
HLA Reference Manual 5/24/10 Chapter 16
16 The HLA Memory Model and Memory Addressing
Modes

This chapter describes how HLA views memory at run time and how individual instructions
can access memory.

16.1 The HLA Memory Model
HLA uses a variant of the standard a.out memory model. The a.out memory model organizes

data in an executable file into three distinct segments (or sections) and organizes run-time memory
allocation into five distinct sections. Though it is possible to create fancier memory models, the
a.out memory model is a time-proven tried-and-true memory model that supports the creation of
almost any imaginable executable file.

During compilation, HLA organizes the object code it produces into one of four sections: a
code (or text) section, a readonly data section, a static (initialized) data section, and a static
(uninitialized) bss section. (bss is an old assembly language term that stands for Block Started by
Symbol; the modern meaning of this term is any block of variables that aren't given a non-zero
initial value when loaded into memory.) When HLA writes the object file to disk, it combines the
readonly and text/code sections into a single section in the object file (the text section); therefore,
there are only three sections of interest in the object code file. The object file might also contain
other data such as symbol tables, string tables, and relocation tables, but such data is not present in
the run-time code and is of no interest to us here.

When the operating system loads an HLA executable file into memory, it loads the text, data,
and bss sections into their respective regions in memory before transferring control to the main
program (which will be in the text section). In addition to these three sections that exist in the
executable file's disk image, an HLA program generally references two other sections of memory at
run time: the stack area and the heap. These two areas are created dynamically at run time by the
operating system and the HLA run-time system.

The text and the data sections in memory correspond almost byte-for-byte with their respective
sections in the executable disk file. Indeed, the only difference between the sections in the disk
image and the sections in memory at run time is that the run-time image may have been relocated
to a new address.

The bss section disk image doesn't contain any actual data. This is just a data structure in the
disk image that tells the operating system how much storage to set aside when loading the
executable into memory. The operating system will allocate the storage, fill it with zero bytes, and
then adjust all the addresses in the text and data sections that reference the bss section. The size of
the bss section is solely determined by the number of bytes of variables declared in the storage
declaration sections of the HLA program.

Different operating systems arrange the text, data, and bss sections differently in memory;
however, all of the data in one such section usually resides in one contiguous block of run-time
memory. Multi-threaded applications can have multiple stacks, but the program generally starts
with one stack section. The number of heap sections in memory depends entirely on how the
operating system implements memory allocation.

You should realize that the HLA text/code section may contain data as well as machine
instructions. Data you declare in an HLA readonly section and any necessary constants (such as
string constants that HLA generates) are merged in with the machine instructions in the text section.

16.2 Memory Addressing Modes in HLA
HLA supports all the 32-bit addressing modes of the Intel 80x86 instruction set1. A memory

address on the 80x86 may consist of one to three different components: a displacement (also called

1. It does not support the 16-bit addressing modes since these are not very useful under Win32 or Linux.
Public Domain Created by Randy Hyde Page 390

HLA Reference Manual 5/24/10 Chapter 16
an offset), a base pointer, and a scaled index value. The following are the legal combinations of
these components:

displacement
basePointer
displacement + basePointer
displacement + scaledIndex
basePointer + scaledIndex
displacement + basePointer + scaledIndex

The following addressing modes are legal, but are mainly useful only within an lea instruction:

scaledIndex
scaledIndex + displacement

HLA’s syntax for memory addressing modes takes the following forms:

staticVarName

staticVarName [constant]

staticVarName[breg32]

staticVarName[ireg32]

staticVarName[ireg32*index]

staticVarName[breg32 + ireg32]

staticVarName[breg32 + ireg32*index]

staticVarName[breg32 + constant]

staticVarName[ireg32 + constant]

staticVarName[ireg32*index + constant]

staticVarName[breg32 + ireg32 + constant]

staticVarName[breg32 + ireg32*index + constant]

staticVarName[breg32 - constant]

staticVarName[ireg32 - constant]

staticVarName[ireg32*index - constant]

staticVarName[breg32 + ireg32 - constant]

staticVarName[breg32 + ireg32*index - constant]

localVarName

localVarName [constant]

localVarName[ireg32]

localVarName[ireg32*index]
Public Domain Created by Randy Hyde Page 391

HLA Reference Manual 5/24/10 Chapter 16

localVarName[ireg32 + constant]

localVarName[ireg32*index + constant]

localVarName[ireg32 - constant]

localVarName[ireg32*index - constant]

basereg:globalVarName

basereg:globalVarName [constant]

basereg::globalVarName[ireg32]

basereg::globalVarName[ireg32*index]

basereg::globalVarName[ireg32 + constant]

basereg::globalVarName[ireg32*index + constant]

basereg::globalVarName[ireg32 - constant]

basereg::globalVarName[ireg32*index - constant]

