
HLA Reference Manual 5/24/10 Chapter 17
17 HLA v2.x Language Reference Manual

17.1 The 80x86 Instruction Set in HLA
One of the most obvious differences between HLA and standard 80x86 assembly language is

the syntax for the machine instructions. The two primary differences are the fact that HLA uses a
functional notation for machine instructions and HLA arranges the operands in a (source, dest)
format rather than the (dest, source) format used by Intel.

 A second difference, related to the fact that HLA uses a functional notation, is that HLA
allows you to compose instructions. That is, one instruction may appear as an operand to a second
instruction, e.g.,

mov(mov(0, eax), ebx);

To decipher this instruction, all you need to do is to realize that at compile time each
instruction returns a string that HLA substitutes in place of the composed instruction. Usually, the
string an instruction returns is that instruction’s destination operand. In the example above, the
interior mov instruction’s destination operand is EAX, so that mov instruction "returns" the string
"EAX" which HLA substitutes for the interior mov instruction, producing "mov(eax, ebx);" as the
outside instruction. HLA always processes interior instructions from left-to-right interior-first.
Therefore, the above instruction is equivalent to the MASM sequence:

mov eax, 0
mov ebx, eax

Consider a second example:

add(mov(i, eax), mov(j, ebx));

This instruction is equivalent to:

mov eax, i
mov ebx, j
add ebx, eax

Although, used sparingly, instruction composition is useful and can help improve the
readability of your HLA programs in certain contexts, you should be careful when using instruction
composition because it can quickly produce unreadable code. Even this second example
(add(mov,mov)) would probably prove difficult to read by most programmers.

If you need to modify the RETURNS value of an instruction (in a macro, for example), you
may use the "returns" statement in HLA. This statement takes the following form:

returns({ statements }, "string Constant")

This statement emits the code for the statement(s) between the curly braces and then returns
the specified string constant as the "returns" value for this statement.

The following paragraphs describe each of the HLA machine instructions. They also describe
the string each instruction yields during compile time (this is called the "returns" string). Note that
some instructions return the empty string as there is no return value one could reasonably
associated with them. Such instructions cannot generally be used as operands within other
instructions.

These descriptions do not describe the purpose for each instruction; see an assembly text like
"The Art of Assembly Language Programming" for details on the operation of each instruction.
Public Domain Created by Randy Hyde Page 397

HLA Reference Manual 5/24/10 Chapter 17

I

17.2 Zero Operand Instructions (Null Operand Instructions)

Instruction Description

aaa()
ASCII adjust for addition. Returns "ax".

aad()
ASCII adjust for division. Returns "ax".

aam()
ASCII adjust for multiplication. Returns "ax".

aas()
ASCII adjust for subtraction. Returns "ax".

cbw()
Convert byte to word (sign extension). Returns "ax"

cdq()
Convert double to quadword. Returns "eax". Note: in the future, this may return
"edx:eax".

clc()
Clear carry flag. Returns "".

cld()
Clear direction flag. Returns "".

cli()
Clear interrupt flag. Returns "".

clts()
Clear task switched flag in CR0 (OS use only).

cmc()
Complement carry flag. Returns "".

cmpsb()
Compares the byte at [esi] to the byte at [edi] and increments or decrements ESI & ED
by one. Returns "".

cmpsd()
Compares the dword at [esi] to the byte at [edi] and increments or decrements ESI &
EDI by four. Returns "".

cmpsw()
Compares the word at [esi] to the byte at [edi] and increments or decrements ESI &
EDI by two. Returns "".

cpuid()
On entry, EAX contains zero, one, or two to determine how this instruction behaves.
If EAX contains zero then this instruction returns vendor information in EAX, EBX,
ECX, and EDX.
If EAX contains one upon entry, EAX returns with version information and EDX
contains feature information.
If EAX contains two upon entry, EAX..EDX return with cache information.
See the Intel documentation for more details concerning this instruction.

 cwd()
Convert word to doubleword. Returns "ax". Note: in the future, this may return
"dx:ax".

 cwde()
Convert word to dword, extended. Returns "eax".

 daa()
Decimal adjust for addition. Returns "al".

 das()
Decimal adjust for subtraction. Returns "al".

 hlt()
Halt instruction (OS and embedded use only).

 insb()
Inputs a byte from the port specified by DX and stores the byte at [EDI], then
increments or decrements EDI by one. Returns "".
Public Domain Created by Randy Hyde Page 398

HLA Reference Manual 5/24/10 Chapter 17

,

 insd()
Inputs a dword from the port specified by DX and stores the dword at [EDI], then
increments or decrements EDI by four. Returns "".

 insw()
Inputs a word from the port specified by DX and stores the word at [EDI], then
increments or decrements EDI by two. Returns "".

 into()
Interrupt on overflow. Returns "". Raises the ex.IntoInstr exception if the overflow
flag is set when you execute this instruction.

 invd()
Invalidate internal caches (OS use only).

 iret()
Interrupt return. Returns "".

 iretd()
Interrupt return poping 32-bit flags. Returns "".

 lahf()
Load AH from flags. Returns "al".

 leave()
Remove activation record from stack. Returns "".

 lodsb()
Load al from [ESI] and increment ESI by one. Returns "al".

 lodsd()
Load eax from [ESI] and increment ESI by four. Returns "eax".

 lodsw()
Load ax from [ESI] and increment ESI by two. Returns "ax".

 movsb()
Moves a byte from the location specified by [ESI] to the location specified by [EDI],
then increments or decrements ESI & EDI by one. Returns "".

 movsd()
Moves a dword from the location specified by [ESI] to the location specified by [EDI]
then increments or decrements ESI & EDI by four. Returns "".

 movsw()
Moves a word from the location specified by [ESI] to the location specified by [EDI],
then increments or decrements ESI & EDI by two. Returns "".

 nop()
No operation. Returns "".

 outsb()
Outputs the byte at address [ESI] to the port specified by DX, then increments or
decrements ESI by one. Returns "".

 outsd()
Outputs the dword at address [ESI] to the port specified by DX, then increments or
decrements ESI by four. Returns "".

 outsw()
Outputs the word at address [ESI] to the port specified by DX, then increments or
decrements ESI by two. Returns "".

 popad()
Pop all general purpose 32-bit registers from stack. Returns "".

 popa()
Pop all general purpose 16-bit registers from stack. Returns "".

 popf()
Pop 16-bit flags register from stack. Returns "".

 popfd()
Pop 32-bit flags register from stack. Returns "".

 pusha()
Push all general-purpose 16-bit registers onto the stack. Returns "".

 pushad()
Push all general-purpose 32-bit registers onto the stack. Returns "".

 pushf()
Push 16-bit flags register onto the stack. Returns "".

 pushfd()
Push 32-bit flags register onto the stack. Returns "".
Public Domain Created by Randy Hyde Page 399

HLA Reference Manual 5/24/10 Chapter 17

I

]

I
 rdmsr()
Read from model specific register specified by ECX into EDX:EAX (OS use only).

 rdpmc()
Read performance monitoring counter specified by ECX into EDX:EAX (OS use
only).

 rdtsc()
Reads the "time stamp" counter and returns the 64-bit result in edx:eax.

 rep.insb()
Transfers ECX bytes from the port specified by DX to the location specified by [EDI].
Increments or decrements EDI by one after each transfer. Returns "".

 rep.insd()
Transfers ECX dwords from the port specified by DX to the location specified by
[EDI]. Increments or decrements EDI by four after each transfer. Returns "".

 rep.insw()
Transfers ECX words from the port specified by DX to the location specified by [EDI].
Increments or decrements EDI by two after each transfer. Returns "".

 rep.movsb()
Copies ECX bytes from the memory location specified by [ESI] to the location
specified by [EDI]. Increments or decrements EDI & ESI by one after each transfer.
Returns "".

 rep.movsd()
Copies ECX dwords from the memory location specified by [ESI] to the location
specified by [EDI]. Increments or decrements EDI & ESI by four after each transfer.
Returns "".

rep.movsw()
Copies ECX words from the memory location specified by [ESI] to the location
specified by [EDI]. Increments or decrements EDI & ESI by two after each transfer.
Returns "".

rep.outsb()
Transfers ECX bytes from the location specified by [ESI] to the port specified by DX.
Increments or decrements EDI by one after each transfer. Returns "".

rep.outsd()
Transfers ECX dwords from the location specified by [ESI] to the port specified by
DX. Increments or decrements EDI by four after each transfer. Returns "".

