by reference as the second parameter
(HMS). This function returns in EAX the number of days skipped during the calculation (that is, for each
transition past midnight during this calculation, the calculation "skips" one day).

HLA high-level calling sequence example:

time.addMins(minutes, someTime);

HLA low-level calling sequence examples:

push(minutes);
pushd(&someTime);// Assuming someTime is STATIC

call time.addMins;

push(minutes);
lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.addMins;

time.addSecs(seconds:uns32; var HMS:timerec); @returns("eax");

This function adds the number of seconds to the timerec object passed by reference as the second parameter
(HMS). This function returns in EAX the number of days skipped during the calculation (that is, for each
transition past midnight during this calculation, the calculation "skips" one day).
Released to the Public Domain Page 1121

HLA Standard Library

HLA high-level calling sequence example:

time.addSecs(seconds, someTime);

HLA low-level calling sequence examples:

push(seconds);
pushd(&someTime);// Assuming someTime is STATIC

call time.addSecs;

push(seconds);
lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.addSecs;

37.6 Reading the Current System Time
time.curTime(var theTime: time.timerec);

This returns the local time (provided by the system clock) in the specified time variable.

HLA high-level calling sequence example:

time.curTime(someTime);

HLA low-level calling sequence examples:

pushd(&someTime);// Assuming someTime is STATIC
call time.curTime;

lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.curTime;

time.utcTime(var theTime: time.timerec);

This returns the UTC time (the current GMT time provided by the system clock) in the specified time
variable.

HLA high-level calling sequence example:

time.utcTime(someTime);

HLA low-level calling sequence examples:

pushd(&someTime);// Assuming someTime is STATIC
call time.utcTime;

lea(eax, someTime);// Assuming someTime is not STATIC
push(eax);

call time.utcTime;
Page 1122 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
37.7 Time String Conversions and Output
time.setFormat(f:OutputFormat);

This function sets the global system time conversion value. The parameter must be one of the following
time.OutputFormat enumerated values:

hhmmssAMPM
hhmmssAP
hhmmss12
hhmmss24
hhmmAMPM
hhmmAP
hhmm12
hhmm24

The first four constants tell the time/string conversion routines to emit hours, minutes, and seconds in a
"00:00:00" format, the last four output only the hours and minutes in a "00:00" format. The hhmmssAMPM and
hhmmAMPM constants emit a 12-hour time format with either "am" or "pm" appended to the string to denote
midnight to noon or noon to midnight. The hhmmssAP and hhmmAP formats do the same, except that they only
display an "a" or a "p" after the time. The hhmmss12 and hhmm12 formats display a 12-hour time with no
indication of which half of the day the time represents. The hhmmss24 and hhmm24 formats specify a 24-hour
time.

The time.toString and time.a_toString functions use the value of the global time format to determine how
they convert a Standard Library timerec value to a string.

time.toString(HMS:timerec; dest:string);

This function converts the HMS parameter to a string using the format specified by the global OutputFormat
variable (set by the time.setFormat function). The destination string must have sufficient storage associated with
it or this function will raise an exception. This function will also raise an ex.InvalidTime exception if HMS
contains an invalid time.

HLA high-level calling sequence example:

time.toString(someTime, destStr);

HLA low-level calling sequence example:

push(someTime.time);
push(destStr);

call time.toString;

time.a_toString(HMS:timerec); @returns("eax");

This function is similar to time.toString except you don’t supply a destination string. Instead, this function
allocates storage for the string on the heap. Note that it is the caller’s responsibility to free this storage when the
caller is done with the string (i.e., by calling str.free).

HLA high-level calling sequence example:

time.a_toString(someTime);
mov(eax, destStr);

HLA low-level calling sequence example:

push(someTime.time);
call time.a_toString;
mov(eax, destStr);
Released to the Public Domain Page 1123

HLA Standard Library
37.8 Time Class Types
#include("dtClass.hhf")

Note: the stdlib.hhf header file does not include dtClass.hhf. If you want to use the time class data types you
will need to explicitly include the dtClass.hhf header file.