[breg32]

[breg32 + ireg32]

[breg32 + ireg32*index]

[breg32 + constant]

[breg32 + ireg32 + constant]

[breg32 + ireg32*index + constant]

[breg32 - constant]

[breg32 + ireg32 - constant]

[breg32 + ireg32*index - constant]

The following are legal, but are only useful within the lea instruction:

[ireg32*index]

[ireg32*index + constant]

"staticVarName" denotes any static variable currently in scope (local or global).
"localVarName" denotes a local, automatic, variable declared in the var section of the current

procedure.
"basereg" denotes any general purpose 32-bit register.
"globalVarname" denotes a non-local variable declared in the var section of some procedure

other than the current procedure.
"breg32" denotes a base register and can be any general purpose 32-bit register.

"ireg32" denotes an index register and may also be any general purpose register except ESP,
even the same register as the base register in the address expression.
Public Domain Created by Randy Hyde Page 392

HLA Reference Manual 5/24/10 Chapter 16
"index" denotes one of the four constants "1", "2", "4", or "8". In those address expression that
have an index register without an index constant, "*1" is the default index.

Those memory-addressing modes that do not have a variable name preceding them are known
as "anonymous memory locations." Anonymous memory locations do not have a data type
associated with them and in many instances you must use the type coercion operator in order to
keep HLA happy.

Those memory addressing modes that do have a variable name attached to them inherit the
base type of the variable. Read the next section for more details on data typing in HLA.

HLA allows another way to specify addition of the various addressing mode components in an
address expression - by putting the components in separate brackets and concatenating them
together. The following examples demonstrate the standard syntax and the alternate syntax:
[ebx+2] [ebx][2]
[ebx+ecx*4+8] [ebx][ecx*4][8]
lbl[ebp-2] lbl[ebp][-2]
[ebx*8 + 5] [ebx*8][5]

The reason for allowing the extended syntax is because you might want to construct these
addressing modes inside a macro from the individual pieces and it’s much easier to concatenate two
operands already surrounded by brackets than it is to pick the expressions apart and construct the
standard addressing mode.

In general, the extended syntax takes one of the following forms (braces surround optional
items):

[constExpr] { <<additional address items inside "[]">> }

[base32] { <<additional address items inside "[]">> }

[index32*1] { <<additional address items inside "[]">> }

[index32*2] { <<additional address items inside "[]">> }

[index32*4] { <<additional address items inside "[]">> }

[index32*8] { <<additional address items inside "[]">> }

[base32+index32] { <<additional address items inside "[]">> }

[base32+index32*1] { <<additional address items inside "[]">> }

[base32+index32*2] { <<additional address items inside "[]">> }

[base32+index32*4] { <<additional address items inside "[]">> }

[base32+index32*8] { <<additional address items inside "[]">> }

[base32 + constExpr] { <<additional address items inside "[]">> }

[index32*1 + constExpr] { <<additional address items inside "[]">> }

[index32*2 + constExpr] { <<additional address items inside "[]">> }

[index32*4 + constExpr] { <<additional address items inside "[]">> }

[index32*8 + constExpr] { <<additional address items inside "[]">> }

[base32+index32 + constExpr] { <<additional address items inside "[]">> }

[base32+index32*1 + constExpr] { <<additional address items inside "[]">>

}
[base32+index32*2 + constExpr] { <<additional address items inside "[]">>

}
[base32+index32*4 + constExpr] { <<additional address items inside "[]">>

}
[base32+index32*8 + constExpr] { <<additional address items inside "[]">>

}

Public Domain Created by Randy Hyde Page 393

HLA Reference Manual 5/24/10 Chapter 16
[base32 - constExpr] { <<additional address items inside "[]">> }

[index32*1 - constExpr] { <<additional address items inside "[]">> }

[index32*2 - constExpr] { <<additional address items inside "[]">> }

[index32*4 - constExpr] { <<additional address items inside "[]">> }

[index32*8 - constExpr] { <<additional address items inside "[]">> }

[base32+index32 - constExpr] { <<additional address items inside "[]">> }

[base32+index32*1 - constExpr] { <<additional address items inside "[]">>

}
[base32+index32*2 - constExpr] { <<additional address items inside "[]">>

}
[base32+index32*4 - constExpr] { <<additional address items inside "[]">>

}
[base32+index32*8 - constExpr] { <<additional address items inside "[]">>

}

The major restrictions is that there can be at most one base register (EAX, EBX, ECX, EDX,
ESI, EDI, EBP, or ESP) and at most one index register (EAX, EBX, ECX, EDX, ESI, EDI, or EBP)
in the address item. An optional static object name (static, readonly, or storage variable) or
automatic variable name (var objects) may precede the address item list; however, keep in mind
that if an automatic variable name precedes one of these bracketed expression lists, then the EBP
register (or a user-defined register if the reg32::identifier syntax is used) is already used as the base
register. Here are some examples of legal addressing modes in HLA:

staticVar[ebx][ecx*4][4]
localVar[edi*2]
localVar[8][edx*8]
[ebx][edx+2]