rep.outsw()
Transfers ECX words from the location specified by [ESI] to the port specified by DX.
Increments or decrements EDI by two after each transfer. Returns "".

rep.stosb()
Copies CX bytes from AL to the location specified by [EDI]. Increments or
decrements EDI by one after each transfer. Returns "".

rep.stosd()
Copies ECX dwords from EAX to the location specified by [EDI]. Increments or
decrements EDI by four after each transfer. Returns "".

rep.stosw()
Copies ECX words from AX to the location specified by [EDI]. Increments or
decrements EDI by two after each transfer. Returns "".

repe.cmpsb()
Compares ECX bytes starting at location [ESI] to the set of bytes at location [EDI] as
long as the bytes are equal. The comparison stops once two unequal bytes are found.
After each successful compare, this instruction increments or decrements ESI and ED
by one (and decrements ECX). Returns "".

repe.cmpsd()
Compares ECX dwords starting at location [ESI] to the set of dwords at location [EDI
as long as the dwords are equal. The comparison stops once two unequal dwords are
found. After each successful compare, this instruction increments or decrements ESI
and EDI by four (and decrements ECX). Returns "".

repe.cmpsw()
Compares ECX words starting at location [ESI] to the set of words at location [EDI] as
long as the words are equal. The comparison stops once two unequal words are found.
After each successful compare, this instruction increments or decrements ESI and ED
by two (and decrements ECX). Returns "".
Public Domain Created by Randy Hyde Page 400

HLA Reference Manual 5/24/10 Chapter 17

l

 l

I

]

re t

 repe.scasb()
Compares AL against ECX bytes starting at location [EDI] as long as the bytes are
equal. The comparison stops once two unequal bytes are found. After each successfu
compare, this instruction increments or decrements EDI by one (and decrements ECX).
Returns "".

 repe.scasd()
Compares EAX against ECX dwords starting at location [EDI] as long as the dwords
are equal. The comparison stops once two unequal dwords are found. After each
successful compare, this instruction increments or decrements EDI by four (and
decrements ECX). Returns "".

repe.scasw()
Compares AX against ECX words starting at location [EDI] as long as the words are
equal. The comparison stops once two unequal words are found. After each successfu
compare, this instruction increments or decrements EDI by two (and decrements ECX).
Returns "".

repne.cmpsb()
Compares ECX bytes starting at location [ESI] to the set of bytes at location [EDI] as
long as the bytes are not equal. The comparison stops once two equal bytes are found.
After each successful compare, this instruction increments or decrements ESI and ED
by one (and decrements ECX). Returns "".

repne.cmpsd()
Compares ECX dwords starting at location [ESI] to the set of dwords at location [EDI
as long as the dwords are not equal. The comparison stops once two equal dwords are
found. After each successful compare, this instruction increments or decrements ESI
and EDI by four (and decrements ECX). Returns "".

repne.cmpsw()
Compares ECX words starting at location [ESI] to the set of words at location [EDI] as
long as the words are not equal. The comparison stops once two equal words are
found. After each successful compare, this instruction increments or decrements ESI
and EDI by two (and decrements ECX). Returns "".

pne.scasb() Compares AL against ECX bytes starting at location [EDI] as long as the bytes are no
equal. The comparison stops once two equal bytes are found. After each successful
compare, this instruction increments or decrements EDI by one (and decrements ECX).
Returns "".

repne.scasd()
Compares EAX against ECX dwords starting at location [EDI] as long as the dwords
are not equal. The comparison stops once two equal dwords are found. After each
successful compare, this instruction increments or decrements EDI by four (and
decrements ECX). Returns "".

repne.scasw()
Compares AX against ECX words starting at location [EDI] as long as the words are
not equal. The comparison stops once two equal words are found. After each
successful compare, this instruction increments or decrements EDI by two (and
decrements ECX). Returns "".

rsm()
Resume from system management mode (OS use only).

sahf()
Store AH into the flags register. Returns "ah".

scasb()
Compares the byte in al to the location specified by [EDI], then increments or
decrements EDI by one. Returns "".

scasd()
Compares the dword in eax to the location specified by [EDI], then increments or
decrements EDI by four. Returns "".

scasw()
Compares the word in ax to the location specified by [EDI], then increments or
decrements EDI by two. Returns "".
Public Domain Created by Randy Hyde Page 401

HLA Reference Manual 5/24/10 Chapter 17

Note: if the NULL-Operand instructions appear as a stand-alone instruction (i.e., they are not
part of an instruction composition and, thus, appear as the operand to another instruction), you can
drop the "()" after the instruction as long as you terminate the instruction with a semicolon.

17.3 General Arithmetic and Logical Instructions
These instructions include adc, add, and, mov, or, sbb, sub, test, and xor. They all take the

same basic form (substitute the appropriate mnemonic for "adc" in the syntax examples below):

Generic Form:

adc(source,dest);
lock.adc(source,dest);

Specific forms allowed:

adc(Reg8, Reg8)
adc(Reg16, Reg16)
adc(Reg32, Reg32)

adc(const, Reg8)
adc(const, Reg16)
adc(const, Reg32)

adc(const, mem)

adc(Reg8, mem)
adc(Reg16, mem)
adc(Reg32, mem)

adc(mem, Reg8)
adc(mem, Reg16)
adc(mem, Reg32)

 stc()
Set the carry flag. Returns "".

 std()
Set the direction flag. Returns "".

 sti()
Set the interrupt flag. Returns "".

 stosb()
Stores the byte in al to the location specified by [EDI], then increments or decrements
EDI by one. Returns "".

stosd()
Stores the dword in eax to the location specified by [EDI], then increments or
decrements EDI by four. Returns "".

stosw()
Stores the word in ax to the location specified by [EDI], then increments or decrements
EDI by two. Returns "".

ud2()
Undefined opcode instruction. This instruction always raises an undefine opcode
exception.

wbinvd()
Write back and invalidate cache (OS use only).

wait()
Coprocessor wait instruction. Returns "".

xlat()
Translate instruction. Returns "".
Public Domain Created by Randy Hyde Page 402

HLA Reference Manual 5/24/10 Chapter 17

adc(Reg8, AnonMem)
adc(Reg16, AnonMem)
adc(Reg32, AnonMem)

adc(AnonMem, Reg8)
adc(AnonMem, Reg16)
adc(AnonMem, Reg32)

Note: for the form "adc(const, mem)", if the specified memory location does not have a size
or type associated with it, you must explicitly specify the size of the memory operand, e.g.,
"adc(5,(type byte [eax]));"

These instructions all return their destination operand as the "returns" value.
See "The Art of Assembly" for a further discussion of these instructions.
If the "lock." prefix is present, the instruction asserts the bus lock signal during execution. The

"lock." prefix is valid only on instructions that reference memory.

17.4 The XCHG Instruction
 The xchg instruction allows the following syntactical forms:

Generic Form:

xchg(source, dest);
lock.xchg(source, dest);

Specific Forms:

xchg(Reg8, Reg8)
xchg(Reg8, mem)
xchg(Reg8, AnonMem)
xchg(mem, Reg8)
xchg(AnonMem, Reg8)

xchg(Reg16, Reg16)
xchg(Reg16, mem)
xchg(Reg16, AnonMem)
xchg(mem, Reg16)
xchg(AnonMem, Reg16)

xchg(Reg32, Reg32)
xchg(Reg32, mem)
xchg(Reg32, AnonMem)
xchg(mem, Reg32)
xchg(AnonMem, Reg32)

This instruction returns its destination operand as its "returns" value.
If the "lock." prefix is present, the instruction asserts the bus lock signal during execution. The

"lock." prefix is valid only on instructions that reference memory.
Public Domain Created by Randy Hyde Page 403

HLA Reference Manual 5/24/10 Chapter 17
17.5 The CMP Instruction
The "cmp" instruction uses the following general forms:
Generic:

cmp(LeftOperand, RightOperand);

Specific Forms:

 cmp(Reg8, Reg8);
cmp(Reg8, mem);
cmp(Reg8, AnonMem);
cmp(mem, Reg8);
cmp(AnonMem, Reg8);
cmp(Reg8, const);

cmp(Reg16, Reg16);
cmp(Reg16, mem);
cmp(Reg16, AnonMem);
cmp(mem, Reg16);
cmp(AnonMem, Reg16);
cmp(Reg16, const);

cmp(Reg32, Reg32);
cmp(Reg32, mem);
cmp(Reg32, AnonMem);
cmp(mem, Reg32);
cmp(AnonMem, Reg32);
cmp(Reg32, const);

cmp(mem, const);

Note that the CMP instruction’s operands are ordered "dest, source" rather than the usual
"source,dest" format (that is, the operands are in the same order as MASM expects them). This is
to allow an intuitive use of the instruction mnemonic (that is, CMP normally reads as "compare
dest to source."). We will avoid this confusion by simply referring to the operands as the "left
operand" and the "right operand". Left vs. right signifies the placement of the operands around a
comparison operator like "<=" (e.g., "left <= right").