For those who prefer an object-oriented programming approach, the Standard Library provides the ability to
create time class data types. The Standard Library provides two predefined time class types: timeClass_t and
virtualTimeClass_t. The difference between these two types is that the timeClass_t type uses static procedures
for all the time functions whereas virtualTimeClass_t uses virtual methods. In certain cases, using the
timeClass_t data type is more efficient than using virtualTimeClass_t because you only link in the class functions
you actually call. However, you lose the ability to make polymorphic method calls when using the timeClass_t.
For more details on the differences between these two class types, please see the discussion of the
dtClass.make_timeClass macro appearing later in this section. This section will use the phrase "time class" to
mean any class created by the make_timeClass macro, including the timeClass_t and virtualTimeClass_t data
types.

The time class types provide two data fields:

 var
 theTime :time.timerec;
 timeFmt :time.OutputFormat;

The first field, theTime, holds the time value associated with the time object. This is the standard
time.timerec date type described earlier in this document. Note that you can pass this field to any of the standard
date and time functions that expect a time.timerec value.

The second field, timeFmt, specifies the output format when using the time class string conversion routines.
Note that only the time class string conversion routines respect the value of this field; if you pass theTime
directly to a time function that takes a time.timerec argument, that function will use the system-wide global time
format rather than the object’s timeFmt value.

Thread Safety Issue: Although each time object has its own timeFmt field, this does not make the use of
time class objects thread safe. When converting theTime to a string, the time class functions save the global
format value, copy timeFmt to the global variable, call the time functions to do the string conversion, and then
restore the original global value. If a thread is suspended during this activity then any time/string conversions
during this suspension may use an incorrect format value. This issue will be corrected in a later version of the
Standard Library. For now, you must manually protect all time/string conversions if you perform such
conversions in multiple threads in your application.

Of course, you may create a derived class from either timeClass_t or virtualTimeClass_t (or create a brand
new time class using the dtClass.make_timeClass macro) and add any other fields you like to that new time class.
One suggestion for such a class is to pad the data fields to a multiple of four bytes. Currently, the timeClass_t and
virtualTimeClass_t objects consumes nine bytes of storage (five bytes for the three fields above plus four bytes
for the VMT pointer). For performance reasons, you might want to extend the size of the data storage to 12 or
even 16 bytes. Another suggestion might be to add a Separator field that specifies the hours/minutes/seconds
separator character when converting a time to a string; of course, you’ll need to override the toString and
a_toString methods to achieve this.

37.9 Time Class Methods/Procedures
In most HLA classes, there are two types of functions: (static) procedures and (dynamic) methods (there are

also iterators, but the time classes do not use iterators so we will ignore that here). The only difference between
a method and a procedure is how the program actually calls the function: the program calls procedures directly, it
calls methods indirectly through an entry in the virtual method table (VMT). Static procedure calls are very
efficient, but you lose the object-oriented benefits of polymorphism when you define a function as a static
procedure in a class. Methods, on the other hand, fully support polymorphic calls, but introduce some efficiency
issues. Let’s consider those issues here.

First of all, unlike static procedures, your program will link in all methods defined in your program even if
you don’t explicitly call those methods in your program. Because the call is indirect, there really is no way for the
assembler and linker to determine whether you’ve actually called the function, so it must assume that you do call
it and the linker links in the code for each method in the class. This can make your program a little larger
because it may be including several time class functions that you don’t actually call. For large applications, the
amount of extra storage required by linking in all the time functions is inconsequential, but if you don’t like
linking in code that the program will never call, specifying virtual methods for all the time functions may annoy
you.
Page 1124 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
The second effiency issue concerning method calls is that they use the EDI register to make the indirect call
(static procedure calls do not disturb the value in EDI). Therefore, you must ensure that EDI is free and available
before making a virtual method call, or take the effort to preserve EDI’s value across such a call.

A third, though exteremely minor, efficiency issue concerning methods is that the class’ VMT will need an
extra entry in the virtual method table. As this is only four bytes per class (not per object), this probably isn’t
much of a concern.

The predefined timeClass_t and virtualTimeClass_t functions differ in how they define the functions
appearing in the class types. The timeClass_t type uses static procedures for all functions, the virtualTimeClass_t
type uses methods for all class functions (except the constructor, create, because constructors are always static
procedures). Therefore, timeClass_t data types will make direct calls to all the functions (and only link in the
procedures you actually call); however, timeClass_t objects do not support function polymorphism in derived
classes. The virtualTimeClass_t type does support polymorphism for all the class methods, but whenever you use
this data type you will link in all the methods (even if you don’t call them all) and calls to these methods will
require the use of the EDI register.

