
HLA Standard Library Reference
32 High-Level Language Module (hll.hhf)

The hll.hhf library module adds a switch/case/default/endswitch statement that is similiar to the Pascal case
statement and the C/C++ switch statement.

32.1 The HLL Module
To use the high-level language functions in your application, you will need to include one of the following

statements at the beginning of your HLA application:
#include("hll.hhf")
or
#include("stdlib.hhf")

32.2 The switch/case/default/endswitch Macro
#macro switch(reg32);
#keyword case(const_list);
#keyword default
#terminator endswitch

A commonly used high level language statement missing from HLA’s basic set is the the C/C++ switch
statement (the case statement in most other languages). The SWITCH/CASE/DEFAULT/ENDSWITCH macro
set in the hll.hhf header file provides this missing HLL statement.

The HLL module’s switch statement actually provides two different user-selectable syntaxes. The first is a
Pascal-like syntax. It takes the following form:

switch(reg32)

case(constant_list)
<<body>>

<< additional, optional cases >>

default // This section is optional too!
<< body >>

endswitch;

As you might expect, the reg32 parameter has to be an 80x86 32-bit general purpose register. The
constant_list operand has to be a sequence of one or more positive ordinal constants. There must be at least one
case present in the statement (default does not count as a case) and there may be a maximum of 1,024 cases in the
switch statement. Furthermore, the range between the largest and smallest values for all the cases must be less
than or equal to 1,024. Note that, unlike C/C++, you do not end each case with a break statement; nor does
control fall through from one case to the next. Here is a simple example of a Pascal-like switch statement:

switch(ebx)

case(1)
stdout.put("case 1 encountered" nl);

case(3)
stdout.put("case 3 encountered" nl);

case(10)
stdout.put("case 10 encountered" nl);
Released to the Public Domain Page 961

HLA Standard Library
case(15, 20, 25)
stdout.put("case 15, 20, or 25 encountered" nl);

default
stdout.put("Some other case was encountered" nl);

endswitch;

Although C/C++ semantics for a switch statement are stylistically inferior to Pascal, some people might
prefer a C/C++ version of the switch statement. The HLL switch statement uses a special predefined boolean
VAL constant, hll.cswitch, that lets you choose C/C++ semantics. By default, the hll.cswitch constant is set to
false. By placing the statement "?hll.cswitch:=true;" before a switch statement, you can instruct the switch macro
to use C/C++ semantics rather than Pascal semantics. The difference between the two is that for C/C++
semantics you must end each case with an explicit break statement. The Pascal version is preferable since it is
slightly more efficient and a bit more readable.

By default, the switch macro uses a quicksort algorithm built into HLA’s @sort compile-time function to sort
the cases when building the jump table that the switch statement compiles into. For the vast majority of switch
statements you’ll write, this is a good choice. However, if you create a really large switch statement and the cases
you supply are already sorted in ascending order (or mostly sorted), a bubble sort will actually outperform the
quick sort algorithm. In this (very) special case, you an improve the compilation (not run-time) performance of
the switch macro by adding the following statement immediately after the switch statement:

switch(eax)
?hll.usebubblesort := true;

<lots of pre-sorted cases>

endswitch;

Note that this trick speeds up compilation only if the cases are already sorted in ascending order. If they are not
sorted in ascending order, then the bubblesort algorithm is much slower than the quicksort algorithm and you
shouldn’t use it.
Page 962 Version: 4/28/10 Written by Randall Hyde

	32 High-Level Language Module (hll.hhf)
	32.1 The HLL Module
	32.2 The switch/case/default/endswitch Macro
	#macro switch(reg32); #keyword case(const_list); #keyword default #terminator endswitch