For the "cmp(mem, const)" form, the memory operand must have a type or size associated
with it. When using anonymous memory locations you must always coerce the type of the memory
location, e.g., "cmp((type word [ebp-4]), 0);".

These instructions return their dest (first) operand as their "returns" value.

17.6 The Multiply Instructions
HLA supports several variations on the 80x86 "MUL" and IMUL instructions. The supported

forms are:

Standard Syntax:
 mul(reg8)
mul(reg16)
mul(reg32)
mul(mem)

mul(reg8, al)
mul(reg16, ax)
Public Domain Created by Randy Hyde Page 404

HLA Reference Manual 5/24/10 Chapter 17
mul(reg32, eax)

mul(mem, al)
mul(mem, ax)
mul(mem, eax)

mul(AnonMem, ax)
mul(AnonMem, dx:ax)
mul(AnonMem, edx:eax)

imul(reg8)
imul(reg16)
imul(reg32)
imul(mem)

imul(reg8, al)
imul(reg16, ax)
imul(reg32, eax)

imul(mem, al)
imul(mem, ax)
imul(mem, eax)

imul(AnonMem, ax)
imul(AnonMem, dx:ax)
imul(AnonMem, edx:eax)

intmul(const, Reg16)
intmul(const, Reg16, Reg16)
intmul(const, mem, Reg16)
intmul(const, AnonMem, Reg16)

intmul(const, Reg32)
intmul(const, Reg32, Reg32)
intmul(const, mem, Reg32)
intmul(const, AnonMem, Reg32)

intmul(Reg16, Reg16)
intmul(mem, Reg16)
intmul(AnonMem, Reg16)

intmul(Reg32, Reg32)
intmul(mem, Reg32)
intmul(AnonMem, Reg32)

Extended Syntax:

 mul(const, al)
mul(const, ax)
mul(const, eax)

imul(const, al)
imul(const, ax)
imul(const, eax)
Public Domain Created by Randy Hyde Page 405

HLA Reference Manual 5/24/10 Chapter 17
The first, and probably most important, thing to note about HLA’s multiply instructions is that
HLA uses a different mnemonic for the extended-precision integer multiply versus the single-
precision integer multiply (i.e., IMUL vs. INTMUL). Standard MASM syntax uses the same
mnemonic for both instructions. There are two reasons for this change of syntax in HLA. First,
there needed to be some way to differentiate the "mul(const, al)" and the "intmul(const, al)"
instructions (likewise for the instructions involving AX and EAX). Second, the behavior of the
INTMUL instruction is substantially different from the IMUL instruction, so it makes sense to use
different mnemonics for these instructions.

The extended syntax instructions create a static data variable, initialized with the specified
constant, and then specify the address of this variable as the source operand of the MUL or IMUL
instruction.

These instructions return their destination operand (AX, DX:AX, or EDX:EAX for the
extended precision MUL and IMUL instructions) as their "returns" value.

See "The Art of Assembly Language Programming" for more details on these instructions.

17.7 The Divide Instructions
HLA support several variations on the 80x86 DIV and IDIV instructions. The supported forms

are:

Generic Forms:

div(source);
div(source, dest);

mod(source);
mod(source, dest);

idiv(source);
idiv(source, dest);

imod(source);
imod(source, dest);

Specific Forms:

div(reg8)
div(reg16)
div(reg32)
div(mem)

div(reg8, ax)
div(reg16, dx:ax)
div(reg32, edx:eax)

div(mem, ax)
div(mem, dx:ax)
div(mem, edx:eax)

div(AnonMem, ax)
div(AnonMem, dx:ax)
div(AnonMem, edx:eax)

mod(reg8)
mod(reg16)
mod(reg32)
Public Domain Created by Randy Hyde Page 406

HLA Reference Manual 5/24/10 Chapter 17
mod(mem)

mod(reg8, ax)
mod(reg16, dx:ax)
mod(reg32, edx:eax)

mod(mem, ax)
mod(mem, dx:ax)
mod(mem, edx:eax)

mod(AnonMem, ax)
mod(AnonMem, dx:ax)
mod(AnonMem, edx:eax)

idiv(reg8)
idiv(reg16)
idiv(reg32)
idiv(mem)

idiv(reg8, ax)
idiv(reg16, dx:ax)
idiv(reg32, edx:eax)

idiv(mem, ax)
idiv(mem, dx:ax)
idiv(mem, edx:eax)

idiv(AnonMem, ax)
idiv(AnonMem, dx:ax)
idiv(AnonMem, edx:eax)

imod(reg8)
imod(reg16)
imod(reg32)
imod(mem)

imod(reg8, ax)
imod(reg16, dx:ax)
imod(reg32, edx:eax)

imod(mem, ax)
imod(mem, dx:ax)
imod(mem, edx:eax)

imod(AnonMem, ax)
imod(AnonMem, dx:ax)
imod(AnonMem, edx:eax)

Extended Syntax:

div(const, ax)
div(const, dx:ax)
div(const, edx:eax)
Public Domain Created by Randy Hyde Page 407

HLA Reference Manual 5/24/10 Chapter 17

mod(const, ax)
mod(const, dx:ax)
mod(const, edx:eax)

idiv(const, ax)
idiv(const, dx:ax)
idiv(const, edx:eax)

imod(const, ax)
imod(const, dx:ax)
imod(const, edx:eax)

The destination operand is always implied by the 80x86 "div" and "idiv" instructions (AX,
DX:AX, or EDX:EAX). HLA allows the specification of the destination operand in order to make
your programs easier to read (although the use of the destination operand is optional).

The HLA divide instructions support an extended syntax that allows you to specify a constant
as the divisor (source operand). HLA allocates storage in the static data segment and initializes the
storage with the specified constant, and then divides the accumulator by this newly specified
memory location.

The DIV and IDIV instructions return "AL", "AX", or "EAX" as their "returns" value (the
quotient is left in the accumulator register). The MOD and IMOD instructions return "AH", "DX",
or "EDX" as their "returns" value. Indeed, the "returns" value is the only difference between these
instructions. The DIV and MOD instructions compile into the 80x86 DIV instruction; the IDIV
and IMOD instructions compile into the 80x86 IDIV instruction.

See the "Art of Assembly" for a further discussion of these instructions.

17.8 Single Operand Arithmetic and Logical Instructions
These instructions include dec, inc, neg, and not. They take the following general forms

(substituting the specific mnemonic as appropriate):

Generic Form:

dec(dest);;
lock.dec(dest);

Specific forms allowed:

dec(Reg8);
dec(Reg16);
dec(Reg32);
dec(mem);

Note: if mem is an untyped or unsized memory location (i.e., an anonymous memory location),
you must explicitly provide a size; e.g., "dec((type word [edi]));"

These instructions all return their destination operand as the "returns" value.
See the "Art of Assembly" for a further discussion of these instructions.
If the "lock." prefix is present, the instruction asserts the bus lock signal during execution. The

"lock." prefix is valid only on instructions that reference memory.
Public Domain Created by Randy Hyde Page 408

HLA Reference Manual 5/24/10 Chapter 17
17.9 Shift and Rotate Instructions
These instructions include RCL, RCR, ROL, ROR, SAL, SAR, SHL, and SHR. These

instructions support the following generic syntax, making the appropriate mnemonic substitution.

Generic Form:

shl(count, dest);

Specific Forms:

shl(const, Reg8);
shl(const, Reg16);
shl(const, Reg32);

shl(const, mem);

shl(cl, Reg8);
shl(cl, Reg16);
shl(cl, Reg32);

shl(cl, mem);

The "const" operand is an unsigned integer constant between zero and the maximum number
of bits in the destination operand. The forms with a memory operand must have a type or size
associated with the operand; e.g., when using anonymous memory locations, you must coerce the
type,

"shl(2, (type dword [esi]));"

These instructions return their destination operand as their "returns" value.
See the "Art of Assembly" for a further discussion of these instructions.