It is important to understand that timeClass_t and virtualTimeClass_t are two separate types. Neither is
derived from the other. Nor are the two types compatible with one another. You should take care not to confuse
objects of these two types if you’re using both types in the same program.

37.10 Creating New Time Class Types
As it turns out, the only difference between a method and a procedure (in HLA) is how that method/

procedure is called. The actual function code is identical regardless of the declaration (the reason HLA supports
method and procedure declarations is so that it can determine how to populate the VMT and to determine how to
call the function). By pulling some tricks, it’s quite possible to call a procedure using the method invocation
scheme or call a method using a direct call (like a static procedure). The Standard Library time class module
takes advantage of this trick to make it possible to create new time classes with a user-selectable set of
procedures and methods. This allows you to create a custom time type that uses methods for those functions you
want to override (as methods) and use procedures for those functions you don’t call or will never override (as
virtual methods). Indeed, the timeClass_t and virtualTimeClass_t time types were created using this technique.
The timeClass_t data type was created specifying all functions as procedures, the virtualTimeClass_t data type
was created specifying all functions, except create, as methods. By using the dtClass.make_timeClass macro,
you can create new time data types that have any combination of procedures and methods.

dtClass.make_timeClass(className, "<list of methods>")

dtClass.make_timeClass is a macro that generates a new data type. As such, you should only invoke this
macro in an HLA type declaration section. This macro requires two arguments: a class name and a string
containing the list of methods to use in the new data type. The method list string must contain a sequence of
method names from the following list:

create
curTime
utcTime
addSecs
addMins
addHours
subSecs
subMins
subHours
fromSecs
toSecs
isValid
validate
difference
secsBetweenTimes
toString
a_toString

Here is dtClass.make_timeClass macro invocation that creates the virtualTimeClass_t type; note that the
create function is always a static procedure and its name must not appear in the list of method names:

Released to the Public Domain Page 1125

HLA Standard Library
type
 dtClass.make_timeClass

 (
 virtualTimeClass_t,
 "curTime "
 "utcTime "
 "addSecs "
 "addMins "
 "addHours "
 "subSecs "
 "subMins "
 "subHours "
 "fromSecs "
 "toSecs "
 "isValid "
 "validate "
 "difference "
 "secsBetweenTimes "
 "toString "
 "a_toString "

);

(For those unfamiliar with the syntax, HLA automatically concatenates string literals that are separated by
nothing but whitespace; therefore, this macro contains exactly two arguments, the virtualTimeClass_t name and
a single string containing the concatenation of all the strings above.)

From this macro invocation, HLA creates a new data type using methods for each of the names appearing in
the string argument. If a particular time function’s name is not present in the dtClass.make_timeClass macro
invocation, then HLA creates a static procedure for that function. As a second example, consider the declaration
of the timeClass_t data type (which uses static procedures for all the time functions):
type

 dtClass.make_timeClass(timeClass_t, " ");

Because the function string does not contain any of the time function names, the dtClass.make_timeClass macro
generates static procedures for all the time functions.

The timeClass_t type is great if you don’t need to create a derived time class that allows you to
polymorphically override any of the time functions. If you do need to create methods for certain functions and
you don’t mind the overhead of a virtual method call, the virtualTimeClass_t makes all the functions. Probably
99% of the time you won’t be calling the time functions very often, so the overhead of using method invocations
for all time functions is irrelevant. In those rare cases where you do need to support polymorphism for a few time
functions but don’t want to link in the entire set of time functions, or you don’t want to pay the overhead for
indirect calls to functions that are never polymorphic, you can create a new time class type that specifies exactly
which functions require polymorphism.