Note that if you specify two 32-bit registers in an address expression without specifying an
explicit scaled index value (e.g., "[ebx+ecx]") then HLA gets to choose which register is the base
register and which is the index register (either choice will produce the correct effective address).

Any number of constant expressions inside brackets may appear in an extended address
expression. HLA computes the sum of all such constant expressions and uses that sum as the single
constant value. E.g.,

localVar[8][edx*8][2] -- equivalent to -- localVar[edx*8 + 10]

16.3 Type Coercion in HLA
While an assembly language can never really be a strongly typed language, HLA is much more

strongly typed than most other assembly languages.
Strong typing in an assembly language can be very frustrating. Therefore, HLA makes certain

concessions to prevent the type system from interfering with the typical assembly language
programmer. Within an 80x86 machine instruction, the only checking that takes place is
verification that the sizes of the operands are compatible.

Despite HLA playing fast and loose with machine instructions, there are many times when you
will need to coerce the type of some operand. HLA uses the following syntax to coerce the type of
a memory location or register operand:

(type typeID memOrRegOperand)
Public Domain Created by Randy Hyde Page 394

HLA Reference Manual 5/24/10 Chapter 16
There are two instances where type coercion is especially important: (1) when you need to
assign a type other than byte, word, dword, qword, or lword to a register1; (2) when you need to
assign an anonymous memory location a type. Here are a couple of examples:

if((type int32 eax) < 0 then

inc((type dword [ebx]));

endif;

Type coercion is very useful in HLA when manipulating pointer objects, especially pointers to
classes and records. Consider the following example:
type

myRec_t: record
i:int32;
c:char;

endrecord;

mrPtr_t: pointer to myRec_t;

static
mpr: mrPtr_t;

.

.

.
malloc(@size(myRec_t));
mov(eax, mpr);

.

.

.
mov(mpr, ebx);
mov(cl, (type myRec_t [ebx]).c);
mov(0, (type myRec_t [ebx]).i);

As you can see here, whatever memory address appears inside the parentheses is treated like an
object of the specified type. So you can treat that whole entity as though it were a variable of the
specified type (myRec_t in this example) and you can apply the dot operator or any other operation
that would be legal on a variable of that type.

By default, the x86 general-purpose registers have the types byte, word, or dword (depending,
of course, on their size). Sometimes you might want to coerce these registers to a different type,
especially when outputting the value of a register or comparing a register with a constant. Coercion
of a register is legal as long as the coerced data type is the same size as the register, e.g.,

(type int32 eax)

Coercion like this last example is especially useful when using the register without an output
statement (like stdout.put) or in a run-time boolean expression. Consider the following:

if(eax < 0) then
<< do something if EAX is negative>>

endif;

1. Probably the most common case is treating a register as a signed integer in one of HLA’s high level language
statements. See the section on HLA High Level Language statements for more details.
Public Domain Created by Randy Hyde Page 395

HLA Reference Manual 5/24/10 Chapter 16
In this example, the expression is always false because EAX is a dword object (which is unsigned).
Therefore, EAX can never be less than zero (even if EAX contains something that you want
interpreted as a negative value). You can solve this problem by coerce EAX to an int32 object:

if((type int32 eax) < 0) then
<< do something if EAX is negative>>

endif;

This code example will work properly since HLA is smart enough to generate the appropriate
signed comparison/conditional jump sequence when it realizes one or more of the operands are
signed.

Type coercion fully supports HLA memory addressing modes. You can use any valid HLA
addressing mode form in place of the address object in the type coercion expression, for example:

(type dword byteVar[ebx][ecx*1][2])

In addition, you can also treat a type coercion operation as though it were a static identifier in
an extended HLA addressing mode; that is, you can follow a type coercion operator with a set of
bracketed addressing mode options:

(type qword [ebx])[ecx*8][16]
Public Domain Created by Randy Hyde Page 396

	16 The HLA Memory Model and Memory Addressing Modes
	16.1 The HLA Memory Model
	16.2 Memory Addressing Modes in HLA
	16.3 Type Coercion in HLA