17.10The Double Precision Shift Instructions
These instruction use the following general form (you can substitute SHRD for SHLD below):

Generic Form:

shld(count, source, dest)

Specific Forms:

shld(const, Reg16, Reg16)
shld(const, Reg16, mem)
shld(const, Reg16, AnonMem)

shld(cl, Reg16, Reg16)
shld(cl, Reg16, mem)
shld(cl, Reg16, AnonMem)

Public Domain Created by Randy Hyde Page 409

HLA Reference Manual 5/24/10 Chapter 17
shld(const, Reg32, Reg32)
shld(const, Reg32, mem)
shld(const, Reg32, AnonMem)

shld(cl, Reg32, Reg32)
shld(cl, Reg32, mem)
shld(cl, Reg32, AnonMem)

These instructions return their destination operand as the "returns" value.
See the "Art of Assembly" for a further discussion of these instructions.

17.11The Lea Instruction
These instructions use the following syntax:

lea(Reg32, memory)
lea(Reg32, AnonMem)
lea(Reg32, ProcID)
lea(Reg32, LabelID)

Extended Syntax:

lea(Reg32, StringConstant)
lea(Reg32, const ConstExpr)

lea(memory, Reg32)
lea(AnonMem, Reg32)
lea(ProcID, Reg32)
lea(LabelID, Reg32)
lea(StringConstant, Reg32)
lea(const ConstExpr, Reg32)

 The "lea" instruction loads the specified 32-bit register with the address of the specified
memory operand, procedure, or statement label. Note that in the extended syntax you can reverse
the order of the operands. Since exactly one operand must be a register, there is no ambiguity
between the two forms (this syntax was added to satisfy those who complained about the
(reg,memory) syntax). Of course, good programming style suggests that you use only one form
(either reg,memory or memory, reg) within your programs.

The extended syntax form lets you specify a constant rather than a memory address. There is
no such thing as the address of a constant, but HLA will create a memory variable in the constants
data segment and initialize that variable with the value of the specified memory constant and then
load the address of this variable into the specified register (or push it onto the stack).

There is a subtle difference between the following two instructions:

lea(eax, "String");
lea(eax, const "String");

The first instruction loads EAX with the address of the first character of the literal string
constant. The second form loads the EAX register with the address of a string variable (which is a
pointer containing the address of the first character of the string literal).

The LEA instructions return the 32-bit register as their "returns" value.
See "The Art of Assembly" for a further discussion of the LEA instruction.
Note: HLA does not support an LEA instruction that loads a 16-bit address into a 16-bit

register. That form of the LEA instruction is not very useful in 32-bit programs running on 32-bit
operating systems.
Public Domain Created by Randy Hyde Page 410

HLA Reference Manual 5/24/10 Chapter 17
17.12The Sign and Zero Extension Instructions
The HLA MOVSX and MOVZX instructions use the following syntax:

Generic Forms:

movsx(source,dest);
movzx(source,dest);

Specific Forms:

movsx(Reg8, Reg16)
movsx(Reg8, Reg32)
movsx(Reg16, Reg32)
movsx(mem8, Reg16)
movsx(mem8, Reg32)
movsx(mem16, Reg32)

movzx(Reg8, Reg16)
movzx(Reg8, Reg32)
movzx(Reg16, Reg32)
movzx(mem8, Reg16)
movzx(mem8, Reg32)
movzx(mem16, Reg32)

These instructions sign- (MOVSX) or zero- (MOVZX) extend their source operand into the
destination operand. They return their destination operand as their "returns" value.

See the "Art of Assembly" for a further discussion of these instructions.

17.13The Push and Pop Instructions
These instructions take the following general forms:
pop(reg16);
pop(reg32);
pop(mem);

push(Reg16)
push(Reg32)
push(memory)

pushw(Reg16)
pushw(memory)
pushw(AnonMem)
pushw(Const)

 pushd(Reg32)
pushd(memory)
pushd(AnonMem)
pushd(Const)

These instructions push or pop their specified operand. They all return their operand as their
"returns" value.
Public Domain Created by Randy Hyde Page 411

HLA Reference Manual 5/24/10 Chapter 17
17.14Procedure Calls
 HLA provides several different ways to call a procedure. Given a procedure named

"MyProc", any of the following syntaxes are legal:

MyProc(parameter_list);
call(MyProc);
call MyProc;

If MyProc has a set of declared parameters, the number and types of actual parameters must
match the number and types of the formal parameters. HLA will emit the code needed to push the
parameter list on the stack. In the two call statements above, it is the programmer’s responsibility
to pass any needed parameters. For more details, see the section on procedure declarations.

In the examples above, MyProc can either be the name of an actual procedure or a procedure
variable (that is a pointer to a procedure declared as "myproc:procedure(parameters);" in the VAR
or a static section). If you need to call a procedure using an anonymous memory variable (i.e., an
addressing mode like [ebx]), an untyped dword value, or via a register, you must use the syntax of
the second call above, e.g., "call(ebx);". Of course, any legal HLA/80x86 address mode would be
legal here.

When declaring a standard procedure, the procedure declaration syntax allows you to specify a
"returns" value for that procedure, e.g.,

procedure MyProc; returns("eax");

HLA substitutes the string that appears as the "returns" argument for the call when using the
first syntax above. For example, supposing that MyProc is a function returning its result in EAX,
you could use the following to call MyProc and save the return value in the "Result" variable:

mov(MyProc(), Result);

For more details, see the section on procedure declarations.
To call a class procedure, one would use one of the following syntaxes:

className.ProcName(parameters);
call(className.ProcName);
call ClassName.ProcName;

objectName.ProcName(parameters);
call(objectName.ProcName);
call objectName.ProcName;

The difference between "className" and "objectName" is that "className" represents the
actual name of the class data type whereas "objectName" represents the name of an instance of
this class (i.e., a variable of type "className" declared in the VAR or a static section).

 When calling a class procedure, HLA loads the ESI register with the address of the object
before calling the specified procedure. Since there is no instance variable (object) associated with
the className form, HLA loads ESI with zero (NULL). Inside the class procedure, you can test
the value of ESI to determine if the procedure was called via the class name or an object name.
This is quite useful, for example when writing constructors, to determine whether the procedure
needs to allocate storage for an object. Consider the following program that demonstrates the use
of an object constructor (create):

program demo;

#include("memory.hhf");
#include("stdio.hhf");
Public Domain Created by Randy Hyde Page 412

HLA Reference Manual 5/24/10 Chapter 17

type

cc: class

var
i:int32;

procedure create; returns("esi");

endclass;

var
ccVar: cc;
ccPtr: pointer to cc;

static
ccStat:cc;

procedure cc.create; @nodisplay;
begin create;

push(eax);
if(esi = 0) then

stdout.put("Allocating" nl);
malloc(@size(cc));
mov(eax, esi);

else

stdout.put("Already allocated" nl);

endif;
mov(&cc._VMT_, this._pVMT_);
mov(0, this.i);
pop(eax);

end create;

begin demo;

// This first call to create allocates storage.

mov(cc.create(), ccPtr);

// In all the remaining calls, ESI is loaded with
// the address of the object and no storage is
// created.

ccPtr.create();
ccVar.create();
ccStat.create();

end demo;
Public Domain Created by Randy Hyde Page 413

HLA Reference Manual 5/24/10 Chapter 17
The call() statement allows any one of the following syntaxes:

call ProcID;
call(ProcID);
call(dwordvar);
call(anonmem); // Addressing mode like [ebx].
call(Reg32);

The second form above returns the string (if any) specified by ProcID’s "returns" option. The
remaining call instructions return the empty string as their "returns" value.

You may also call an iterator procedure via the CALL instruction. However, it is your
responsibility to set up the parameters and other state information prior to the call (see the section
on iterators for more details).

17.15The Ret Instruction
The RET() statement allows two syntactical forms:

ret();
ret(integer_constant_expression);

The first form emits a simple 80x86 RET instruction, the second form emits the 80x86 RET
instruction with the specified numeric constant expression value (used to remove parameters from
the stack).

Normally, you would use these instructions in a procedure that has the "@noframe" option.
Unless you know exactly what you are doing, you should never use the "RET" instruction inside a
standard HLA procedure without this option since doing so almost always produces disastrous
results. If you do use this instruction within such a procedure, it is your responsibility to deallocate
local variables and the display (if any), restore EBP, and remove any parameters from the stack.