For example, if you want to create a time class that overrides the definition of the fromSecs and toSecs
functions, you could declare that new type thusly:

type
 dtClass.make_timeClass

 (
 myTimeClass,
 "fromSecs"
 "toSecs"
);

This new class type (myTimeClass) has two methods, fromSecs and toSecs, and all the other time functions
are static procedures. This allows you to create a derived class that overloads the fromSecs and toSecs methods
and access those methods when using a generic myTimeClass pointer, e.g.,
Page 1126 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
type
 derivedMyTimeClass :

class inherits(myTimeClass);

override method fromSecs;
override method toSecs;

endclass;

It is important for you to understand that types created by dtClass.make_timeClass are base types. They are
not derived from any other class (e.g., virtualTimeClass_t is not derived from timeClass_t or vice-versa). The
types created by the dtClass.make_timeClass macro are independent and incompatible types. For this reason,
you should avoid using different base time class types in your program. Pick (or create) a base time class and use
that one exclusively in an application. You’ll avoid confusion by following this rule.

For the sake of completeness, here are the macros that the Standard Library uses to create time data types:
namespace dtClass;

 // The following macro allows us to turn a class function
 // into either a method or a procedure based on the
 // presence of "funcName" within a list of method names
 // passed to the class generating macro.

 #macro function(funcName);

 #if(@index(methods, 0, @string:funcName) = -1)

 procedure funcName

 #else

 method funcName

 #endif

 #endmacro

 // make_timeClass -
 //
 // This macro is used to create a base time class.
 // The first parameter is the name of the class to create.
 // The second parameter is a string listing the 'function'
 // names that you want converted to a class method (if not
 // present, it will be a class procedure).

 #macro make_timeClass(className, methods);

 className:
 class

 var
 theTime :time.timerec;
 timeFmt :time.OutputFormat;

 procedure create;
 @external("TIMECLASS_CREATE");

 dtClass.function(curTime);
 @external("TIMECLASS_CURTIME");
Released to the Public Domain Page 1127

HLA Standard Library

 dtClass.function(utcTime);
 @external("TIMECLASS_UTCTIME");

 dtClass.function(addSecs)(seconds:uns32);
 @external("TIMECLASS_ADDSECS");

 dtClass.function(addMins)(minutes:uns32);
 @external("TIMECLASS_ADDMINS");

 dtClass.function(addHours)(hours:uns32);
 @external("TIMECLASS_ADDHOURS");

 dtClass.function(subSecs)(seconds:uns32);
 @external("TIMECLASS_SUBSECS");

 dtClass.function(subMins)(minutes:uns32);
 @external("TIMECLASS_SUBMINS");

 dtClass.function(subHours)(hours:uns32);
 @external("TIMECLASS_SUBHOURS");

 dtClass.function(fromSecs)(seconds:uns32);
 @external("TIMECLASS_FROMSECS");

 dtClass.function(toSecs);
 @returns("eax");
 @external("TIMECLASS_TOSECS");

 dtClass.function(isValid);
 @returns("al");
 @external("TIMECLASS_ISVALID");

 dtClass.function(validate);
 @external("TIMECLASS_VALIDATE");

 dtClass.function(difference)(var time2:className);
 @returns("eax");
 @external("TIMECLASS_DIFFERENCE");

 dtClass.function(secsBetweenTimes)(time2:time.timerec);
 @returns("eax");
 @external("TIMECLASS_SECSBETWEENTIMES");

 dtClass.function(toString)(dest:string);
 @external("TIMECLASS_TOSTRING");

 dtClass.function(a_toString);
 @external("TIMECLASS_A_TOSTRING");

 endclass;

 #endmacro

end dtClass;
Page 1128 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
If you look closely at the make_timeClass macro, you’ll notice that it maps all the functions, be they
methods or procedures, to the timeClass_t names (which are all procedures, if you look at the source code for
these functions). As noted earlier, the function code for methods and procedures is exactly the same, only the
call to a given function is different based on whether it is a method or a procedure. Therefore, the
dtClass.make_timeClass macro maps all functions to the same set of procedures. Therefore, if you do create and
use multiple date classes in the same application, the linker will only link in one set of routines (unless, of course,
you overload some methods, in which case the linker will link in your new functions as well as the original
timeClass_t set).

37.11 Time Class Functions
The time class type supports most of the functions associated with the time type. The main difference is that

the time class functions operate directly on the time object rather than on a time value you pass as a parameter.
For this reason, there aren’t any macros that overload the time function parameter lists.

In the following function descriptions, the symbol <object> is used to specify a time class object or a
pointer to a time class object. Note that class invocations of static procedures (e.g., timeClass_t.isValid) are
illegal with the single exception of the constructor (the create procedure). If you call a time class procedure
directly, the system will raise an exception (as ESI, which should be pointing at the object’s data, will contain
NULL).