17.16The Jmp Instructions
The HLA "jmp" instruction supports the following syntax:

jmp Label;
jmp ProcedureName;
jmp(dwordMemPtr);
jmp(anonMemPtr);
jmp(reg32);

"Label" represents a statement label in the current procedure. (You are not allowed to jump to
labels in other procedures in the current version of HLA. This restriction may be relaxed somewhat
in future versions.) A statement label is a unique (within the current procedure) identifier with a
colon after the identifier, e.g.,

InfiniteLoop:
<< Code inside the infinite loop>>
jmp InfiniteLoop;

Jumping to a procedure transfers control to the first instruction in the specified procedure. You
are responsible for explicitly pushing any parameters and the return address for that procedure.

These instructions all return the empty string as their "returns" value.
Public Domain Created by Randy Hyde Page 414

HLA Reference Manual 5/24/10 Chapter 17
17.17The Conditional Jump Instructions
 These instructions include JA, JAE, JB, JBE, JC, JE, JG, JGE, JL, JLE, JO, JP, JPE, JPO, JS,

JZ, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, JNLE, JNO, JNP, JNS, JNZ, JCXZ,
JECXZ, LOOP, LOOPE, LOOPZ, LOOPNE, and LOOPNZ. They all take the following generic
form (substituting the appropriate instruction for "JA").

ja LocalLabel;

"LocalLabel" must be a statement label defined in the current procedure (or a globally
visible label declared in a label section or a global label defined with the "::" symbol).

These instructions all return the empty string as their "returns" value.
 Note: due to the nature of the HLA compilation process, you should avoid the use of the

JCXZ, JECXZ, LOOP, LOOPE, LOOPZ, LOOPNE, and LOOPNZ instructions if you are emitting
assembly language source (rather than directly emitting object code). Unlike the other conditional
jump instructions, these instructions have a very limited +/- 128-byte range. Unfortunately, HLA
cannot detect if the branch is out of range (this task is handled by back-end assembler when
producing assembly language source code), so if a range error occurs, HLA cannot warn you about
this. The assembly will fail, but the result will be hard to decipher. Fortunately, these instructions
are easily, and usually more efficiently, implemented using other 80x86 instructions so this should
not prove to be a problem.

In a few special cases, the boolean constants "true" and "false" are legal labels. See the
discussion of HLA’s high-level language features for more details.

17.18The Conditional Set Instructions
These instructions include: SETA, SETAE, SETB, SETBE, SETC, SETE, SETG, SETGE,

SETL, SETLE, SETO, SETP, SETPE, SETPO, SETS, SETZ, SETNA, SETNAE, SETNB,
SETNBE, SETNC, SETNE, SETNG, SETNGE, SETNL, SETNLE, SETNO, SETNP, SETNS, and
SETNZ. They take the following generic forms (substituting the appropriate mnemonic for seta):

seta(Reg8)
seta(mem)
seta(AnonMem)

See the "Art of Assembly" for a further discussion of these instructions.

17.19The Conditional Move Instructions
These instructions include CMOVA, CMOVAE, CMOVB, CMOVBE, CMOVC, CMOVE,

CMOVG, CMOVGE, CMOVL, CMOVLE, CMOVO, CMOVP, CMOVPE, CMOVPO, CMOVS,
CMOVZ, CMOVNA, CMOVNAE, CMOVNB, CMOVNBE, CMOVNC, CMOVNE, CMOVNG,
CMOVNGE, CMOVNL, CMOVNLE, CMOVNO, CMOVNP, CMOVNS, and CMOVNZ. They
use the following general syntax:

CMOVcc(src, dest);

Allowable operands:

CMOVcc(reg16, reg16);

CMOVcc(reg32, reg32);

CMOVcc(mem16, reg16);

CMOVcc(mem32, reg32);
Public Domain Created by Randy Hyde Page 415

HLA Reference Manual 5/24/10 Chapter 17
These instructions move the data if the specified condition is true (specified by the cc
condition). If the condition is false, these instructions behave like a no-operation.

17.20The Input and Output Instructions
The "in" and "out" instructions use the following syntax:

in(port, al)
in(port, ax)
in(port, eax)

in(dx, al)
in(dx, ax)
in(dx, eax)

out(al, port)
out(ax, port)
out(eax, port)

out(al, dx)
out(ax, dx)
out(eax, dx)

The "port" parameter must be an unsigned integer constant in the range 0..255. The IN
instructions return the accumulator register (AL, AX, or EAX) as their "returns" value. The OUT
instructions return the port number (or DX) as their "returns" value.

Note that these instructions may be privileged instructions when running under Win32 or
*NIX. Their use may generate a fault in certain instances or when accessing certain ports.

See the "Art of Assembly" for a further discussion of these instructions.

17.21The Interrupt Instruction
This instruction uses the syntax "int(constant)" where the constant operand is an unsigned

integer value in the range 0..255.
This instruction returns the empty string as its "returns" value.

See Chapter Six in "Art of Assembly" (DOS version) for a further discussion of this
instruction. Note, however, that one generally does not use "int" under Win32 to make OS or BIOS
calls. The "int $80" instruction is what you’d normally use to make very low-level *NIX calls.

17.22Bound Instruction
 This instruction takes the following forms:

bound(Reg16, mem)
bound(Reg16, AnonMem)

bound(Reg32, mem)
bound(Reg32, AnonMem)

Extended Syntax Form:

bound(Reg16, constL, constH)
bound(Reg32, ConstL, ConstH)

These instructions return the register as their "returns" value.
Public Domain Created by Randy Hyde Page 416

HLA Reference Manual 5/24/10 Chapter 17
The extended syntax forms emit the two constants to the static data segment and substitute the
address of the first constant (ConstL) as their memory operand.

The BOUND instruction compares the register operand against the two constants (or the two
consecutive memory locations at the specified address). If the register value is outside the range
specified by the operand(s), then the 80x86 CPU raises an ex.BoundInstr exception. You can
handle this exception using the TRY..ENDTRY HLL statement in HLA.

Because the BOUND instruction tends to be slow, and of course it consumes memory, many
programmers don’t use it as often as they should for fear it will make their programs less efficient.
HLA solves this problem using the "@bound" compile-time pseudo-variable. If @bound contains
true (the default value) then HLA will compile the BOUND instruction and it will behave normally.
If @bound contains false, then HLA will not emit any code for the bound instruction (this is similar
to "asserts" in C/C++). You can set the value of @bound in the VAL section or with the "?"
operator, e.g.,

?@bound := false;

// Code that ignores BOUND instructions
.
.
.

?@bound := true;

// BOUND instructions are active again.

17.23The Enter Instruction
The ENTER instruction uses the syntax: "enter(const, const);". The first constant operand is

the number of bytes of local variables in a procedure; the second constant operand is the lex level of
the procedure. As a rule, you should not use this instruction (and the corresponding LEAVE
instruction). HLA procedures automatically construct the display and activation record for you
(more efficiently than when using ENTER).

See the "Art of Assembly" for a further discussion of this instruction and the LEAVE
instruction.

17.24CMPXCHG Instruction
This instruction uses the following syntax:

Generic Form:

cmpxchg(reg/mem, reg);
lock.cmpxchg(reg/mem, reg);

Specific Forms:

cmpxchg(Reg8, Reg8)
cmpxchg(Reg8, Memory)
cmpxchg(Reg8, AnonMem)

cmpxchg(Reg16, Reg16)
cmpxchg(Reg16, Memory)
cmpxchg(Reg16, AnonMem)

cmpxchg(Reg32, Reg32)
Public Domain Created by Randy Hyde Page 417

HLA Reference Manual 5/24/10 Chapter 17
cmpxchg(Reg32, Memory)
cmpxchg(Reg32, AnonMem)

This instruction returns the empty string as its "returns" value.
See the "Art of Assembly" for a further discussion of this instruction.
If the "lock." prefix is present, the instruction asserts the bus lock signal during execution. The

"lock." prefix is valid only on instructions that reference memory.

17.25CMPXCHG8B Instruction
This instruction uses the following syntax:

Generic Form:

cmpxchg(mem64);
lock.cmpxchg8b(mem64);

This instruction compares edx:eax with the specified qword operand. If the values are equal,
this instruction stores the value in ECX:EBX into the destination operand; otherwise it loads the
memory operand into EDX:EAX.

This instruction returns the empty string as its "returns" value.
See the "Art of Assembly" for a further discussion of this instruction.
If the "lock." prefix is present, the instruction asserts the bus lock signal during execution. The

"lock." prefix is valid only on instructions that reference memory.

17.26The XADD Instruction
The XADD instruction uses the following syntax:

Generic Form:

xadd(source, dest);
lock.xadd(source, dest);

Specific Forms:

xadd(Reg8, Reg8)
xadd(mem, Reg8)
xadd(AnonMem, Reg8)

xadd(Reg16, Reg16)
xadd(mem, Reg16)
xadd(AnonMem, Reg16)

xadd(Reg32, Reg32)
xadd(mem, Reg32)
xadd(AnonMem, Reg32)

This instruction returns its destination operand as its "returns" value.
See the "Art of Assembly" for a further discussion of this instruction.
If the "lock." prefix is present, the instruction asserts the bus lock signal during execution. The

"lock." prefix is valid only on instructions that reference memory.
Public Domain Created by Randy Hyde Page 418

HLA Reference Manual 5/24/10 Chapter 17
17.27BSF and BSR Instructions
The bit scan instructions use the following syntax (substitute BSR for BSF as appropriate):

Generic Form:

 bsr(source, dest);

Specific Forms Allowed:

bsf(Reg16, Reg16);
bsf(mem, Reg16);
bsf(AnonMem, Reg16);

bsf(Reg32, Reg32);
bsf(mem, Reg32);
bsf(AnonMem, Reg32);

These instructions return the destination register as their "returns" value.
See the "Art of Assembly" for a further discussion of these instructions.

17.28The BSWAP Instruction
This instruction takes the form "bswap(reg32)". It converts between little endian and big

endian data formats in the specified 32-bit register.
It returns the 32-bit register as its "returns" value.
See the "Art of Assembly" for a further discussion of this instruction.

17.29Bit Test Instructions
This group of instructions includes BT, BTC, BTR, and BTS. They allow the following

generic forms:

Generic Form:

bt(BitNumber, Dest);

Specific Forms:

bt(const, Reg16);
bt(const, Reg32);

bt(const, mem);

bt(Reg16, Reg16);
bt(Reg16, mem);
bt(Reg16, AnonMem);

bt(Reg32, Reg32);
bt(Reg32, mem);
bt(Reg32, AnonMem);

bt(Reg16, CharacterSetVariable);
Public Domain Created by Randy Hyde Page 419

HLA Reference Manual 5/24/10 Chapter 17
bt(Reg32, CharacterSetVariable);

Substitute the BTC, BTR, or BTS mnemonic for BT in the examples above for these other
instructions. The BTC, BTR, and BTS instructions also allow a "lock." prefix, e.g., "lock.btc(
reg32, mem);" If the "lock." prefix is present, the instruction asserts the bus lock signal during
execution. The "lock." prefix is valid only on instructions that reference memory.

These instructions return the destination operand as their "returns" value.
Notice the two special forms that allow character set variables. HLA actually casts these 16-

byte objects as word or dword memory variables, but they otherwise work just fine with cset
objects.

Special forms available only with the BT instruction:

bt(reg16, CharacterSetConstant);
bt(reg32, CharacterSetConstant);

These two forms return the source register (BitNumber) as their "returns" value. Note that
HLA will create a phantom variable that contains the character set constant and then supplies the
name of this constant, effectively making these two instruction equivalent to "bt(reg,
CharacterSetVariable);".

See the "Art of Assembly" for a further discussion of these instructions.

17.30Floating Point Instructions

HLA supports the following FPU instructions. Note: all FPU instructions have a "returns"
value of "st0" unless otherwise noted.

fld(FPreg);
fst(FPreg);

fld(FPmem); // Returns operand.
fst(FPmem); // 32 and 64-bits only! Returns operand.
fstp(FPmem); // Returns operand.

fxch(FPreg);

fild(FPmem); // Returns operand.
fist(FPmem); // 32 and 64-bits only! Returns operand.
fistp(FPmem); // Returns operand.

fbld(FPmem); // Returns operand.
fbstp(FPmem); // Returns operand.

fadd();
fadd(FPreg, st0);
fadd(st0, FPreg);
fadd(FPmem); // Returns operand.
fadd(FPconst); // Returns operand.

faddp();
faddp(st0, FPreg);

fmul();
Public Domain Created by Randy Hyde Page 420

HLA Reference Manual 5/24/10 Chapter 17
fmul(FPreg, st0);
fmul(st0, FPreg);
fmul(FPmem); // Returns operand.
fmul(FPconst); // Returns operand.

fmulp();
fmulp(st0, FPreg);

fsub();
fsub(FPreg, st0);
fsub(st0, FPreg);
fsub(FPmem); // Returns operand.
fsub(FPconst); // Returns operand.

fsubp();
fsubp(st0, FPreg);

fsubr();
fsubr(FPreg, st0);
fsubr(st0, FPreg);
fsubr(FPmem); // Returns operand.
fsubr(FPconst); // Returns operand.

fsubrp();
fsubrp(st0, FPreg);

fdiv();
fdiv(FPreg, st0);
fdiv(st0, FPreg);
fdiv(FPmem); // Returns operand.
fdiv(FPconst); // Returns operand.

fdivp();
fdivp(st0, FPreg);

fdivr();
fdivr(FPreg, st0);
fdivr(st0, FPreg);
fdivr(FPmem); // Returns operand.
fdivr(FPconst); // Returns operand.

fdivrp();
fdivrp(st0, FPreg);

fiadd(mem16); // Returns operand.
fiadd(mem32); // Returns operand.
fiadd(const); // Returns operand.

fimul(mem16); // Returns operand.
fimul(mem32); // Returns operand.
fimul(const); // Returns operand.

fidiv(mem16); // Returns operand.
fidiv(mem32); // Returns operand.
fidiv(mem32); // Returns operand.
fidiv(const); // Returns operand.

Public Domain Created by Randy Hyde Page 421

HLA Reference Manual 5/24/10 Chapter 17
fidivr(mem16); // Returns operand.
fidivr(mem32); // Returns operand.
fidivr(const); // Returns operand.

fcom();
fcom(FPreg);
fccom(FPmem); // Returns operand.

fcomp();
fcomp(FPreg);
fcomp(FPmem); // Returns operand.

fucom();
fucom(FPreg);

fucomp();
fucomp(FPreg);

fcompp();
fucompp();

ficom(mem16); // Returns operand.
ficom(mem32); // Returns operand.
ficom(const); // Returns operand.

ficomp(mem16); // Returns operand.
ficomp(mem32); // Returns operand.
ficomp(const); // Returns operand.

fsqrt(); // The following all return "st0"
fscale();
fprem();
fprem1();
frndint();
fxtract();
fabs();
fchs();
ftst();
fxam();

 fldz();
fld1();
fldpi();
fldl2t();
fldl2e();
fldlg2();
fldln2();
f2xm1();
fsin();
fcos();
fsincos();
fptan();
fpatan();
fyl2x();
fyl2xp1();

Public Domain Created by Randy Hyde Page 422

HLA Reference Manual 5/24/10 Chapter 17
finit(); // Returns ""
fwait();
fclex();
fincstp();
fdecstp();
fnop();
ffree(FPreg);
fldcw(mem);
fstcw(mem);
fstsw(mem);

See the chapter on real arithmetic in "The Art of Assembly Language Programming" for
details on these instructions. Note that HLA does not support the entire FPU instruction set. HLA
v2.0 actually supports the entire FPU instruction set. See the Intel documentation for more details.

17.31Additional Floating-Point Instructions for Pentium Pro and
Later Processors

The FCMOVcc instructions (cc= a, ae, b, be, na, nae, nb, nbe, e, ne, u, nu) use the following
basic syntax:

FCMOVcc(stn, st0); // n=0..7

They move the specified floating point register to ST0 if the specified condition is true.

The FCOMI and FCOMIP instructions use the following syntax:

fcomi(st0, stn);

fcomip(st0, stn);

These instructions behave like their (syntactical equivalent) FCOM and FCOMP brethren
except they store the status in the EFLAGs register directly rather than in the floating point status
register.