Note: because the syntax varies from declaration to declaration, the following sections do not provide
examples of calling these functions, please see the HLA documentation under object-oriented programming or
The Art of Assembly Language Programming for more details.

<object>.create();

The <name>.create procedure is the object constructor. This is the only function that you may call using a
class name rather than an object name. For example, timeClass_t.create(); is a perfectly legitimate constructor
call. As is the convention for HLA class constructors, if you call a class constructor directly (using the class
name rather than an object name), the time class constructor will allocate storage for a new time class object on
the heap and return a pointer to the new object in ESI. Once the storage is allocated (or if you specify the name of
a previously-allocated object rather than the class name), the time class constructor will initialize all the fields of
the object to reasonable values (in particular, the constructor initializes the VMT pointer, initializes theTime to a
valid time (00:00:00), and sets up the theFmt field with a default value).

If you create a derived time class and add new data fields to the data type, you should override the create
procedure and initialize those new fields in the overridden procedure. See the HLA documentation or The Art of
Assembly Language for more details on derived classes and overriding constructors.

<object>.validate();

The <object>.validate function checks the validity of an object’s theTime field. It raises an ex.InvalidTime
exception if the object’s theTime field contains an invalid value (hours outside the range 0..23 or minutes/
seconds outside the range 0..59). See time.validate for more details.

<object>.isValid(); @returns("al");

The <object>.isValid function checks the validity of an object’s theTime field. It returns true (in AL, zero-
extended into EAX) if theTime field contains a valid time value, it returns false otherwise. See time.isValid for
more details.

<object>.toSecs(); @returns("eax");

This function converts the object’s theTime field (in HH:MM:SS format) to the number of seconds since
midnight. This function returns the result in the EAX register. See the time.toSecs function description for more
details.

<object>.fromSecs(seconds:uns32);

This function converts the parameter value (seconds, the number of seconds since midnight) into a standard
library compatible HH:MM:SS time format and stores the result in the object’s theTime field. This function
returns the number of overflow days (that is, the number of 24-hour periods) in the EAX register, the value this
Released to the Public Domain Page 1129

HLA Standard Library
function stores into theTime is always a valid time between 00:00:00 and 23:59:59. See the time.toSecs function
description for more details.

<object>.secsBetweenTimes(otherTime:timerec); @returns("eax");

This function computes the number of seconds between the object’s theTime value and a time.timerec value
you pass as a parameter. It returns the difference, in seconds, in the EAX register. See the
time.secsBetweenTimes function for more information.

<object>.difference(var otherTime:<object’s class>); @returns("eax");

This function computes the number of seconds between the object’s theTime value and same field in the
object you pass as a parameter. It returns the difference, in seconds, in the EAX register. The type of the
parameter object must be the same type as <object> (i.e., timeClass_t, virtualTimeClass_t, or whatever other
time class you’ve created and defined <object> to be). See the time.secsBetweenTimes function for more
information.

<object>.subHours(hours:uns32);

This function subtracts the number of hours specified by the parameter from the object’s theTime field. See
the time.subHours function for more information.

<object>.subMins(hours:uns32);

This function subtracts the number of minutes specified by the parameter from the object’s theTime field.
See the time.subMins function for more information.

<object>.subSecs(hours:uns32);

This function subtracts the number of seconds specified by the parameter from the object’s theTime field.
See the time.subSecs function for more information.

<object>.addHours(hours:uns32);

This function adds the number of hours specified by the parameter to the object’s theTime field. See the
time.addHours function for more information.

<object>.addMins(minutes:uns32);

This function adds the number of minutes specified by the parameter to the object’s theTime field. See the
time.addMins function for more information.

<object>.addSecs(seconds:uns32);

This function adds the number of seconds specified by the parameter to the object’s theTime field. See the
time.addSecs function for more information.

<object>.curTime();

This stores the local time (provided by the system clock) in the object’s theTime field. See the time.curTime
function for additional details.