17.32MMX Instructions
HLA supports the following MMX instructions found on the Pentium and later processors

(note that some instructions are only available on Pentium III and later processors; see the Intel
reference manuals for details):

HLA uses the symbols mm0, mm1, ..., mm7 for the MMX register set.
The following MMX instructions all use the same syntax. The syntax is

mmxInstr(mmxReg, mmxReg);
mmxInstr(mem64, mmxReg);

mmxInstrs:

 paddb
 paddw
 paddd
 paddsb
 paddsw
 paddusb
 paddusw

 psubb
 psubw
Public Domain Created by Randy Hyde Page 423

HLA Reference Manual 5/24/10 Chapter 17
 psubd
 psubsb
 psubsw
 psubusb
 psubusw

 pmulhuw
 pmulhw
 pmullw
 pmaddwd

 pavgb
 pavgw

 pcmpeqb
 pcmpeqw
 pcmpeqd
 pcmpgtb
 pcmpgtw
 pcmpgtd

 packsswb
 packuswb
 packssdw

 punpcklbw
 punpcklwd
 punpckldq
 punpckhbw
 punpckhwd
 punpckhdq

 pand
 pandn
 por
 pxor

 pmaxsw
 pmaxub

 pminsw
 pminub

 psadbw

The following MMX instructions require a special syntax. The syntax is listed for each
instruction.

 pextrw(constant, mmxReg, Reg32);
 pinsrw(constant, Reg32, mmxReg);
 pmovmskb(mmxReg, Reg32);
 pshufw(constant, mmxReg, mmxReg);
 pshufw(constant, mem64, mmxReg);

 movd(mem32, mmxReg);
 movd(mmxReg, mem32);
Public Domain Created by Randy Hyde Page 424

HLA Reference Manual 5/24/10 Chapter 17
 movq(mem64, mmxReg);
 movq(mmxReg, mem64);

 emms();

The following MMX shift instructions also require a special syntax. They allow the following
two forms:
mmxshift(immConst, mmxReg);
mmxshift(mmxReg, mmxReg);

 psllw
 pslld
 psllq
 psrlw
 psrld
 psrlq
 psraw
 psrad

Note that the psllw, psrlw, and psraw instructions only allow an immediate constant in the
range 0..15, the pslld, psrld, and psrad instructions only allow constants in the range 0..31,
the psllq and psrlq instructions only allow immediate constants in the range 0..63.

Please see the appropriate Intel documentation or "The Art of Assembly Language" for a
discussion of the behavior of these instructions.

17.33SSE Instructions
HLA supports the following SSE and SSE/2 instructions found on the Pentium III, IV, and

later processors (note that some instructions are only available on Pentium IV and later processors;
see the Intel reference manuals for details):

HLA uses the symbols xmm0, xmm1, ..., xmm7 for the SSE register set.

SSE Instrs:

addsd(sseReg/mem128, sseReg);
addpd(sseReg/mem128, sseReg);
addps(sseReg/mem128, sseReg);
addss(sseReg/mem128, sseReg);
andnpd(sseReg/mem128, sseReg);
andnps(sseReg/mem128, sseReg);
andpd(sseReg/mem128, sseReg);
andps(sseReg/mem128, sseReg);

clflush(mem8);

cmppd(imm8, sseReg/mem128, sseReg);
cmpps(imm8, sseReg/mem128, sseReg);
cmpsdp(imm8, sseReg/mem64, sseReg);
cmpss(imm8, sseReg/mem32, sseReg);
cmpeqss(sseReg, sseReg);
cmpltss(sseReg, sseReg);
cmpless(sseReg, sseReg);
cmpneqss(sseReg, sseReg);
cmpnlts(sseReg, sseReg);
cmpnles(sseReg, sseReg);
Public Domain Created by Randy Hyde Page 425

HLA Reference Manual 5/24/10 Chapter 17
cmpords(sseReg, sseReg);
cmpunordss(sseReg, sseReg);
cmpeqsd(sseReg, sseReg);
cmpltsd(sseReg, sseReg);
cmplesd(sseReg, sseReg);
cmpneqsd(sseReg, sseReg);
cmpnlts(sseReg, sseReg);
cmpnles(sseReg, sseReg);
cmpords(sseReg, sseReg);
cmpunords(sseReg, sseReg);

cmpeqps(sseReg, sseReg);
cmpltps(sseReg, sseReg);
cmpleps(sseReg, sseReg);
cmpneqps(sseReg, sseReg);
cmpnltp(sseReg, sseReg);
cmpnleps(sseReg, sseReg);
cmpordps(sseReg, sseReg);
cmpunordps(sseReg, sseReg);

cmpeqpd(sseReg, sseReg);
cmpltpd(sseReg, sseReg);
cmplepd(sseReg, sseReg);
cmpneqpd(sseReg, sseReg);
cmpnltpd(sseReg, sseReg);
cmpnlepd(sseReg, sseReg);
cmpordpd(sseReg, sseReg);
cmpunordpd(sseReg, sseReg);

comisd(sseReg/mem64, sseReg);
comiss(sseReg/mem32, sseReg);
cvtdq2pd(sseReg/mem64, sseReg);
cvtdq2pq
cvtdq2ps(sseReg/mem128, sseReg);
cvtpd2dq(sseReg/mem128, sseReg);
cvtpd2pi(sseReg/mem128, mmxReg);
cvtpd2ps(sseReg/mem128, sseReg);
cvtpi2pd(sseReg/mem64, sseReg);
cvtpi2ps(sseReg/mem64, sseReg);
cvtpi2ss
cvtps2dq(sseReg/mem128, sseReg);
cvtps2pd(sseReg/mem64, sseReg);
cvtps2pi(sseReg/mem64, sseReg);
cvtsd2si(sseReg/mem64, Reg32);
cvtsi2sd(Reg32/mem32, sseReg);
cvtsi2ss(sseReg/mem64, sseReg);
cvtss2sd(sseReg/mem32, sseReg);
cvtsd2ss(Reg32/mem32, sseReg);
cvtss2si(sseReg/mem32, Reg32);
cvttpd2pi(sseReg/mem128, mmxReg);
cvttpd2dq(sseReg/mem128, sseReg);
cvttps2dq(sseReg/mem128, sseReg);
cvttps2pi(sseReg/mem64, mmxReg);
cvttsd2si(sseReg/mem64, Reg32);
cvttss2si(sseReg/mem32, Reg32);

divpd(sseReg/mem128, sseReg);
Public Domain Created by Randy Hyde Page 426

HLA Reference Manual 5/24/10 Chapter 17
divps(sseReg/mem128, sseReg);
divsd(sseReg/mem64, sseReg);
divss(sseReg/mem32, sseReg);
fxsave(mem512);
fxrstor(mem512);
ldmxcsr(mem32);
lfence

maskmovdqu(sseReg, sseReg);
maskmovq(mmxReg, mmxReg);
maxpd(sseReg/mem128, sseReg);
maxps(sseReg/mem128, sseReg);
maxsd(sseReg/mem64, sseReg);
maxss(sseReg/mem32, sseReg);

mfence

minpd(sseReg/mem128, sseReg);
minps(sseReg/mem128, sseReg);
minsd(sseReg/mem64, sseReg);
minss(sseReg/mem32, sseReg);

movapd(sseReg/mem128, sseReg);
movapd(sseReg, sseReg/mem128);
movaps(sseReg/mem128, sseReg);
movaps(sseReg, sseReg/mem128);
movdqa(sseReg/mem128, sseReg);
movdqa(sseReg, sseReg/mem128);
movdqu(sseReg/mem128, sseReg);
movdqu(sseReg, sseReg/mem128);
movdq2q(sseReg, mmxReg);
movhlps(sseReg, sseReg);
movhpd(mem64, sseReg);
movhpd(sseReg, mem64);
movhps(mem64, sseReg);
movhps(sseReg, mem64);
movlpd(mem64, sseReg);
movlpd(sseReg, mem64);
movlps(mem64, sseReg);
movlps(sseReg, mem64);
movlhps(sseReg, sseReg);
movmskpd(sseReg, Reg32);
movmskps(sseReg, Reg32);
movnti(Reg32, mem32);
movntpd(sseReg, mem128);
movntps(sseReg, mem128);
movntq(mmxReg, mem64);
movntdq(sseReg, mem128);
movq2dq(mmxReg, sseReg);
movsdp(sseReg, sseReg);
movsdp(mem64, sseReg);
movsdp(sseReg, mem64);
movss(sseReg, sseReg);
movss(mem32, sseReg);
movss(sseReg, mem32);
movupd(sseReg, sseReg);
movupd(sseReg, mem128);
Public Domain Created by Randy Hyde Page 427

HLA Reference Manual 5/24/10 Chapter 17
movupd(mem128, sseReg);
movups(sseReg, sseReg);
movups(sseReg, mem128);
movups(mem128, sseReg);

mulpd(sseReg/mem128, sseReg);
mulps(sseReg/mem128, sseReg);
mulss(sseReg/mem32, sseReg);
mulsd(sseReg/mem64, sseReg);

orpd(sseReg/mem128, sseReg);
orps(sseReg/mem128, sseReg);

pause

pmuludq(mmxReg/mem64, mmxReg);
pmuludq(sseReg/mem128, sseReg);

prefetcht0(mem8);
prefetcht1(mem8);
prefetcht2(mem8);
prefetchnta(mem8);

pshufd(imm8, sseReg/mem128, sseReg);
pslldq(imm8, sseReg);
psrldq(imm8, sseReg);
punpckhqdq(sseReg/mem128, sseReg);
punpcklqdq(sseReg/mem128, sseReg);

rcpps(sseReg/mem128, sseReg);
rcpss(sseReg/mem128, sseReg);
rsqrtps(sseReg/mem128, sseReg);
rsqrtss(sseReg/mem32, sseReg);

sfence;

shufpd(imm8, sseReg/mem128, sseReg);
shufps(imm8, sseReg/mem128, sseReg);
sqrtpd(sseReg/mem128, sseReg);
sqrtps(sseReg/mem128, sseReg);
sqrtsd(sseReg/mem64, sseReg);
sqrtss(sseReg/mem32, sseReg);

stmxcsr(mem32);

subps(sseReg/mem128, sseReg);
subpd(sseReg/mem128, sseReg);
subsd(sseReg/mem64, sseReg);
subss(sseReg/mem32, sseReg);

ucomisd(sseReg/mem64, sseReg);
ucomiss(sseReg/mem32, sseReg);

unpckhpd(sseReg/mem128, sseReg);
unpckhps(sseReg/mem128, sseReg);
unpcklpd(sseReg/mem128, sseReg);
unpcklps(sseReg/mem128, sseReg);
Public Domain Created by Randy Hyde Page 428

HLA Reference Manual 5/24/10 Chapter 17
xorpd(sseReg/mem128, sseReg);
xorps(sseReg/mem128, sseReg);

17.34OS/Priviledged Mode Instructions
Although HLA was originally intended for writing 32-bit flat model user mode applications,

some HLA users may wish to write an operaing system kernel or device drivers within HLA.
Therefore, HLA provides support for various priviledged instructions and instructions that
manipulate segment registers on the 80x86 processor. This section describes those instructions.
Normal application programs should not use these instructions (most will cause a "General
Protection Fault" if you attempt to execute them).

For additional information on these instructions, please see the Intel documentation for the
Pentia processors.
arpl(r16, r/m16);

Adjusts the RPL field of a segment descriptor.

clts();

Clears the task switched flag in CR0.

hlt();

Halts the processor until an interrupt or reset comes along.

invd();

Invalidates the internal cache.

invlpg(mem);

Invalidates the TLB entry associated with the memory address specified as the source operand.

lar(r/m16, r16);
lar(r/m32, r32);

Load access rights from the segment descriptor specified by the first operand into the second
operand.

lds(r32, m48);
les(r32, m48);
lfs(r32, m48);
lgs(r32, m48);
lss(r32, m48);

Load a far (48-bit) segmented pointer into ds, es, fs, gs, or ss, and some other 32-bit register.
Note that HLA does not support an fword data type. These instructions require a 48-bit memory
operand, nonetheless. You may create your own 48-bit fword data type using a record declaration
like the following:
type

fword: record
offset: dword;
Public Domain Created by Randy Hyde Page 429

HLA Reference Manual 5/24/10 Chapter 17
selector: word;
endrecord;

lgdt(mem48);
lidt(mem48);
sgdt(mem48);
sidt(mem48);

Loads or stores the global descriptor table pointer (lgdt/sgdt) or interrupt descriptor table
pointer (lidt/sidt) via the specified 48-bit memory operand. HLA does not support a 48-bit data
type specifically for these instructions, but you can easily create one as follows:

type
descPtr: record

lowerLimit: word;
baseAdrs: dword;

endrecord

lldt(r/m16);
sldt(r/m16)

These instructions copy the specified source operand to/from the local descriptor table.

lsl(r/m16, r16);
lsl(r/m32, r32);

Load segment limit instruction;

ltreg(r/m16);
streg(r/m16);

Load and store the task register. Note that Intel uses the mnemonics "ltr" and "str" for these
instructions. HLA changes these mnemonics to avoid conflicts with the commonly used "str"
namespace (the HLA strings module).

mov(r/m16, segreg);
mov(segreg, r/m16);

Copies data between an 80x86 segment register and a 16-bit register or memory location. Note
that HLA uses the following register names for the segment registers:
cseg The 80x86 CS register.

dseg The 80x86 DS register

eseg The 80x86 ES register

fseg The 80x86 FS register

gseg The 80x86 GS register

sseg The 80x86 SS register

HLA uses these names rather than the Intel standard register names to avoid conflicts with the
"cs" (cset) namespace identifier and other commonly used application identifiers. Note that CSEG
may not be a destination register for the MOV instruction.
Public Domain Created by Randy Hyde Page 430

HLA Reference Manual 5/24/10 Chapter 17
mov(r32, crx); // note: x= 0, 2, 3, or 4.
mov(crx, r32);

These instructions move data between one of the 32-bit registers and one of the x86’s control
registers. Note that HLA reserves names cr0..cr7 even though Intel doesn’t currently define all
eight control registers.

mov(r32, drx); // note: x=0, 1, 2, 3, 6, 7
mov(drx, r32);

These instructions move data between the general-purpose 32-bit registers the the x86 debug
registers. Note that HLA reserves names dr0..dr7 even though the assembler doesn’t currently
support the user of the dr4 and dr5 registers.

push(segreg);
pop(segreg);

These instructions push and pop the x86 segment registers (cseg, dseg, eseg, fseg, gseg, and
sseg). Note, however, that you cannot pop the cseg register. (see the comment earlier about HLA
segment register names).

rdmsr();
rdpmc();

These instructions read model-specific registers or performance monitoring registers on the
x86. The ECX register specifies the register to read, these instructions copy the data to EDX:EAX.

rsm();

Resumes from system management mode.

verr(r/m16);
verw(r/m16);

Verifies whether the specified code segment is readable (verr) or writable (verw) from the
current priviledge level.

wbinvd();

Write-back and invalidate cache.

17.35Other Instructions and features
Currently, HLA does not support 3DNow, or certain other SIMD instructions found on later

x86 processors. The intent is to add support in the near future.
Note that HLA does not support the LMSW and SMSW instructions (old, obsolete 286

instructions). Use MOV with CR0 instead.
In the meantime, if you need to use any of these instructions you can use the

#ASM..#ENDASM and #EMIT directives to insert them into your programs. You can also use
macros to implement any desired instructions or syntaxes you desire.

Segment overrides are possible using the segment names (cseg, dseg, eseg, fseg, gseg, and
sseg) as a label before an instruction, e.g.,

fseg: mov([eax], eax); // Fetches from fs:[eax].
Public Domain Created by Randy Hyde Page 431

HLA Reference Manual 5/24/10 Chapter 17
Generally, you don't need segment overrides in flat-model 32-bit OS environments. However, the
operating system kernel (even flat-model OSes) sometimes need to apply a segment override, for
example to support Structured Exception Handling under Windows, hence this discussion.
Public Domain Created by Randy Hyde Page 432

	17 HLA v2.x Language Reference Manual
	17.1 The 80x86 Instruction Set in HLA
	17.2 Zero Operand Instructions (Null Operand Instructions)
	Instruction
	Description
	17.3 General Arithmetic and Logical Instructions
	17.4 The XCHG Instruction
	17.5 The CMP Instruction
	17.6 The Multiply Instructions
	17.7 The Divide Instructions
	17.8 Single Operand Arithmetic and Logical Instructions
	17.9 Shift and Rotate Instructions
	17.10 The Double Precision Shift Instructions
	17.11 The Lea Instruction
	17.12 The Sign and Zero Extension Instructions
	17.13 The Push and Pop Instructions
	17.14 Procedure Calls
	17.15 The Ret Instruction
	17.16 The Jmp Instructions
	17.17 The Conditional Jump Instructions
	17.18 The Conditional Set Instructions
	17.19 The Conditional Move Instructions
	17.20 The Input and Output Instructions
	17.21 The Interrupt Instruction
	17.22 Bound Instruction
	17.23 The Enter Instruction
	17.24 CMPXCHG Instruction
	17.25 CMPXCHG8B Instruction
	17.26 The XADD Instruction
	17.27 BSF and BSR Instructions
	17.28 The BSWAP Instruction
	17.29 Bit Test Instructions
	17.30 Floating Point Instructions
	17.31 Additional Floating-Point Instructions for Pentium Pro and Later Processors
	17.32 MMX Instructions
	17.33 SSE Instructions
	17.34 OS/Priviledged Mode Instructions
	17.35 Other Instructions and features