<object>.utcTime();

This stores the UTC time (the current GMT time provided by the system clock) in the objects theTime field.
See the time.utcTime function for additional details.
Page 1130 Version: 5/24/10 Written by Randall Hyde

HLA Standard Library Reference
<object>.toString(dest:string);

This function converts the object’s theTime field to a string using the object’s OutFmt field to guide the
conversion. This function stores the character data in the string object pointed at by the dest parameter (there
must be sufficient space allocated for the string or the function will raise an exception). See the time.toString
function for more information.

<object>.a_toString(HMS:timerec); @returns("eax");

This function converts the object’s theTime field to a string using the object’s OutFmt field to guide the
conversion. This function allocates storage for the resultant string and returns a pointer to this new string in
EAX. It is the caller’s responsibility to deallocate the storage associated with this string when the caller is done
with it. See the time.a_toString function for more information.

Because the time class includes an "a_toString" function, you may print time object values using stdout.put
and similar *.put Standard Library functions. Note that those functionsl automatically deallocate the storage
associated with the string created by <object>.a_toString.
Released to the Public Domain Page 1131

HLA Standard Library
Page 1132 Version: 5/24/10 Written by Randall Hyde

	37 Time Functions (datetime.hhf)
	37.1 Time Module
	37.2 Time Data Types
	time.timerec

	37.3 Time Predicates
	time.validate(h:word; m:byte; s:byte); time.validate(hms:time.timerec); time._validate(tm:timerec);
	time.isValid(h:word; m:byte; s:byte); time.isValid(hms:time.timerec); time._isValid(tm:timerec);

	37.4 Time Conversions
	#macro unpack(tm, h, m, s)
	#macro pack(h, m, s, _tm_)
	time.durationToSecs(hours:word; mins:byte; secs:byte); @returns("eax");
	time.secsToDuration (seconds :uns32; var hours :word; var mins :byte; var secs :byte);
	#macro time.toSecs(theTime: time.timerec); @returns("eax"); #macro time.toSecs(h:uns16; m:byte; s:byte); @returns("eax"); time._toSecs(HMS:timerec); @returns("eax");
	time.fromSecs(seconds:uns32; var HMS:time.timerec);
	time.toUnixTime(DMY:date.daterec; HMS:timerec); @returns("edx:eax");
	time.fromUnixTime (unixTime :qword; var HMS :timerec; var DMY :date.daterec);
	time.toWinFileTime(DMY:date.daterec; HMS:timerec); @returns("edx:eax");
	time.fromWinFileTime (winTime :qword; var HMS :timerec; var DMY :date.daterec);

	37.5 Time Arithmetic
	time.secsBetweenTimes(time1:timerec; time2:timerec); @returns("eax");
	time.subHours(hours:uns32; var HMS:timerec); @returns("eax");
	time.subMins(minutes:uns32; var HMS:timerec); @returns("eax");
	time.subSecs(seconds:uns32; var HMS:timerec); @returns("eax");
	time.addHours(hours:uns32; var HMS:timerec); @returns("eax");
	time.addMins(minutes:uns32; var HMS:timerec); @returns("eax");
	time.addSecs(seconds:uns32; var HMS:timerec); @returns("eax");

	37.6 Reading the Current System Time
	time.curTime(var theTime: time.timerec);
	time.utcTime(var theTime: time.timerec);

	37.7 Time String Conversions and Output
	time.setFormat(f:OutputFormat);
	time.toString(HMS:timerec; dest:string);
	time.a_toString(HMS:timerec); @returns("eax");

	37.8 Time Class Types
	37.9 Time Class Methods/Procedures
	37.10 Creating New Time Class Types
	dtClass.make_timeClass(className, "<list of methods>")

	37.11 Time Class Functions
	<object>.create();
	<object>.validate();
	<object>.isValid(); @returns("al");
	<object>.toSecs(); @returns("eax");
	<object>.fromSecs(seconds:uns32);
	<object>.secsBetweenTimes(otherTime:timerec); @returns("eax");
	<object>.difference(var otherTime:<object’s class>); @returns("eax");
	<object>.subHours(hours:uns32);
	<object>.subMins(hours:uns32);
	<object>.subSecs(hours:uns32);
	<object>.addHours(hours:uns32);
	<object>.addMins(minutes:uns32);
	<object>.addSecs(seconds:uns32);
	<object>.curTime();
	<object>.utcTime();
	<object>.toString(dest:string);
	<object>.a_toString(HMS:timerec); @returns("eax");

